Efficient Fuel Cell Systems

Christine Zawodzinski, Steffen Møller-Holst, and Mahlon S. Wilson

Materials Science and Technology Division, MS D429
Los Alamos National Laboratory
Los Alamos, NM 87545

2000 DOE OTT Fuel Cells Program Review June 7-8, Richland, WA

Efficient Fuel Cell Systems: Objectives

High System Efficiencies

- > 55% w/ Hydrogen Fuel
- > 40% w/ Hydrocarbon Fuels (gasoline, etc.)

Simplicity

- For Fuel Cell Systems to be competitive for transportation, they will need to be:
 - » Inexpensive
 - » Reliable

Approach: "Adiabatic" Stack Operation

Efficient Fuel Cell Systems: Key Aspects of the "Adiabatic" Approach

- Direct liquid water hydration of the membranes needed to allow operation with a dry, ambient pressure cathode airstream.
- Utilizes an "Anode Wicking Backing" to transport the water to the membrane.

Efficient Fuel Cell Systems: System Benefits of "Adiabatic" Operation

Simplicity

- "Inexpensive"
 - » Standard Bipolar Plate Technologies
 - » Standard MEA Technologies
 - » Blower (instead of Compressor)
 - » Low-Pressure Components (manifolds, seals, tubing, etc.)
- Fewer Parts
 - » No Cooling Plates
 - » No Cooling System / Radiators (replaced by Condenser)
 - » No Humidification Modules

Minimal Liquid Water on the Air-Side

- Low Pressure Drops Possible (typically less than 6" H₂O)
 - » Very low air compression power requirements.
- Simple flow-fields.

Blowers & Low Parasitic Powers: Need For Very Low Pressures.

Efficient Fuel Cell Systems: 1.5 kW Adiabatic Stack

Accomplishments / Progress

- Re-Optimized Single Cell Cathode Flow-fields
- Disassembled, Remachined & Rebuilt 26-cell Stack
 - Desired air-side pressure drops now attained.
 - New gasket materials provide less leakage.
- **Further Simplified System**
 - Devised Simple Water Subsystem Scheme
 - Uses a single pump and and pressure switch for both water recirculation and make-up.
- Operated w/ Water Self-Sufficiency and Low Parasitic Power.
 - Used '98 Flat-Plate Plastic Condenser
 - Off-the shelf aluminum "condensers" also tried.

Efficient Fuel Cell Systems: Current Adiabatic System Schematic

System Performance Description with Water Self-Sufficiency

- 26 cell stack, 300 cm² active area, 17.5 V (0.673 V/cell) 57% voltage efficiency), 83 A (1.45 kW gross power). Approx. 3x stoich airflow. Endplates thermally isolated from cells and heated (to minimize passive cooling).
- FY98 plastic, flat-plate homemade condenser used.
 Blocked off 2/3 of the condensate-side channels (leaving 1/3rd functional). 1/6 ft³ exchange volume. 36 W total fan power. Recovered a surplus of 2.5 g/min of water.
- 5.5" H₂O air manifold pressure at the stack. Total power draw for blower, (1/3) condenser fan, H₂ and water pumps is 26.1 W or 1.8 % stack power net power is 1.43 kW or 56% overall efficiency.
- Net stack power density is 346 W/L (bipolar plate basis).

Efficient Fuel Cell Systems: Relevance and Effect of Parasitic Power

Stack Design Issues: Characterizing/Understanding the Stack

- Temperature gradient across the stack measured
 - Suggests tail end is relatively dead
- What is the optimal geometry?

Detailed Stack Modeling Needed

Efficient Fuel Cell Systems Evaporative Cooling in Florida?

- Is Evaporative Cooling (adiabatic operation) possible with high humidity and temp? (e.g., Florida)
- System is <u>not</u> an Evaporative <u>Cooler</u>
 - Easier water recovery at SL. - Effluent T dominates, humidity & inlet T have lesser effects.

Efficient Fuel Cell Systems: Water Recovery at High Ambient T's

System Heat & Mass Balance Model

- Used to anticipate condenser performance (e.g., water self-sufficiency) under various ambient temperatures and pressures.
 - » Condenser inlet temperature increases with ambient P & T.
 - » Heat transfer coefficients proportional to ambient pressure.

Overall Sweeping Conclusion:

- For similar condensers and coolant airflows (\underline{s} cfm), operating with $T_{ambient} = 25^{\circ}C$ at Los Alamos is roughly equivalent to $T_{ambient} = 40^{\circ}C$ at sea level.
 - » (Although same fan power level actually doubles the air-flow)
- T_{ambient} = 40°C at Los Alamos <u>halves</u> the water recovery.

Is "Cooling" with Condensers Feasible?: Condensers vs. Radiators

- For similar U_o's, Adiabatic Heat X-change area is half pressurized's (due to higher LMTDs in ANL model).
 - $A_{press} = 36 \text{ m}^2$, $A_{adiabat} = 17 \text{ m}^2$ (a car radiator is about 2 m²).
- One heat X-change system replaces two.
- Radiators + coolant are heavy (robust to hold H₂O. A 2 m², 2.8 kg car radiator holds 2.0 kg of water).

Condensers mostly contain air - hence:

- lightweight and
- freeze tolerant.
- Adiabatic condenser can conceivably be sized for average power, not max (about half again smaller?).
 - Water recovery (condenser) is not "critical" cooling (radiator) is.
 - » Can operate full power at 40°C in Los Alamos until water runs out.

Efficient Fuel Cell Systems: Milestones / Timeline

- June '00 Demonstrate water self-sufficiency at 55% overall energy conversion efficiency for a 1-3 kW stack operating at ambient air pressure.
 - Achieved, but would also like to demonstrate with "evolved" condenser (while project is not for developing condensers, it is an important aspect).
- Sept. '00 Attain power densities of 500 W/L (on a bipolar plate area basis) with 55% overall efficiency for a 1-3 kW stack operating at ambient air pressure.
 - Utilize thinner plates, more effective hydration in Vs. 2.0 (also sea level performance aspect).

Efficient Fuel Cell Systems: Activities Through Sept '00

- **Further Water Self-Sufficiency Development**
 - Featuring Yet Another Condenser Design
 - » Off-the-shelf plastic components (Lightweight, simple, cheap).
- Version 2.0 Stack
 - Single cell optimization
 - » Internally Manifold Anode Side
 - Now externally manifolded (not commercially desirable).
 - » Increase power density (500 W/L).
 - Further refine hydration scheme
 - Decrease bipolar plate thickness
 - Stack fabrication, assembly, and testing.
- Sea-Level Performance

Efficient Fuel Cell Systems:Interactions with Industry / Tech Transfer

- Currently Transferring "Adiabatic" Stack System Technology to Two Companies
 - One company is emphasizing auxiliary power.
 - The other is primarily developing systems for stationary and propulsion applications (but not automotive).

Efficient Fuel Cell Systems: Summary / Conclusions

- Demonstrated Adiabatic Stack / System with:
 - Water self-sufficiency,
 - » Simple water system scheme,
 - » Relatively low stoichiometric air flows (3x).
 - 55% overall efficiency, and
 - » Very low parasitic powers (1.8%),
 - Reasonable <u>net</u> power densities.
 - » 350 W/L (bipolar plate basis)
 - » 460 W/L (active area basis)
- Adiabatic Stack / System provides:
 - Simple and "inexpensive" approach.

Efficient Fuel Cell Systems: Future Plans

Progressing w/ System and Stack Design

- Detailed Modeling of Stack Heat and Mass Transport
- Radically Modify Stack Design Version 3.0
 - » Higher power densities.
 - » Improved stability and reliability.
 - » Near dead-end hydrogen feed.
 - Further System Simplification

■ Utilizing the Advantages of the Adiabatic System

- Does not mesh well with POX approach.
- Significant design advantages with neat H₂, using
- Alternative Fuel Processor/FC Approaches
 - » Steam reformer + membrane purifier + efficient FC system.
 - Overall efficiencies > 40%

