Fabrication of Microchannel Chemical Reactors using a Metal Lamination Process

<u>DW Matson</u>, PM Martin, DC Stewart, AY Tonkovich, M White, JL Zilka, and GL Roberts

> Pacific Northwest National Laboratory* PO Box 999, Richland, WA 99352

*The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under contract DE-AC06-76RLO 1830.

This paper was presented at IMRET 3: 3rd International Conference on Microreaction Technology

Held on April 18-21, 1999 in Frankfurt, Germany

Sponsored by: IMM, Germany Battelle, USA Dechema e.V., Germany AIChE, USA

Stack of Shims in Clamping Device Prior to Bonding

Gas Flowpath Diagram for the Laminated Microchannel Combustor/Reactor

Application of Microchannels in Small-Scale Chemical Processing Devices

- High temperature small-scale chemical processing devices have unique thermal management challenges
- Microchannel designs can promote heat transfer in microscale devices
 - » expanded thermal contact area
 - » internal (fluid/fluid heat transfer)
 - » external (heat transfer to air through microchannel fins)

Desirable Properties for Small-Scale Chemical Processing Devices

Metal body

- » high temperature and/or high pressure applications
- » thermally conductive
- » robust
- » corrosive fluids

Leaktight

- » gaseous reactants/products
- » liquid coolants
- Efficient thermal management
 - » microchannel arrays

Low cost

Summary

- Applications exist for small-scale hightemperature chemical processing devices
- Internal microchannels can be used for thermal management in metal devices
- Unique microchannel reactor designs are possible using lamination/bonding processes

Laminated Stainless Steel Microchannel Devices

Laminated stainless steel test device and shims used to fabricate it Cross section of microchannels within laminated test device

Potential Applications for Microscale Chemical Reactors

- Man-portable heating/cooling units
- Fuel processing devices
- Remote chemical processing units
- Space missions
- Point-of-use production of hazardous chemicals

Shim Designs and Stacking Order for Laminated Combustor/Reactor

All shim material: 0.010" (250 µm) type 316 stainless steel

Shim assembly order for laminated reactor:

- 1) solid endblock
- 2) 12 ea #3, 13 ea #4 alternating
- 3) 26 ea #1, #2 alternating
- 4) 8 ea #5, #6 alternating
- 5) 26 ea #1, #2 alternating
- 6) 12 ea #7, 13 ea #8 alternating
- 7) endblock with coolant outlet

Shim assembly order for laminated combustor:

- 1) solid endblock
- 2) 85 ea #9, #10 alternating
- 3) solid endblock

Generic Microchannel Heat Exchanger Designs

Shim Design and Assembly Order for Laminated Microchannel Fuel Vaporizer

Assembly order for stainless steel microchannel fuel vaporizer:

- 1) solid endblock
- 2) 134 ea shim #1, shim #2 alternating
- 3) solid endblock with combustion gas exhaust port, gasoline inlets and outlets

Material: 0.010" (250 µm) 316 stainless steel

Microchannel Gasoline Vaporizer

Laminated Microchannel Combustor/Reactor Components After Final Machining

Reactor

Combustor

Top Plate

Laminated Microchannel Reactor/Combustor Before Final Machining

Top View

Bottom View

Dimensions (minus tubes): 10 cm x 10 cm x 5.6 cm

Post-Bonding Processes

Machining

- » mass/volume reduction
- » incorporate fluid connections (fittings)
- » add sealing ring grooves or other sealing surfaces
- » drill bolt holes for clamping
- » aesthetics
- Welding/brazing
 - » tube connections

Microchannel Array Device Fabrication Steps

- Design device
- Pattern metal shims
- Clean and assemble shims
- Bond shims into solid device
- Post-bonding processes

Shim Patterning for Laminated Devices

Requires low cost, clean, burr-free patterned shims

- » photochemical etch process
- » stamping
- » laser machining (?)

• Endblocks are typically mechanically machined from heavier stock

- » may incorporate vertical flow channels between levels
- » may contain fluid interconnects

Cutaway View of Laminated Stainless Steel Gasoline Vaporizer

Cleaning/Assembly and Diffusion Bonding Conditions for Laminated 316 SS Reactors

- Degrease shims and endblocks
- Stack in Inconel clamp
- Bonding conditions:
 - » vacuum
 - » 4000 psi (27.6 MPa)
 - » 920-950°C
 - » 4 hr

Alternative bonding methods

- » diffusion brazing
- » ultrasonic bonding

Design of Laminated Microchannel Devices

- Utilize laminate fabrication method to incorporate microchannel arrays, multilevel architecture, vertical flowpaths
- Avoid open internal areas behind critical seal surfaces
- Design devices as multiple components if internal areas need to be accessed
- Use pre- or post-lamination processes for external features
 - » sealing ring grooves
 - » bolt holes
 - » fluid inlet/outlet ports

Microchannel Arrays in Metal Devices

Microchannels: flow channels having at least one dimension \leq 250 microns

Promote directional heat transfer in small areas

- Difficult to produce in metals using conventional machining processes
- Impossible to machine internally in metal devices

Advantages of Lamination Process for Microchannel Device Fabrication

Solid, leaktight, all-metal product suitable for post-bonding processes

- » machining
- » welding
- » brazing

 Production of internal microchannel arrays not possible using other fabrication methods

• Low cost compared with other microchannel fabrication methods