MICROCHANNEL FUEL PROCESSING

Development of an Efficient, Compact Fuel Processor

Annual National Laboratory R&D Meeting DOE Fuel Cells for Transportation Program

June 7-8, 2000

Energy-Efficient Microchannel Fuel Processor Expected To Provide 10 kWe

Bonded 10 kWe Microchannel Reformer

Exhaust Recuperators/Water Vaporizers Reformate Recuperators/Fuel Vaporizers Steam Reformer

Pacific Northwest National Laboratory

TECHNICAL APPROACH

 Develop ultra compact reactors, separators and heat exchangers -for the onboard, automotive production of hydrogen from liquid hydrocarbons -based on heat and mass transport advantages that can be realized using engineered microstructures

- Ultimate Goals for Microchannel Fuel Processor System:
 - Output: Sufficient fuel for 50 kWe PEM fuel cell
 - Volume: < 1.0 cubic foot
 - Cost: < \$500/unit (based on 500,000 units per year)

Performance: 40-50% system efficiency (including PEM fuel cell)
Pacific Northwest
National Laboratory

CONTENT

Larry Pederson – Introduction, Approach Ward TeGrotenhuis – System Efficiency Model, Steam Reforming Reactor Performance Greg Whyatt – Microreformer Fabrication and Component Performance Results Bob Wegeng – Summary, Development Plans

Development Timeline Summary

Previous Efforts at PNNL

- Microchannel Fuel Vaporizer Demonstrated at 50 kWe (300 mL/min) for Gasoline, With an 0.3 L Volume (1999 R&D 100 Award)
- Microchannel Steam Reformer Demonstrated at 1 kWe with Isooctane

Current Effort

- Efficient 10 kWe Microchannel Steam Reformer/High Temperature Water Gas Shift Subsystem
- Multi-Stream Recuperative Heat Exchangers and Steam/Fuel Vaporizers
- Microchannel Condensor with Vapor/Liquid Separation

Integrated Steam Reforming Demonstration System

- FY99 Objectives
 - Demonstrate steam reforming in a microchannel reactor
 - Demonstrate high effectiveness, compact recuperation

- FY00 Objectives
 - Scale-up 4 trains @ 4-20 kWe
 - High efficiency

Microchannel Steam Reforming Reactor Testing

Objectives

- Obtain design data for next generation design
- Demonstrate capacity / Validate power density progress
- · Characterize reactor performance for system modeling
- Statistically Design Experiment 4-factor full factorial design
 - Reactant flow rates
 - Residence time
 - Steam to Carbon (3:1 to 12:1)
 - Heat transfer combustion gas flow rate and temperature
 - Reactor temperature
 - Capacity rate ($\dot{m} C_p$ of combustion gas stream)
 - Measured conversion and selectivities

Microchannel Steam Reforming Reactor Testing First Generation Reactor Experimental Data

Steam Reforming High Temperature Water Gas Shift

- High temperature shift gives >100% yield.
- Methanation reduces yield at lower reactor temperature and higher pressure.
- Higher steam to carbon increases yield and shifts maximum to lower temperature.

Battelle

Fuel Cell / Steam Reforming Fuel Processor

System Efficiency

Energy Efficiency

- > 43% overall system (including compressor)
- 84% fuel processor efficiency (Steam reformer and CO cleanup, anode waste free)
- at 60% fuel stack efficiency (w/o compressor, requires 0.84V & 85% utilization)

Steam Reformer Assumptions

- 700°C Operating Temperature
- 90% Fuel Conversion
- Equilibrium Carbon Selectivity
- Unreacted fuel burned in combustor (?)
 - Facilitated by alternative reformate treatment options (see poster)
- Water balances at 54°C heat rejection temperature

High Temperature Combustion

Combustion Gas Reinjection Scheme

Enabled by modularity of microchannel architecture

- **Potential Benefits**
 - Lower combustion temp stainless steel construction
 - Higher reactor temperature smaller reactor / more shift
 - Lower combustion flow smaller heat exchangers ٠
 - Higher system efficiency

10 kWe Steam Reforming/High Temperature Shift (SR/HTS) Reactor System

Objectives:

- Scale-up capacity from
- \sim 1 kWe to 10 kWe
- Enable Energy Efficient Operation

Bonded Stack for 10 kWe Reactor

Integrated 10 kWe SR/HTS System

National Laboratory

Multi-Stream Combustion Gas Exchanger

Combustion Exhaust from Reactor is used to: •Provide Preheat for Combustion Air •Vaporize Water

Bonded Stacks for Integrated Combustion Gas HX (4 required)

Reformate/Reactant Recuperator Test Unit

Multi-Stream Reformate Exchanger

Heat in Reformate Product is used to :

- Preheat Vaporized Fuel and Steam (90% effective)
- Vaporize Fuel
- Preheat Water to Vaporizer

Bonded Stacks for Integrated Reformate Exchanger (4 required). Units designed to eventually mate with combustion gas exchanger to form single exchanger unit.

> Pacific Northwest National Laboratory

Condensers / Air Preheat Exchanger

Air Preheat Exchanger:

- Recover low quality heat from vaporizer exhaust
- •At design conditions, duty = 3216 W, effectiveness = 90%.
- •May not be required after integration.
- •Eventual non-stainless construction.

Microchannel Condensers:

- •Not part of Steam reforming subsystem.
- •Provides cooling and removal of water from reformate prior to analysis/ venting.

Bonded Microchannel Condensers

Pacific Northwest National Laboratory

Development Status Compared To Targets

For a 50 kWe fuel processor/fuel cell system...

	DOE/PNGV Status Fuel Proc Sys	DOE/PNGV 2004 Target Fuel Proc Sys	PNNL Microchannel Steam Reformer 2000 Achievable	PNNL Microchannel Steam Reformer 2004 Goal
Overall System Efficiency	30% ^a	48%	39-41%	47-49% ^e
Fuel Processor Efficiency	70% ^a	80%	83-85%	83-85%
Fuel Processor Size (Liters)	166 ^a	66.7	30 - 15 ^b	< 8 ^d
Fuel Processor Weight (kg)	166 ^a	66.7	180 - 90	< 30
Fuel Processor Cost (\$)	3000 ^a	500	~ 3000 -1500 ^c	< 200 ^{c,d}

^a As of January 2000

^b Includes improvements to current demonstration unit

^c Based on cost of bonded unit only (no catalyst costs)

^d Requires improvements to catalyst performance and/or manufacturing methods

Depends upon improvements to fuel cell performance and balance of plant hardware Pacific Northwest

National Laboratory

Plans

- Demonstrate highly efficient operation of microchannel reformer at 10 kWe
- Advance to transportation fuels (e.g., methanol, gasoline, diesel, and middle-distillates)
- Catalyst development critical (durable, tolerant of poisons such as sulfur); Battelle Memorial Institute currently investing private funds to address catalyst issues
- Manufacturability/cost reduction investigation
- Integration of all components of a complete fuel processor into a single device is an ultimate goal
- Increase external interactions Baffelle

Interactions

- Tested ANL catalysts developed for autothermal reforming; collaborating on overall system performance modeling
- Plug Power propose to test integrated fuel reformer with PEM fuel cell stack
- McDermott provide heat exchangers for testing and evaluation
- Epyx tested fuel vaporizer (1999)
- Active participation at national symposia, technical publications

Summary

- Current microchannel fuel reformer system provides higher capacity and greater efficiency than earlier design
- Steam reformer subsystem consists of a 4-cell reformer, multi-stream recuperative heat exchangers and steam/fuel vaporizers
- High hydrogen selectivity, low methane slip, and some high temperature water gas shift obtained
- Approach expected to meet PNGV targets for efficiency and size; improvements needed to meet weight and cost targets

References

- Wegeng, R.S., "Microchannel Fuel Processor Hardware Development Status," F-CELLS 2000, Palm Springs, CA, May 22-26, 2000
- Wegeng, R.S., "Reducing the Size of Automotive Fuel Reformers," Fuel Cells Infrastructure Workshop, Chicago, IL, Dec 6-7, 1999
- Zilka-Marco, J.L., A.Y. Tonkovich, M.J. Lamont, S.P. Fitzgerald, D.P. VanderWiel, Y. Wang, R.S. Wegeng, "Compact Microchannel Fuel Vaporizer for Automotive Applications," 4th International Conference on Microreaction Technology, AICHE/DECHEMA, Atlanta, GA, March 2000
- Drost, M.K., Wegeng, R.S., P.M. Martin, K,P. Brooks, J.L. Martin and C. Call, "MicroHeater," 4th International Conference on Microreaction Technology, AICHE/DECHEMA, Atlanta, GA, March 2000
- Brenchley, D.L., R.S. Wegeng and M.K. Drost, "Development of Micro-Chemical and Thermal Systems," 4th International Conference on Microreaction Technology, AICHE/DECHEMA, Atlanta, GA, March 2000
- Fitzgerald, S.P., R.S. Wegeng, A.Y. Tonkovich, Y. Wang, H.D. Freeman, J.L. Marco, G.L. Roberts and D.P. VanderWeil, "A Compact Steam Reforming Reactor for Use in an Automotive Fuel Processor," 4th International Conference on Microreaction Technology, AICHE/DECHEMA, Atlanta, GA, March 2000
- Daymo, E.A., D.P. VanderWiel, S.P. Fitzgerald, Y. Wang, R.T. Rozmiarek, M.J. Lamont and A.Y. Tonkovich, "Microchannel Fuel Processing for Man Portable Power," 4th International Conference on Microreaction Technology, AICHE/DECHEMA, Atlanta, GA, March 2000
- Werner, T.M., S.C. Schmitt, E.A. Daymo and R.S. Wegeng, "Microchannel Gasoline Vaporizer Unit Manufacturing Cost Study," PNNL-12226, June 1999
 Baffelle
 Pacific Northwest National Laboratory