Microreactor System Design for NASA In Situ Propellant Production Plant on Mars

W.E. TeGrotenhuis, R.S. Wegeng, D.P. Vanderwiel, G.A. Whyatt, V.V. Viswanathan, and K.P. Shielke Pacific Northwest National Laboratory

> G.B. Sanders and T.A. Peters Johnson Space Center, NASA

> > March 9, 2000

U.S. Department of Energy Pacific Northwest National Laboratory

Human Exploration and Development of Space In Situ Resource Utilization - "Living off the Land"

Consumable Production Using "Natural Resources"

- Ascent Propulsion & Spacecraft Support
- Consumables for Planetary Rovers
- Environmental Control & Life Support System (ECLSS)
- Fuel Cell Power Generation
- Science Activities
- Construction & Manufacturing
 - **Commercial Applications**

U.S. Department of Energy Pacific Northwest National Laboratory

Battelle

Overview

- Mission Scenarios
- In Situ Propellant Production
- Micro-ISPP Approach
- Size, Weight and Power Comparisons
- Conclusions

In Situ Propellant Production

Three Mission Scenarios

 Robotic Sample Return -Orbital Rendezvous

 Robotic Sample Return -Direct Return

Human Scale
Mission -

Human Mission Scenario Ascent vehicle arrives with ISPP plant

U.S. Department of Energy Pacific Northwest National Laboratory

Human Mission Scenario

Astronauts leave 2 years later with propellant waiting on Mars

U.S. Department of Energy Pacific Northwest National Laboratory

Human Mission Scenario Astronauts take fast route to Mars

U.S. Department of Energy Pacific Northwest National Laboratory

Human Mission Scenario Astronauts spend up to 2 years on Mars

U.S. Department of Energy Pacific Northwest National Laboratory

3/16/00 8

Human Mission Scenario Astronauts Leave in Ascent Vehicle with ISPP propellants

In Situ Propellant Production Human Mission Scenario

- Ambient CO_2 available at 95%, 6-10 torr, and 150-270K
- Transport H₂ from Earth
- Chemical Conversion to Propellants for Ascent / Return
 - Collect and compress CO₂
 - Convert to propellants (CH₄ and O₂)
 - Cryogenic storage
- Production Requirements
 - 11,300 kg O_2 / 3000 kg CH_4
 - 300 Days, 24 hr/day
- Power Systems
 - Nuclear Reactor
- Mass Ratios Expected
 - Propellants / Hydrogen = 22
 - Propellants / (Hydrogen + ISRU plant) = 9.5

Battelle

In Situ Propellant Production

Baseline Flowsheet

- CO_2 compression
 - Mechanical Compression
 - Sorption Pump
 - Freeze thaw
- Sabatier reactor

•
$$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$$

- Water Electrolysis
 - $2H_2O \rightarrow 2H_2 + O_2$
- Zirconia Cell

- 2CO₂ -> 2CO + O₂
- Separations
 - Nafion H₂ permeator
 - Sorption beds

In Situ Propellant Production

Baseline Flowsheet

- CO_2 compression
 - Mechanical Compression
 - Sorption Pump
 - Freeze thaw
 - Sabatier reactor

•
$$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$$

- Water Electrolysis
 - $2H_2O \rightarrow 2H_2 + O_2$
- Zirconia Cell

- 2CO₂ -> 2CO + O₂
- Separations
 - Nafion H₂ permeator
 - Sorption beds

Microtechnology

- Microscale Advantages
 - Rapid heat/mass transport
 - Nonequilibrium chemical products
 - Surfaces forces
 - High productivity
- Compact Systems
- Integrated Systems
- Parallelism

Battelle

Micro-ISPP Approach

- Reduce Hardware Size and Mass?
- Better ISPP plant integration through energy cascading?
- Offer reliability advantages?
 - Parallelism reduces reliance on individual components.
 - Reduce redundancy requirements?
- Alternative power system options?
 - Heat driven process -- radioisotope?
 - Integration of power system and ISPP plant -- shared components?
 - Reduce power system size, weight, and heat rejection?

Micro-ISPP Approach

- Common high temperature heat source
- Preference for heat driven technologies over electrical

Heat Integration

- Energy cascading
- Heat demand supplied by higher temperature waste heat
- Cooling demand supplied by vapor compression heat pumps to common radiator

Micro-ISPP Flowsheet

Micro-ISPP Approach

Technology Selection

CO₂ Compression

- Thermochemical absorption cycle
- Thermochemical adsorption cycle
- Mechanical
- Freeze-thaw cycle
- CH₄ Production
 - Sabatier reactor
- O₂ Production
 - Reverse water-gas shift reactor
 - Zirconia cell CO₂ electrolysis
 - High temperature water electrolysis
 - Low temperature water electrolysis

Separations

- Condensation phase separations
- Polymeric membranes
- Metallic membranes
- PEM H₂ permeator
- Cryogenic distillation
- Sorption beds
- Heat Engines
 - Brayton cycle
 - Rankine cycle
 - Stirling cycle
- Heat Pumps
 - Vapor compression cycle
 - Reverse-Brayton cycle

X Microsoft Excel - NASA-ISPP-V1.8:1

2	🔄 Ei	e ļ	<u>E</u> di	t <u>V</u> ie	ew <u>I</u> nser	t Fg	orma	t <u>T</u> ools	5 <u>D</u>	ata y	<u>W</u> indow	H	elp																Ð×
	C 🛛	3	P	I (5 🗟 🗳	8	¥ (ì 健	1	1 6) + Ca	÷		8	Σ	f*	₽↓	Z↓	1	🤵 .	8	50%	•	2					
ĨF.	<u></u> arial					10	-	B 2	r 1	T	= =	-	57	æ	%		+,0	.00	-		TT	- 8	× -	A -					
11	- Indi				120	10			88 8					Ψ	/0	3	.00	+.0	1 120	-	80.00			<u> </u>					
<u>.</u>		L11	1		_		=	='[exc	han	ger3-	done.x	(Is]	Inputs	!\$H\$	15						-								
5	D	E		F	G	н	1.02	J mal×CH4	ĸ	L	м	N	0	P	0	U	CO2	ta Sal	W hatier	×	4	Z	AA /	AE A	C AD	AE	AF	AG	Al
6							2.049	ats 					2.049	ats allo				62%	-14-		TAL.		[1		Martia	a Atmar	rpha
8		Reverse Water Gar Shil					ft RWGS Fard			Recuperatur 1			RWGS Feed			0.92074 qts									1.5722 q/r				
9		-		750	dogC har		21	1		85%	Effectiven		23			- 68	1	50.0 da	0 p q C			25	dogC		-		273	5 dogK 6 torr	
11				45%	CO2 conversio	an	665.3	dogC		85.2%	Calc'd Effo	et	233.4	dogC		1											95>	(mal% CO	2
12		+	0	0% 100.0%	CH4sel(mal%) COsel(mal%)		750.0	dogC		3132	Jtr		313.6	dogC			1				5	78.2	L		-		-	-	
14	1	1		0% 32.0	oxcoss H2		22	1.127.00. 		0.2	ka		24	1000	•					-	-	408.8	kg						
16			È	10%	vol. Efficiency	R	WES	Preduct	1	0.04	L		RW65 P	reduct															
17		-	-	1212	.0.	1.1.1.21	2.049	qts malte		>>	em ente la		2.049	qfs malde						43.	8 dog(>	2	(5.0 dog)	0	-	-		
19		F	1				9.3%	mal%CO2		20	Chnnlpai	r.r	0.211									-							
20		-				-	7.6%	mal%C0 mal%H20					-		++-	-	-				Abr	arberl	Becan	eratar	-	-	-	-	
22							73.4%	mal%H2																					
23				-1218	Hr		1.02	mal%CH4							++	-	1					85.0%	offoctiu calc'dol	ffect.	5	5 Carelen	qth[cm]		
25		-		1			_	-				-									н	a at Duty			8	0 #Chann	olpairs		
21				7						-											s	25459	Jer		-				
28		-		1218	Hr		7.0%	mal/2002				-	7.0%	mal% CO2					-			14.9	kg .	-	-	-	-	-	
30			12	0.000			1.02	mal%H20					1.0%	mal%H20						0.16	8								
31		s	-	250	Reacter deal	-	91.12	mal%H2				-	91.12	mal%H2 mal%CHd		-	602	ta Sal	habiar	mal CO2	11		_		<u> </u>		-		
33				1.000	bar		1.191	qtr.					1.191	qfs				38%		150	O dog(>	12	8.9 dog	0	Salve	et Flau		
34		+	1	80% 0%	CO2 conversio excers H2	5	0.228	mains	Bec	aperal	ar 2		0.228 /	r Food	++	-	0.0	0130 m 7318 af	olf:		Der	arber				30	0 ut%DEA 6 L/hr	1	
36				100.0	mrec		25	0000000			1.000		27	2555257			1	50.0 da	940	ð.			100.02	-		0.823	melCO2	ŕL	
31			17	102	vol. Efficienc;	1	247.4	dogC		85× 84.9×	Effectiven Calc'dEffe	ct.	238.0	dogC		1	1					150	døgC bar			-	1.5	2020	
39		-		-2200	u.,		250.0	40		66	Jfr		224.0									90%	officien	ey			Campo	erred Cf	02
41			-	-2209	our .		290.0	ande					237.0	10 g G G			1					4.4	L)	12	-	-	1.4936	i qtr	
42		F	+				26	ar Prada		0.1	kg L		28	Prod			-		-			23.0	ką		150	0 dog C			
44	1				5	1	.19065	qts					1.191	ats							C	denre							
45			-	2209	de		0.202	mal/z CO2		2.8	em, care in E cheni nai	4	0.202 1	malifs	++-	-	1		-		100	10000	_	-			-		
47							0.0%	mal%C0																					
43		-		7		S	13.6%	mal%H20 mal%H2	-			-		-		-	1				-	1			-				-
50		N	N	/ Note		thee	F 7.4%	nel%CH4	vclee	: / .	Streams	1	Size844	11 / 1	502	Corr	nrese	sion	4			4	7						E
R	eady		17		. _Д і юн'з	Calcu	ulate	a anore	yeids		Al Callis	~	DIEGOUN	~ ^ `		Con							-			NUM			
1.5	-	- 1		riseraes He		sence	androe	an a		t 10200				_	-		1		Nati		-	00.00	20	C		privite			
	Sta	rt	4	BNe	tWork	F F	oreg	Irou	al E	xplori	ng 🔀	S #	licros.	8	Vi	sio T	e		Micro	soft	2	Micro	soft	1			o de C	9:13	3 PM

_ 8 ×

Mars ISPP Plant

Size, Weight and Power Comparisons

Qualifications:

- Zirconia cell power requirement uncertain.
- Micro-ISPP water electrolysis technologies based on emerging fuel cell technologies size is projected.
- Suitability of plastic for low temperature micro-ISPP components?
- JSC Human Mission baseline evolving from mechanical compression to freeze-thaw cycle.

Mars ISPP Plant Size, Weight and Power Comparisons

Mars ISPP Plant Size, Weight and Power Comparisons

Mars ISPP Plant Size, Weight and Power Comparisons

- Mass ratio for ISPP plant + H₂
 - Baseline = 9.5
 - Micro-ISPP = 14
 - Mass ratio for total system
 - Baseline = 2.3
 - Micro-ISPP = 7.3

Battelle

Conclusions

- Microtechnology has potential for significantly decreasing size and weight of ISPP plant for both human scale and robotic sample return missions.
- The Micro-ISPP offers reliability advantages through parallelism.
- Integration and energy cascading is facilitated and thermal-based power systems become more attractive.
- Truth in advertising: The many assumptions and projections made in this study require validation and development to realize the actual benefits.

