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Energy-Efficient Microchannel Fuel Processor 
Expected To Provide 10 kWe

Bonded 10 kWe Microchannel Reformer

Steam Reformer
Reformate Recuperators/Fuel Vaporizers
Exhaust Recuperators/Water Vaporizers
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TECHNICAL APPROACH
! Develop ultra compact reactors, 

separators and heat exchangers  --
for the onboard, automotive production 
of hydrogen from liquid hydrocarbons --
based on heat and mass transport 
advantages that can be realized using 
engineered microstructures

! Ultimate Goals for Microchannel Fuel Processor System:
• Output: Sufficient fuel for 50 kWe PEM fuel cell
• Volume:  < 1.0 cubic foot
• Cost:  < $500/unit (based on 500,000 units per year)
• Performance:  40-50% system efficiency (including PEM fuel cell)
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CONTENT

Larry Pederson – Introduction, Approach
Ward TeGrotenhuis – System Efficiency Model, 
Steam Reforming Reactor Performance
Greg Whyatt – Microreformer Fabrication and 
Component Performance Results
Bob Wegeng – Summary, Development Plans
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Development Timeline Summary
! Previous Efforts at PNNL

• Microchannel Fuel Vaporizer Demonstrated at 50 kWe (300 mL/min) 
for Gasoline, With an 0.3 L Volume (1999 R&D 100 Award)

• Microchannel Steam Reformer Demonstrated at 1 kWe with 
Isooctane

! Current Effort
• Efficient 10 kWe Microchannel Steam Reformer/High Temperature 

Water Gas Shift Subsystem
• Multi-Stream Recuperative Heat Exchangers and Steam/Fuel 

Vaporizers
• Microchannel Condensor with Vapor/Liquid Separation
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Integrated Steam Reforming Demonstration System
! FY99 Objectives

• Demonstrate steam reforming in a 
microchannel reactor

• Demonstrate high effectiveness, 
compact recuperation
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! FY00 Objectives
• Scale-up - 4 trains @ 4-20 kWe
• High efficiency

Steam Reformer/Combuster

Fuel
Vaporizer

R
ec

up
 1

Fu
el

M
ixt

ur
e

R
ef

or
m

R
ef

or
m

at
e

Steam

Fu
el

(g
)

Liquid
Fuel

H2O(l)

H2O(l) Preheated
Air

H2

C
om

b.
ga

s
C

om
b.

ga
s

Ai
r

Water
Vaporizer

Water
Preheater

R
ef

or
m

at
e

R
ec

up
 5

Exhaust
gas

Reformate

Air
Preheater



7

Pacific Northwest 
National Laboratory

! Objectives
• Obtain design data for next generation design
• Demonstrate capacity / Validate power density progress
• Characterize reactor performance for system modeling

! Statistically Design Experiment - 4-factor full factorial design
• Reactant flow rates

– Residence time
– Steam to Carbon (3:1 to 12:1)

• Heat transfer - combustion gas flow rate and temperature
– Reactor temperature
– Capacity rate (         of combustion gas stream)

• Measured conversion and selectivities

Microchannel Steam Reforming Reactor Testing

pCm!
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Microchannel Steam Reforming Reactor Testing
First Generation Reactor Experimental Data

Reformate Selectivities 
vs Reactor Outlet Temperature
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! High H2 selectivity
! Low methane slip
! Some High Temperature Water 

Gas Shift Reaction

Data is for a wide range of reaction conditions 
(temperature, steam:carbon ratio, residence 
times, etc)

■ Data statistically fit to correlations 
for predictive modeling of 
conversion and selectivity 

Microchannel SR Reactor Performance
at 3:1 Steam to Carbon Ratio
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Calculated Equilibrium 
Dry Gas Hydrogen Concentration

at 3:1 Steam to Carbon
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Steam Reforming 
High Temperature Water Gas Shift

! High temperature shift gives 
>100% yield.

! Methanation reduces yield at 
lower reactor temperature and 
higher pressure.

! Higher steam to carbon 
increases yield and shifts 
maximum to lower 
temperature. 

100% shift, no CH4

0% shift, no CH4



10

Pacific Northwest 
National Laboratory

Steam Reformer / Combuster
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System Efficiency
! Energy Efficiency

• > 43% overall system (including compressor)
• 84% fuel processor efficiency (Steam reformer and CO cleanup, anode waste free)
• at 60% fuel stack efficiency (w/o compressor, requires 0.84V & 85% utilization) 

! Steam Reformer Assumptions
• 700°C Operating Temperature
• 90% Fuel Conversion
• Equilibrium Carbon Selectivity

! Unreacted fuel burned in combustor (?)
• Facilitated by alternative reformate treatment options (see poster)

! Water balances at 54°C heat rejection temperature
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High Temperature Combustion
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Combustion Gas Reinjection Scheme

! Enabled by modularity of microchannel 
architecture

! Potential Benefits
• Lower combustion temp - stainless steel construction
• Higher reactor temperature - smaller reactor / more shift
• Lower combustion flow - smaller heat exchangers
• Higher system efficiency
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10 kWe Steam Reforming/High Temperature 
Shift (SR/HTS) Reactor System

Objectives:  
•  Scale-up capacity from 
~1 kWe to 10 kWe

•  Enable Energy Efficient 
Operation 

Bonded Stack for 10 kWe Reactor
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Integrated 10 kWe SR/HTS System
! 4-Cell Steam Reformer
! 4X Combustion Air 

Recuperators / Water 
Vaporizers

! 4X Reformate 
Recuperator / Fuel 
Vaporizer / Water Preheat

! Combustor
! Air Preheater
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Multi-Stream Combustion Gas Exchanger
Combustion Exhaust from Reactor is used to: 

•Provide Preheat for Combustion Air
•Vaporize Water

Bonded Stacks for Integrated 
Combustion Gas HX (4 required)
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Reformate/Reactant Recuperator Test Unit
Expected Performance At Design Condition

Effectiveness = 89%
Pressure Drop = 1.1 psi (reformate side)
Total Volume = 37 cm3 (excludes tubes)
Duty = 897 W

N2 Test Data vs Model
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Multi-Stream Reformate Exchanger 

Heat in Reformate Product is 
used to :

•  Preheat Vaporized Fuel and 
Steam (90% effective)

•  Vaporize Fuel

•  Preheat Water to Vaporizer Bonded Stacks for Integrated Reformate 
Exchanger (4 required).  Units designed 
to eventually mate with combustion gas 
exchanger to form single exchanger unit.
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Condensers / Air Preheat Exchanger

Air Preheat Exchanger:
•Recover low quality heat from vaporizer exhaust 
•At design conditions, duty = 3216 W, effectiveness = 90%.  
•May not be required after integration.  
•Eventual non-stainless construction.

Microchannel Condensers:
•Not part of Steam reforming 
subsystem. 
•Provides cooling and removal of 
water from reformate prior to 
analysis/ venting.

Bonded Microchannel Condensers
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Development Status Compared To Targets

5003000 aFuel Processor Cost ($)

180 - 9066.7166 aFuel Processor Weight (kg)

66.7166 aFuel Processor Size (Liters)

80%70% aFuel Processor Efficiency

48%30% aOverall System Efficiency

DOE/PNGV
2004 Target

Fuel Proc Sys

DOE/PNGV
Status

Fuel Proc Sys

For a 50 kWe fuel processor/fuel cell system...
PNNL Microchannel

Steam Reformer
2000 Achievable

PNNL Microchannel
Steam Reformer

2004 Goal

a As of January 2000

30 - 15 b

b Includes improvements to current demonstration unit

~ 3000 -1500 c

c Based on cost of bonded unit only (no catalyst costs)

83-85%

39-41%

83-85%

47-49% e

e Depends upon improvements to fuel cell performance and balance of plant hardware

< 200 c,d

< 30

< 8 d

d Requires improvements to catalyst performance and/or manufacturing methods
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Plans

! Demonstrate highly efficient operation of microchannel 
reformer at 10 kWe

! Advance to transportation fuels (e.g., methanol, gasoline, 
diesel, and middle-distillates)

! Catalyst development critical (durable, tolerant of poisons 
such as sulfur); Battelle Memorial Institute currently investing 
private funds to address catalyst issues

! Manufacturability/cost reduction investigation
! Integration of all components of a complete fuel processor 

into a single device is an ultimate goal
! Increase external interactions
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Interactions

! Tested ANL catalysts developed for autothermal 
reforming; collaborating on overall system performance 
modeling

! Plug Power – propose to test integrated fuel reformer with 
PEM fuel cell stack

! McDermott – provide heat exchangers for testing and 
evaluation

! Epyx – tested fuel vaporizer (1999)
! Active participation at national symposia, technical 

publications
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Summary

! Current microchannel fuel reformer system provides 
higher capacity and greater efficiency than earlier design

! Steam reformer subsystem consists of a 4-cell reformer, 
multi-stream recuperative heat exchangers and 
steam/fuel vaporizers

! High hydrogen selectivity, low methane slip, and some 
high temperature water gas shift obtained

! Approach expected to meet PNGV targets for efficiency 
and size; improvements needed to meet weight and cost 
targets
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