Carbon Composite Bipolar Plate for PEM Fuel Cells

T. M. Besmann, J. W. Klett, and J. J. Henry Metals and Ceramics Division Oak Ridge National Laboratory

National Laboratory R&D Meeting
DOE Fuel Cells for Transportation Program
Pacific Northwest National Laboratory, June 7-8, 2000

Objective

To develop a slurry-molded, carbon fiber material with a carbon chemical vapor infiltrated (CVI) sealed surface as a bipolar plate that would meet cost and property goals.

Property	<u>Specification</u>
Bulk Conductivity	> 100 S/cm
H ₂ permeability	$<2 \text{ x } 10^{-6} \text{ cm}^3/\text{cm}^2\text{-sec}$
Corrosion rate	$<16 \mu\text{A/cm}^2$
Cost	<\$10/kW

Approach

- •Bipolar plate will utilize carbon/carbon concept
- Preform is slurry—molded carbon fibers
 - -similar to paper or felt production
 - -fibers ~400 μm
 - -features stamped/embossed into preform
- •CVI with carbon
 - -seals and makes hermetic high-density surfaces
 - -provides continuous, high-conductivity material

Advantages of Approach

- Preforms prepared from slurry-molded carbon fibers
 - net shape process/press-in features
 - process can be continuous (i.e., papermaking)
 - low-cost materials
- Appropriate surfaces sealed via deposition of carbon
 - -high-conductivity (graphitic) carbon coating all surfaces
 - infiltration makes component fully integral
 - potential for continuous or semi-batch processing
- Negligible impurities/poisons with no corrosion
- Strength and toughness of carbon/carbon
- Very light weight (less than about half that of other approaches)
- Potential for integral diffuser/catalyst support, therefore, lower ohmic losses

Timeline of Project Accomplishments

March 1998	July 1998	June 1999
Project Initiated	3-cm disks with machined	100-cm ² plates with
-	flowfield	machined flowfield
	High conductivity meas.	 Good cell performance
	Promising cell perf.	High conductivity meas.
		•Light weight demonstrated
		High strength/toughness
June 2000		Initial samples to industry

- •Freeze/thaw testing
- •Low corrosion meas.
- •Multiple samples to industry

100-cm² plates with pressed

flowfield prepared and tested

Current Accomplishments

- Fabrication of prototypical 100-cm² active area plate with pressed-in features
- Corrosion testing indicates as good or better than graphite
- Electrical properties near those of graphite
- Freeze/thaw testing revealed no damage to plates
- Seven 100-cm² active area plate provided to PlugPower for testing
- Two sub-scale plates provided to Honeywell for testing

Slurry Molding of Preforms

Water-Based Processing:

- 400-µm pitch-based carbon fiber and phenolic resin slurry
- Slurry applied to vacuum mold
- Application of surface phenolic to decrease pore size

Lab-Scale Slurry Molding

Preform Preparation Can Be Analogous to Continuous Papermaking

Carbon Fiber Preform After Slurry Molding

Amoco DKD-x mesophase pitch carbon fibers

CVI Is Rapid and Relatively Low Cost

Infiltration of Carbon

- Short processing time
- Methane reactant
- 1400°C
- 5 kPa pressure
- Large reactor
- •30,000 parts/run
- •\$1/part

Cost Estimate
Processing \$1/plate
(B.F. Goodrich)

100-cm² Active Area Carbon Composite Bipolar Plate

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Plate Mold and Pressed Bipolar Plate Preform

Channels 0.8 mm deep and wide

Successful pressing of features into the bipolar plate preform was necessary for demonstrating low-cost manufacturing

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Polarization Tests Indicate Corrosion of Carbon Composite Less Than POCO Graphite

Conditions
0.001 N H₂SO₄
2 ppm F⁻
Temperature 80 °C
Nitrogen purge

(K. Weisbrod, LANL)

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Corrosion Rates and Electrical Properties of Carbon Composite are Near or Better Than POCO Graphite

	<u>Poco</u>	<u>Carbon</u>
	Graphite	Composite
Corrosion Rate*	$8x10^{-5}$	$6x10^{-6}$
$(A/cm^2 @ 1 V)$		
Bulk Conductivity**		200-300
(S/cm)		
Surface Resistivity	8	12
(Ω/cm)		

^{*}K. Weisbrod, LANL

^{**}M. Wilson, LANL

Industrial Interactions

- Plug Power is evaluating ORNL plates
 - -testing 100-cm² active area plates
- Honeywell is developing fixtures to test plates
- •BF Goodrich has interest as materials supplier
 - -cost analysis
 - -participation in early production

Continuing Development and Technology Transfer of Carbon-Composite Bipolar Plates

- Supply 100-cm² for evaluation by industry
- Scale-up of plate size
 - -Need design that industrial partner would like to have fabricated
- Partner with fuel cell component manufacturer to manufacture carbon composite bipolar plates
- •Milestone: Transfer technology to a fuel-cell component producing company for their scale-up and work with them to demonstrate production (6/00)

Some Advisory Panel Comments From Last Year and Responses

- "Work closely with industry/get plates into stacks asap"
 - Providing plates to Plug Power and Honeywell as quickly as they request them
- "Refocus molding on high production rate"
 - -Demonstrated molding of full plates
- "Perform corrosion testing"
 - -Testing completed, with material behaving better than POCO
- "Address bipolar plate rather than single-sided plate"
 - Currently producing bipolar plates for evaluation
- "Address water freeze"
 - -Wetted samples were repeatedly frozen and thawed with no evident damage

Summary

- •Successful fabrication of pressed preform100-cm² bipolar plates
- •Plates determined to have:
 - -very good conductivity surface and bulk conductivity
 - -low corrosion rate
 - -tolerance of freeze/thaw
- •Costs estimates appear to meet goals
- •Testing continuing at Honeywell and Plug Power

