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Human Exploration and Development of Space
In Situ Resource Utilization - “Living off the Land”

Consumable Production
Using “Natural Resources”

n Ascent Propulsion &
Spacecraft Support

n Consumables for Planetary
Rovers

n Environmental Control &
Life Support System
(ECLSS)

n Fuel Cell Power Generation
n Science Activities
n Construction &

Manufacturing
n Commercial Applications



U.S. Department of Energy
Pacific Northwest National Laboratory

3/16/00 3

Overview

n Mission Scenarios
n In Situ Propellant Production
n Micro-ISPP Approach
n Size, Weight and Power Comparisons
n Conclusions
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In Situ Propellant Production
Three Mission Scenarios

n Robotic Sample Return -
Orbital Rendezvous

n Robotic Sample Return -
Direct Return

n Human Scale
Mission -
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Human Mission Scenario
Ascent vehicle arrives with ISPP plant
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Human Mission Scenario
Astronauts leave 2 years later with propellant waiting on Mars
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Human Mission Scenario
Astronauts take fast route to Mars
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Human Mission Scenario
Astronauts spend up to 2 years on Mars
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Human Mission Scenario
Astronauts Leave in Ascent Vehicle with ISPP propellants



U.S. Department of Energy
Pacific Northwest National Laboratory

3/16/00 10

In Situ Propellant Production
Human Mission Scenario

n Ambient CO2 available at 95%, 6-10 torr, and 150-270K
n Transport H2 from Earth
n Chemical Conversion to Propellants for Ascent / Return

• Collect and compress CO2

• Convert to propellants (CH4 and O2)
• Cryogenic storage

n Production Requirements
• 11,300 kg O2 / 3000 kg CH4• 300 Days, 24 hr/day

n Power Systems
• Nuclear Reactor

n Mass Ratios Expected
• Propellants / Hydrogen = 22
• Propellants / (Hydrogen + ISRU plant) = 9.5
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In Situ Propellant Production
Baseline Flowsheet

n CO2 compression
• Mechanical Compression
• Sorption Pump
• Freeze - thaw

n Sabatier reactor
• CO2 + 4H2 -> CH4 + 2H2O

n Water Electrolysis
• 2H2O -> 2H2 + O2

n Zirconia Cell
• 2CO2 -> 2CO + O2

n Separations
• Nafion H2 permeator
• Sorption beds
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In Situ Propellant Production
Baseline Flowsheet

n CO2 compression
• Mechanical Compression
• Sorption Pump
• Freeze - thaw

n Sabatier reactor
• CO2 + 4H2 -> CH4 + 2H2O

n Water Electrolysis
• 2H2O -> 2H2 + O2

n Zirconia Cell
• 2CO2 -> 2CO + O2

n Separations
• Nafion H2 permeator
• Sorption beds
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Microtechnology
n Microscale Advantages

• Rapid heat/mass transport
• Nonequilibrium chemical products
• Surfaces forces
• High productivity

n Compact Systems
n Integrated Systems
n Parallelism
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Micro-ISPP Approach

n Reduce Hardware Size and Mass?
n Better ISPP plant integration through energy cascading?
n Offer reliability advantages?

• Parallelism reduces reliance on individual components.
• Reduce redundancy requirements?

n Alternative power system options?
• Heat driven process -- radioisotope?
• Integration of power system and ISPP plant -- shared components?
• Reduce power system size, weight, and heat rejection?
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Micro-ISPP Approach

n Common high temperature heat source
n Preference for heat driven technologies over electrical
n Heat Integration

• Energy cascading
• Heat demand supplied by higher temperature waste heat
• Cooling demand supplied by vapor compression heat pumps to

common radiator
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Micro-ISPP Flowsheet
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Micro-ISPP Approach
Technology Selection

n CO2 Compression
• Thermochemical absorption cycle
• Thermochemical adsorption cycle
• Mechanical
• Freeze-thaw cycle

n CH4 Production
• Sabatier reactor

n O2 Production
• Reverse water-gas shift reactor
• Zirconia cell - CO2 electrolysis
• High temperature water electrolysis
• Low temperature water electrolysis

n Separations
• Condensation - phase separations
• Polymeric membranes
• Metallic membranes
• PEM H2 permeator
• Cryogenic distillation
• Sorption beds

n Heat Engines
• Brayton cycle
• Rankine cycle
• Stirling cycle

n Heat Pumps
• Vapor compression cycle
• Reverse-Brayton cycle
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Micro-ISPP Approach
Spreadsheet model



U.S. Department of Energy
Pacific Northwest National Laboratory

3/16/00 19

Mars ISPP Plant
Size, Weight and Power Comparisons

n Qualifications:
• Zirconia cell power requirement uncertain.
• Micro-ISPP water electrolysis technologies based on

emerging fuel cell technologies - size is projected.
• Suitability of plastic for low temperature micro-ISPP

components?
• JSC Human Mission baseline evolving from mechanical

compression to freeze-thaw cycle.
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Mars ISPP Plant
Size, Weight and Power Comparisons

Volume Comparison
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Mars ISPP Plant
Size, Weight and Power Comparisons

Power Comparison
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Mars ISPP Plant
Size, Weight and Power Comparisons

Mass Comparison
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n Mass ratio for ISPP
plant + H2
• Baseline = 9.5
• Micro-ISPP = 14

n Mass ratio for total
system
• Baseline = 2.3
• Micro-ISPP = 7.3
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Conclusions

n Microtechnology has potential for significantly decreasing size and
weight of ISPP plant for both human scale and robotic sample return
missions.

n The Micro-ISPP offers reliability advantages through parallelism.
n Integration and energy cascading is facilitated and thermal-based power

systems become more attractive.

n Truth in advertising:  The many assumptions and projections made in
this study require validation and development to realize the actual
benefits.


