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Efficient Fuel Cell Systems:
Objectives

s High System Efficiencies

— >55% w/ Hydrogen Fuel
— >40% w/ Hydrocarbon Fuels (gasoline, etc.)

s Simplicity
— For Fuel Cell Systems to be competitive for
transportation, they will need to be:
» |Inexpensive
» Reliable
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Approach:

“Adiabatic” Stack Operation
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AIR

Near-Ambient Pressure
- Uses Blower (No Compressor),
- Low Pressure Components

Unhumidified Air

- No Humidification Module,
- Simple Flow-Field

Evaporatively Cool
- No Cooling Plates,

- No Coolant Subsystem,
- No Radiators

HUMID AIR
(Water Vapor Recovered)
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Efficient Fuel Cell Systems:
Key Aspects of the “Adiabatic” Approach

m Direct liquid water

%é?% MEBRANE hydration of the

- membranes needed
% cATHODE to allow operation
7 - SIDE with a dry, ambient
——— SRS pressure cathode

%//% airstream.

//// m Utilizes an “Anode

Wicking Backing” to
transport the water to
the membrane.




Efficient Fuel Cell Systems:
System Benefits of “Adiabatic” Operation

. Simplicity
— “Inexpensive”
» Standard Bipolar Plate Technologies
» Standard MEA Technologies
» Blower (instead of Compressor)
» Low-Pressure Components (manifolds, seals, tubing, etc.)
— Fewer Parts
» No Cooling Plates
» No Cooling System / Radiators (replaced by Condenser)
» No Humidification Modules

= Minimal Liquid Water on the Air-Side

— Low Pressure Drops Possible (typically less than 6” H,0)
» Very low air compression power requirements.

— Simple flow-fields.
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Blowers & Low Parasitic Powers:
Need For Very Low Pressures.
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Compressor Power / Stack Power (%)

= Ideal Adiabatic Compression

Premise:

0.7 Vlcell,
3 x Stoich. Airflow
(33% utilization)

Example:

Ametek 3-Stage Brushless 800 W
Blower at 2 psig = 25% Efficient
(yields > 10% Parasitic Power)

1 2 3 4 5 6 7

Cathode Pressure (psig)
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Efficient Fuel Cell Systems:
1.5 kW Adiabatic Stack
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Accomplishments / Progress

m Re-Optimized Single Cell Cathode Flow-fields

m Disassembled, Remachined & Rebuilt 26-cell Stack
— Desired air-side pressure drops now attained.
— New gasket materials provide less leakage.

m Further Simplified System
— Devised Simple Water Subsystem Scheme

» Uses a single pump and and pressure switch for both water
recirculation and make-up.

m Operated w/ Water Self-Sufficiency and Low Parasitic
Power.

— Used ‘98 Flat-Plate Plastic Condenser
— Off-the shelf aluminum “condensers” also tried.

Materials Science and Technology DiViSiON s
’00 Rev Eff FCs




Efficient Fuel Cell Systems:
Current Adiabatic System Schematic
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System Performance Description
with Water Self-Sufficiency

m 26 cell stack, 300 cm? active area, 17.5V (0.673 V/cell) - 57%
voltage efficiency), 83 A (1.45 kW gross power). Approx. 3x
stoich airflow. Endplates thermally isolated from cells and
heated (to minimize passive cooling).

m FY98 plastic, flat-plate homemade condenser used.
Blocked off 2/3 of the condensate-side channels (leaving
1/3rd functional). 1/6 ft3 exchange volume. 36 W total fan
power. Recovered a surplus of 2.5 g/min of water.

m 5.5" H,O air manifold pressure at the stack. Total power
draw for blower, (1/3) condenser fan, H, and water pumps is
26.1 W or 1.8 % stack power - net power is 1.43 KW or 56%
overall efficiency.

m Net stack power density is 346 W/L (bipolar plate basis).

; 6
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Efficient Fuel Cell Systems:
Relevance and Effect of Parasitic Power
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Stack Design Issues:
Characterizing/Understanding the Stack

m Temperature
gradient
across the
stack
measured

— Suggests tail
end Is
relatively
dead

s What Is the
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— e.d., Role of plate heat conduction?

— Detailed Stack Modeling Needed
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Efficient Fuel Cell Systems
Evaporative Cooling in Florida?
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Efficient Fuel Cell Systems:
Water Recovery at High Ambient T's

m System Heat & Mass Balance Model

— Used to anticipate condenser performance (e.g., water
self-sufficiency) under various ambient temperatures
and pressures.

» Condenser inlet temperature increases with ambient P & T.
» Heat transfer coefficients proportional to ambient pressure.

s Overall Sweeping Conclusion:

— For similar condensers and coolant airflows (scfm),
operating with T, ,ieni= 25 C at Los Alamos is roughly
equivalentto T = 40°C at sea level.

ambient™

» (Although same fan power level actually doubles the air-flow)

— T = 40°C at Los Alamos halves the water recovery.

ambient™
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Is “Cooling” with Condensers Feasible?:
Condensers vs. Radiators

» For similar U,’s, Adiabatic Heat X-change area is half
pressurized’s (due to higher LMTDs in ANL model).
— Ajress = 36 M?, A jiana = 17 m? (a car radiator is about 2 m?).

= One heat X-change system replaces two.

= Radiators + coolant are heavy (robust to hold H,O. A 2 m?, 2.8 kg
car radiator holds 2.0 kg of water).
Condensers mostly contain air - hence:
— lightweight and
— freeze tolerant.
= Adiabatic condenser can conceivably be sized for average
power, not max (about half again smaller?).

— Water recovery (condenser) is not “critical” - cooling (radiator) is.
» Can operate full power at 40°C in Los Alamos - until water runs out.
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Efficient Fuel Cell Systems:
Milestones / Timeline

s June ‘00 - Demonstrate water self-sufficiency at 55% overall
energy conversion efficiency for a 1-3 kW stack operating at
ambient air pressure.

— Achieved, but would also like to demonstrate with “evolved”
condenser (while project is not for developing condensers, it is an
Important aspect).

m Sept. ‘00 - Attain power densities of 500 W/L (on a bipolar
plate area basis) with 55% overall efficiency for a 1-3 kW stack
operating at ambient air pressure.

— Utilize thinner plates, more effective hydration in Vs. 2.0 (also sea
level performance aspect).
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Efficient Fuel Cell Systems:
Activities Through Sept ‘00

m Further Water Self-Sufficiency Development

— Featuring Yet Another Condenser Design
» Off-the-shelf plastic components (Lightweight, simple, cheap).

m Version 2.0 Stack

— Single cell optimization
» Internally Manifold Anode Side
* Now externally manifolded (not commercially desirable).
» Increase power density (500 W/L).
* Further refine hydration scheme
» Decrease bipolar plate thickness

— Stack fabrication, assembly, and testing.
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Efficient Fuel Cell Systems:
Interactions with Industry / Tech Transfer

m Currently Transferring “Adiabatic” Stack System
Technology to Two Companies

— One company is emphasizing auxiliary power.

— The other is primarily developing systems for stationary
and propulsion applications (but not automotive).
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Efficient Fuel Cell Systems:
Summary / Conclusions

s Demonstrated Adiabatic Stack / System with:

— Water self-sufficiency,
» Simple water system scheme,
» Relatively low stoichiometric air flows (3x).

— 55% overall efficiency, and
» Very low parasitic powers (1.8%),

— Reasonable net power densities.
» 350 W/L (bipolar plate basis)
» 460 WI/L (active area basis)

s Adiabatic Stack / System provides:
— Simple and “inexpensive” approach.
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Efficient Fuel Cell Systems:
Future Plans

m Progressing w/ System and Stack Design
— Detailed Modeling of Stack Heat and Mass Transport
— Radically Modify Stack Design - Version 3.0
» Higher power densities.

» Improved stability and reliability.

» Near dead-end hydrogen feed.
e Further System Simplification

s Utilizing the Advantages of the Adiabatic System
— Does not mesh well with POX approach.
— Significant design advantages with neat H,, using

— Alternative Fuel Processor/FC Approaches

» Steam reformer + membrane purifier + efficient FC system.
* OQOverall efficiencies > 40%
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