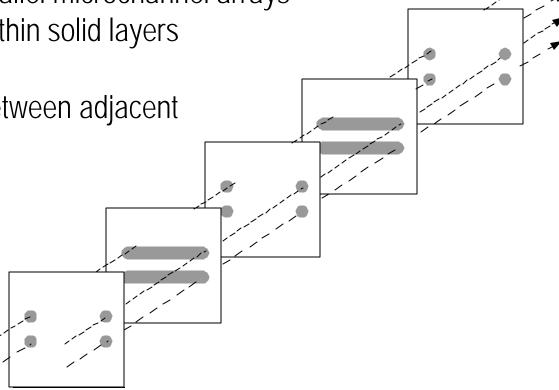
Laminated Ceramic Components For Microreactor Applications

Peter M. Martin, Dean W. Matson, Wendy D. Bennett, Donald C. Stewart, and Charles C. Bonham

Pacific Northwest National Laboratory Richland, WA

Motivation

Ceramic materials needed for


- High temperature operation of microreactor devices
- Operation of microreactor devices in corrosive environments
- Microscale Chemical And Thermal Systems (MICRO-CATS)
- Low-cost production-amenable fabrication process for ceramic microreactor components needed

Assembly Diagram For a Simple Microchannel Device

Consists of

- laminated parallel microchannel arrays
- separated by thin solid layers

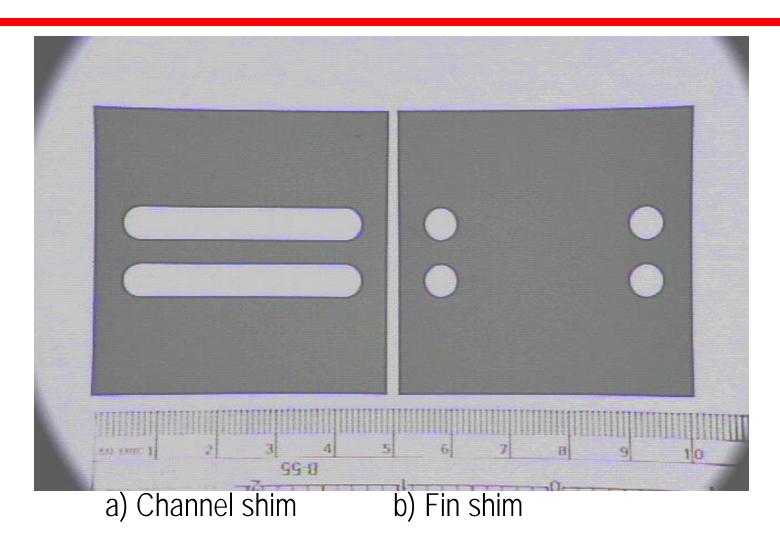
Heat transferred between adjacent arrays of channels

Ceramic Laminates

- Green ceramic tape (Ferro type A6-C-10)
- 125 to 250-µm thick (unfired)
- Prototype laminates cut by CO₂ laser
- Stamping of laminates would be used in production environment

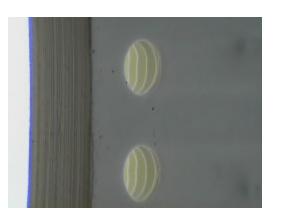
Fabrication Steps for Ceramics

- Device design
- Shim patterning
- Shim assembly
- Bonding
- Post-bonding

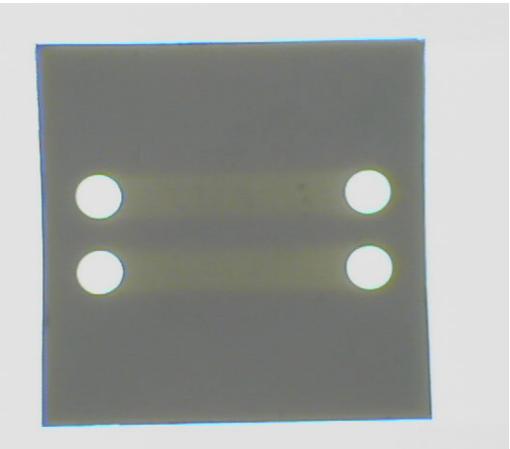

Shim Patterning

- Patterns must be cleanly cut, burr-free
- Laser cut for prototypes
- Stamped for production mode
- Can even be patterned with hobby knife

Shim Design


- Dimensions of internal microchannel are determined by:
 - material thickness
 - length and height of channel cutout
- Sagging issues
 - smaller channel height
 - sacrificial filler material
- Shrinkage factor
 - same material for fins and channels
 - compatibility of different materials

Laser-Machined Green Ceramic Laminates



Laminated Ceramic Microchannel Device

- Green ceramic tape laminates (Laser machined)
- 10 channel shims
- 11 fin shims
- Two parallel channels

View through header ports showing microchannel details

(backlit to show channels)

3-Step Lamination Process

- 1) Precondition individual laminates
- 2) Stack and press
- 3) Heat treat entire unit

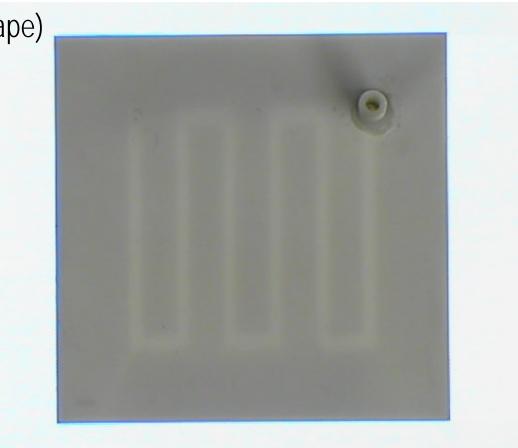
Ceramic Lamination Processes - Steps 1 & 2

Step 1: Precondition

• Bake individual laminates at 50°C for 20-30 min

Step 2: Stack and Press

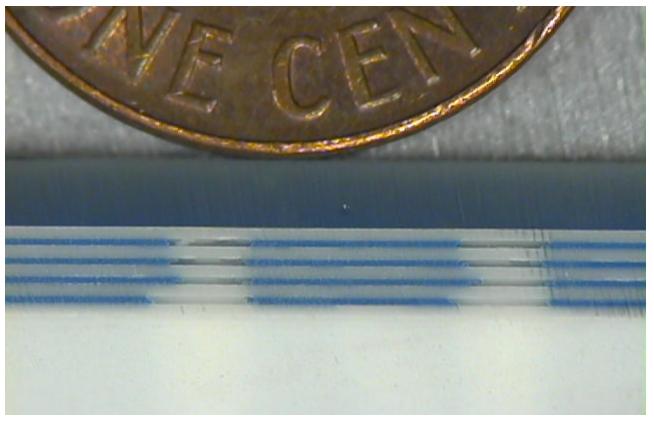
- Performed using hydraulic press with heated platens
- Stack laminates
- Uniaxially pressed at 2000 psi and 70°C for 10 min


Ceramic Lamination Process - Step 3

Heat treatment performed in box furnace:

- Ramp temperature at 1°C/min to 400°C
- Soak 2 hr at 400°C (longer soak times were required for parts thicker than ~3/8" to fully remove binder from the stack)
- Ramp temperature at 5°C/min to 875°C
- Soak at 875°C for 30 min
- Cool to room temperature

Laminated Ceramic Microchannel Device


- Green tape (hand cut)/Alumina stack
- 4 channel shims (Green tape)
- 5 fin shims (Alumina)
- Serpentine channel
- Inlet and outlet tubes epoxied in place

(backlit to show channels)

Cross-Section of Flow Channels

- Green tape (hand cut)/Alumina stack
- 4 channel shims (Green tape: blue layer)
- 5 fin shims (Alumina: white layer)

Post-Bonding

- Inlet and outlet tubes attached using hightemperature epoxy
- Machining of excess material may be required for some designs

Summary

- One-piece ceramic microchannel devices produced by a lamination/bonding process
- Commercially available green ceramic tape patterned to form individual shims
- Patterning done by hand or laser machining
- Bonding done without vacuum or inert atmospheres
- Leaktight
- Material issues to be fully resolved include shrinkage and sagging

Summary

- PNNL continuing evaluation of ceramic lamination and bonding processes
- Ongoing needs for novel MICRO-CATS applications
 - http://www.pnl.gov/microcats
- Future ceramic efforts include
 - heat exchangers
 - catalyst supports for high-temperature reactors

Advantages

- Green ceramic tape may be patterned by
 - laser
 - ultrasonic
 - punching
 - dicing
- No oxide layer removal needed
- Work outside vacuum or inert gas environment during bonding

Material Issues

- In green state, tends to sag
- Sacrificial material may be needed to prevent sagging
- Large height-to-width ratios should be avoided if part orientation would allow fins to sag into channels without sacrificial material
- Shrinkage is inherent during bonding/firing process
 - ~12.5% in x and y direction
 - ~15% in z direction

Laminated Microchannel Devices

- Unique lamination and bonding process developed by PNNL
- Capability to produce solid devices with complex multilayer internal microstructures
- Range of materials include
 - metals
 - plastics
 - ceramics