
Appendix to Disclosure Limitation in Longitudinal Linked Data

John M. Abowd
Cornell University, U.S. Census Bureau,

CREST, and NBER

Simon D. Woodcock
Cornell University

August 20, 2001

Acknowledgement

Extracted from �Disclosure Limitation in Longitudinal Linked Data,� in ConÞdentiality, Dis-
closure and Data Access: Theory and Practical Applications for Statistical Agencies, P. Doyle,
J. Lane, L. Zayatz, and J. Theeuwes (eds.), (Amsterdam: North Holland, 2001), forthcoming.
Reproduced with permission.
The research reported in this paper was partially sponsored by the U.S. Census Bureau, the

National Science Foundation (SES-9978093), and the French Institut National de la Statistique et
des Etudes Economiques (INSEE) in association with the Cornell Restricted Access Data Center.
The views expressed in the paper are those of the authors and not of any of the sponsoring
agencies. The data used in this paper are conÞdential but the authors� access is not exclusive. No
public use data sets were released as a part of this research. Restricted access to the French data
was provided to Abowd by INSEE through an agreement with Cornell University. The authors
thank Benoit Dostie, Sam Hawala, Janet Heslop, Paul Massell, Carol Murphree, Philip Steel,
Lars Vilhuber, Marty Wells, Bill Winkler, and Laura Zayatz for helpful comments on earlier
versions of this research.

1 Appendix: Recent Research on Disclosure Limitation

In recent years, statistical agencies have seen an increasing demand for the data they collect, coupled with
increasing concerns about conÞdentiality. This presents new challenges for statistical agencies, who must
balance these concerns. Doing so requires techniques to allow dissemination of data that is both analytically
useful and preserves the conÞdentiality of respondents.
This appendix presents recent research on disclosure limitation methods and concepts. Although our

primary interest is in methods appropriate to longitudinal linked data, this topic has not been well-addressed
in the literature. Hence, we review disclosure limitation methods and concepts appropriate to microdata in
general. Since there are a number of reviews which provide a good summary of early research, (e.g., Sub-
committee on Disclosure Avoidance Techniques (1978a), Subcommittee on Disclosure Avoidance Techniques
(1994b), and Jabine (1993)), we concentrate on recent research only.
The review is divided into four parts. The Þrst presents general research on the disclosure limitation

problem. The second presents research on measures of disclosure risk and harm. Part three discusses
recent research into disclosure limitation methods for microdata, and the Þnal part discusses the analysis of
disclosure-proofed data.
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1.1 General Research and Survey Articles

Evans et al. (1996) This paper summarizes recent applications of a variety of disclosure limitation
techniques to Census Bureau data, and outlines current research efforts to develop new techniques. The
paper brießy discusses methods for microdata (including the two-stage additive noise and data-swapping
technique of Kim and Winkler (1997), the rank-based proximity swapping method of Moore (1996b), and
developing synthetic data based on log-linear models), methods under consideration for the 2000 Decennial
Census, and methods for establishment tabular data (see the more detailed discussion of Evans et al. (1998)
below).

Fienberg (1997) This paper presents an excellent review of the disclosure limitation problem and recent
research to address it. The paper is organized in eight sections. The Þrst section is introductory. In
the second, the author deÞnes notions of conÞdentiality and disclosure, presents the debate between limited
access versus limited data, and describes the role of the intruder in deÞning notions of disclosure and methods
of disclosure limitation. The third section presents two detailed examples to illustrate the issues, namely
issues surrounding the Decennial Census and the Welfare Reform Act. The fourth section classiÞes various
disclosure limitation methodologies that have been proposed, and illustrates them in some detail. The Þfth
section considers notions of uniqueness in the sample and uniqueness in the population, and their role in
deÞning notions of disclosure risk (see the discussion of Fienberg and Makov (1998), Boudreau (1995), and
Franconi (1999), below). The sixth section presents two integrated proposals for disclosure limitation: the
ARGUS project (see the discussion of Hundepool and Willenborg (1999) and Nordholt (1999) below) and
proposals for the release of simulated data (see Section 1.3.2 below). The seventh section presents a brief
discussion of issues pertaining to longitudinal data, and section 8 concludes.

Winkler (1997) This paper brießy reviews modern record-linkage techniques, and describes their applica-
tion in re-identiÞcation experiments. Such experiments can be used to determine the level of conÞdentiality
protection afforded by disclosure limitation methods. The author stresses the power of such techniques to
match records from disclosure-proofed data to other data sources. Emerging record-linkage techniques will
allow re-identiÞcation in many existing public-use Þles, even though these Þles were produced by conscientious
individuals who believed they were using effective disclosure limitation tools.

National Research Council (2000) This book describes the proceedings of a workshop convened by
the Committee on National Statistics (CNSTAT) to identify ways of advancing the often conßicting goals of
exploiting the research potential of microdata and preserving conÞdentiality. The emphasis of the workshop
was on linked longitudinal data � particularly longitudinal data linked to administrative data. The workshop
addressed four key issues. These are: (1) the trade-off between increasing data access on the one hand,
and improving data security on the other; (2) the ethical and legal requirements associated with data
dissemination; (3) alternative approaches for limiting disclosure risks and facilitating data access � primarily
the debate between restricting access and altering data; and (4) a review of current agency and organization
practices. Some interesting observations in the report include:

� Researchers participating in the workshop indicated a preference for restricted access to unaltered
data over broader access to altered data. However, these researchers also recognized the research costs
associated with the former option.

� Although linking databases can generate new disclosure risks, it does not necessarily do so. In
particular, many native databases are already sensitive, and hence require conÞdentiality protection.
Linking may create a combined data set that increases disclosure risk, however a disclosure incident
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occurring from a linked data source is not necessarily caused by the linking. The breach of disclosure
may have occurred in the native data as well.

� An appropriate measure of disclosure risk is a measure of the marginal risk. In other words, rather
than comparing risks under various schemes with disclosure probability zero, one might consider the
change in probability of disclosure as a result of a speciÞc data release or linkage, or for adding or
masking Þelds in a data set � the marginal risk associated with an action.

� In defense of data alteration methods, Fienberg noted that all data sets are approximations of the real
data for a group of individuals. Samples are rarely representative of the group about which a researcher
is attempting to draw inferences, rather it represents those for whom information is available. Even
population data are imperfect, due to coding and keying errors, missing data, and the like. Hence,
Fienberg Þnds the argument that perturbed data is not useful for intricate analysis not altogether
compelling.

1.2 Measures of Disclosure Risk and Harm

Lambert (1993) This paper considers various deÞnitions of disclosure, disclosure risk, and disclosure
harm. The author stresses that disclosure is in large part a matter of perception � speciÞcally, what an
intruder believes has been disclosed, even if it is false, is key. The result of a false disclosure may be just
as harmful (if not worse) than the result of a true disclosure. Having distinguished between disclosure risk
and disclosure harm, the author develops general measures of these.
The author deÞnes two major types of disclosure. In an identity disclosure (or identiÞcation, or re-

identiÞcation), a respondent is linked to a particular record in a released data Þle. Even if the intruder
learns no sensitive information from the identiÞcation, it may nevertheless compromise the security of the
data Þle, and damage the reputation of the releasing agency. To distinguish between true identiÞcation
and an intruder�s beliefs about identiÞcation, the author deÞnes perceived identiÞcation, which occurs when
an intruder believes a record has been correctly identiÞed, whether or not this is the case. An attribute
disclosure occurs when an intruder believes new information has been learned about the respondent. This
may occur with or without identiÞcation. The risk of disclosure is deÞned as the risk of identiÞcation of a
released record, and the harm from disclosure depends on what is learned from the identiÞcation.
Suppose the agency holds N records in a data Þle Z, and releases a random sample X = (x1, ...,xn) of

n masked records on p variables. Lambert (1993) deÞnes several measures of perceived disclosure risk. A
�pessimistic� risk of disclosure is given by:

D(X) = max
1≤j≤N

max
1≤i≤n

Pr
£
ithreleased record is jth respondent�s record|X¤ (1)

= max
1≤j≤N

max
1≤i≤n

Pr
£
xi is jth respondent�s record|X

¤
.

Minimizing the measure in (1) protects against an intruder looking for the easiest record to identify. Alter-
nate measures of disclosure risk can also be deÞned on the basis of (1) , for example:

Daverage (X) =
1

N

NX
j=1

max
1≤i≤n

Pr
£
xi is jth respondent�s record|X

¤
(2)

Dtotal (X) = NDaverage (X) . (3)

Equation (2) is a measure of data vulnerability based on the average risk of perceived disclosure, whereas
(3) is a measure of the cumulative risk. An alternate measure of the total risk of perceived identiÞcation
can be deÞned as the number of cases for which the risk of perceived disclosure exceeds a threshold τ :
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Dτ (X) = #

½
j : max

1≤i≤n
Pr
£
xi is jth respondent�s record|X

¤ ≥ τ¾ .

The author proceeds to develop several detailed examples, and provide a general measure of disclosure harm,
which is not presented here.

Fienberg and Makov (1998) This paper reviews several concepts, namely uniqueness in sample, unique-
ness in the population, and some notions of disclosure. The main contribution is a proposed approach for
assessing disclosure potential as a result of sample uniqueness, based on log-linear models. A detailed
description of this method follows.
Suppose a population is cross-classiÞed by some set of categorical variables. If the cross-classiÞcation

yields a cell with an entry of �1� then the individual associated with this entry is deÞned as a population
unique. Population uniqueness poses a disclosure risk, since an intruder with matching data has the potential
to match his or her records against those of the population unique. This creates the possibility of both re-
identiÞcation and attribute disclosure.
A sample unique is deÞned similarly � an individual associated with a cell count of �1� in the cross-

classiÞcation of the sample data. Population uniques are also sample uniques if they are selected into the
sample, but being a sample unique does not necessarily imply being a population unique. The focus of the
Fienberg and Makov (1998) approach for assessing disclosure potential is to use uniqueness in the sample to
determine the probability of uniqueness in the population. Note that sample uniqueness is not necessarily
required for such an endeavor � �small� cell counts may also pose a disclosure risk. For example, a count of
�2� may allow an individual with almost unique characteristics to identify the only other individual in the
sample with those characteristics. If the intruder did not also possess these characteristics, then a cell count
of �2� could allow the individuals to be linked to the intruder�s data with probability 1/2. The extension
to larger yet still �small� cell counts is obvious.
Let N denote the population size, n the size of the released sample, and K the maximum number of

�types� of individuals in the data, as deÞned by the cross-classifying variables (i.e., the total number of
cells). Let Fi and fi, i = 1, ...,K, denote the counts in the cells of the multiway table summarizing the
entire population and sample, respectively. Then a crucial measure of the vulnerability of the data is given
by:

KX
i=1

Pr (Fi = 1| fi = 1) (4)

Most prior attempts to estimate (4) assumed distributions for Fi and fi (e.g., Bethlehem et al. (1990)
and Skinner and Holmes (1993)). The Fienberg and Makov (1998) approach differs by assuming the released

sample is drawn from a population with cell probabilities
n
π

(N)
i

o
which follow a log linear model (including

terms such as main effects interactions), of the form

log(π
(N)
i ) = gN(θi) (5)

where θi are parameters. The authors propose to Þt (5) to the observed counts {fi}. Denote the estimated
cell probabilities

n
�π

(n)
i

o
. Ideally, one would like to develop analytical formulae for Pr(Fi = 1|fi = 1),

but this will frequently be infeasible since many of the log-linear models that result from the estimation
process will not have a closed-form representation in terms of the minimal marginal sufficient statistics.
Instead, the authors propose the following simulation approach. First, use the records on the n individuals
in the sample (x1, ..., xn) to generate (N − n)×H records from

n
�π

(n)
i

o
. This results in H populations of
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size N , each containing (N − n) �new� records obtained by some form of imputation (e.g., see Little and
Rubin (1987)), or multiple imputations from some posterior distribution (e.g., see Rubin (1987)). Next, let
F̄i(j) = F̄i(x1, ..., xN , j) be the count in cell i of the jth imputed population. Similarly, let f̄i = f̄i(x1, ..., xN)
be the count in cell i of the released data (the sample). Clearly, f̄i 6= 1 =⇒ F̄i(j) 6= 1. We can estimate (4)
by:

KX
i=1

cPr(Fi = 1|fi = 1) = KX
i=1

HX
j=1

1
£¡
F̄i(j) = 1

¢ ∩ ¡f̄i = 1¢¤
H

(6)

where the function 1 [A] = 1 if A is true, and zero otherwise. Equation (6) can be used to assess the disclosure
risk of the released data for a given release size n. Since (6) is likely to decrease as (N − n) increases, the
statistical agency is motivated to reduce n to the point that (6) indicates disclosure is infeasible. Note that
if we remove the summation over i in (6), then we can obtain a cell-speciÞc measure of disclosure risk.
Fienberg and Makov (1998) do not address the sample error of the estimate in (6). They also do not

address the inherent trade-off that an agency faces when choosing n based on (6) between reduced disclosure
risk and increased uncertainty in the released data.

Boudreau (1995) This paper presents another measure of disclosure risk based on the probability of pop-
ulation uniqueness given sample uniqueness. For the case of microdata containing discrete key variables, the
author determines the exact relationship between unique elements in the sample and those in the population.
The author also gives an unbiased estimator of the number of population uniques, based on sample data.
Since this estimator exhibits great sampling variability for small sampling fractions, the author models this
relationship. After observing this conditional probability for a number of real populations, the author pro-
vides a parametric formulation of it. This formulation is empirical only � it has not theoretical justiÞcation.
However, the empirical formulation is much more ßexible than earlier measures of disclosure risk based on
uniqueness which required distributional assumptions (e.g. the Poisson-Gamma model of Bethlehem et al.
(1990) or the Poisson-Lognormal model of Skinner and Holmes (1993)).

Willenborg and Kardaun (1999) This paper presents an alternate measure of disclosure risk appro-
priate to microdata sets for research (as opposed to public use Þles). In such Þles there is generally no
requirement that all records be absolutely safe, since their use is usually covered by a contractual agreement
which includes a non-record-matching obligation. The approach is to deÞne a measure of the �degree of
uniqueness� of an observation, called a Þngerprint. A Þngerprint is a combination of values of identifying
(key) variables that are unique in the data set at hand, and contain no proper subset with this property
(so it is a minimum set with the uniqueness property). The authors contend that records with �many�
�short� Þngerprints (i.e., Þngerprints comprised of a small number of variables) are �risky�, and should
not be released. Appropriate deÞnitions of �many,� �short� and �risky� are at the discretion of the data
collection/dissemination agency. In this way, deÞning disclosure risk in terms of Þngerprints is very ßexible.
The authors propose that agencies use the Þngerprinting criterion to identify risky records, and then apply
disclosure-limitation measures to these records. The paper contains a discussion of some design criteria for
an implementation of the Þngerprinting criterion, and stipulates some useful heuristics for algorithm design.

Franconi (1999) This paper reviews recent developments in measures and deÞnitions of disclosure risk.
The author stresses differences between methods appropriate to social data and to business data. These
differences are due to differences in the underlying data. Namely, social data are generally from large
populations, have an inherent dependent structure (i.e., groups such as families or households exist in the
data), and are characterized by key variables of a categorical nature. These characteristics allow one to
tackle the disclosure limitation problem via concepts of uniqueness. Business data, on the other hand are
generally from small populations, with a skewed distribution, and have key variables which are primarily
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continuous. Uniqueness concepts are generally not useful here, since nearly all cases would be considered
unique. In both cases, the author stresses the need to take account of hierarchies in the data, such as
the grouping of cases into families and households. These hierarchies provide additional information to an
intruder attempting to identify records, hence they should be incorporated into measures of disclosure risk.

1.3 Disclosure Limitation Methods for Microdata

1.3.1 Additive Noise Methods

Fuller (1993) This paper considers a variety of masking methods in which error is added to data elements
prior to release. These fall generally within the class of measurement error methods. The author stresses
that to obtain consistent estimates of higher-order moments of the masked data and functions of these
moments such as regression coefficients, measurement error methods and specialized software are required.
Other techniques, such as data switching and imputation, can produce biased estimates of some sample
covariances and other higher-order moments. The approach is related to that of Kim and Winkler (1997),
but applicable to data which is not necessarily multivariate normal.

Kim and Winkler (1997) This paper presents a two-stage disclosure limitation strategy, applied to
matched CPS-IRS data. The disclosure concern in this data arises from the match: the CPS data are
already masked, but the IRS tax data is not. The IRS data need to be sufficiently well-masked so they
cannot easily be used in re-identiÞcations, either alone or in conjunction with unmasked key variables from
the CPS. The procedure is as follows.
The data in question are known to be approximately multivariate normal. Hence, in the Þrst stage noise

from a multivariate normal distribution with mean zero and the same correlation structure as the unmasked
data is added to the IRS income variables. As discussed in Little (1993) and Fuller (1993), such an approach
is currently the only method that preserves correlations. Following the addition of noise to the data, the
authors determine the re-identiÞcation risk associated with the data by matching the raw linked data to the
masked Þle. In cases where the re-identiÞcation risk was deemed too great, the authors randomly swap
quantitative data within collapsed (age × race × sex) cells. This approach preserves means and correlations
in the subdomains on which the swap was done, and in unions of these subdomains. However, the swapping
algorithm may severely distort means and correlations on arbitrary subdomains. Finally, the authors assess
both the conÞdentiality protection offered by their method and the analytic usefulness of the resulting Þles,
and conclude that both are good.

Moore (1996a) This paper provides a critical examination of the degree of conÞdentiality protection and
analytic usefulness provided by the Kim and Winkler (1997) method. The author concludes that the method
is both useful and highly feasible. The author also considers some particular aspects of the algorithm, such
as optimal parameter values which generate �sufficient� masking with minimal distortion to second moments.
Finally, the author considers how much masking is �sufficient,� given reasonable assumptions on intruder
knowledge, tools, and objectives.

Winkler (1998) This paper compares the effectiveness of a number of competing disclosure limitation
methodologies to preserve both conÞdentiality and analytic usefulness. The methods considered include the
additive-noise and swapping techniques of Kim and Winkler (1997), the additive-noise approach of Fuller
(1993), and µ-ARGUS suppression as described in Hundepool and Willenborg (1999) and Nordholt (1999) in
Section 1.3.3. The author arrives at several conclusions. First, the Fuller (1993) additive-noise method may
not provide as much protection as that author had originally suggested. In particular, sophisticated matching
techniques may allow for a signiÞcantly higher re-identiÞcation rate than previously thought. Second, a
naive application of µ-ARGUS to the linked CPS-IRS data described in Kim and Winkler (1997) did little
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to preserve either conÞdentiality or analytic usefulness. More sophisticated methods, including a variant of
the Kim and Winkler (1997) method that included a µ-ARGUS pass on the masked data, were much more
successful. The authors conclude that additive-noise methods can produce masked Þles that allow some
analyses to approximately reproduce the results obtained with unmasked data. When additional masking
procedures are applied such as limited swapping or probability adjustment (Fuller (1993)), then disclosure
risk is signiÞcantly reduced, though analytic properties are somewhat compromised.

Duncan and Mukherjee (1998) This paper derives an optimal disclosure limitation strategy for statisti-
cal databases � i.e., micro-databases which respond to queries with aggregate statistics. As in all disclosure
limitation problems, the aim is to maximize legitimate data access while keeping disclosure risk below an
acceptable level. The particular conÞdentiality breach considered is called a tracker attack : a well known
intruder method in databases with query set size (QSR) control. QSR control is a query restriction tech-
nique where a query is disallowed if the number of records satisfying the query is too small (or too large, by
inference from the complementary query). A tracker attack is a Þnite sequence of legitimate queries that
yields the same information as a query precluded under QSR. The authors show that the optimal method
for thwarting tracker attacks is a combination of query restriction and data masking based on additive noise.
The authors also derive conditions under which autocorrelated noise is preferable to independent noise or
�permanent� data perturbation.

Evans et al. (1998) This paper presents an additive-noise method for disclosure limitation which is
appropriate to establishment tabular data. The authors propose adding noise to the underlying microdata
prior to tabulation. Under their approach, �more sensitive� cells receive more noise than less sensitive
cells. There is no attempt to preserve marginal totals. This proposal has numerous advantages over the
cell-suppression approach which is usually applied to such data. In particular, it is far simpler and less
time-consuming than cell-suppression techniques. It also eliminates the need to coordinate cell suppressions
between tables, and eliminates the need for secondary suppressions, which can seriously reduce the amount
of information in tabular releases. The authors also contend that an additive noise approach may offer more
protection than cell-suppression, although suppression may give the appearance of offering more protection.

Pursey (1999) This paper discusses the disclosure control methods developed and implemented by Sta-
tistics Canada to release a Public Use Microdata File (PUMF) of Þnancial data from small businesses. This
is a fairly unique enterprise � in most cases, statistical agencies deem it too difficult to release public use
microdata on businesses that preserve conÞdentiality. The paper discusses the Þve steps taken to create the
PUMF: (1) make assumptions about an intruder�s motivation, information, and tools; (2) make disclosure
control goals based on these assumptions; (3) translate these goals into mathematical rules; (4) implement
these rules to create the PUMF; and (4) measure the data quality of the PUMF. These are discussed brießy
below.
It is assumed that an intruder seeks to identify any record in the PUMF, and has access to the population

data Þle from which the PUMF records are drawn. It is assumed that identiÞcation is achieved via nearest-
neighbor matching to the population Þle. Given these assumptions, the following disclosure control goals
were set:

� Ensure a low probability that a business from the population appears in the PUMF (less than r%),
and that an intruder cannot determine that a particular business is in the PUMF.

� Ensure that each continuous variable is perturbed and that an intruder cannot undo the perturbation.
� Ensure a low probability that a PUMF record can be correctly linked to itself in the population Þle
(less than p%), and that an intruder cannot determine whether a link has been correctly or incorrectly
made.
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� Remove unique records.

Continuous variables were perturbed according to methods similar to those of Kim and Winkler (1997).
First, independent random noise was added to each datum, subject to the constraints that the minimum and
maximum proportion of random noise is constant for each datum, and that within a record the perturbations
are either always positive or always negative. Next, the three highest data values of each variable in each
cell were replaced with their average. Finally, all data values were rounded to the nearest $1000. Since a
less than p% linkage rate was deemed necessary, in industry cells with a correct linkage rate greater than
p%, the data was further perturbed by data swapping with the second-nearest neighbor until a p% linkage
rate was achieved.
After implementing the above disclosure control methods, the resulting data quality was analyzed. The

general measure used was one of relative distance: Rd = (xa − xb)/(xa + xb), where xa is data or a sample
statistic after disclosure control, and xb is the same data or sample statistic before disclosure control. All
variables in the PUMF and a variety of sample statistics were analyzed according to this distance measure.
The results indicated that the resulting data quality was good to fair for unincorporated businesses, fair to
poor for incorporated businesses.

1.3.2 Multiple Imputation and Related Methods

Rubin (1993) Rubin (1993) is the Þrst paper to suggest the use of multiple imputation techniques for
disclosure limitation for microdata analyses. His radical suggestion � to release only synthetic data generated
from actual data by multiple imputation � is motivated by the forces outlined at the outset of this review.
Namely, an increase in the demand for public use microdata, and increasing concern about the conÞdentiality
of such data.
Rubin�s (1993) approach has a number of advantages over competing proposals for disclosure limita-

tion, such as microdata masking. For example, valid statistical analyses of masked microdata generally
require �not only knowledge of which masking techniques were used, but also special-purpose statistical soft-
ware tuned to those masking techniques� (Rubin (1993, p. 461)). In contrast, analysis of multiply-imputed
synthetic data can be validly undertaken using standard statistical software simply by using repeated appli-
cations of complete-data methods. Furthermore, an estimate of the degree to which the disclosure prooÞng
techniques inßuence estimated model parameters can be obtained from between-imputation variability. Fi-
nally, since the released data is synthetic, i.e., contains no data on actual units, it poses no disclosure
risk.
The details of Rubin�s (1993) proposal are as follows. Consider an actual microdata sample of size n

drawn using design D from a much larger population of N units. Let X represent background variables
(observed, in principle, for all N units), Z represent outcome variables with no conÞdentiality concerns, and
Y represent outcome variables with some conÞdentiality concerns. Note that Z and Y are only observed for
the n sampled units, and missing for the N − n unsampled units. A multiply-imputed population consists
of the actual X data for all N units, the actual

£
Z Y

¤
data for the n units in the sample, and M

matrices of
£
Z Y

¤
data for the N −n unsampled units, where M is the number of multiple imputations.

The multiply-imputed values of
£
Z Y

¤
are obtained from some model with predictors X. Given such a

multiply-imputed population and a new survey designD∗ for the microdata to be released (possibly the same
asD), the statistical agency can draw a sample of n∗ ¿ N units from the multiply-imputed population which
is structurally like an actual microdata sample of size n∗ drawn from the actual population using design D∗.
This can be done M times to create M replicates of the

£
Z Y

¤
values. To ensure that no actual data

are released, the statistical agency could draw the samples from the multiply-imputed population excluding
the n actual units.
Rubin (1993) recognizes the information loss inherent in the multiple-imputation technique. However,

some aspect of this information loss are subtle, and he presents these as the following two facts. First,
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although the actual
£
Z Y

¤
and the population values of X contain more information than the multiply-

imputed population, if the imputation model is correct, then as M increases, the information in the latter
is essentially the same as in the former. Second, the information in the original microdata sample of size n
may be greater than, less than, or equal to the information in the multiply-imputed sample of size n∗; the
relationship will depend on the estimand under investigation, the relative sizes of n and n∗, the magnitude
of M , the designs D and D∗, and the ability of X to predict

£
Z Y

¤
.

Fienberg (1994) Fienberg (1994) proposes a method of conÞdentiality protection in the spirit of Rubin
(1993). Whereas Rubin (1993) suggests generating synthetic microdata sets by multiple imputation, Fien-
berg (1994) suggests generating synthetic microdata by bootstrap methods. This method retains many of
the desirable properties of Rubin�s (1993) proposal � namely disclosure risk is reduced because only synthetic
data are released, and the resultant microdata can be analyzed using standard statistical methods.
To discuss the details of his proposal, let us restate the statistical agency�s problem. As before, suppose

the agency collects data on a random sample of size n from a population of size N (ignore aspects of the
sample design). Let F be the true p-dimensional c.d.f. of the data in the population, and let F̄ be the
empirical c.d.f. based on the sample of size n. The disclosure problem arises because researchers request,
in essence, access to the full empirical p-dimensional c.d.f., F̄ . Because of guarantees of conÞdentiality, the
agency believes it cannot release F̄ since an intruder may be able to identify one or more individuals in the
data.
Fienberg�s (1994) proposal is as follows. Suppose the statistical agency has a �smoothed� estimate of the

c.d.f., �F, derived from the original sample c.d.f. F̄ . Rather than releasing either F̄ or �F, the agency could
sample from �F and generate a synthetic bootstrap-like sample of size n. Denote the empirical c.d.f. of the
synthetic microdata Þle as Ḡ. Fienberg (1994) notes some technical details surrounding Ḡ which have yet
to be addressed. Namely, under what conditions would replicates of Ḡ, say Ḡi for i = 1, ..., B, be such that
as B → ∞, 1

B

PB
i=1 Ḡi → �F ? Is a single replicate sufficient, or would multiple replicates be required for

valid analyses, or possibly the average of multiple replicates? Bootstrap theory may provide some insight
into these issues.

Fienberg et al. (1998) The authors reiterate Feinberg�s (1994) proposal for generating synthetic data via
bootstrap methods, and present a related application to the case of categorical data. Categorical data can
be represented by a contingency table, for which there is a direct relationship between a speciÞc hierarchical
loglinear model and a set of marginal tables that represent the minimal sufficient statistics of the model.
The authors present an example of a three-way table, for which they obtain maximum likelihood estimates
of the expected cell values under a loglinear model. The suggestion is to release the MLEs as a public use
product, rather than the actual data. They then generate 1,000,000 tables with the same two-way margins,
and perform a goodness-of-Þt test based on the MLEs. They Þnd that the sparseness of the table in their
example presents some problems for accurate loglinear modeling.
In a comment to this article, Kooiman (1998) expresses doubt as to the feasibility of the Fienberg (1994)

and Fienberg et al. (1998) proposal for generating synthetic data. He makes a connection between the
proposed method and a data-swapping exercise subject to Þxed margins. Kooiman (1998) shows that for
large data sets with many categorical variables and many categories, such an exercise is likely impossible.
He also Þnds the relationship between the synthetic data proposal and the categorical data example tenuous,
at best.

Kennickell (1991), Kennickell (1997), Kennickell (1998), Kennickell (2000) In a series of articles,
Kennickell (1991), Kennickell (1997), Kennickell (1998), Kennickell (2000), describes the Federal Reserve
Imputation Technique Zeta (FRITZ), used for both missing value imputation and disclosure limitation in
the Survey of Consumer Finances (SCF). The SCF is a triennial survey administered by the Federal Reserve
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Board to collect detailed information on all household assets and liabilities. Because holdings of many types
of assets are highly concentrated in a relatively small fraction of the population, the SCF heavily oversamples
wealthy households. Since such households are likely to be well-known, at least in their localities, the data
collection process presents a considerable disclosure risk. As a Þrst step towards implementing the proposal
of Rubin (1993), the SCF simulates data for a subset of sample cases, using the FRITZ multiple imputation
algorithm. This approach is highly relevant for our current research, and hence we discuss it in some detail
here.

Using The FRITZ Algorithm for Missing Data Imputation As mentioned above, the FRITZ
algorithm is used both for missing value imputation and disclosure limitation in the SCF. The algorithm is
most easily understood in the context of missing data imputation. We return to the issue of its application
to disclosure limitation below.
The FRITZ model is sequential in the sense that it follows a predetermined path through the survey

variables, imputing missing values one (occasionally two) at a time. The model is also iterative in that it
proceeds by Þlling in all missing values in the survey data set, using that information as a basis for imputing
the following round, and continuing the process until key estimates are stable. Five imputations are made
for every missing value, hence the method is in the spirit of Rubin�s (1993) proposal. The following describes
the FRITZ technique for imputing missing continuous variables.
For convenience, suppose the iterative process has completed `−1 rounds, and we are currently somewhere

in round `, with a data structure as given below: (reproduced from Kennickell (1998))

Iteration `−1

y1 χ`−1
11 x12 x13

Ψ`−1
2 χ`−1

21 x22 χ`−1
23

y3 x31 x32 x33

...
yn−2 xn−2,1 xn−2,2 xn−2,3

yn−1 xn−1,1 χ`−1
n−1,2 xn−1,3

Ψ`−1
n χ`−1

n1 χ`−1
n2 xn3





Iteration `

y1 · x12 x13

· r21 x22 ·
y3 x31 x32 x33

...
rn−2 xn−2,1 xn−2,2 xn−2,3

yn−1 xn−1,1 χ`n−1,2 xn−1,3

· rn1 χ`n2 xn3


Here, y indicates complete (non-missing) reports for the variable currently the subject of imputation; Ψp

represents round p imputations of missing values of y; x represents complete reports of the of the set of
variables available to condition the imputation; χp represents completed imputations of x from iteration
p. Variables that were originally reported as a range but are not currently imputed are represented by r,
and · represents values that are completely missing that are not yet imputed. Every x variable becomes a
y variable at its place in the sequence of imputations within each iteration. Note that no missing values
remain in the stylized `− 1 data set.
Ideally, one would like to condition every imputation on as many variables as possible, as well as on

interactions and higher powers of those terms. Of course there are always practical limits to such a strategy
due to degrees of freedom constraints, and some judgement must be applied in selecting a �maximal� set
of conditioning variables, X. Of that maximal set, not every element may be non-missing at a given
stage of imputation. For each variable to be imputed, the FRITZ algorithm determines the set of non-
missing variables among the maximal set of of conditioning variables for each observation, denoted X(i) for
observation i. Given the set of available conditioning variables X(i), the model essentially regresses the
target imputation variable on the subset of conditioning variables using values from the previous iteration of
the model. This process is made more efficient by estimating a maximal normalized cross-product matrix for
each variable to be imputed, denoted

P
(X,Y )`−1 , and then subsetting the rows and columns corresponding

to the non-missing conditioning variables for a given observation, denoted
P¡

X(i), Y
¢
`−1

. The imputation
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for observation i in iteration ` is thus given by:

Ψi` = β(i)`X(i)i` + ei` (7)

where X(i)i` is the rows of X(i)` corresponding to i; X(i)` is the subset of X that is available for i in iteration

`; β(i)` =
P¡

X(i)X(i)

¢−1

`−1

P¡
X(i)Y

¢
`−1

, and ei` is a random error term. Once a value is imputed, its
imputed value is used (along with reported values) in conditioning later imputations.
The choice of error term ei` has been the subject of several experiments (see Kennickell (1998)). In

early releases of the SCF, ei` was taken to be a draw from a truncated normal distribution. The draw was
restricted to the central 95 percent of the distribution, with occasional supplementary constraints imposed
by the structure of the data or respondent-provided ranges for the variable under imputation. More recently,
ei` has been drawn from an empirical distribution.
The FRITZ algorithm for imputing multinomial and binary variables works similarly, with an appropriate

�regression� substituted for (7) .

Using The FRITZ Algorithm for Disclosure Limitation The FRITZ algorithm is applied to
the conÞdentiality protection problem in a straightforward manner. In the 1995 SCF, all dollar values for
selected cases were simulated. The procedure is as follows. First, a set of cases which present excessive
disclosure risk are selected (see Kennickell (1997)). These are selected on the basis of having unusual
levels of wealth or income given other characteristics, or other unusual combinations of responses. Second,
a random set of cases is selected to reduce the ability of an intruder to determine even the set of cases
determined to present an excessive disclosure risk. Then, a new data set is created for all the selected cases,
and shadow variables (which detail the �type� of response given for a particular case-variable pair, e.g., a
complete report, a range report, or non-response) are set so that the FRITZ model interprets the responses
as range responses. The type of range mimics one where the respondent volunteered a dollar range � a
dollar amount of ±p percent (where p is and undisclosed number between 10 and 20 percent) is stored in a
data set normally used to contain unique range reports. Finally, the actual dollar values are set to missing,
and the FRITZ algorithm is applied to the selected cases, using the simulated range reports to constrain
the imputed values. Subsequent evaluation of the 1995 SCF (Fries et al. (1997)) indicates that while the
imputations substantially masked individual cases, the effect on important distributional characteristics was
minimal.

1.3.3 Other Methods

Moore (1996b) This paper presents a brief overview of data-swapping techniques for disclosure limitation,
and presents a more sophisticated technique than found elsewhere in the literature. The author presents
an algorithm for a controlled data swap based on the rank-based proximity swap of Greenberg (1987). The
contribution in this paper is to provide a technique which preserves univariate and bivariate relationships
in the data. Based on a simulation using the 1993 Annual Housing Survey Public Use File, the author
concludes that the algorithm preserves the desired moments to an acceptable degree (and hence retains some
degree of analytic usefulness), while providing a level of conÞdentiality protection comparable to simple
additive-noise methods.

Moore (1996c) This paper suggests modiÞcations to the ConÞdentiality Edit, the data-swapping proce-
dure used for disclosure limitation in the 1990 Decennial Census. The suggested improvements are based
on the ARGUS system for determining high-risk cases (see Hundepool and Willenborg (1999) and Nordholt
(1999) below), and the German SAFE system for perturbing data. The author also presents two measures
of the degree of distortion induced by the swap, and an algorithm to minimize this distortion.
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Mayda et al. (1997) This paper examines the relationship between variance estimation and conÞdential-
ity protection in surveys with complex designs. In particular, the authors consider the case of the Canadian
National Population Health Survey (NPHS), a longitudinal survey with a multi-stage clustered design. To
prepare a public use Þle, it was deemed necessary to remove speciÞc design information such as stratum and
cluster identiÞers due to the extremely detailed level of geography they represented. Furthermore, providing
cluster information could allow users to reconstitute households, increasing the probability of identifying in-
dividuals. However, speciÞc design information is necessary to correctly compute variances using jackknife
or other methods. This highlights yet another aspect of the conßict between providing high quality data
and protecting conÞdentiality. The authors describe the approach taken to resolve this conßict. Specif-
ically, strata and clusters are collapsed to form �super-strata� and �super-clusters� in the public use Þle,
which protect conÞdentiality while providing enough information for researchers to obtain unbiased variance
estimates under certain conditions. The drawback of this approach is that it does not generate the exact
variance corresponding to the original design, and that collapsing reduces degrees of freedom and hence the
precision of variance estimates.

Nadeau et al. (1999) This paper presents a discussion of conÞdentiality issues surrounding Statistics
Canada�s Survey of Labour and Income Dynamics (SLID), and presents the release strategy for microdata on
individual and family income. SLID is a longitudinal survey designed to support studies of economic well-
being of individuals and families, and of their determinants over time. With the demise of the Canadian
Survey of Consumer Finances (SCF) in 1998, SLID became the official source of information for both
longitudinal and cross-sectional income data on individuals and families. This presented some rather
unique issues for disclosure limitation.
Prior to integrating SLID and SCF, Statistics Canada did not release sufficient information in the SLID

Public Use Microdata Files (PUMFs) to allow household reconstitution. It was considered too difficult to
protect conÞdentiality at the household level in a longitudinal microdata Þle. However, since integrating
SLID and SCF, it has become a priority to release cross-sectional PUMFs that meet needs of former SCF
users. In particular, the cross-sectional PUMFs now contain household and family identiÞers, which allow
household and family reconstitution. This compromises the release of longitudinal PUMFs. Instead,
Statistics Canada has opted to explore other options for the release of longitudinal data � namely release of
synthetic Þles, and creation of research data centres. In the meantime, a number of disclosure limitation
methods have been explored for the cross-sectional PUMFs to limit the ability of intruders to link records
dynamically (constructing their own longitudinal Þle, considered �too risky� for re-identiÞcation) and/or
re-identify records by linking to the Income Tax Data File (ITDF).
The disclosure control methods applied in the cross-sectional PUMFs include both data reduction and

data modiÞcation methods. The data reduction methods include dropping direct identiÞers, aggregating
geographic variables, and categorical grouping for some occupational variables. Data modiÞcation methods
are applied to numeric variables. In particular, year of birth is perturbed with additive noise; income
variables are both bottom- and top-coded, and the remaining values are perturbed with a combined random-
rounding and additive noise method.
Finally, the authors assess how successful these measures are at protecting conÞdentiality and maintaining

analytical usefulness. To address the former, they consider both linking consecutive cross-sectional PUMFs
and linking to the ITDF. In both cases, they consider both direct matches and nearest-neighbor matches.
They Þnd that the ability of an intruder to match records in either consecutive PUMFs or to the ITDF
is severely limited by the disclosure control measures. As for the usefulness of the data, they Þnd little
difference in the marginal distribution of most variables at highly aggregated levels (i.e., the national level),
but more signiÞcant differences at lower levels of aggregation (i.e., the province×sex level).
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Hundepool and Willenborg (1999), Nordholt (1999) These papers describe the τ -ARGUS and µ-
ARGUS software packages developed by Statistics Netherlands for disclosure limitation. Nordholt (1999)
describes their speciÞc application to the Annual Survey on Employment and Earnings (ASEE). The τ-
ARGUS software tackles the problem of disclosure limitation in tabular data. It automatically applies a
series of primary and secondary suppressions to tabular data on the basis of a dominance rule: a cell is
considered unsafe if the n major contributors to that cell are responsible for at least p percent of the total
cell value. The µ-ARGUS software is used to create a public use microdata Þle from the ASEE. The public
use microdata has to satisfy two criteria, which are implemented with µ-ARGUS: Þrst, every category of
an identifying variable must occur �frequently enough� (200,000 times is the default for ASEE); second,
every bivariate combination of values must occur �frequently enough� (1,000 times is the default for ASEE).
These objectives are achieved via global recoding and local suppression.

1.4 Analysis of Disclosure-Proofed Data

Little (1993) Little (1993) develops a model-based likelihood theory for the analysis of masked data.
His approach is to formally model the mechanism whereby case-variable pairs are selected for masking,
the masking method, and derive an appropriate model for analysis of the resulting data. His method is
sufficiently general to allow for a variety of masking selection mechanisms, and such diverse masking methods
as deletion, coarsening, imputation, and aggregation. The formal theory follows.
Let X = {xij} denote an (n× p) unmasked data matrix of n observations on p variables. LetM = {mij}

denote the masking indicator matrix, where mij = 1 if xij is masked, and mij = 0 otherwise. Let Z = {zij}
denote the masked data, i.e., zij is the masked value of xij if mij = 1, and zij = xij if mij = 0. Model the
joint distribution of X, Z, and M with the density function:

f (X,Z,M|θ) = fX (X|θ) fZ (Z|X) fM (M|X,Z) . (8)

Here fX (X|θ) is the density of the unmasked data given unknown parameters θ, which would be the basis for
analysis in the absence of masking; fZ (Z|X) formalizes the masking treatment; and fM (M|X,Z) formalizes
the masking selection mechanism. If the analyst knows which values are masked and the method masking,
then the analyst knows M, as well as the distributions of M and Z. If not, then M is unknown. A more
general speciÞcation would also index the distributions of M and/or Z by unknown parameters, and a full
likelihood analysis would then involve both θ and these unknown masking parameters.
Let X = (Xobs,Xmis) and Z = (Zobs,Zmis) where obs denotes observed components, and mis denotes

missing components of each matrix. Analysis of the masked data is based on the likelihood for θ given the
data M,Xobs, and Zobs. This is obtained formally by integrating the joint density in (8) over the missing
values Xmis and Zmis :

L (θ|M,Xobs,Zobs) =

Z
fX (X|θ) fZ (Z|X) fM (M|X,Z) dXmisdZmis. (9)

Since the distribution of M in (9) may depend on X and Zobs, but should not depend on Zmis, we can write
fM (M|X,Z) = fM (M|X,Zobs) . Thus we can rewrite (9) as:

L (θ|M,Xobs,Zobs) =

Z
fX (X|θ) f∗Z (Zobs|X) fM (M|X,Zobs) dXmis (10)

where f∗Z (Zobs|X) =
R
fZ (Z|X) dZmis.

The author notes that the likelihood in (10) can be simpliÞed if the masking selection and treatment
mechanisms satisfy certain ignorability conditions, in the sense of Rubin (1976) and Rubin (1978). SpeciÞ-
cally, if the masking selection mechanism is ignorable, then fM (M|X,Z) = fM (M|Xobs,Zobs) for all Xmis,
Zmis. In this case, the density of M can be omitted from (10). Similarly, the masking treatment mechanism
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is ignorable if f∗Z (Zobs|X) = f∗Z (Zobs|Xobs) for all Xmis. In this case, the density of Zobs can be omitted
from (10). Finally, if both mechanisms are ignorable, then the likelihood reduces to:

L (θ|M,Xobs,Zobs) =

Z
fX (X|θ) dXmis

which is proportional to the marginal density of Xobs.
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