Microchannel Fuel Processing for Man Portable Power

Eric Daymo, Dave VanderWiel, Sean Fitzgerald, Yong Wang, Mike LaMont, Bob Rozmiarek, Lee Tonkovich

> U.S. Department of Energy Pacific Northwest National Laboratory

3/16/00 1

Small Power Systems: Impact on National Security

LAND WARRIOR SOLDIER POWER

Goals	
2003	270-Wh/kg
2005	1450-Wh/kg
2008	3100-Wh/kg
2018-25	5900-Wh/kg

Source: Land Warrior ORD (3 Aug 99), KPP

Soldier Power: Current Battery Power Sources

Model	Туре	Chemistry	Gravimetric Energy Density (Whr/kg)	Volumetric Energy Density (Whr/liter)
BA-5847B/U	Primary	LiSO ₂	121	41
BB-2847/U	Rechargeable	Li-Ion	68	32
BA-x847A/U	Primary (2-Cell)	LiMnO ₂	226	87
Day Pack	Primary (15-Cell)	LiMnO ₂	308	107
Ammo Pack	Primary (5-Cell)	LiMnO ₂	TBD	TBD

Current battery technology is insufficient for Land Warrior System by 2005!

Battelle

What Energy Source?

	Energy Storage Density
Energy Source	(kW-hr/kg)
Diesel	13.2
Advance Battery	0.2 - 0.3
Hydrogen Storage	
Compressed	1.0
Metal Hydride	0.5

Conclusion - Liquid hydrocarbon fuels are decisively superior to other energy storage options

Microchannel Fuel Processing for Fuel Cell Power Systems

Battery replacement for long duration missions

CO2

H2* Fuel Cell

FP/FC Energy Density: $2,000 - 4,000 \text{ Wh}_{e}/\text{kg}$ Batteries: $200 - 300 \text{ Wh}_{e}/\text{kg}$

Environmental Measurements 0.01- to 100-W_e **Battelle**

Laptops 50 - W_e Automotive 50-kW_e U.S. Department of Energy Pacific Northwest National Laboratory

Overview

- Why microtechnology?
- Fuel Processor
 - Conceptual flowsheet
 - Demonstrated components
- Man Portable Power
 - Concept
 - Status

Why Microtechnology?

Microscale Advantage

- Reduce *heat transfer* resistance
- Reduce mass transfer resistance

Component efficiency

- Microtechnology ~ 90% or better
- Conventional technology < microtechnology

■ Fuel Processor size (50 kW_e - Automotive application)

- Microchannel reactor ~ 8 Liters
- Conventional ~ 10x to 100x larger

Compact processes need microtechnology

Compact Processes: Highly effective Heat Transfer

Reduce heat transfer resistance using microchannels

Microchannel Reactors: Enhanced mass transfer reduces process volume

- Transport distance reduced by several orders of magnitude
- Convective vs diffusive transport brings reactants to catalyst

Battelle

Compact Water Gas Shift Reactor

$$\begin{array}{l} \text{CO} + \text{H}_2\text{O} \Rightarrow \text{CO}_2 + \text{H}_2 \ (\text{desired}) \\ \Rightarrow \text{CH}_4, \ \text{C(s)} \ (\text{undesired}) \end{array}$$

Conventional technology:

- $\tau = 1 \sec \theta$
- 300 500 °C

Compact microtechnology: • $\tau = 25$ msec

Patent pending

• 300 - 500 °C

Compact Water Gas Shift Reactor

3/16/00 1

Compact Steam Reformer

Microchannel Fuel Processing

Microchannel Gasoline Vaporizer: Compact 50-kW_e (Automotive) Fuel Processor

Battelle

- Attributes: Four parallel cells
- Size: 8 cm by 10 cm by 4 cm
- <u>Capacity</u>: Gasoline (~ 300 mL/min)
- Implications: Complete fuel processor system = 8 Liters
- Fabrication: Laminate process
- Pressure drop: DP < 2psi (through microchannels at ~ 1400 SLPM)</p>

Microreactor Development

■ 10-W_e design for butane reforming and WGS

Steam Reformer: Automotive Fuel Processor

Iso-octane steam reforming (gasoline simulant)

- $C_8H_{18} + 8H_2O = 8CO + 17H_2$ $DH_r = 1345 \text{ kJ/mol}$
- $CO + H_2O = CO_2 + H_2$ (some high T shift)
- Undesired side/series reactions:
 - $CO+CO = CO_2 + C(s)$
 - Cracking reactions
 - Methane formation

• Conditions (conventional hardware):

- Temperature ~ 800C
- Steam : Carbon ~ 6+
- Residence time > 1 sec

Iso-octane Steam Reforming:

Battelle

Initial tests – World's First Microchannel Steam Reformer

Steam Reformer Summary: Isooctane

Capacity (cell volume 29 cm³)

- Initial experiments: 0.5 to 1.0-kW_e at 1 atm
- Design point: 5-kW_e at 5 atm

Range of test conditions

- Residence time: 1.1 to 2.3 milliseconds
- Steam:carbon : 3:1 to 6:1
- Temperature: 630 to 670 C

Performance

- Conversion = up to 99%, low 90's typical
- H_2 Selectivity = 91 to 99%, with H2 content = 67 to 72%
- No degradation observed after 30 hours and 12 thermal cycles
- Implications:
 - Automotive full-scale SR System (50-kW_e) ~4L

Diesel Catalytic Combustion Tests

Diesel Catalytic Combustion Duration Testing

No sulfur poisoning/coking observed after 50 hours of operation

Battelle

Man Portable Power: System Concept

Status: Man Portable Power

- Demonstrated feasibility of microchannel fuel reforming
- Demonstrated feasibility of microchannel water gas shift
- Demonstrated vaporizers and recuperative heat exchangers

