Effects of Fuels/Contaminants on Reforming Catalyst Performance and Durability

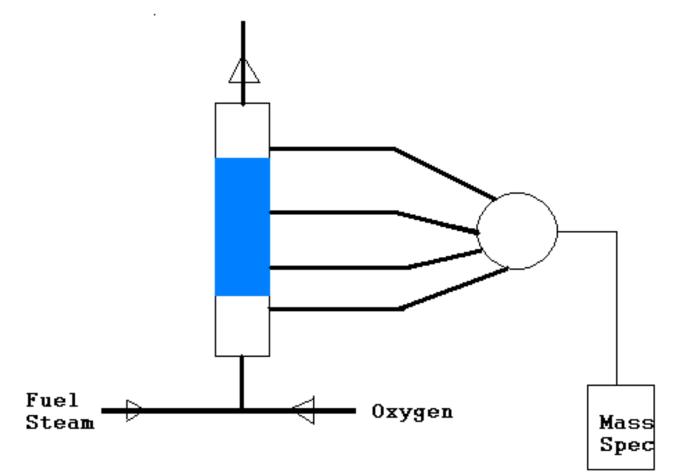
> J.P. Kopasz, D. Applegate, L. Ruscic, S. Ahmed and M. Krumpelt Argonne National Laboratory

> > presented at

The Annual National Laboratory R&D Meeting of the DOE Fuel Cells for Transportation Program June7-8, 2000 PNNL, Richland, WA

Program Objectives

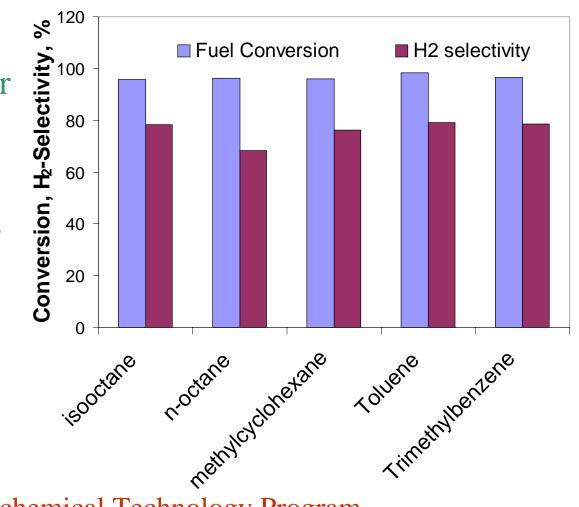
- Investigate differences in reforming of gasoline components to
 - identify problem compounds
 - identify beneficial compounds
- Evaluate the effects of fuel constituents and impurities (sulfur) on catalyst stability


Experimental Approach

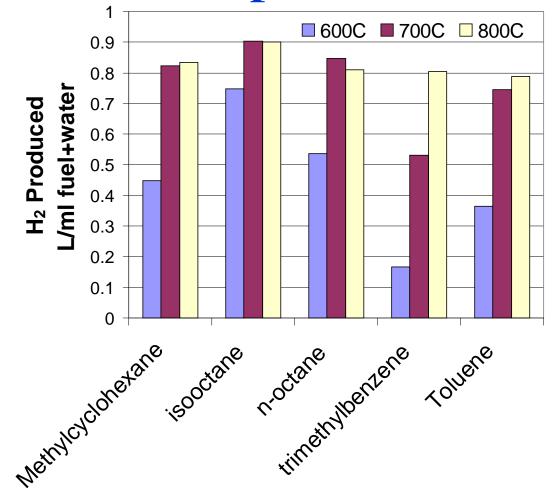
- Determine product gas composition dependence on temperature, space velocity
 - test major fuel components individually
 - test minor components, additives, and impurities as isooctane solutions
- Long-term testing (1000h)

- determine poisoning, long-term degradation effects

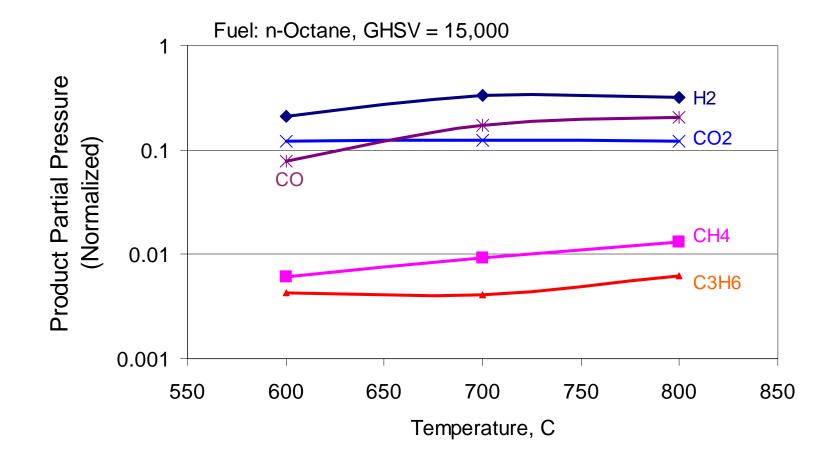
The short-term test reactor is capable of sampling at various points


Schematic Diagram of Short Term Test Reactor

Argonne Electrochemical Technology Program

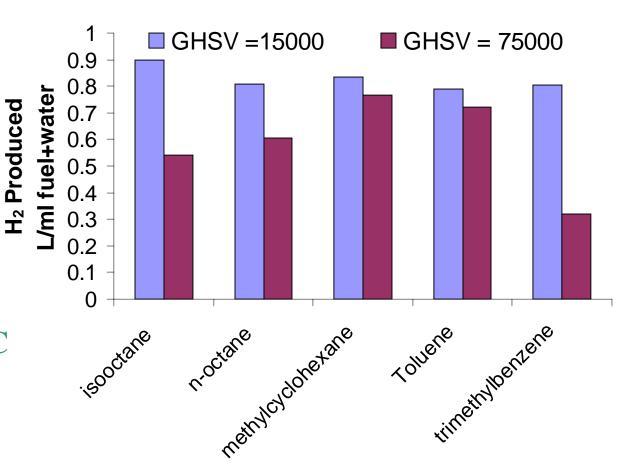

ATR unit can reform all major gasoline substituents at 800°C

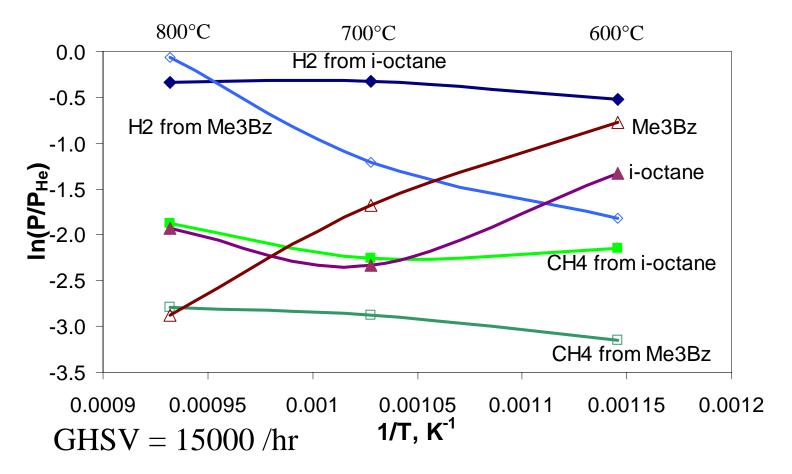
- Conversion of all major substituents is >95%
- Hydrogen selectivity is lower for n-octane



H₂ yield from trimethylbenzene is most sensitive to temperature

- Trimethylbenzene must be reformed at high temperature
- Isooctane reforms better than other components at low temperature


H₂ selectivity from n-octane decreases with increasing temperature


Argonne Electrochemical Technology Program

Hydrogen yield is highest from branched paraffins at low space velocities

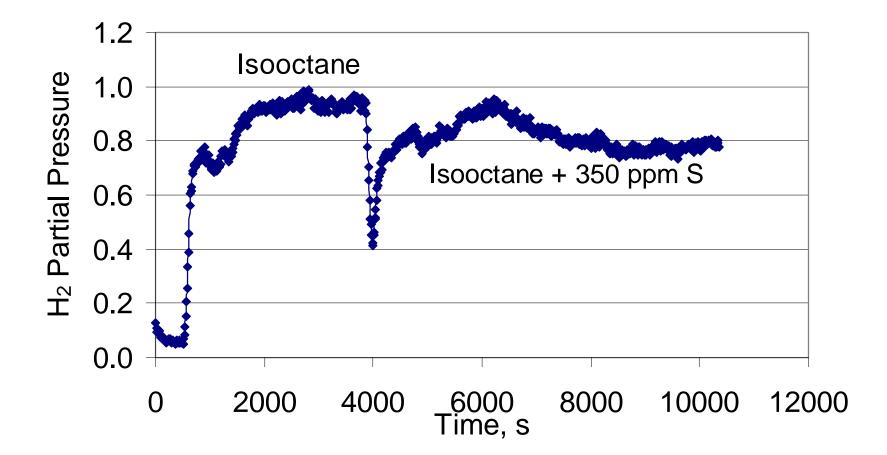
- Rate of reforming of trimethylbenzene appears to be slower than that for other components
- methylcyclohexane and toluene appear to react rapidly at 800°C

Trimethylbenzene reforming decreases rapidly with decreasing temperature

Autothermal reforming of major gasoline components have been studied

- All major substituents can be reformed at 800°C
- Trimethylbenzene reforming requires high temperatures and low space velocities
- Methylcyclohexane and toluene can be reformed at high space velocity at 800°C
- Isooctane reforms better than other components at low temperature

Sulfur impurities increased hydrogen yield from ANL catalysts


800C, GHSV = 15,000 /hr 60 ANL1 isooctane+1000 wppmS ANL1 pure isooctane 50 ANL2 isooctane+300 wppmS **Gas Composition** % dry, He Free 40 ANL2 pure isooctane 30 20 10 0 %CO %CH4 %CO2 %H2 **Product Gas**

Some sulfur remains on the catalyst

Sulfur in Fuel (wppm)	S on catalyst after reaction (wt.%)
300	0.02
1000	0.04

• Sulfur found in reformate gas as H₂S

Short term tests with sulfur containing fuels show some loss in activity of Ni ATR catalyst

Sulfur containing fuel showed 5% loss in H₂ yield after 1700 hrs

• 750-790°C 45 48h 50ppmS • GHSV= 5169/h40 48h no S Composition (% dry • Benchmark Fuel + S 35 1700h 50 ppm S – (50 wppm) 1000 h no S 30 • 1700h 25 **Results** 20 • No decline in CO_x 15 Gas • ~5% decline in H_2 10 • H₂ selectivity: 88-85% 5 - (40-38% H₂ dry) 0 • More H₂ from fuels with %CO %H2 %CO2 **Product Gas Composition** sulfur

Effects of S impurities are dependent on catalyst

- Sulfur improved hydrogen production from Pt-containing ATR catalyst
- Sulfur poisoned Ni-containing ATR catalyst
- Long-term tests with S impurities indicate little degradation of Argonne Catalyst

Future Work

- Investigate sulfur effects further
 - Sulfur XANES investigation of catalyst at University of Louisiana
 - Investigate kinetics of sulfur effects
- Investigate effects of additives
- Continue collaboration with petroleum companies on future fuel-cell gasoline
- Synergistic effects

Conclusions

- Trimethylbenzene is undesirable in a fuel cell gasoline
 - has lower hydrogen density, requires high temperature, long contact times
- Sulfur effects are dependent on catalyst
 - improves H₂ production from Pt-containing ANL catalyst

Industry Collaborations

• Syntroleum

Evaluated reformability of Fischer-Tropsch fuels

[S. Ahmed, J.P. Kopasz, B.J. Russell, H.L. Tomlinson Proceedings of the 3rd International Fuel Cell Conference, Nagoya, Japan, 1999]

- UOP, BP-Amoco, Exxon-Mobil
 - Continuing discussions on fuel chemistry, future fuels for fuel cells

Responses to Previous Reviewers

- Several reviewers indicated need for further interaction with petroleum industry
 - We now interact with BP-Amoco, Exxon-Mobil, Syntroleum, and UOP on fuels issues
- Too much emphasis on fuels analysis
 - Fuels analyses were needed to identify principal gasoline constituents for current work

Timeline/Milestones

- Program initiated 5/99
- Completed first 1000h test 9/99
- Recommended reference benchmark fuel 10/99
- Completed second long-term test reactor 2/00
- Tests completed on 5 gasoline components 4/00

Timeline/Milestones

- Define alternative fuel blend(s) as standard reformer "gasoline(s)" -7/00
- Test 3 major gasoline additives -7/00
- Complete 1000h tests on four catalysts -7/00
- Identify problem contaminants and constituents in FTP gasoline 9/00