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Small Power Systems:
Impact on National Security

LAND WARRIOR
SOLDIER POWER

Goals
2003 270-Wh/kg
2005 1450-Wh/kg
2008 3100-Wh/kg
2018-25 5900-Wh/kg

Source: Land Warrior ORD (3 Aug 99), KPP
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Soldier Power:
Current Battery Power Sources

Model Type Chemistry
Gravimetric

 Energy Density
(Whr/kg)

Volumetric
 Energy Density

(Whr/liter)

BA-5847B/U Primary LiSO2 121 41

BB-2847/U Rechargeable Li-Ion 68 32

BA-x847A/U Primary (2-Cell) LiMnO2 226 87

Day Pack Primary (15-Cell) LiMnO2 308 107

Ammo Pack Primary (5-Cell) LiMnO2 TBD TBD

Current battery technology is insufficient
for Land Warrior System by 2005!
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What Energy Source?

Energy Storage Density
Energy Source (kW-hr/kg)
Diesel 13.2
Advance Battery 0.2 - 0.3
Hydrogen Storage

Compressed 1.0
Metal Hydride 0.5
Conclusion - Liquid hydrocarbon fuels are 
decisively superior to other energy storage 
options
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Microchannel Fuel Processing for
Fuel Cell Power Systems

Stored 
hydrocarbon fuel H2

PowerFP FC

FP/FC Energy Density: 2,000 – 4,000 Whe/kg
Batteries:  200 – 300 Whe/kg

Laptops
50 - We

Environmental
Measurements
0.01- to 100-We

Automotive 
50-kWe

Battery replacement for long duration missions
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Overview

n Why microtechnology?
n Fuel Processor

• Conceptual flowsheet
• Demonstrated components

n Man Portable Power
• Concept
• Status
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Why Microtechnology?

n Microscale Advantage
• Reduce heat transfer resistance
• Reduce mass transfer resistance

n Component efficiency
• Microtechnology ~ 90% or better
• Conventional technology < microtechnology

n Fuel Processor size (50 kWe - Automotive application)
• Microchannel reactor ~ 8 Liters 
• Conventional ~ 10x to 100x larger

Compact processes need microtechnology
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n Reduce heat transfer resistance using microchannels

Vs.

~ 0.05-0.1 cm ~ 5-10 cm
l Reduce transport distance
l High surface area to volume ratio
l Low pressure drop through channels

Compact Processes:
Highly effective Heat Transfer
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Microchannel Reactors:
Enhanced mass transfer reduces process volume

~ 0.02 cm ~ 2 cm

vs.

• Transport distance reduced by several orders of magnitude
• Convective vs diffusive transport brings reactants to catalyst
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Compact Water Gas Shift Reactor

• τ = 1 sec  
• 300 - 500 °C

Conventional technology:

CO + H2O ⇒ CO2 + H2 (desired)

⇒ CH4, C(s) (undesired)

Compact microtechnology: • τ = 25 msec  
• 300 - 500 °CPatent pending
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Compact Water Gas Shift Reactor
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conventionalmicrotechnology



U.S. Department of Energy
Pacific Northwest National Laboratory

3/16/00 12

Butane steam reforming (catalytic powders)
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Compact Steam Reformer

• T=600 �C
• Conversion = 100%
• Steam:Carbon = 1.75:1

96% H2 yield at 600 �C and 25 ms

conventionalmicrotechnology

Implication
Fast kinetics 
= compact 
process
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Microchannel Fuel Processing

Power
SR
reactor

WGS reactor CO clean-up

FC

condenservaporizers

exhaust

air

air

water

exhaust

Stored hydrocarbon
fuel for multi-
week operation

50-kWe
automotive
gasoline vaporizer

10-We
man portable
WGS reactor

1.1-kWe automotive
SR reactor, < 2-in3
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Microchannel Gasoline Vaporizer:
Compact 50-kWe (Automotive) Fuel Processor

n Attributes: Four parallel cells 

n Size: 8 cm by 10 cm by 4 cm

n Capacity: Gasoline (~ 300 mL/min)

n Implications:  Complete fuel processor 
system = 8 Liters

n Fabrication: Laminate process

n Pressure drop: DP < 2psi (through 
microchannels at ~ 1400 SLPM)Patent pending
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Microreactor Development

n 10-We design for butane reforming and WGS

Catalyst chamber
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Steam Reformer: 
Automotive Fuel Processor

n Iso-octane steam reforming (gasoline simulant)
• C8H18 + 8 H2O = 8 CO + 17H2 ∆∆Hr = 1345 kJ/mol

• CO + H2O = CO2 + H2 (some high T shift)
• Undesired side/series reactions:

– CO+CO = CO2 + C(s)
– Cracking reactions 
– Methane formation

• Conditions (conventional hardware):
– Temperature ~ 800C
– Steam : Carbon ~ 6+
– Residence time  > 1 sec 
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Iso-octane Steam Reforming:
Initial tests – World’s First Microchannel Steam Reformer

τ=2.3 ms
T=650 C
S:C = 6
0.5-kWe
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Steam Reformer Summary:
Isooctane

n Capacity (cell volume 29 cm3)
• Initial experiments: 0.5 to 1.0-kWe at 1 atm
• Design point: 5-kWe at 5 atm

n Range of test conditions
• Residence time: 1.1 to 2.3 milliseconds
• Steam:carbon : 3:1 to 6:1
• Temperature: 630 to 670 C

n Performance
• Conversion = up to 99%, low 90’s typical 
• H2 Selectivity = 91 to 99%, with H2 content = 67 to 72%
• No degradation observed after 30 hours and 12 thermal cycles

n Implications: 
• Automotive full-scale SR System (50-kWe) ~4L
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Diesel Catalytic Combustion Tests

Direction of Flow
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Diesel Catalytic Combustion
Duration Testing

Diesel Catalytic Combustion
1.1 excess O2
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No sulfur poisoning/coking observed after 50 hours of operation
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Man Portable Power:
System Concept

Fuel Storage

Fuel 
Processor

Fuel Cell

Lithium
Polymer
Battery

5 We Peak, each

8 cm

7 cm

4 cm

3 cm

3 cm
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Status: Man Portable Power

n Demonstrated feasibility of microchannel
fuel reforming

n Demonstrated feasibility of microchannel 
water gas shift

n Demonstrated vaporizers and recuperative heat 
exchangers


