Highway Safety Performance-1983 Fatal and Injury Accident Rates on Public Roads in the United States

Offices of Highway Safety and Highway Planning

HIGHWAY SAFETY PERFORMANCE - 1983
 Fatal and Injury Accident Rates on Public Roads in the United States
 Report of the Secretary of Transportation to the United States Congress
 Pursuant to
 Section 207 of the Surface
 Transportation Assistance Act of 1982 (P.L. 97-424)

December 1984

Prepared by the Offices of Highway Safety and Highway Planning
U.S. DEPARTMENT OF TRANSPORTATION Federal Highway Administration Washington, D.C. 20590

FOREFWORD

This report was prepared pursuant to Section 207 of the Surface Transportation Assistance Act of 1982 (P.L. 97-424) which reads as follows:

Sec. 207. The Secretary of Transportation shall prepare, publish, and submit to Congress not later than December 31 of each calendar year beginning after December 31, 1982, a report on the highway safety performance of each State in the preceding calendar year. Such report shall provide data on highway fatalities and injuries and motor vehicle accidents involving fatalities and injuries and travel in urban areas of each State for each system of highways and in rural areas of such State for each system of highways. Such report shall be in such form and contain such other information on highway accidents as will permit an evaluation and comparison of highway safety performance of the States. For purposes of this section (1) the systems of highways in a State are the Federal-aid primary system, the Federal-aid secondary system, the Federal-aid urban system, and the Interstate System (as such terms are defined in section 101 of Title 23, United States Code) and the other highways in such State which are not on the Federal-aid system, and (2) the terms "State," "rural areas," and "urban area" have the meaning such terms have under such section 101.

This is the second report to Congress under Section 207. The reports contain an extension of a series of statistical data published annually since 1967 by the Federal Highway Administration (FAWA) as "Fatal and Injury Accident Rates on Federal-Aid and Other Highway Systems." The series has been a cooperative effort of the FHWA's Offices of Traffic Operations, Highway Safety, and Highway Planning. The States have provided the data for this series through the Highway Performance Monitoring System (HPMS), and its predecessors, administered by the Office of Highway Planning. Data from the Fatal Accident Reporting System (FARS) administered by the National Highway Traffic Safety Administration (NHTSA) have been used to verify and supplement the HPMS data.

TABLE OF CONTENTS

Foreword ii
SECTION I Introduction 1
A. Purpose of Report 1
B. Terminology 1
C. Highway Safety Performance in 1983 4
D. National Trends 7
E. Comparison of State Statistics 13
SECTION II Vehicle Mileage Rates 15
SECOION III Other Rates 44
A. Highway Mileage 44
B. Population 44
C. Licensed Drivers 44
D. Registered Vehicles 44
SECTION IV Puerto Rico and U.S. Territories 49
SECTION V Relationship of Fatality Rates to Travel Density 50
SECTION VI State Fatality Rate Trends 70
SECTION VII Summary 82
References 83

TABLES

Table 1 U.S. Vehicle-Mile Rates by Highway System 5
Table 2 State Accident Sumary 6
Table 3 Fatal Accidents by State and Highway System 16
Table 4 Nonfatal Injury Accidents by State and Highway System 23
Table 5 Fatalities by State and Highway System 30
Table 6 Nonfatally Injured Persons by State and Highway System 37
Table 7 U.S. Highway-Mile Rates by Highway System 45
Table 8 Population Rates by State 46
Table 9 Licensed Driver Rates by States 47
Table 10 Registered Vehicle Rates by State 48
Table 11 Fatal and Injury Accidents in Puerto Rico 49
Figure 1 U.S. Motor Vehicle Fatality Rates: 1925-1983 8
Figure 2 U.S. Fatality Rates for Interstate and Other Systems: 1967-1983 9
Figure 3 U.S. Injury Rates for Interstate and Other Systems: 1967-1983 10
Figure 4 U.S. Fatality Rates by Highway System: 1979-83 11
Figure 5 U.S. Injury Rates by Highway System: 1979-83 12
Figure 6 Relationship Between Fatality Rates and Travel Density 14
Figure 7-A1 Provisional Rate-Density Relationship-All Highways 53
Figure 7-A2 Fatality Rate by State-All Highways 54
Figure 7-B1 Provisional Rate-Density Relationship-Maral and Urban Highways 55
Figure 7-B2a Fatality Rate by State-All Rural Highways 56
Figure 7-B2b Fatality Rate by State-All Urban Highnways 57
Figure 7-C1 Provisional Rate-Density Relationship- Interstate System Highways 58
Figure 7-C2a Fatality Rate by State-Pural Interstate Highways 59
Figure 7-C2b Fatality Rate by State-urban Interstate Highways 60
Figure 7-D1 Provisional Rate-Density Relationship-Other Federal-Aid Primary Highways 61
Figure 7-D2a Fatality Rate by State-Other Rural Federal-Aid Primary Highways 62
Figure 7-D2b Fatality Rate by State-Other Urban Federal-Aid Primary Highways 63
Figure 7-E1 Provisional Rate-Density Relationship-Federal- Aid Secondary and Urban System Highways 64
Figure 7-E2a Fatality Rate by State-Federal-Aid Secondary Highways 65
Figure 7-E2b Fatality Rate by State-Federal-Aid Urban System Highways 66
Figure 7-F1 Provisional Rate-Density Relationship- Non-Federal-Aid Highways 67
Figure 7-F2a Fatality Rate by State-Raral Non-Pederal-Aid Highways 68
Figure 7-F2b Fatality Rate by State-Urban Non-Federal-Aid Highways 69
Figure 8 State Fatality Rates: 1979-83 71

SECTION I-INTRODUCTION

A. Purpose of Report

In response to the Congressional direction given in the Surface Transportation Assistance Act of 1982, this report provides motor vehicle traffic accident data which may be used, together with other relevant information, in evaluating and comparing the highway safety performance of the States. It is not the purpose of this report to present either a detailed analysis of the data or a completed evaluation or comparison of State highway safety performance. The text of the report is primarily technical detail and background information which may assist those who analyze or interpret the statistical tables and graphs.

B. Terminology

It is customary, when drafting legislation, to begin with definitions. These serve to introduce terms which are not in common use and to clarify the intended meaning of familiar terms which may be ambiguous. Interpretation of laws is greatly facilitated by the use of carefully defined terminology. Similarly, the interpretation of statistics is dependent upon an understanding of the terminology used in the collection and processing of the data. Such an understanding is particularly important when statistics from two or more sources are combined or compared. For this reason, an explanation of pertinent terminology precedes the statistical data in this report.

The two primary sources for the definitions which follow are Section 101 of Title 23 of the United States Code and the Manual on Classification of Motor Vehicle Traffic Accidents (ANSI D16.1-1976). It should be recognized that the accident data in this report have been collected and processed by thousands of persons in State and local agencies and that deviations from the standard definitions are not unusual. Most of the deviations are relatively minor, but some are not. Users of accident statistics should be constantly alert to the fact that statistical differences may reflect differences in terminology rather than differences in accident experience.

Terms used in this report are defined as follows:
A motor vehicle traffic accident is an accident involving a motor vehicle in use within the right-of-way or other boundaries of a trafficway open for the use of the public.

An injury is any bodily harm received by a person in a motor vehicle traffic accident.

A fatal injury is any injury that results in death.

A nonfatal injury is any injury other than a fatal injury.

A fatal accident is a motor vehicle traffic accident resulting in one or more fatal injuries.

A nonfatal injury accident is a motor vehicle traffic accident that results in one or more injuries, but no fatal injuries.

A fatality is the death of any person who suffers a fatal injury. For its statistics on motor vehicle traffic fatalities, the Department of Transportation uses a 30 -day counting rule, including only those deaths which occur within 30 days of the fatal injury. Approximately two percent of traffic fatalities occur later.

A nonfatally injured person is one who suffers a nonfatal injury in either a fatal accident or a nonfatal injury accident.

Vehicle miles are the miles of travel by all types of motor vehicles, as determined by the State highway departments on the basis of actual traffic counts and established estimating procedures.

The fatal accident rate, nonfatal injury accident rate, fatality rate, and nonfatal injury rate are, respectively, the number of fatal accidents, nonfatal injury accidents, fatalities, and nonfatally injured persons per 100 million vehicle miles of travel.

An urban highway is any road or street within the boundaries of an urban area. An urban area is an area including and adjacent to a municipality or urban place with 5,000 or more population. The boundaries of urban areas are fixed by the State highway departments, subject to the approval of the Federal Highway Administration, for purposes of the Federal-Aid highway program.

A rural highway is any road or street which is not an urban highway.
Travel density is the average number of vehicle-miles driven on a section of highway each day divided by the length of the section in miles. It is expressed as a number of vehicles and may be referred to as average daily traffic (ADT).

The provisional rate-density relationship is the relationship between fatality rates and average daily traffic. It is based on data for the 4-year period preceding the calendar year for which detailed data are reported. It is labelled "provisional" to make it clear that it is to be used as a guide rather than a standard. A provisional rate-density relationship may be described graphically or mathematically by a rate-density curve.

A provisional range for a given period of time is based on a provisional rate-density relationship and the volume of travel. The provisional range indicates-for an appropriate volume of travel-the amount of deviation from fatality rates on a rate-density curve which might be expected if the deviation were random.

The characteristics of the functional classes of highways referred to in this compilation of statistical data are briefly described as follows:

Arterial highways serve major traffic movements or major traffic corridors. While they may provide access to abutting land, their primary function is to serve traffic moving through the area.

Local highways are those roads and streets whose principal function is to provide direct access to abutting land.

Collector highways are those highways which link local highways to arterial highways.

The characteristics of the several Federal-aid highway systems referred to in this report are briefly described as follows:

Federal-Aid Primary, Secondary, and Urban highway 'systems are those for which Federal-Aid highway matching funds may be spent by the State.

The Federal-Aid Primary system is a system of connected main roads important to interstate, statewide, and regional travel, consisting of rural arterial routes and their extensions into or through urban areas.

The Interstate System is a part of the Federal-Aid Primary system. It is a system of freeways (i.e., expressways with fully controlled access) connecting and serving the principal cities of the United States.

The Federal-Aid Secondary system consists of rural major collector routes.

The Federal-Aid Urban system consists of urban arterial and collector routes, exclusive of urban extensions of the Federal-Aid Primary system.

The fatality statistics in this report differ somewhat from those reported elsewhere. For its motor vehicle traffic fatality statistics, the Department of Transportation (DOT) uses a 30-day counting rule.1/ Under this rule, deaths resulting from an accident are counted only if they occur within 30 days of the accident. Traffic fatalities are listed by the time and place of the fatal accident. Similar statistics published by the National Center for Health Statistics (NCHS) are listed by the time of death and place of residence of the deceased, using a 12-month counting rule. If a New York resident died on January 10, 1982, as a result of a December 27, 1981, accident in Vermont, the death would be reported as a

[^0]1982 New York traffic fatality by the National Center for Health Statistics and as a 1981 Vermont fatality by the Department of Transportation; if the death had not occurred until January 29-more than 30 days after the accident-it would have been included in NCHS reports for 1982 but not in DOT reports for any year.

Another difference in the reporting of fatalities which result from motor vehicle accidents is the treatment of deaths resulting from nontraffic accidents. Examples of motor vehicle nontraffic accidents are those which occur in the driveways of private homes or in other locations outside the rights-of-way or other boundaries of roads which are open for public use. Annual motor vehicle fatality figures for the United States reported by NCHS and the National Safety Council (NSC) generally include about a thousand nontraffic fatalities-deaths which are not included in DOT reports.

The number of nonfatally injured persons is also counted in a variety of ways. In this publication the number of injured persons is the number reported by police. The NSC, for comparability with injuries from industrial and other accidents, reports the number of persons disabled beyond the day of the accident. Another approach is taken in the National Health Survey by the Bureau of Census. In the National Health Survey, the estimated number of injuries is based on responses to household interviews. National Health Survey injury figures tend to be about twice as high as those reported by NSC. The police-reported figures used in this publication are midway between the others.

C. Highway Safety Performance in 1983

The traffic accident statistics for 1983 show a respectable decrease of more than 1,200 fatalities, as compared to 1982. As a result of this decrease and an increase in the vehicle-miles of travel, the fatality rate per 100 million vehicle-miles of travel dropped from 2.75 to 2.58 , setting a new record low.

Table 1 contains travel and accident data by highway system for the United States. It is a summary of the detailed data contained in Tables 2 through 6. Estimates have been included where data reported by the States were incomplete. The data permit comparison of numbers and rates (per 100 million vehicle-miles) for accidents and casualties on Federal-aid and other highway systems. Note that fatality rates are substantially lower on the Interstate System than on any other highway system and that about one-fifth of all highway travel in the United States occurs on the Interstate System.

Table 2 contains a summary of travel and accident data by State. In addition to data which are presented in greater detail in Tables 3 through 6 , Table 2 includes pedestrian data. The number of pedestrians injured, fatally or nonfatally, are reported for each State together with pedestrian injury rates.

TABLE 1. U.S. VEHICLE-MILE RATES BY HIGHYAY SYSTEM - 1983

HIghway System	HIGHWAY MILES 2/	```vehicle MILES (Millions) 2/```	DAILY VEHICLE MILES per Mile	FATAL ACCIDENTS		NONFATAL INJURY ACCIDENTS 4/		FATALITIES		NONFATALLY INJURED PERSONS 4/	
				NUMBER	RATE 3/	NUMBER	RATE 3/	NUMBER	RATE 3/	NUMBER	RATE 3
```INTERSTATE (ARTERIAL) RURAL UREAN TOTAL```	$\begin{aligned} & 32,788 \\ & 10,240 \\ & 43,028 \end{aligned}$	$\begin{aligned} & 144,733 \\ & 191,149 \\ & 333,882 \end{aligned}$	$\begin{aligned} & 12,094 \\ & 51,142 \\ & 21,387 \end{aligned}$	$\begin{aligned} & 1.872 \\ & 1.719 \\ & 3.591 \end{aligned}$	$\begin{array}{r} 6 \\ 6.29 \\ -\quad 0.90 \\ 1.07 \end{array}$	$\begin{array}{r} 36,534 \\ 91,765 \\ 128,299 \end{array}$	$\begin{array}{r} 3 \\ 0 \quad 25.24 \\ 48.01 \\ 38.20 \end{array}$	$\begin{aligned} & 2,178 \\ & 1,929 \\ & 4,107 \end{aligned}$	$\begin{gathered} 90 \\ 84.50 \\ 31.01 \\ 1.22 \end{gathered}$	$\begin{array}{r} 58,421 \\ 135,945 \\ 195,366 \end{array}$	$\begin{array}{r} 280 \\ 640.36 \\ \quad 58.64 \\ \hline \end{array}$
OTHER FEDERAL-AID PRIMARY (ARTERIAL) RURAL URBAN TOTAL	$\begin{array}{r} 225,928 \\ 31,084 \\ 257,012 \end{array}$	$\begin{aligned} & 269,712 \\ & 213,460 \\ & 483,172 \end{aligned}$	$\begin{array}{r} 3,271 \\ 18,914 \\ 5,151 \end{array}$	$\begin{array}{r} 8,640 \\ 3,580 \\ 12,220 \end{array}$	$\begin{array}{r} 4 \\ +8.20 \\ +1.68 \\ \times \quad 2.53 \\ \hline \end{array}$	$\begin{aligned} & 196,408 \\ & 253,111 \\ & 449,519 \end{aligned}$	$\begin{array}{r} 74 \\ 772.82 \\ 118.58 \\ 93.03 \\ \hline \end{array}$	10,266 3,987 14,253	$\begin{array}{r} 9 \\ 3.81 \\ \text { M } \\ =\quad 1.87 \\ =\quad 2.95 \end{array}$	$\begin{aligned} & 326,882 \\ & 386,774 \\ & 713,656 \end{aligned}$	
```FEDERAL-AID URBAN ARTERIAL COLLECTOR tOTAl (ALl UREAN)```	$\begin{array}{r} 83,944 \\ 53,251 \\ 137,195 \end{array}$	$\begin{array}{r} 292,638 \\ 67,379 \\ 360,017 \end{array}$	$\begin{aligned} & 9,551 \\ & 3,467 \\ & 7,189 \end{aligned}$	$\begin{aligned} & 8,595 \\ & 1,368 \\ & 7,963 \end{aligned}$	$\begin{array}{r} 1.064 \\ 82.25 \\ 82.03 \\ 22.21 \end{array}$	$\begin{aligned} & 513,500 \\ & 112,276 \\ & 525,776 \end{aligned}$	10074 175.47 3166.63 $\times 173.82$	$\begin{aligned} & 7,091 \\ & 1,469 \\ & 8,560 \end{aligned}$	$\begin{array}{r} 1.3 .99 \\ 2.42 \\ 2.18 \\ 2.38 \end{array}$	$\begin{aligned} & 752,635 \\ & 150,505 \\ & 923,140 \end{aligned}$	$\begin{aligned} & 1.0196 \\ & 1260.61 \\ & 238.21 \\ & .256 .42 \end{aligned}$
FEDERAL-AID SECONDARY (COLLECTOR) total (ALL RURAL)	397,329	148,250	1,022	5,253	$\begin{gathered} \text { sh } \\ =3.55 \end{gathered}$	146,211	$\begin{aligned} & 16152 \\ & 98.62 \end{aligned}$	6,017	$\begin{gathered} 1.022 .2 \\ 4.06 \end{gathered}$	227,177	$\begin{aligned} & 1 . D \operatorname{ch} \\ & 153.24 \end{aligned}$
```NON-FEDERAL-AID ARTERIAL RURAL URBAN tOTAL```	$\begin{array}{r} 2,861 \\ 8,317 \\ 11,178 \end{array}$	$\begin{array}{r} 3,671 \\ 24,487 \\ 28,158 \end{array}$	$\begin{aligned} & 3,515 \\ & 8,066 \\ & 6,902 \end{aligned}$	$\begin{array}{r} 69 \\ 613 \\ 682 \end{array}$	$\begin{aligned} & 1.88 \\ & 2.50 \\ & 2.42 \end{aligned}$	$\begin{array}{r} 2,392 \\ 24,150 \\ 26,542 \end{array}$	$\begin{aligned} & .9374 \\ & .827 \\ & 65.16 \\ & 98.62 \\ & 94.26 \end{aligned}$	87 640 727	$\begin{aligned} & 1.6540 \\ & 1.0421 \\ & 2.37 \\ & 2.61 \\ & 2.58 \end{aligned}$	$\begin{array}{r} 4,316 \\ 36,063 \\ 40,379 \end{array}$	13.3 .65 .59 117.57 147.27 143.40
```NON-FEDERAL-AID COLLECTDR RURAL URBAN TOTAL```	$\begin{array}{r} 336,900 \\ 19,278 \\ 356,268 \end{array}$	$\begin{aligned} & 52,342 \\ & 19,213 \\ & 71,555 \end{aligned}$	$\begin{array}{r} 426 \\ 2,730 \\ 550 \end{array}$	$\begin{aligned} & 1.867 \\ & 332 \\ & 2.199 \end{aligned}$	$\begin{aligned} & 964 \\ & 6.67 \\ & 3.57 \\ & 1.73 \\ & 3.07 \end{aligned}$	$\begin{aligned} & 74,936 \\ & 22,383 \\ & 97,319 \end{aligned}$	$\begin{aligned} & .9590 \\ & .8809 \\ & 143.17 \\ & 116.50 \\ & 136.01 \end{aligned}$	$\begin{array}{r} 2,061 \\ 355 \\ 2,416 \end{array}$	$\begin{aligned} & .9+18 \\ & .968 \\ & 3.94 \\ & 1.85 \\ & 3.38 \end{aligned}$	$\begin{array}{r} 111,441 \\ 32,473 \\ 143,914 \end{array}$	$\begin{array}{r} T .49 \\ 28.62 \\ 212.91 \\ 169.02 \\ 201.12 \end{array}$
NON-FEDERAL-AID LOCAL RURAI URBAN TOTAL	$\begin{aligned} & 2,221,392 \\ & 456,236 \\ & 2,677,628 \end{aligned}$	$\begin{array}{r} 81,825 \\ 140,247 \\ 222,072 \end{array}$	101 842 227	$\begin{aligned} & 3,373 \\ & 2,679 \\ & 6,052 \end{aligned}$	$\begin{array}{r} 1.0815 \\ 4.12 \\ 8 \quad 1.91 \\ \hline \quad 2.73 \\ \hline \end{array}$	$\begin{aligned} & 156,210 \\ & 375,562 \\ & 531,772 \end{aligned}$	1.394 -190.91 3267.79 -239.46	$\begin{aligned} & 3,684 \\ & 2,632 \\ & 6,516 \end{aligned}$	7664 344.50 $\times 2.02$ 2.9 .93	$\begin{aligned} & 227,311 \\ & 530,177 \\ & 757,488 \end{aligned}$	11659 277.80 378.03 341.10
ALL FEDERAI-AID RURAL URBAN total	$\begin{aligned} & 656,045 \\ & 178,519 \\ & 834,564 \end{aligned}$	$\begin{array}{r} 562,695 \\ 764,626 \\ 1,327,321 \end{array}$	$\begin{array}{r} 2,350 \\ 11,735 \\ 4,357 \end{array}$	$\begin{aligned} & 15,771 \\ & 13,262 \\ & 29,033 \end{aligned}$	2.80 1.73 2.19	$\begin{array}{r} 379,153 \\ 970,652 \\ 1,349,805 \end{array}$	$\begin{array}{r} 67.38 \\ 126.94 \\ 101.69 \end{array}$	$\begin{aligned} & 18,461 \\ & 14,476 \\ & 32,937 \end{aligned}$	$\begin{aligned} & 3.26 \\ & 1.89 \\ & 2.48 \end{aligned}$	$\begin{array}{r} 512,480 \\ 1,44 E, 859 \\ 2,059,339 \end{array}$	$\begin{aligned} & 108.85 \\ & 189.22 \\ & 155.15 \end{aligned}$
ALL NON-FEDERAL-AID RURAL URBAN TOTAL	$\begin{aligned} & 2,561,243 \\ & 483,831 \\ & 3,045,074 \end{aligned}$	$\begin{aligned} & 137,838 \\ & 183,947 \\ & 321,785 \end{aligned}$	$\begin{array}{r} 147 \\ 1,042 \\ 290 \end{array}$	$\begin{aligned} & 5,309 \\ & 3,624 \\ & 8,933 \end{aligned}$	3.85 1.97 2.78	$\begin{aligned} & 233,538 \\ & 422,095 \\ & 655,633 \end{aligned}$	$\begin{aligned} & 169.43 \\ & 225.47 \\ & 203.75 \end{aligned}$	$\begin{aligned} & 5,832 \\ & 3,827 \\ & 9,659 \end{aligned}$	$\begin{aligned} & 4.23 \\ & 2.08 \\ & 3.00 \end{aligned}$	$\begin{aligned} & 343,068 \\ & 598,713 \\ & 941,781 \end{aligned}$	$\begin{aligned} & 248.89 \\ & 325.48 \\ & 292.67 \end{aligned}$
NON-INTERSTATE RURAL URBAN TOTAL	$\begin{array}{r} 3,184,500 \\ 652,110 \\ 3,836,610 \end{array}$	$\begin{array}{r} 555,800 \\ 757,424 \\ 2,313,224 \end{array}$	478 3,182 938	$\begin{aligned} & 19,208 \\ & 15,167 \\ & 34,375 \end{aligned}$	3.46 2.00 2.62	$\begin{array}{r} 576,157 \\ 1,300,982 \\ 1,877,139 \end{array}$	$\begin{aligned} & 103.65 \\ & 171.75 \\ & 142.94 \end{aligned}$	$\begin{aligned} & 22,115 \\ & 16,374 \\ & 38,489 \end{aligned}$	$\begin{aligned} & 3.98 \\ & 2.16 \\ & 2.93 \end{aligned}$	$\begin{array}{r} 897,127 \\ 1,908,627 \\ 2,805,754 \end{array}$	$\begin{aligned} & 161.41 \\ & 251.99 \\ & 213.65 \end{aligned}$
$\begin{aligned} & \text { TOTAL } \\ & \text { RURAL } \\ & \text { URBAN } \\ & \text { TOTAL } \end{aligned}$	$\begin{array}{r} 3,217,288 \\ 662,350 \\ 3,879,538 \end{array}$	$\begin{array}{r} 700,533 \\ 948,573 \\ 1,649,106 \end{array}$	$\begin{array}{r} 597 \\ 3,924 \\ 1,165 \end{array}$	$\begin{aligned} & 21,080 \\ & 16,886 \\ & 37,966 \end{aligned}$	$\begin{aligned} & 3.01 \\ & 1.78 \\ & 2.30 \end{aligned}$	$\begin{array}{r} 612,691 \\ 1,392,747 \\ 2,005,438 \end{array}$	$\begin{aligned} & 87.46 \\ & 146.83 \\ & 121.61 \end{aligned}$	$\begin{aligned} & 24,293 \\ & 18,303 \\ & 42,596 \end{aligned}$	$\begin{aligned} & 3.47 \\ & 1.93 \\ & 2.58 \end{aligned}$	$\begin{array}{r} 955,548 \\ 2,045,572 \\ 3,001,120 \end{array}$	$\begin{aligned} & 136.40 \\ & 215.65 \\ & 181.98 \end{aligned}$
UN U.S. ESTIMATES EXCLUDE THE COMMONWEALTH OF PUERTO RICG AND THE TERRITORIES OF AMERICAN SAMOA, GUAM, ANO VIRGIN ISLANDS. ESTIMATES FOR FATAL ACCIDENTS, FATALITIES, NONFATAL INJURY ACCIDENTS AND NONFATALLY INJURED PERSONS ARE BASED ON THE PARTIAL dATA REPORTED BY STATES WHICH ARE DISPLAYED IM THE FOLLOWING TABLES, TOGETHER WITH TOTALS REPORTED EY MOST STATES. 2) MILEAGE AND TRAVEL DATA ARE FROM THE HIGHWY PERFORMANCE MONITORING SYSTEM (HPMS) FOR 1983. FEOERAL-AIO HIGHWAY MILEAGE IS FROM HPMS UNIVERSE DATA AS OF SEPTEMBER 30,1984 ANO VEHICLE-MILES					OF TRAVEL ARE FROM THE HPMS AREAWIDE SUMMARY TABLES AS OF SEPTEMBER 30, 1984. FEDERAL HIGHWAY ADMINISTRATION ESTIMATES WERE MADE FOR MAJOR HIGHAAY CATEGORIES WHERE COMPLETE FUNCTIONAL OR federal-aio system data were not reported. 3 RATES ARE PER 100 Million vehicle miles. I/ TOTALS OF NONFATAL INJURY ACCidents and NONFATALLY INJURED PERSONS WERE ESTIMATED BY FHWA FOR ARKANSAS, FLORIDA, ILLINOIS, MAINE, MARYLAND, MASSACHUSETTS, NEW HAMFSHIRE AND RHODE ISLAND.						

TAEL置 2. STATE ACCIDEMT SUMMARY - 1989

STATE	HIGHVAYMILES	$\begin{aligned} & \text { VEHICLE } \\ & \text { MLLES } \\ & \text { (MILIONS) } \end{aligned}$	FATAL ACCIDENTS		NONFATAL INJURY Accipents		fatalities		NONFATALIY INVURED PERSONS		FATALLY INJURED PEOESTRIANS		$\begin{aligned} & \text { NOMFATALLY } \\ & \text { INJURED } \\ & \text { PEDESRIANS } \end{aligned}$	
			NUMBER	RATE $1 /$	number	RATE L/	WUMEER	Rate $1 /$	Numes	Rate $1 /$	NUMBER	RATE $1 /$	Numser	RATE $1 /$
ALABAMA ALASKA ARIZOMA ARKANSAS	$\begin{aligned} & 97,598 \\ & 8,772 \\ & 76,334 \\ & 77,053 \end{aligned}$	31,032 3,358 39,511 16,684	 816 135 215 185	$\begin{aligned} & 2.63 \\ & 4.02 \\ & 3.14 \\ & 2.91 \end{aligned}$	22,712 4.477 $3 / 383$	$\begin{array}{r} 73.19 \\ 133.32 \\ 161.56 \\ 47 \end{array}$	$\begin{array}{r}984 \\ \\ \\ \hline 60 \\ 6 \\ \hline\end{array}$	3.04 4.47 3.44 3.34	$\begin{gathered} 32,667 \\ 8,705 \\ 50,076 \\ 3 \end{gathered}$	$\begin{gathered} 105.27 \\ 199.67 \\ 255.35 \\ 4 \end{gathered}$	$\begin{array}{r} 99 \\ 21 \\ 121 \\ 21 \end{array}$	$\begin{aligned} & 0.32 \\ & 0.63 \\ & 0.62 \\ & .6 \end{aligned}$	$\begin{array}{r} 032 \\ 232 \\ 1.321 \\ 32 \end{array}$	$\begin{aligned} & 2.58 \\ & 6.91 \\ & 6.74 \\ & 47 \end{aligned}$
CALIFORNIA colorado connecticut oelaware	$\begin{array}{r} 174,033 \\ 75,323 \\ 19,534 \\ 5,280 \end{array}$	182,652 24,109 20,630 4,388	4.089 592 404 98	2.24 2.46 1.96 2.01	196,394 27,803 32,234 4,598	107.52 15.82 15.25 94.16	4.573 847 388 410	2.50 2.68 2.12 2.25	292.535 40.607 45.009 6.938	$\begin{aligned} & 160.16 \\ & 888.43 \\ & 218.17 \\ & 14.87 \end{aligned}$	$\begin{array}{r} 836 \\ 90 \\ 58 \\ 16 \end{array}$	$\begin{aligned} & 0.46 \\ & 0.37 \\ & 0.28 \\ & 0.33 \end{aligned}$	$\begin{array}{r} 14,229 \\ 1,131 \\ 1,471 \\ 260 \end{array}$	7.79 4.85 7.13 5.32
$\begin{aligned} & \text { OIST, OF COL. } \\ & \text { FLORIDA } \\ & \text { GEORGIA } \\ & \text { HAWAII } \end{aligned}$	1,102 93,074 104,955 4,297	3,098 81,776 $4,8,837$ 5,873		2.03 2.95 2.36 2.23	$\begin{gathered} 9,094 \\ 3 / 708 \\ 43,308 \\ 8,264 \end{gathered}$	$\begin{gathered} 293.85 \\ 88.68 \\ 140.71 \end{gathered}$		$\begin{aligned} & 2.32 \\ & 3.28 \\ & 2.65 \\ & 2.37 \end{aligned}$	$\begin{aligned} & 13,478 \\ & \frac{3 / 547}{64,527} \\ & 11.828 \end{aligned}$	$\begin{aligned} & 434.91 \\ & 132.17 \\ & 201.40 \end{aligned}$	$\begin{array}{r} 24 \\ 3 / \\ 202 \\ 24 \end{array}$	$\begin{aligned} & 0.77 \\ & 0.41 \\ & 0.41 \end{aligned}$	$\begin{aligned} & 1,097 \\ & 2,008 \\ & 2,005 \\ & 725 \end{aligned}$	$\begin{gathered} 35.40 \\ 4.11 \\ 12.34 \end{gathered}$
IDAHO ILLINOIS indiana IOWA	$\begin{array}{r} 69,447 \\ 134,599 \\ 91,736 \\ 112,289 \end{array}$	8,287 67,370 39,837 19,651	2/1,331 874 434	2.79 2.05 2.10 2.21	$\begin{array}{r} 7,248 \\ 42,439 \\ 18,049 \end{array}$	$\begin{array}{r} 87.46 \\ 106.53 \\ 81.80 \end{array}$	2) $\begin{array}{r}254 \\ 4,526 \\ 4,014 \\ 510\end{array}$	3.19 2.27 2.55 2.59	$\begin{aligned} & 11,209 \\ & 52,302 \\ & 26,050 \end{aligned}$	$\begin{aligned} & 135.25 \\ & 4{ }^{4} \\ & 156.39 \\ & 132.50 \end{aligned}$	$\begin{array}{r} 25 \\ 3_{92} \\ 35 \end{array}$	$\begin{aligned} & 0.30 \\ & 0.23 \\ & 0.18 \end{aligned}$	$\begin{array}{r}218 \\ 1.914 \\ \hline 757\end{array}$	$\begin{aligned} & 2.63 \\ & \dot{4} .80 \\ & 3.85 \end{aligned}$
KANSAS kentucky LOUISIANA MATNE	$\begin{aligned} & 132,265 \\ & 63,150 \\ & 58.010 \\ & 21,953 \end{aligned}$	18,153 26.719 27,573 7,924	 361 690 $2 /$ 198	1.99 2.58 3.03 2.50	19,691 27,742 44,722 $3{ }^{2}$	$\begin{gathered} 108.47 \\ 103.83 \\ 152.19 \\ 47 \end{gathered}$	411 778 2/ 93 28	2.25 2.91 3.98 2.83	$\begin{gathered} 29,32: \\ 41,504 \\ 74.204 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 161.52 \\ 155.34 \\ 269.12 \\ 4 \end{gathered}$	$\begin{aligned} & 26 \\ & 93 \\ & 128 \\ & 128 \end{aligned}$	$\begin{aligned} & 0.14 \\ & 0.35 \\ & 0.46 \\ & \text { it } \end{aligned}$	$\begin{array}{r} 559 \\ 1.467 \\ 3.848 \\ 3 / \end{array}$	$\begin{gathered} 3.08 \\ 5.49 \\ 13.96 \\ 4 \end{gathered}$
MARYLAND MASSAChUSETTS MICHIGAN minnesota		30,618 37,541 60,855 31.063	$\left\lvert\, \begin{array}{rr} \frac{2}{2 /} & 607 \\ & 805 \\ & 1.192 \\ & 498 \end{array}\right.$	1.98 1.61 1.96 1.60	$\begin{array}{r} 3 / 1 \\ 90, \mathrm{Bg} 2 \\ 26,459 \end{array}$	$\begin{gathered} 4 / \\ 149.36 \\ 85.18 \end{gathered}$	$\begin{array}{\|rr} \frac{256}{2 /} & 651 \\ & 1,314 \\ & 555 \end{array}$	2.14 1.73 2.16 1.79	$\begin{array}{r} \frac{3 / 4}{3 / 2} \\ 135,811 \\ 38,114 \end{array}$	$\begin{gathered} 4 / \\ 223.17 \\ 122.70 \end{gathered}$	$\begin{aligned} & \frac{3}{3} \\ & \frac{3}{3} 35 \\ & 60 \end{aligned}$	$\begin{gathered} 4 / \\ 4 / \\ 0.35 \\ 0.19 \end{gathered}$	$\begin{gathered} \frac{3}{3 / 4} \\ 4,239 \\ 1.333 \end{gathered}$	$\begin{gathered} \frac{4 /}{4 /} \\ 6.97 \\ 4.29 \end{gathered}$
MISSISSIPPI missouri montana NEBRASKA	$\begin{array}{r} 71,075 \\ 18,713 \\ 71,553 \\ 91,961 \end{array}$	$\begin{array}{r} 17,802 \\ 36,543 \\ 7,181 \\ 11,534 \end{array}$	626 806 253 221	3.52 2.21 3.52 1.92	9,559 36,45 6,110 13,317	53.70 9.69 85.09 115.46	715 911 226 255	4.02 2.49 3.989 2.21	14,420 54,673 9,347 19,885	81.90 150.15 13016 172.40	89 124 26 25	0.50 0.33 0.36 0.22	409 2,109 189 509	2.29 5.77 2.63 5.28
NEVADA NEW HAMPSHIRE NEW JERSEY NEW MEXICO	43,806 14,545 33,871 54,127	6,872 78.181 521217 11,678	2)1619 166 866 474	3.19 2.31 1.66 4.06	$\begin{array}{r} 7,903 \\ 30,847 \\ 34,955 \end{array}$	$\begin{gathered} 115.00 \\ 4 / 83 \\ 154.83 \\ 128.07 \end{gathered}$	V $\begin{array}{r}252 \\ \\ \hline 192 \\ \\ \\ \\ 543 \\ \\ \hline\end{array}$	3.67 2.66 1.79 4.70	$\begin{array}{r} 11,974 \\ 320,589 \\ 23,119 \end{array}$	$\begin{aligned} & 174.24 \\ & 43 \\ & 230.94 \\ & 197.97 \end{aligned}$	$\begin{gathered} 49 \\ \frac{4}{236} \\ 104 \end{gathered}$	$\begin{aligned} & 0.71 \\ & .4 / 45 \\ & 0.45 \\ & 0.89 \end{aligned}$	979 $6, \frac{3}{691}$ 588	$\begin{array}{r} 14.25 \\ 122.81 \\ 5.04 \end{array}$
NEW YORK NORTH CAROLINA NORTH DAKOTA OHIO	$\begin{array}{r} 109,837 \\ 92,404 \\ 85,811 \\ 112,252 \end{array}$	83,783 45,038 5.363 73.214	1,912 1,083 105 1,419	2.28 2.40 1.96 1.94	171,351 53,305 3,514 103,402	205.11 118.36 67.39 141.23	2,071 1,231 116 1,585	2.47 2.73 2.15 2.16	251,313 83,994 5,493 162,462	299.95 186.50 102.42 221.90	534 221 98 223	0.64 0.49 0.47 0.30	20,485 2,938 142 4,616	$\begin{array}{r}24.45 \\ 6.52 \\ 2.65 \\ 6.30 \\ \hline\end{array}$
$\begin{aligned} & \text { OKLAHOMA } \\ & \text { OREGON } \\ & \text { PENNSYLVANIA } \\ & \text { RHODE ISLAND } \end{aligned}$	$\begin{array}{r} 110,072 \\ 133,469 \\ 15,601 \\ 5,289 \end{array}$	29,565 20.557 72,302 6,014	$\left\lvert\, \begin{array}{lr} 2 / 215 \\ & 1.584 \\ 2 / & 36 \end{array}\right.$	2.42 2.35 2.12 1.60	$\begin{gathered} 21,774 \\ 23,087 \\ 84,380 \\ 3 / \end{gathered}$	$\begin{gathered} 73.65 \\ 112.21 \\ 116.70 \\ 4 / \end{gathered}$	$\begin{array}{r}\text { a } \\ \begin{array}{r}842 \\ 548 \\ 3 / 706 \\ 100\end{array} \\ \hline\end{array}$	2.85 2.67 2.36 1.66	$\begin{array}{r} 32,232 \\ 37,391 \\ 126,093 \\ 3 / \end{array}$	$\begin{gathered} 109.02 \\ 181.84 \\ 174.40 \\ 4 \end{gathered}$	$\begin{array}{r} 81 \\ 677 \\ 651 \\ 251 \end{array}$	$\begin{aligned} & 0.27 \\ & 0.33 \\ & 0.35 \\ & \text { i/ } \end{aligned}$	738 888 657 $3 /$	2.50 4.32 9.07 67
SOUTH CAROLIMA SOUTH DAKOTA tennessee TEXAS	$\begin{array}{r} 63,264 \\ 73,375 \\ 83,789 \\ 275,784 \end{array}$	24,977 6,317 36,261 131,883	739 146 919 3,328	2.96 2.31 2.53 2.52	$\begin{array}{r} 15,931 \\ 4,163 \\ 37,529 \\ 137,595 \end{array}$	$\begin{array}{r} 63.78 \\ 65.90 \\ 103.50 \\ 104.41 \end{array}$	845 174 1,037 3,323	3.38 2.75 2.85 2.90	$\begin{array}{r} 23,458 \\ 6,255 \\ 54,238 \\ 208,157 \end{array}$	$\begin{array}{r} 93.92 \\ 99.18 \\ 149.58 \\ 157.83 \end{array}$	$\begin{array}{r} 146 \\ 20 \\ 101 \\ 600 \end{array}$	0.58 0.32 0.28 0.45	$\begin{array}{r} 1,051 \\ 139 \\ 1,542 \\ 6,022 \end{array}$	4.21 2.20 4.25 4.57
UTAH vermont VIRGINIA WASHINGTON	$\begin{aligned} & 46,078 \\ & 13,994 \\ & 65,102 \\ & 85,731 \end{aligned}$	$\begin{aligned} & 11,221 \\ & 4,151 \\ & 42,299 \\ & 36,144 \end{aligned}$	$\begin{aligned} & 253 \\ & 86 \\ & 800 \\ & 628 \end{aligned}$	2.25 2.07 1.89 1.74	$\begin{aligned} & 12,317 \\ & 4,035 \\ & 43,702 \\ & 40,273 \end{aligned}$	$\begin{array}{r} 109.77 \\ 97.21 \\ 103.32 \\ 111.42 \end{array}$	283 93 901 698	2.52 2.24 2.13 1.93	18,910 6,040 62,628 59,981	$\begin{aligned} & 168.52 \\ & 145.51 \\ & 146.64 \\ & 165.95 \end{aligned}$	61 11 125 86	0.54 0.26 0.30 0.24	$\begin{aligned} & 1,390 \\ & 165 \\ & 2,587 \\ & 1,610 \end{aligned}$	12.39 3.97 6.12 4.45
WEST VIRGINIA WISCONSIN WYOMING	$\begin{array}{r} 34,673 \\ : 08,225 \\ 38,170 \end{array}$	$\begin{array}{r} 11,696 \\ 34,106 \\ 5,059 \end{array}$	390 648 153	3.33 1.90 3.02	$\begin{array}{r} 16,190 \\ 38,289 \\ 3,594 \end{array}$	$\begin{array}{r} 138.42 \\ 112.26 \\ 71.04 \end{array}$	434 725 174	3.71 2.13 3.44	25,377 55,042 5,511	$\begin{aligned} & 216.97 \\ & 161.39 \\ & 108.93 \end{aligned}$	47 82 14 1	0.24 0.40 0.24 0.28	823 1,970 132	7.04 5.78 2.59
Sum $3 /$	3,879,638	1,649,106	37,965	2.30	1.542,037	117.79	42,536	2.58	2,451,082	176.55	5,514	0.40	103,00E	7.39
U. s. TOTAL E/	3,379,638	1,549,105	37.965	2.30	2,005,438	121.61	42,596	2.59	3,001,120	181.98	6,596	0.40	121,859	7.39
1 PER 100 MILLION VEHICLE MILES. 2 STATE'S TOTAL NOT SUBMITTED THROUGH HPMS; FARS DATA USED. 3 data not reported by state. df RATE CAN NOT BE COMPUTED. \quad PAGE 5. THE SUM REFLECTS THE TOTAL OF data shown in this table, see footnote 3. the nonfatal injury accident. nonfataliy injured person, and fatally and honfatally injured pedestrian rates are based on a total travel of $1,393,998$ Million vehicle miles for states reporting this data. 6/ ESTIMATES OF fatal accidents and fataiities are based on hpms and fars data. estimates of travel, injury accidents, monfatally inulurd persons, and fatally and nonfatally injured pedestrians were made gy fhwa.														

D. National Trends

In the early 70's, "3 by 80" was a popular safety slogan. The goal to which the slogan referred was the achievement, by 1980, of a national rate below 3 fatalities per 100 million vehicle-miles. While the goal was not reached in 1980, traffic fatality rates in 1982 and 1983 were well below 3.

The 1983 drop in the mileage fatality rate was a continuation of a long-term downward trend. From a rate of more than 18 fatalities per 100 million vehicle miles in the mid-20's, as shown in Figure 1, the average rate has gone downwards more than 3 percent per year to a rate well below three fatalities per 100 million vehicle-miles in 1983.

Figures 2 and 3 graphically illustrate national traffic fatality and injury rate trends from 1967 through 1983 for Interstate and other highway systems. Fatality rate trends were gradually downward for all systems during this period. Although these trends were interrupted by relatively stable periods following a sharp drop in 1974, downward movement has resumed. Trends for reported injury rates have also been generally downward during the 1967-1983 period.

Figures 4 and 5 illustrate national fatality and injury rate trends from 1978 through 1983 by highway system. In the mid-70's, non-Interstate Federal-aid highway systems were realigned by adopting functional classifications as the basis for assignment of highways to each system. As a result of these changes, trend data are only available for a short period for most systems. The time period covered in Figures 4 and 5 corresponds largely with the period of relative stability which is apparent in Figures 2 and 3.

The 1967 through 1981 data used in Figures 3 through 6 were published in the annual Federal Highway Administration reports, "Fatal and Injury Accidents on Federal-Aid and Other Highway Systems."

FIGURE 1. U.S. MOTOR VEHICLE TRAFFIC FATALITY RATES
(1925-1983)

FIGURE 2. U.S. FATALITY RATES FOR INTERSTATE AND OTHER HIGHWAY SYSTEMS (1967-1983)

FIGURE 3. U.S. INJURY RATES FOR INTERSTATE AND OTHER HIGHWAY SYSTEMS (1967 - 1983)

FIGURE 4. U.S. FATALITY RATES BY HIGHWAY SYSTEM (1978 - 1983)

FIGURE 5. U.S. NONFATAL INJURY RATES BY HIGHWAY SYSTEM (1978 - 1983)

E. Comparison of State Statistics

This report was prepared to help meet the need for statistical data to be used in comparing and evaluating the highway safety performance of the States. Those who use the report should be aware of some of the strengths and weaknesses of the data. For the most part, the data have been submitted by State highway departments through the FFWA's Highway Performance Monitoring System. Accident data originate in police accident reporting systems while the collection of travel and highway inventory data is a function of the highway departments themselves. The quality of the reported data is generally high but varies somewhat within the States. As is evident from the tables which follow in Section III, not every State was able to summarize its accident data in time for inclusion in this report.

Because all States report accident and related data to FHWA through a single system with carefully written guidelines, reported data are generally consistent. Differences due to variations in data collection procedures are usually marginal, but occasionally may be large enough to obscure or exaggerate real differences among the States. Evaluation of the highway safety performance of each State should include consideration of its record over a period of time as well as comparisons with other States.

One useful device for comparing fatality rates is the rate-density curve. Other things being equal, fatality rates in terms of fatalities per 100 million vehicle miles tend to be highest where the travel density-the ratio of vehicle-miles to highway miles-is low. The general shape of the rate-density curve-concave upward and sloping downward to the right-is shown in Figure 6. Rate-density curves were used in the 1976 "Highway Safety Needs Study," a DOT report to Congress, to illustrate the fatality rate reduction resulting from the adoption of safer design standards for Interstate highways. Just as fatality rates are normally higher on lightly traveled segments of the Interstate System than on segments where traffic is heavier, large sparsely populated States will normally have higher fatality rates than States with relatively high concentrations of people and traffic.

When basic rate-density relationships are disregarded, evaluation of State highway safety performance is most often based on comparison of state fatality rates with national fatality rates. This tends to focus undue attention on sparsely populated States and encourages complacency in States which have high population and travel densities. A low-density State might have highly effective speed limit enforcement and highway safety improvement programs, for example, but still have fatality rates substantially above those of a high-density State with ineffective safety programs. Rate-density relationships are used as a basis for fatality rate comparisons among States, by system, in Section V and within States, by year, in Section VI.

Figure 6. RELATIONSHIP BETWEEN FATALITY RATES AND TRAVEL DENSITY

SECTION II-VEHICLE MILEAGE RATES
The most commonly used measures of highway safety are fatality rates based on vehicle mileage. Such rates have been published and widely publicized for about 50 years by the National Safety Council. While other measures are sometimes more appropriate for comparisons and analysis, vehicle mileage rates serve as useful indices. In the tables which follow, rates per 100 million vehicle miles are listed by State and highway system for fatal accidents (Table 3), nonfatal injury accidents (Table 4), fatalities (Table 5), and nonfatally injured persons (Table 6).

The rates shown in these tables are uniformly carried out to two decimal places. This apparent precision surpasses the degree of accuracy of much of the data on which the computed rates are based. Collection and classification of information about miles of highway, vehicle miles of travel, and motor vehicle traffic accidents is a highly complex undertaking. Because of this complexity and the necessity of subjective judgments at many points in the process, the computed rates should be regarded as approximations, not as precise measurements.

TABLE 3-A. FATAL ACCIDENTS BY STATE AND HIGHWAY SYSTEM - 1983
FEDERAL-AID INTERSTATE HIGHWAYS

TABLE 3-B. FATAL ACCIDENTS BY STATE AND HIGHWAY SYSTEM - 1983 OTHER FEDERAL-AID PRIMARY HIGHYAYS

state	RURAL					STATE	urban				
	HIGHWAYMILES	$\begin{aligned} & \text { VEHICLE } \\ & \text { MILES } \\ & \text { (MILLIONS) } \end{aligned}$	dAILY VEHICLE MILES per mile	FATAL ACCIDENTS			highuay	$\begin{aligned} & \text { VEHICLE } \\ & \text { MILES } \\ & \text { (MILELONS } \end{aligned}$	daily vehicle MILES per mile	FATAL ACCIDENTS	
				NUMBER	RATE $1 /$					NUMBER	Rate $1 /$
COMPlete data						COMPLETE DATA					
AlAbAMA	5,903	6,176	2,866	287	4.65	Alabama	745	3,394	12,481	52	1.53
ALASKA	1,013	, 372	1,006	17	4.57	ALASKA	31		6,805	4	5.19
ARIZONA	3,316	3,162	2,612	134	4.24	ARIzona	172	1,145	18.238	36	3.14
California	9,746	18,352	5,159	690	3.76	california	1,332	23,207	47,733	274	1.18
COLORADO	$\begin{array}{r}4,399 \\ \hline 689\end{array}$	4.059 1.683	2,528	149	3.67	COLLORADO	- 561	2, 2 , 757	13,464	61	2.21
DELAWARE	689 332	1,683	5,692 10,406	44 31	2.61 2.46	CONNECTICUT	576 96	3.457 673	16,443 10,207	58 17	1.68 2.53
DIST. OF COL.			10,406			DIST. Of Col.	158	1,543	26,756	35	2.53 2.27
GEORGIA	8,665	9,040	2,858	269	2.98	georgia	1,4:2	6,920	13.427	130	1.88
HAWAII	371	881	6,506	28	3.18	hawail	1,411	1,231	30,384	32	2.60 3.66
İAHO	2,707 4,209	1,678 7,293	1,698	178	3.99	IdAhO	42	196	12,785	6	3.06
iowa	4,209	7,889	1,973	178 152	2.44 2.58	Indiana	782 686	4,555	15,958 10.627	95 48	2.09 1.80
KANSAS	7,762	4,822	1,702	125	2.59	kansas	339	1,361	11.032	24	1.76
KENTUCKY	3,279	4,578	3,825	146	3.19	KENTUCKY	457	2,585	15,497	3 B	1.47
louisiana	2,664	5,104	5,249	276	5.41	louisiana	496	2,776	15,334	60	2.16
MICHIGAN	4,679	8,357	4,893	176	2.11	MICHIGAN	1,246	9,783	21,511	124	1.27
MINNESOTA	8,804 5,295	7,291	2,269 2,637	142 214	1.95 4.20	MINNESOTA	491 351	2,534	14,433	42	1.66
Missouri	6,359	6,858	2,955	212	3.09	MISSOURI	535	3,683	16,869	51	1.55
MONTANA	5,370	2,222	1,134	10 B	4.86	MONTANA	109	${ }^{2} 201$	10,079	4	1.00
NEBRASKA	6,941	3,578	1,412	89	2.49	NEBRASKA	277	1,243	12,294	10	0.80
NEVADA	1,789	961	1,472	35	3.64	NEVADA	59	, 448	20,803	5	1.12
NEW JERSEY	. 814	2,970	9.996	76	2.56	NEW JERSEY	645	8,363	35,523	133	1.59
NEW MEXICO	3,378 6,479	2,643	2,142	133 303	5.04 3.32	NEW MEXICO	$\begin{array}{r}187 \\ \hline 193\end{array}$	796	11,662	38	4.77
NORTH CAROLINA	3,731	7,433	5,858	180 180	3.32 2.42	NEW YORK	1.793 626	18,933 4,466	28,930 19,546	309 115	1.53 2.58
NORTH DAKOTA	5,460	1,726	865	40	2.32	NORTH DAKOTA	127	4.49	10,765	5	1.00
OHIO	4,809	8,348	4,756	208	2.49	OHIO	1,545	6,801	12.060	136	2.00
OREGON	4,589	4,474	2,671	163	3.64	OREGON	395	2,326	16,133	37	1.59
PENASYLVANIA SOUTH CAROLINA	8,026	14,589 5,276	4,980 3,477	448 204	3.07 3.25	PENASYLVANIA	1,905	16,236	23,350	207	1.27
SOUTH DAAKOTA	4,945	6,276	3,477 1,077	204 64	3.25 2.86	SOUTH CAROLINA	645 115	$\begin{array}{r}3,088 \\ \hline 459\end{array}$	13,117 10,935	63	2.04 0.87
TENNESSEE	5,195	6,829	3,601	259	3.79	TENNESSE	800	4,424	15,151	96	2.17
TEXAS	15,061	20,280	3,689	646	3.19	TEXAS	1,625	13.524	22,956	273	2.00
UTAH	2,465	1,478 1,100	1,643 2,889	49	3.32	UTAH	106	469	12,122	5	1.07
virginia	4,949	8,650	- 4,789	220	3.18 2.54	VERMONT	71 450	2,985	8.528 18.174	49	0.45 1.64
WASHINGTON	4,463	5,618	3,449	122	2.17	WASHINGTON	510	2,367	19,614	77	1.76
WEST Virginia	2,263	2,733	3,309	135	4.94	WEST UIRGINIA	181	-817	12,367	20	2.45
WISCONSIN	7,990	9,294	3,187	248	2.67	WISCONSIN	930	4,590	13,522	60	1.31
WYOMING	2,861	1,340	1,283	48	3.58	WYOMINE	122	358	8,040	7	1.96
subtotal	196,587	225,848	3,146	7,150	3.17	subtotal	23.932	171,726	19,659	2,858	1.66
incomplete data ARKANSAS FLORIDA						INCOMPLETE DATA ARKANSAS FLORIDA					
ILLINOIS						ILLIMOIS					
MARYLAND						MAINE MARYLAND					
MASSACHUSETTS						MASSACHUSETTS					
OKLAAMMA RHODE ISLAND						NEW HAMPSHIRE OKLAHOMA					
RHODE ISLAND						RHODE ISLAND					

TABLE 3-C. FATAL ACCIDENTS BY STATE AND HIGHWAY SYSTEM - 1983 FEDERAL-AID URBAN HPGHNAYS

table 3-D. fatal accidents
BY STATE AND HIGHWAY SYSTEM - 1983
FEDERAL-AID SECONDARY HIGHMAYS

STATE	COLLECTOR, RURAL				
	HIGHWAY MILES	VEHICLE MILES (MILLIONS)	```DAILY VEHICLE MILES PER MILE```	FATAL ACCIDENTS	
				NUMBER	RATE $1 /$
COMPLETE DATA					
alabama	11,250	3,589	874	116	3.23
ALASKA	1,826	483	725	32	6.63
ARIZONA	3,167	1,555	1,345	70	4.50
CALIFORNIA	11,104	6,769	1,670	388	5.73
COLORADO	3,614	1,146	869	56.	4.89
CONNECTICUT	895	1,008	3,086	33	3.27
DELAWAREDIST. OF COL.	605	465	2,105	17	3.66
	-				-
HAWAII	14,014	4,822	943	170	3.53
	430	317	2,020	10	3.15
IDAHO	4,058	1,522	1,028	46	3.02
INDIANA	9,211	5,426	1,614	142	2.62
IOWA	13,329	2,315	476	83	3.59
KANSAS	22,547	2,100	255	55	2.62
LOUISIANA	7,222	3,805	1,444	188	4.94
MICHIGAN	19,019	5,154 8,463	1,905	154	2.99 2.68
minnesota	16,495	3,271	543	99	3.03
MISSISSIPPI	11,731	3,000	701	102	3.40
MISSOURI	18,071	4,228	641	156	3.69
MONTANA	4,705	504	293	32	6.35
NEBRASKA	11,412	1,087	261	30	2.76
NEVADA	2,331	. 685	806	29	4.23
NEW JERSEY	1,718	2,492	3,974	81.	3.25
NEW MEXECO	3,973	1,124	, 775	73	6.49
NEW YORK	6,366	4,318	1,858	152	3.52
NORTH CAROLINA	10,407	8,597	2,290	261	3.00
NORTH DAKOTA	10,430	\% 569	+175	28	4.19
OHIO	11,782	7,241	1,684	206	2.84
	7,745	1,706	. 603	80	4.69
PENNSYLVANIA	8,196		1,785	186	3.48
SOUTH CAROLINA	8,505	3,806	1,226	174	4.57
SOUTH DAKOTA	11,223	+882	215	28	3.17
TENMESSEE	5,282	1,770	918	104	5.88
TEXAS	32,722	12,689	1.062	540	4.26
UTAH	2,571	675	719	28	4.15
VERMONT	1,953	833	1,169	20	2.40
virginia	10.328	4,909	1,302	151	
WASHINGTON	7,196	5,213	1,985	20	0.38
WESt virginia	6,330	3,054	1,326	130	4.24
WISCONSINWYOMING	11,773	3,788	882	95	2.51
	2,279	383	460	22	5.74
subtotal	355,228	131,315	1.013	4,614	3.51
INCOMPLETE DATA ARKANSAS					
FLORIDA ILLINOIS					
MAINE					
MARYLAND.					
MASSACHUSETTS NEW HAMPSHIRE					
OKLAHOMA RHODE ISLAND					
$1 / \mathrm{FATAL}$ ACC	TS PER 10	MILLION VEH	le miles.		

TABLE 3-E. FATAL ACCIDENTS BY STATE AND HIGHWAY SYSTEM = 1983 NONFEDERAL-AID ARTERIAL HIGHWAYS

State	RURAL					state	URBAN				
	HIGHWAY MILES	VEHICLE MILES 4MILLIONS:	DAILY vehicle MILES PER Mile	fatal accioents			HIGHWAYMILES	$\begin{aligned} & \text { VEHICLE } \\ & \text { MILES } \\ & \text { (MILLIONS) } \end{aligned}$	DAILY vehicle MILES PER MILE	FATAL ACCIDENTS	
				NUMBER	RATE $1 /$					number	RATE L
COMPLETE DATA						COMPLETE DATA					
alabama	-		-	-	-	alabama	- 270	-723	7,336	5	0.69
ALASKA ARIZONA	15	17	3,105	1	5.88	ALASKA	41	85	5,680	1	1.18
CALIFORNIA	31	30	2,651	2	6.67	california	1,282	4,038	8,629	106	2.63
colorado			-			colorado	18	83	12,633	0	0.00
connecticut	9	18	5,479	1	5.56	connecticut	47	179	10,434	2	1.12
delavare						DELAWARE	- 12				
DIST. OF COL.			-		-	distictor col.	- 12	- 115	26,256		0.87
GEORGIA	- 11	- 43	10,710		$\overline{2} .33$	GEORGIA	- 13	- 58	12,223		0.00
idaho					-	IdAHO	8	16	5,479	1	6.25
illinois	-		-		-	indiana	12	188	42,922		0.53
INDIANA	35	74	5,793	5	6.76	IONA			-		
I OWA		- 5				KANSAS	- 222	- 652	8.046	- 18	2.76
KANSAS	48	- 62	3.539	- 1	1.61	KENTUCKY	- 440				
KENTUCKY LOUISIANA			-		-	louisiana	440 164	805 325	5,012	7 3	0.87 0.92
MASSACHUSETTS	.	-	-	-	-	minnesota	48	41	2,340	3	7.32
MICHIGAN		-	-	-	-	MISSISSIPPI					- 12
MINNESOTA	-	-				MISSOURI	534	1,345	6,901	15	1.12
MISSISSIPPI	242	26	294		7.69	MONTANA	37	- 64	4,739		0.00
MISSOURI			2,131 616	0	0.00 0.00	NEBRASKA	- 19	- 88	12,689	- 1	1.14
MONTANA	- 80	- $\quad 18$	- 616		0.00	NEW JERSEY	260	3,086	32,518	31	1.00
NEVADA			10,959		0.00	NEW MEXICO	53	80	4,135	2	2.50
NEW JERSEY	119	1,007	23,184	16	1.59	NEW YORK	123	412	9,177	3	0.73
NEW MEXICO			-	-	-	NORTH CAROLINA	1,262	2,092	4,542	20	0.96
NEW YORK			,			NORTH DAKOTA	- 3	7	6,393		0.00
NORTH CAROLINA NORTH DAKOTA	- 249	-112	1,232	0	0.00	OHIO	- 63	- 290	12,511		-0.69
OHIO	-	-	-		-	penNsylvania			12,611		0.69
OREGON	271	130	1,314	. 5	3.85	RHODE ISLAND	- 20		4		49
Pennsylvania			-	-	-	SOUTH CAROLINA	290	442	4,176	11	2.49 0.00
RHODE ISLANO	-					SOUTH DAKOTA TENNESSEE	10	34	9,315	0	0.00
SOUTH CAROLINA	- 14	- 9	1,751		0.00	TENNESSEE	$\overline{1,849}$	$\overline{5,639}$	8,360	293	5.20
TENNESSEE	-	-	$\underline{\square}$			UTAH	1,84	+ 31	1,807	1	3.23
TEXAS	2	7	9,589	0	0.00	VERMONT					
UTAH			-	-	-	VIRGINIA	55	285	14, 197	7	2.45 0.00
virginia	309	231	2,048	0	0.00	WEST Virginia	1	15	43.836	0	0.00
WASHINGTON				-		WISCONSIM	145	305	5,763	1	0.33
WEST VIRginia	-	-	-	-	-	WYOMING	10	12	3.288	0	0.00
WISCOMSIN	- 252	96	1,044	- 1	1.04	subtotal.	7,348	21,537	8,030	535	2.46
SUBTOTAL	1,697	1,891	3,053	35	1.85	Incomplete data					
INCOMPLETE DATA						ARKANSAS FLORIDA					
ARKANSAS FLORIDA						MLLINOIS					
MAINE						MARYLAND					
MARYLAND NEW HAMPSHIRE						MASSACHUSETTS					
OKLAHOMA						OKLAHOMA					

TABLE 3-F. FATAL ACCIDENTS BY STATE AND HIGHHAY SYSTEM - 1983 NONFEDERAL-AID COLLECTOR HIGHWAYS

TABLE 3-G. FATAL ACCIDENTS BY STATE AND HIGHWAY SYSTEM - 1983 nonfederal-aid local highmays

TABLE 4-A. NONFATAL INJURY ACCIDENTS BY STATE AND HIGHWAY SYSTEM - 1983 federal-aid interstate highmays

table 4-b. NONFATAL INJURY ACCIDENTS BY STATE AND HIGHWAY SYSTEM - 1983 OTHER FEDERAL-AID PRIMARY HIGHWAYS

State	arterial					STATE	COLLECTOR				
	$\underset{\substack{\text { Highluay } \\ \text { MILES }}}{ }$	$\begin{gathered} \text { VEHICLE } \\ \text { MILES } \\ \text { MILLIONS) } \end{gathered}$	PER MIL $\substack{\text { DALLY } \\ \text { VEHILE } \\ \text { MLES }}$	Nonfatal injuryAccidents			$\underbrace{\text { miles }}_{\text {mighles }}$	$\begin{gathered} \text { VEHICLE } \\ \text { MILES } \\ \text { MILLIONS } \end{gathered}$	dAILYVEHICLE $\underset{\text { PER MILE }}{ }$ PER MILE	nowfatal injuryaccidents	
				number	RATE $1 /$					number	RATE $1 /$
Complete data hlabama and						alabama COMP LETE DATA					
$\begin{aligned} & \text { ALABAMA } \\ & \text { ARESONA } \end{aligned}$	1,372	${ }^{3,961}$	7,970			ALASKA	895 121 18			${ }_{2}^{2,5151}$	279.20 148 147
arizona	1,139 11.469 1	4, 313 57,752	-10,374 13,724	14,261 90,268 0.27			$\begin{array}{r}\text { 549 } \\ 4.293 \\ \hline\end{array}$	5,208	4,531 3,333		1147.47 101.67 108
coloradi	(1,874	¢4,761 3,816		9, ${ }_{\text {9,72 }}$	198.95 254.64	Colorado CONNECTICUT	(1,1,227 1,705	- ${ }_{\text {, } 828}^{1,688}$			
Cownecticut	1,225 157 157	3, ${ }^{3,816}$	$\begin{array}{r}8,535 \\ \hline 11,482 \\ \hline 1 \\ \hline\end{array}$	-9,771 1,001	254.64 152.13 18	Connecticut	1,705 148 148	1,688		${ }^{4.388}$	259.95 124.44
Dist of col.	102	502	${ }^{13,484}$	1,302	-259.36	Dist of col.	1145	300	5,669	1.341	447.00
GEORGIA	1,775	${ }^{4.8488}$	7,483 21,416	7.347	151.55 217.16		1,562 ${ }_{56}$	${ }^{3,203}$	5,618 10.861 10.81	4,807 ${ }_{47}$	150.08 213.06 1
tрано	333	1,056	${ }_{8}{ }^{1}, 688$	1;893	${ }_{179} \mathbf{2 6}$	${ }_{\text {IDAHO }}$	237	${ }_{381}^{23}$	+ 4 4,404	342	${ }^{21896}$
jndiana	-	${ }^{6} 1.388$	5,5,863 3,540	10,434	(163.34	inditana	1,831	1, 729	$\stackrel{\text { 2, }}{1887}$	2,451	141.76
kansas	1,060	2,521	-3.546	- 4,490	1178.10 178	İMANA	- 923	¢ $\begin{gathered}541 \\ 281 \\ 281\end{gathered}$	${ }^{1,9803}$	¢188	80.81 145.20
KENTUCKY	1,089	-	${ }^{8,431}$	5.948.	177.50	KENTUCKY	764	1,092	3,916	1,605	146.98
LOUTSIANA	2, 2,907	- ${ }^{2,2,585}$	$\begin{array}{r}\text { 7, } \\ \hline 11,828 \\ \hline\end{array}$	¢ ${ }_{\text {¢, }}^{\mathbf{6}, 495}$	$\begin{array}{r}207.67 \\ 75.65 \\ \\ \hline\end{array}$	loursiana	748 1,921	$\begin{array}{r}5,75 \\ \hline 5.294\end{array}$	2,839 7,550	$\begin{array}{r}102 \\ 1.258 \\ \hline 1\end{array}$	13.16 23.72
MINESSOTA	1,417	5,038	- 9	7,865	${ }^{156.11}$	MINTESOTA	1,525	5,294	2,792	${ }^{1.255}$	23.19 160.19
	-1,793	¢, ${ }_{6}^{1,711}$					748 519	647 573 578		${ }_{4}^{145}$	-64.14
MONTAMA	1,7935	6,264	9,571 6,074	${ }^{12.1688}$	194.25 179.27	Mostant	${ }_{91}$	$\begin{array}{r}573 \\ 53 \\ 5 \\ \hline 184\end{array}$	3,025 1,596	+148	$\begin{array}{r}198.95 \\ 411.32 \\ \hline 1\end{array}$
NeEraska	${ }_{6}^{642}$	1,451	-6,235	4.344	297.33	NEERAKA	399	3878	$\stackrel{2}{2,657}$	907	234.37
NEW JERSEY	3,539	12;301	12,523	36,768		Nevade NEH	1,812	124 3.031 3	5,147 4.583	7,671	110.48 253.08
NEW MEXICO	-5, 5037	(1,628	${ }_{\text {cki }}^{8,867}$		282.37 187	NEW MESICO	, 163	${ }^{3} 272$	${ }_{4}^{4,072}$	7,439	161.40
North dakota	5,077	${ }^{18,284}$	- ${ }_{\text {3, }}^{3,288}$	36, 5897	197.42 248.72	NEW YORK	${ }^{3,399}$	3,990		5.423	135.91 147.93
	3.438	9,540 2,781	-	${ }^{25,1970}$		${ }_{\text {OHPO }}^{\text {OHP }}$ ORGO	3,892	3,182		12,595	${ }_{395} 392$
PENNSYLVANIA	3,651	-7,879	\% ${ }^{7,896}$	15,396	258.25 195.41 1	OREGSSYLVANia	$\begin{array}{r}\text { ¢ } \\ \hline 1818 \\ 3.102 \\ \hline\end{array}$	- 3.914	2,728 3,517 1	+ $\begin{array}{r}1.839 \\ 2.620\end{array}$	$\begin{array}{r}201.20 \\ 65.80 \\ \hline\end{array}$
SOUTH CAROLINA	555	2,189	${ }^{9}, 128$	1,6769	-76.61	solth carolima	509	659	3 3,547	270	40.97
TENNESSEE	+, 275	4,445 4.327	3,513 9,574	8,725	143.42 196.29 198	SOUTH DAKOTA	1,099		-		117.33 178.16
${ }_{\text {TE }}^{\text {TJAS }}$	5,532	20, 231	\%,920	${ }^{18,989}$,94.85	TEXAS	1,433	-1,454	$\xrightarrow{2}$	2,289	6.81
VERMONT	(132	2,398	-12,586	${ }^{4,565}$	190.41 116.10	VERAMONT	(138	113 116		1,205	169.00 145.69
Yirginia	1,895	8.172	11,615	14.160	${ }^{173.27}$	virginia	1,012	1,327	3,593	2,542	191.56
WASHINGTON	2,309	${ }_{7}^{7,686}$		-	111.76 203.43		1,663	1,805	2,974	10,783	597.40
Wisconstima	1,973	4,614	7,499		$\begin{array}{r}20.4 \\ 72.95 \\ \hline 2.95\end{array}$	west virginia		440 630	3,035 2 2,115		81.96 126.83 18.85
wroming	218	${ }_{398}$	5,002	305	76.63	WYOMING	${ }_{222}$	190	2,345	${ }_{213}$	${ }_{112} 12.12$
subtotal	68,235	233,625	9,380	402,123	172.1	subtotal	41,138	50,406	3,357	82,391	163.45
Incomplete data						ncomplete					
$\underset{\text { arkansas }}{\text { florida }}$						ARKANSAS FLORIDA					
						SLinots					
- Mar MELand						${ }_{\text {chen }}^{\text {MAINE }}$ MARYLAND					
MASSACHSETTS						MASSACHUSETTS					
						NEW HAPSSHIRE North caril OLLAHOMA					
						OKLAHOMA					

TABLE 4-D. NONFATAL INJURY ACCIDENTS
BY STATE AND HIEHWAY SYSTEM - 1983

TABLE 4-E. NONFATAL INJURY ACCIDENTS BY STATE AND HIGHWAY SYSTEM - 1983 NONFEDERAL-AID ARTERIAL HIGHWAYS

TABLE 4-F. NONFATAL INJURY ACCIDENTS BY STATE AND HIGHHAY SYSTEM - 1983 NONFEDERAL-AID COLLECTOR HIGHWAYS

State	RURAL					State	URBAN				
	HIGHWAY MILES	$\begin{aligned} & \text { VEHICLE } \\ & \text { MILES } \\ & \text { (MILLIONS) } \end{aligned}$	DAILY VEhicle MILES PER MILE	NOMFATAL INJURY ACCIDENTS			HIGHWAY MILES	$\begin{gathered} \text { VEHICLE } \\ \text { MILES } \\ \text { (NILLIONS) } \end{gathered}$	DAILY VEHICLE MILES PER MILE	NONFATAL INJURY ACCIDENTS	
				NUMBER	RATE $1 /$					NUMBER	RATE $1 /$
COMPLETE DATA						COMPLETE DATA					
ALABAMA	48,548	2,805	158	952	33.94	ALABAMA	9,857	2,828	786	6,094	215.49
ALASKA	2,625	354	369	870	245.76	ALASKA	1.048	250	554	. 66	26.40
ARIzONA	55,065	1,613	80	3,116	193.18	ARIZONA	6,437	1,306	556	3,822	292.65
CALIFORNIA	75,928	4,197	151	11,346	270.34	CALIFORNIA	41,879	12,728	833	14,628	114.93
COLORADO	38,337	1,423	102	1,158	81.38	COLORADO	7,047	2,666	1,036	2,341	87.81
CONNECTICUT	5,968	771	354	1,222	158.50	CONNECTICUT	6,679	1,533	629	3,777	246.38
DELAWARE	2,678	377	386	634	168.17	DELAWARE	1.037	378	999	447	118.25
DIST. OF COL.					-	DIST. OF COL.	669	269	1,102	2,595	964.68
GEORGIA.	55,638	1,888	93	2,243	118.80	georgia	13,370	3,073	630	4,724	153.73
HAWAI I	1.932	264	374	425	150.98	HAWAI I	, 933	703	2,064	1,196	170.13
IDAHO	54,026	779	40	1,123	144.16	1 DAHO	1.491	587	1,079	825	140.55
INDIANA	49,037	1,760	98	3,184	180.91	INDIANA	11,781	3,258	758	5,251	161.17
IOWA	65,279	1,456	61	977	67.10	I OWA	5,210	1,065	560	882	82.82
KANSAS	83,527	1,229	40	1,863	152.07	KANSAS	5,773	1,481	703	3,006	202.97
KENTUCKY	41,275	1,794	119	2,515	140.19	KENTUCKY	4,854	1.403	792	2,784	198.43
Louisiana	30.932	1,632	145	4,867	298.22	LOUISIANA	8,892	1,225	377	13,938	1,137.80
MICHIgAN	60,033	1,213	55	13,702	1,129.60	MICHIGAN	16,538	1,940	32 L	36,299	1,871.08
Minnesota	80, 368	2,332	79	. 653	28.00	Minnesota	9,082	2,118	639	2,887	136.31
MISSISSIPPI	43,456	1,064	67	1,703	160.06	MISSISSIPPI	4,757	1,415	815	1.152	81.41
MISSOURI	73,415	2,607	97	3,526	135.25	MISSSURI	9,981	911	250	1,084	118.99
MONTANA	46,691	647	38	1,215	187.79	MONTANA	1,677	820	1,340	276	33,66
NEBRASKA	59,313	1,095	51	1,342	122.56	NEBRASKA	3,180	502	432	998	198.80
NEVADA	33,597	264	21	125	47.35	NEVADA	2,045	403	540	858	212.90
NEW JERSEY	7,451	785	289	1,978	251.97	NEW JERSEY	15,748	9,541	1,660	11,494	120.47
NEW MEXICO	38,236	726	52	975	134.30	NEW MEXICO	3,236	1,056	894	1,988	188.26
NEW YORK	$4 \mathrm{4}, 669$	3,521	198	22,339	634.45	NEW YORK	25,026	6,354	696	28,405	447.04
NORTH DAKOTA	59,747	714	33	5 464	64.99	NORTH DAKOTA	938	- 251	733	402	160,16
OHIO	57,831	6,552	310	5,974	91.18	OHIO	19,884	9,758	1,345	21,167	216.92
OREGOM	102,827	1,402	37	775	55.28	OREGON	5,638	889	432	2,537	285.38
PENNSYLVANIA	61,055	5,137	231	5,862	110.22	PENNSVIVANIA	19,083	5,138	738	21,593	420.26
SOUTH CAROLINA	36,148	2,613	198	1,814	69.42	SOUTH CAROLINA	6,180	933	414	1,765	185.17
SOUTH DAKOTA	46,879	524	31	551	105.15	SOUTH DAKOTA	1,010	223	605	+368	165.02
TENMESSEE	49,267	1,564	87	3,302	211.13	TENNESSEE	9,562	3,912	1,252	6,377	163.01
TEXAS	142,158	4,691	90	10.171	216.82	TEXAS	47,848	18,393	1.053	56,730	308.43
UTAH	30,361	509	46	513	100.79	UTAH	3,701	1,292	956	2,152	166.56 108.72
VERMONT	8,770 33,769	372 2893	116	673 3.301	180.91 114.10	VERMONT	547 8.927	195 3,765	977 1,155	+ 212	108.72 118.17
VIRGINIA	33,769 52,367	2,893 544	235 28	3,301 1,010	114.10 185.66	VIRGINIA	8,927 9,900	3,765 678	$\begin{array}{r}1,155 \\ 188 \\ \hline\end{array}$	4,449 3,935	118.17 580.38
WEST VIRGINIA	20,546	920	123	2,477	269.24	WEST VIRGINIA	1,898	216	312	1,518	702.78
WISCONSIN	67,486	1,648	67	4,169	252.97	WISCONSIN	9,308	3,005	884	9,903	329.55
WYOMING	22,756	239	2.9	394	164.85	WYOMING	893	125	384	301	240.80
subtotal	1,894,192	66,918	97	125,309	187.26	subtotal	362,544	108,586	821	285,226	262.67
INCOMPLETE DATA ARKANSAS						INCOMPLETE DATA ARKANSAS					
FLORIDA						FLORIDA					
ILLINOIS						ILINOIS					
MAINE						MAINE					
MARYLANO MASSACHUSETTS						MARYLAND MASSACHUSETTS					
NEW HAMPSHIRE						NEW HAMPSHIRE					
NORTH CAROLINA						NORTH CAROLINA					
OKLAHOMA RHDDE ISLAND						OKLAHOMA RHODE ISL.AND					

TABLE 5-A. FATALITIES BY STATE AND HIGHWAY SYSTEM - I983 FEDERAL-AID INTERSTATE HIGHWAYS

STATE	RURAL					state	URBAN				
	HIGHNAY Miles	$\begin{gathered} \text { VEHICLE } \\ \text { MILES } \\ \text { MILLIONS) } \end{gathered}$	DAILY VEHICLE MILES PER MILE	fatalities			highway miles	$\begin{aligned} & \text { VEHICLE } \\ & \text { MILES } \\ & \text { (MILLIONS) } \end{aligned}$	DAILY VEHICLE MILES PER MILE	FATALITIES	
				NUMBER	RATE $1 /$					NUMBER	RATE $\mathbf{1 /}$
COMPLETE DATA						COMPLETE DATA					
ALABAMA	639	2,850	12,219	45	1.58	ALABAMA	191	2,112	30,295	13	0.62
ALASKA	1,072		1,955	36	4.71	ALASKA	20	215	29,452	7	3.26
ARIZONA		3,078	8,259	84	2.73	ARIZONA	123	1,179	26,261	16	1.36
CALIFORNIA	1,443	9,458	17,957	197	2.08	CALIFORNIA	938	34,545	100,900	232	0.67
COLORADO	788	2,639	9,175	55	2.08	colorado	158	2,333	40,454	40	1.71
CONNECTICUT	1.08	992	25,165	9	0.91	CONNECTICUT	229	4,846	57,977	73	1.51
delaware					-	DELAWARE	41	729	48,714	7	0.96
DIST. OF COL.			19,413			DIST, OF COL.	12 296	361 6.424	82,420 59,459	$\stackrel{2}{5}$	0.55 0.87
GEORGIA	886 5	6,278 50	19,413 27,397	57	0.91 8.00	GEORGIA	296 31	6,424 808	59,459 71,410	56	0.87 0.87
I DAHO	536	1,148	5,858	24	2.09	IDAHO	71	361	13,930	2	0.55
Indiana	854	4,189	13,439	71	1.69	INDIANA	259	3,442	36,410	26	0.76
I OWA	614	2,272	10,138	18	0.79	JOWA	123	849	18,911	23	2.71
KANSAS	654	1,732	7.256	14	0.81	KANSAS	154	1,321	23,501	12	0.91
KENTUCKY	579	3,766	17,820	42	1.12	KENTUCKY	159	2,544	43,836	27	1.06
louisiana	519	3,428	18,096	44	1.28	LOUISIANA	167	2,350	38,553	29	1.23
MICHIGAN	714	3,736	14,336	26	0.70	MICHIGAN	415	6,930	45,750	51	0.74
MINNESOTA	696	2,300	9,054	6	0.26	MINNESOTA	177	3,167	49,021	18	0.57
MISSISSIPPI	567	1,985	9,591	38	1.91	MISSISSIPPI	119	5 945	21,757	11	1.16
MISSOURI	824	3,692	12,276.	52	1.41	MISSOURI	308 46	5,524	49,137	77	1.39 2.29
MONTANA	1.089	1,356 1,436	3,411	43 14	3.17 0.97	MONTANA	46 38	131 482	7,802	3 6	2.29 1.24
NEBRASKA NEVADA	444 502	1,436 1,086	8,861 5,927	14 50	0.97 4.60	NEBRASKA NEVADA	38 36	482 446	$\begin{array}{r}34,751 \\ 33,942 \\ \hline\end{array}$	6	1.24 1.57
NEW JERSEY	128	1,453	31,100	3	0.21	NEW JERSEY	253	6,051	65,526	43	0.71
NEW MEXICO	913	2,343	7,031	72	3.07	NEW MEXICO	87	669	21,068	10	1.49
NEW YORK	881	4,342	13,503	37	0.85	NEW YORK	607	10,504	47,410	94	0.89
NORTH CAROLINA	578	3,771	17,875	51	1.35	North carolina	185	2,007	29,563	26	1.30
NORTH DAKOTA	533	731	3.757	5	0.68	NORTH DAKOTA	\% 38	129	9,301	1	0.78
OHIO	880	7,106	22,123	53	0.75	OHIO	666	11,944	49,134	93	0.78
OREGON	585	2,566	12,017	37	1.44	OREGON	133	1, 8 864	38,397	10	0.54
PENNSYLVANIA	1,185	6,589	15.221	68	1.03	PENNSYLVANIA	338	5,019	40,682	47	0.94
SOUTH CAROLINA	1647 635	2,951	12,496 5,109	44 19	1.49 1.60	SOUTH CAROLINA SOUTH DAKOTA	109	1,189 147	29,886 9,823	19	1.60 0.00
SOUTH DAKOTA	636 626	1,186	5,109 19,815	19	1.60 1.17	SOUTH DAKOTA TENNESSEE	41 205	147 3.339	9,823 44,624	0 43	0.00 1.29
TEXAS	2,273	10,125	12,204	243	2.40	TEXAS	843	18.493	60,102	343	1.85
UTAH	681	1,490	5,994	31	2.08	UTAH	125	1,766	38,707	23	1.30
VERMONT	302	713	6,468	3	0.42	VERMONT	18	, 94	14,307	1	1.06
virginia	799	4,558	15,629	57	1.25	VIRGINIA	226	4,160	50,430	28	0.67
WASHINGTON	483	2,912	16,518	34	1.17		232	5,491	64,844	36	0.66
WEST VIRGINIA	389	1,400	17,860	14	1.00	WEST VIRGINIA	90	+ 712	21,674	11	1.54
WISCONSIN	466	2,920	17,167	20	0.68	WISCONSIN	111	1,974	48,723	5	0.30
WYOMING	868	1,371	4,327	39	2.84	WYOMING	49	134	7.492	4	2.99
subtotal	28,608	122,737	11,754	1,829	1.49	subtotal	8,468	157,730	51,032	1,583	1.00
INCOMPLETE DATA						Incomplete data					
ARKANSAS Fiorioa						ARKANSAS FLORIDA					
FLiLIENOIS											
MAINE						MAINE					
MARYLAND MASSACHUSETTS						MASSACHUSETTS					
NEN HAMPSHIRE						NEW HAMPSHIRE					
RHoDE ISLAND											

1 fatalities per 100 Million vehicle miles.

TABLE 5-B. FATALITIES BY STATE AND HIGHWAY SYSTEM - 1983
OTHER FEDERAL-AID PRIMARY HIGHWAYS

state	RURAL					state	URBAN				
	HIGHWAYMILES	$\begin{aligned} & \text { VEHICLE } \\ & \text { MILEES } \\ & \text { MILLINSS } \end{aligned}$	DAILY MILES per mile	fatalities			HighwayMILES	$\begin{gathered} \text { VEHICLE } \\ \text { MILES } \\ \text { (MILLIONS }) \end{gathered}$	DAILY VEHICLE MILES PER MILE	fatalities	
				NUMBER	RATE $1 /$					NUMBER	RATE $1 /$
COMPLETE OATA						complete data					
Alabama	5,903 1,013	6,176 372	2,866	334	5.41	Alabama	745	3,394	12,481	65	1.92
ALALSA ARIIONA	1,013 3,316	372 3,162	2,006	20 157	5.38 4.97	ALASIZA ${ }_{\text {A }}$	$\begin{array}{r}31 \\ 172 \\ \hline\end{array}$	1.147	6,805 18,238	$\begin{array}{r}5 \\ 38 \\ \hline\end{array}$	5.49 3.32
california	9,746	18,352	5,159	855	4.66	california	1,332	23,207	19,733	39 296	3.32 1.28
colorado	4,399	4,059	2,528	171	4.21	colorado	, 561	2,757	13,464	E6	2.39
CONNECTICUT	689	1,683	6,692	47	2.79	connecticut	576	3,457	16,443	64	1.85
DELAWARE	332	1,261	10,406	37	2.93	DELAWARE	96	, 673	19,207	20	2.97
GEORGIA	8,665	9,040	2,858	317	3.51	DISORGIA OL	$\begin{array}{r}158 \\ \hline 1.412\end{array}$	1,543	26,756 13,427	$\begin{array}{r}40 \\ 157 \\ \hline\end{array}$	2.59 2.27
Hawail	371	881	6,506	33	3.75	hawali	, 111	1,231	30,384	33	2.68
IdAho	2,707	1,678	1,698	85	5.07	idaho	42	195	12,785	7	3.57
Indiana	4,209	7,293	4,747	217	2.98	Indiana	782	4,555	15,958	106	2.33
IowA	8,177	5,889	1,973	185	3.16	IOWA	685	2,561	10,627	55	2.07
KANSAS	7,762	4,822	1,702	151	3.13	Kansas	338	1,361	11.032	25	1.84
KENTUCKY	3,279 $\mathbf{3}, 664$	4,578 5.104	3,825	167	3.65	KENTUCKY	457	2,585	15,497	43	1.65
LOUISIANA	2,664 $\mathbf{4 , 6 7 9}$	5.104 8,357	5,249 4.893	$\begin{array}{r}323 \\ 205 \\ \hline\end{array}$	6.33 2.46 2.46	Louichiana	496 1.246	2,776 9,783	15,334 21,511	$\begin{array}{r}67 \\ 133 \\ \hline\end{array}$	${ }_{1}^{2} \cdot 36$
minnesota	8,804	7,291	2,269	176	2.41	minNesota	+481	2,534	14,433	42	
MISSISSIPPI	5,295	5,097	2,637	263	5.16	MISSISSIPPI	351	1,663	12,981	20	1.20
Missouri	6,359	6,858	2,955	241	3.51	missouri	535	3,294	16,869	56	1.70
montana	5,370	2,222	1,134	125	5.63	montana	109	401	10,079	4	1.00
NEBRASKA	6,941	3,578	1.412	112	3.13	Nebraska	277	1,243	12,294	10	0.80
	1,789	961	1,472	44	4.58	NEVADA	59	448	20,803	7	1.56
NEW MEXICO	3,378	2,970 2.641	\%,936	$\begin{array}{r}87 \\ 168 \\ \hline\end{array}$	2.93 6.36	NEW JERSEY	645	8,363	35,523	149	1.78
NEW YORK	5,479	9,116	3,855	344	3.77	NEW YORK	1,793	18,933	28,930	344	1.82
north carolina	3,731	7.433	5,458	220	2.96	north carolina	626	4,466	19,546	122	2.73
NORTH DAKOTA	5,450	1,726	866	45	2.61	north dakota	127	499	10,765	5	1.00
OHIO	4,809	8,348	4,756	240	2.87	OHIO	1,545	6,801	12,060	151	2.22
Prennsylvania	4,589	4,474	2,671	201	4.49	pregon	+ 395	2,326	16.133	40	1.72
Penssylvania SOUTH CAROLINA	8,026 4,945	14,589 6,275	4,960 3.477	$\begin{array}{r}515 \\ 234 \\ \hline\end{array}$	3.53 3.73 3	Pennsylvania	1,905	16,236 3,088	23,350	235	1.45
SOUTH DAKOTA	5,697	2,239	1,077	84	3.75	SOUTH DAKOTA	115	${ }^{+} 459$	10,935	4	0.87
TENXESSEE	5,195	6,829	3,601	304	4.45	tennessee	800	4,424	15,151	108	2.44
texas	15,061	20,280	3,689	801	3.95	texas	1,626	13,624	22,956	304	2.23
UTAH	${ }^{2}, 465$	1,478	1,643	57	3.85	UTAM	106	469	12,122	8	1.71
VERMONT	1,043 4,949	1,100 8,650	2,889 4,789	$\begin{array}{r}40 \\ 259 \\ \hline\end{array}$	3.64 3.99	VERMONT	71 450	221	8,528	${ }_{5}^{1}$	0.45
WASHINGTON	4,463	5,618	3,449	134	2.39	WASHINGTON	610	4,367	18,174 19,514	${ }_{82}$	1.88 1.88
WEST Virginia wisconsin	2,263	2,733 9,294 18	3,309	156	5.71	WEst virginia	181	817	12,367	20	2.45
wyoming	2,861	1,340	3,187 1,283	287 61	3.09 4.55	WISCONSIN	930 122	4,590 358	$\begin{array}{r}13,522 \\ 8,040 \\ \hline\end{array}$	87	1.46 2.23
Subtotal	196,687	225,848	3,146	8,504	3.77	subtotal	23,932	171,726	19,659	3.178	1.85
Incomplete data											
arkansas						INarkansas					
Florida illinois						FLORIDA					
MAINE						MATNE					
MARYLAND						maryland					
MASSACHUSETTS NEL HAMPSHIRE OKLAHMA						MASSACHUSETTS					
OKLAHOMA						OKLAHOMA RHODE ISLAND					
$1 /$ fatalities	R 100 MIL	on vehicle	miles.								

TABLE 5-C. FATALITIES BY STATE AND HIGHWAY SYSTEM - 1983
FEDERAL-AID URBAN HIGHMAYS

STATE	ARTERIAL					state	COLLECTOR				
	HIGHWAY MILES	$\begin{aligned} & \text { VEHICLE } \\ & \text { MILES } \\ & \text { (MILLIONS) } \end{aligned}$	DAILY vehicle MILES PER MILE	FATALITIES			highway miles	$\begin{aligned} & \text { VEHICLE } \\ & \text { MILES } \\ & \text { MILLIONS } \end{aligned}$	baily vehicle Miles PER MILE	fatalities	
				Number	RATE $1 /$					NUMBER	RATE $1 /$
COMPLETE DATA ALABAMA ALASKA ARIZONA CAL IFORNIA COLORADO CONNECTICUT DELAWARE DIST. OF COL. GEORGIA HAWAII IDAHO I NDIANA IOWA KANSAS KENTUCKY LOUISIANA MICHIGAN MINNE SOTA MISSISSIPPI MI SSOURI MONTANA NEBRASKA NEVADA NEW JERSEY NEW MEXICO NEW YORK NORTH CAROLINA NORTH DAKOTA OHIO OREGON PENNSYLVANIA SOUTH CAROLINA SOUTH DAKOTA TENNESSEE TEXAS UTAH VERMONT VIRGINIA WASHINGTON WEST VIRGINIA WISCONSIN WYOMING SUBTOTAL INCOMPLETE DATA ARKANSAS FLOR1DA ILLINOIS MAINE MARYLAND MASSACHUSETTS NEW HAMPSHIRE OKLAHOMA RHODE ISLAND	1,372	3,961	7,910	72	1.82	COMPLETE DATA ALABAMA	895				
	$\begin{array}{r}1,372 \\ \hline 18\end{array}$	$\begin{array}{r}3,561 \\ \hline 509\end{array}$	17,878	18	3.54	ALASKA	895	103	2,841	47	5.06 1.94
	1,139	4,313	10,374	153	3.55	Arizona	549	908	4,531	10	1.10
	11,469	57,452	13,724	1,641	2.86	california	4,293	5,222	3,333	90	1.72
	1,874	4,761	6,950	97	2.04	COLORADO	1,227	. 823	1,838	16	1.94
	1,225	3,816	8,535	96	2.52	connecticut	1,705	1,688	2,712	32	1.90
	157	658	11,482	10	1.52	delaware	148	266	4,924	2	0.75
	102	502	13,484	12	2.39	DIST. OF COL.	145	300	5,668	6	2.00
	1,775	4,848	7,483	97	2.00	GEORGIA	1,562	3,203	5,618	64	2.00
	120	938	21,415	21	2.24	hawal I	56	222	10,861	4	1.80
	333	1,056	8,688	32	3.03	I DAHO	237	381	4,404	0	0.00
	2,985	6,388	5,863	173	2.71	indiana	1,831	1,729	2,587	39	2.26
	1,372	1,773	3,540	33	1.85	IOWA	923	541	1,903	5	0.78
	1,060	2,521	6,516	26	1.03	KANSAS	478	281	1,611	5	1.78
	1,089	3,351	8,431	65	1.94	KENTUCKY	764	1,092	3,916	21	1.92
	1,105	2,985	7,401	37	1.24	LOUISIANA	748	775	2,839	76	9.81
	2,907	12,550	11.828	340	2.71	MICHIGAN	1,921	5,294	7,550	22	0.42
	1,417	5,038	9,741	58	1.35	MINNESOTA	525	535	2,792	8	1.50
	931	1,711	5,035	24	1.40	MISSISSIPPI	748	647	2,370	12	1.85
	1,793	6,264	9,571	121	1.93	MISSOURI	51.9	573	3,025	13	2.27
	235	521	6,074	19	3.65	MONTANA	91	53	1,596	2	3.77
	642	1,461	6,235	17	1.16	NEBRASKA	399	387	2,657	3	0.78
	438	1,936	12,110	71	3.67	NEVADA	. 66	124	5,147	3	2.42
	3,539	12,301	9,523	318	2.59	NEW JERSEY	1,812	3,031	4,583	51	1.68
	503	1,628	8,867	67	4.12	NEW MEXICO	183	272	4,072	6	2.21
	5,077	18,284	9,867	552	3.02	NEW YORK	3,399	3,990	3,216	109	2.73
	2,036	7,164	9,640	73	1.02	NORTH CAROLINA	248	134	1,480	6	4.48
	195	234	3,288	5	2.14	NORTH DAKOTA	181	169	2,558	3	1.78
	3,438	9,540	7,602	234	2,45	OHIO	3,892	3,182	2,240	117	3.68
	1.051	2,781	7,249	63	2.27	OREGON	${ }^{9} 918$	914	2,728	15	1.64
	3,661	7,879	5,895	212	2.89	PENNSYLVANIA	3,102	3,982	3,517	39	0.98
	657	2,189	9,128	49	2.24	SOUTH CAROLINA	509	659	3,547	12	1.82
	255	327	3,513	4	1.22	SOUTH DAKOTA	101	75	2,034	0	0.00
	1,272	4,445	9,574	100	2.25	TENAESSEE	1,099	1,282	3,196	39	3.04
	5,532	20,031	9,920	445	2.22	TEXAS	1,433	1,454	2,780	3	0.21
	522	2,398	12,586	63	2.63	UTAH	318	713	6,143	16	2.24
	136	354	7,131	4	1.13	VERMONT	130	116	2,445	0	0.00
	1,895	8,172	11,815	143	1.75	VIrginia	1,012	1,327	3,593	25	1.89
	2,309	7,686	9,120	122	1.59	WASHINGTON	1,663	1,805	2,974	156	8.64
	384	1,051	7,499	22	2.09	WEST VIRGINIA	397 815	440 630	3,036	6	1.36
	1,973 218	4,614 398	6,407 5,002	52	1.13 1.76	WISCONSIN WYOMING	815 222	630 190	2,115	6 1	0.95 0.53
	70,271	240,789	9,388	5,778	2.40	subtotal	41,386	50,540	3.346	1,092	2.16
						INCOMPLETE DATA ARKANSAS					
						FLORIDA					
						MAINE					
						MARYLAND					
						MASSACHUSETTS					
						OKLAHOMA					
						RHODE ISLAND					

BY STATE AND HIGHHAY SYSTEM

 FEDERAL-AID SECONDARY HIGHMAYS

TABLE 5-E. FATALITIES BY STATE AND HIGHWAY SYSTEM - 1983 NONFEDERAL-AID ARTERIAL HIGHHAYS

STATE	RURAL					STATE	URBAN				
	HIGHWAY Miles	$\begin{aligned} & \text { VEHICLE } \\ & \text { MILES } \\ & \text { (MILLIONS) } \end{aligned}$	DAILY VEHICLE MILES PER MILE	FATALITIES			HIGHWAY Miles	$\begin{aligned} & \text { VEHICLE } \\ & \text { MILES } \\ & \text { (MILLIONS) } \end{aligned}$	DAILY VEHICLE MILES PER MILE	fatalities	
				NUMBER	RATE 1/					NUMBER	RATE 1/
COMPLETE DATA						COMPLETE DATA					
ALABAMA	-	-	-		-	ALABAMA ALASKA	- 270	- 723	7,336	- 7	0.97
ALASKA	- 15	- 17	3,105	2	11,76	ARIZONA	41	85	5,680	1	1.18
CALIFORNIA		30	2,651	2	6.67	CALIFORNIA	1,282	4,036	8,629	112	2.77
colorado	-				5	colorado	18	83	12,633	0	0.00
Connecticut	9	18	5,479	1	5.56	CONNECTICUT	47	179	10,434	2	1.12
DELAWARE					-	DELAWARE	- 12		- 256	- 1	
DIST. OF COL.	-		-		-	GIST. OF COL.	- 12	- 115	26,256	1	0.87
GEORGIA	${ }^{-11}$	- 43	10,710	- 1	$\overline{2} .33$	GEORGIA	- 13	- 58	12,223		0.00
idaho					-	idaho	8	16	5,479	1	6.25
illinots	-	-	- 793		-	INDIANA	12	188	42,922	1	0.53
INDIANA	35	74	5,793		12.16	IOWA	- 222		8-046		
IOWA	-	-		- 1		KANSAS	- 222	- 652	8,046	-18	2.76
KANSAS	- 48	- 62	3,539		1.61	KENTUCKY	- 440	- 805	5,012	- 7	0.87
LOUISIANA	-		-	-	-	Michigan	164	325	5,429	3	0.92
MASSACHUSETTS	-	-	-		-	MinNESOTA	48	41	2,340	3	7.32
MiChigan			-	-	-	MISSISSIPPI					
MINNESOTA	-	-	-	-	7.	MISSOURI	534	1,345	6,901 4,739	17	1.25
MISSISSIPPI	242	26	294		7.69	Montana	37	64	4,739	0	0.00
MIssouri		7	2,131	0	0.00	NEBRASKA	-			-	
MONTANA	80	18	615	0	0.00	NEVADA	19	88	12,689	1	1.14
NEBRASKA	-	-		-		NEW JERSEY	260	3,086	32,518	31	1.100
NEVADA.	1		10,959	0	0.00	NEW MEXICO	, 53	80	4,135	2	2.50
NEW JERSEY	119	1,007	23,164	20	1.99	NEW YORK	-123	412	9,177	$2{ }^{3}$	0.73
NEW MEXICO			-		-	NORTH CAROLINA	1,252	2,092	4.542	20	0.96
NEW YORK		-				NORTH DAKOTA	3	7	6,393	0	0.00
NORTH CAROLINA	249	112	1,232	- 0	0.00	OHIO	- 63		12,511	- 2	-0.69
NORTH DAKOTA	--	-	-		-	OREGON PENNSYLVANIA	- 63	- 290	12,511	2	0.69
OREGGON	271	130	1,314	5	3.85	RHODE ISLANO	-		-		
PENNSYLVANIA		-	-		-	SOUTH CAROLINA	290	442	4, 176	12	2.71
RHODE ISLAND	-		-		-	SOUTH DAKOTA	10	34	9,315	0	0.00
SOUTH GAROLINA	-	-		-		TENNESSEE					
SOUTH DAKOTA	- 14	- 9	1,761	- 0	0.00	TEXAS	1,848 47	$\begin{array}{r}5,639 \\ \hline 31\end{array}$	8,360		3.23
TEXAS	- 2	- 7	9,589	0	0.00	VERMONT			-	-	
UTAH			-		-	VIRGINIA	55	285	14,197	8	2.81
VERMONT			-		- 0	WASHINGTON	11	1	249	0	0.00
VIRGINIA -	309	231	2,048	0	0.00	WEST VIRGINIA	1	16	43,836	0	0.00
WASHINGTON					-	WISCONSIN	145	305	5,763	1	0.33
WEST Virginia		-	-	-	-	WYOMING	10	12	3,283	0	0.00
WISCONSIN	- 252	- 96	1,044	-	1.04	SUBTOTAL	7,348	21,537	8,030	557	2.59
subtotal	1,597	1.851	3.053	44	2.33	INCOMPLETE DATA ARKANSAS					
INCOMPLETE DATA						FLORIDA					
ARKANSAS FLORIDA						MAINE					
MAINE						MARYLAND					
MARYLAND NEW HAMPSHIRE						MASSACHUSETTS NEW HAMPSHIRE					
OKLAHOMA						OKLAHOMA					

$1 /$ FATALITIES PER 100 Million VEhicle miles.

State	RURAL					StATE	URBAN				
	HIGHWAY MILES	$\begin{aligned} & \text { VEHICLE } \\ & \text { MILES } \\ & \text { (MILLIONS) } \end{aligned}$	DAILY VEHICLE MILES PER MILE	FATALITIES			HIGHWAY MILES	$\begin{aligned} & \text { VEHICLE } \\ & \text { MILES } \\ & \text { (MILLIONS) } \end{aligned}$	DAILY vehicle miles PER MILE	FATALITIES	
				Number	RATE \mathbf{V}					Number	RATE 1/
COMPLETE DATA						COMPLETE DATA					
ALABAMA	7.167	995	380	57	5.73	ALABAMA	661	571	2,781	20	2.98
flaska	898	143	436	5	3.50	ALASKA	39	87	6,112	0	0.00
ARIZONA	4,850	693	391	34	4.91	ARIzONA.	439	557	3,476	10	1.80
CALIFORNIA	12.078	3,588	814	204	5.69	CALIFORNIA	2,510	3,066	3,347	61	1.99
COLORADO	17,365	1,376	+217	79	5.74	colorado	2, 35	+ 43	3,366	2	4.65
CONNECTICUT	1.207	451	1,024	17	3.77	CONNECTICUT	197	188	2,615	4	2.13
DELAWARE	159	50	862	0	0.00	DELAWARE	27	29	2,943	1	3.45
	7,337	2,341				DIST. OF COL.	4	9	6,164	1	11.11
HAWAII	$\begin{array}{r}7.337 \\ \hline 196\end{array}$	2,341 145	874 2.027	150	6.41	GEORGIA					
IDAHO	4,867	450	2.027	7	4.14 1.56	havail	88	213	6,631	2	0.94
Indiana	10,695	1,482	380	31	2.09	INDIANA	45	113 53	4,360 3,227	1	0.88 1.89
IOWA	16,479	699	116	35	5.01	iowa	97	41	-1,158	0	0.00
KANSAS	9,407	262	76	9	3.44	KANSAS	295	329	3,055	0	0.00
KENTUCKY	9,341	1.692	496	87	5.14	Kentucky	131	108	2,259	6	5.56
LOUISIANA	4,269	1,180	757	42	3.56	Louisiana	365	159	1,190	3	1.89
MICHIGAN	7,829	1,610	553	58	3.60	MICHIGAN	2,002	654	1.895	5	0.76
MINNESOTA	12,158	989	223	35	3.54	MINNESOTA	1,224	1,447	3,239	19	1.31
MISSISSIPPI	2,878 5,492	249 305	237	$1{ }^{1}$	0.40	MISSISSIPPI	-	-			-
MONTANA	5,492 11,306	305 368	152 89	10	3.28 5.16	MISSOURI	873 117	935	2,934 1,780	12	1.28
NEBRASKA	-9,315	263	77	10	5.16 3.80	MEBRASEKA	117	76	1,780	2	2.63
NEVADA	2,483	150	166	6	4.00	nevada.	340	276	2,224	-9	3.26
NEW JERSEY	1,290	1,106	2,349	26	2.35	NEW JERSEY	94	31	904	6	19.35
NEW MEXICO	3,176	253	218	25	9.88	NEW MEXICO	202	90	1,221	2	2.22
NEW YORK	11,039	3,843	954	124	3.23	NEW YORK	378	165	1,203	3	1.81
NORTH CAROLINA	9,417	2,614	761	129	4.93	NORTH CAROLINA	1,064	703	1,810	8	1.14
NORTH DAKOTA	8,136 7,525	215 2.742	$\begin{array}{r}72 \\ 998 \\ \hline\end{array}$	10	4.65	NORTH DAKOTA OHIO	1, 23	19	2,263	- 0	0.00
OREGON	7,525	2,742 1,054	998 318	65	2.37 1.99	OHIO	- 174			- 2	
PENNSYLVANIA	9,049	2,393	725	68	2.84	PENNSYLVANIA		161	2,535	2	1.24
SOUTH CAROLINA	4,018	476	325	39	8.19	RHODE ISLAND			-		-
SOUTH DAKOTA	7,347	171	54	5	2.92	SOUTH CAROLINA	611	355	1,592	7	1.97
TENNESSEE	11,281	2,722	661	65	2.39	SOUTH DAKOTA	47	41	2,390	0	0.00
TEXAS	20,698	2,321	307	106	4.57	tennessee					
UTAH	4,920	187	104	12	5.42	TEXAS	3,740	4,136	3,030	88	2.13
VERMONT	1,024 2,353	153 351	409	5 25	3.27 7.41	UTAH	- 261	- 213	2,236	5	2.35
WASHINGTON	2,353 6,469	1851 1.811	409 767	26	7.41 0.39	VERMONT					
WEST VIRGINIA	2,192	. 318	397	4	1.26	WASHINGTON	28	18	1,787	2	0.00 11.11
WISCONSIN	6,696	935	383	47	5.03	WEST VIRginia	2	9	12,329	0	0.00
WYOM!NG	7,602	382	138	10	2.62	WISCONSIN	531	403	2,079	0	0.00
subtotal	291,087	43,528	410	1,696	3.90	WYOMING	38	31	2,235	0	0.00
Incomplete data						subtotal	16.784	15,443	2,521	282	1.83
ARKANSAS						INCOMPLETE DATA					
FLORIDA ILLINOIS						ARKANSAS					
MAINE						ILLINOIS					
Maryland						MAINE					
MASSACHUSETTS						MARYLAND					
NEW HAMPSHIRE OKLAHOMA						MASSACHUSETTS					
RHODE ISLAND						NEW HAMPSHIRE OKLAHOMA					
$1 /$ Fatalities PER 100 Million vehicle miles.											

StATE	RURAL					state	URBAN				
	HIGHWAYMILES	$\begin{gathered} \text { VEHICLE } \\ \text { MILES } \\ \text { MILLIONS } \end{gathered}$	DAILY VEHICLE MILES PER MILE	fatalities			HIGHWAYMILES	$\begin{gathered} \text { VEHICLE } \\ \text { MILES } \\ \text { MILLIONS) } \end{gathered}$	DAILY miLes PER MILE	fatalities	
				Number	RATE $1 /$					NUMBER	RATE $1 /$
COMPLETE DATA						COMPLETE DATA					
Alabama	48,648	2,805	158	60	2.14 5.37	ALABAMA	9,857 1,048	2,828 $\mathbf{2 5 0}$	786 654	${ }^{9} 8$	3.18 0.80
ALASKA ARIZONA	2,626 55,065	2,354 1,613	369 80	19 55	5.37 3.41	ARIZONA	6,0437	1,306	-556	41	3.14
${ }_{\text {arlizen }}^{\text {CALIFORNIA }}$	55,065	1,619 4,197	151	199	4.74	california	41,879	12,728	833	235	1.85
colorado	38,337	1,423	102	35	2.46	Colorado	7,047	2,565	1.036	21	0.79
CONNECTICUT	5,968	771 377	354 386	36 13		CONNECTICUT	6,679	1.533	+69989	${ }_{3}$	0.79
DELAWARE	2,678	377	386	13	3.45	Dist. of col.	1,669	269	1,102	10	3.72
GEORGIA	55,638	1,888	93	131	6.94	GEORGIA	13,370	3,073	630	64	2.08
HAWAII	1,932	264	374	5	1.89	hawail	933	703	2,064	12	1.71
IDAHO	54,026	779	40	43	5.52	IDAHO	1,491	587	1,079	9	1.53
inoitana	49,037	1,760	98	94	5.34	Indiana	11,781	3,258	758	78	2.39
IOWA	65,279	1.456	61	53	3.64	IONA	5,210	1, 065	560 703	${ }^{8}$	0.75
KANSAS	83,527	1,229	40	67	5.45 4.01	KANSAS	5,773 4,854	1,481 1,403	703 792	22 24	1.49
KENTUCKY	41,275	1,794	145	92	5.64	Louisiana	8,892	1,225	377	40	3.27
Lovisiana	60,033	1,213	55	117	9.65	michigan	16,538	1,940	321	96	4.95
minnesota	80,368	2,332	79	54	2.32	MINNESOTA	9,082	2,118	639	15	0.71
MISSISSIPPI	43,456	1,064	67	178	16.73	MISSISSIPPI	4,757	1.415	815 250	48 39	3.39 4.28
MISS50uri	73,415	2,607	97 38	82 34	3.15 5.26	MISSOMA	9,981	820	1,340	2	0.24
MONTANA	46,691 59,313	647 1,095	38 51	42	3.84	NEBRASKA	3,180	502	432	9	1.79
NEVADA	33,697	264	21	15	5.68	NEVADA	2,045	403	540	7	1.74
new jersey	7,451	785	289	40	5.10	NEW JERSEY	15.748	9,541	1.660	72	0.75
NEW MEXico	38,236	726	52	${ }^{43}$	${ }^{5.92}$	NEW MEXICO	3,746 25,026	1,056 $\mathbf{6}, 354$	$\begin{array}{r}894 \\ 696 \\ \hline\end{array}$	26 173	${ }_{2}^{2.46}$
NEW YORK	48,669	3,521	198	125 190	$\begin{array}{r}3.55 \\ 6.57 \\ \hline\end{array}$	NORTH CAROLINA	25,026 11,906	- 2,952	679	85	2.88
NORTH CAROLINA	50,694	2,893 714	156	19	1.26	NORTH DAKOTA	-938	251	733	3	1.20
NORTH DAKOTA	59,747	6,552	33 310	126	1.92	Ohio	19,884	9,758	1,345	274	2.81
OREGON	102,827	1,402	37	42	3.00	OREGON	5,638	589	432	27	3.04
PENNSYLVAMIA	61,055	5,137	231	118	$\begin{array}{r}2.30 \\ \hline 15\end{array}$	PEENSVLVANIA	19,083	5,138	738 414	197	3.83 3.22
south carolina	36,148	2,613	198	124	4.75	South carolina	6.180	933 23	414 605	${ }^{3} 1$	3.22 0.45
SOUTH DAKOTA	46.879	+524			5.34 7.29	TENNESSEE	8,562	3,912	1,252	77	1.97
TENMESSEE	49,267 142,158	1,564 4.591	87 90	114 320	5.82	TEXAS	47,848	18,393	1,053	214	1.16
UTAH	142,368	${ }^{1} \cdot 609$	46	19	3.73	UTAH	3,701	1,292	956	17	1.32
VERMONT	8,770	372	116	15	4.03	VERMONT	547	. 195	977	3	1.54
virginia	33,759	2,893	235	80	2.77	VIRGINIA	8,927	3.765	1.155	47	1.25
WASHINGTON	52,367	544	${ }^{28}$	55	10.11	WASHINGTON	9.900	\% 616	188	15	6.08
WEST VIrginia		$\begin{array}{r}\text { r } \\ \hline 1.640 \\ \hline .648\end{array}$	123 67	44 108	4.78 6.55	WEST UIRGINIA	1,898 $\mathbf{9}, 308$	216 3.005	312 884	15 27	6.94 0.90
Wisconsin WYoming	67,486 22,756	1,648 $\mathbf{2 3 9}$	67 29	17	7.11	WYOMING	${ }^{993}$	125	394	2	1.60
subtotal	1,944,886	69,811	98	3,113	4.46	subtotal	374,450	111,538	816	2,235	2.00
incomplete data						Incomplete data					
arkansas						ARKANSAS					
$\xrightarrow[\text { Florida }]{\text { ILLINOIS }}$						fllinois					
MAINE						MAINE					
MARYLAND						MARYLAND					
MASSACHUSETTS						NEW HAMPSHIRE					
OKLAHOMA RHODE ISLAND						OKLAHOMA RHODE ISLAND					

[^1]FEDERAL-AID INTERSTATE HIGHWAYS

TABLE 6-B. NONFATALLY INJURED PERSONS BY STATE AND HIGHWAY SYSTEM - 1983
OTHER FEDERAL-AID PRIMARY HIGHWAYS

TABLE 6-C. NONFATALLY INJURED PERSONS BY STATE AND HIGHWAY SYSTEM - 1983
federal-aid urban highways

TABLE 6-D. NONFATALLY INJURED PERSONS

BY STATE AND HIGHWAY SYSTEM - 1983

 FEDERAL-AID SECONDARY HIGHMAYS

TABLE 6-E. NONFATALLY INJURED PERSONS BY STATE AND HIGHWAY SYSTEM - 1983
NONFEDERAL-AID ARTERIAL HIGHHAYS

TABLE 6-F. NONFATALLY INJURED PERSONS BY STATE AND HIGHWAY SYSTEM - 1983 nonfederal-aid collector highways

STATE	RURAL					State	URBAN				
	HIGHWAY	$\begin{aligned} & \text { VEHICLE } \\ & \text { MILES } \\ & \text { (MILLIONS) } \end{aligned}$	DAILY VEHICLE MILES PER MILE	NONFATALLY INJURED PERSONS			HIGHWAYMILES	$\begin{aligned} & \text { VEHICLE } \\ & \text { MILES } \\ & \text { (MILLIONS) } \end{aligned}$	DAILY VEHICLE MILES PER MILE	NONFATALLY injured persons	
				NUMBER	RATE $1 /$					NUMBER	Rate \mathcal{L}
COMPLETE DATA						COMPLETE DATA					
Alabama	7,167	995	380	1,407	141.41	ALABAMA	661	671	2,781	1,376	205.07
ALASKA	898	143	436	274	191.61	ALASKA	39 439	87 557	6,112	158	181.51
ARIZONA	4,859	. 693	391	17.407	58,73 479.38	ARIZONA	439 2.510	557 3.066	3,475 3,347	1,683 5,458	302.15 178.02
CALIFORNIA	12,078	3,588	814	17,200	479.38	CALIFORNIA	2,510 35	3.066 43	3,347 3,365	5,458	178.02 388.37
colorado	17,365	1,376	217	2,602	189.10	COLORADO	35	43 188	3,365	-167	388.37
CONNECTICUT	1,207	451	1.024	933	206.87	CONNECTICUT	197 27	188 29	2,515 2,943	539 26	286.70 89.66
DELAWARE	-159		-862	-86	172.00	DELAWARE	27 4	29 9	2,943	26 68	89.66 755.56
DIST OF COL.	7,337	$\overline{2,341}$	-874	3,966	169.41	GEORGIA COL.	4	9	6.164	- 68	75.56
HAWAII	+196	2,145	2,027	146	100.69	HAWAII	88	213	6,631	185	86.85
IDAHO	4,867	450	253	216	48.00	IDAHO	71	113	4,360	102	90.27
indiana	10,695	1,482	380	1,457	98.31	Ind IANA	45	53	3,227	90	169.81
IOWA	16,479	699	116	983	140.63	IOWA	97	41	1,158	42	102.44
KANSAS	9,407	262	76	270	103.05	KANSAS	295	329	3,055	738	224.32
kEntucky	9,341	1,592	496	3,230	190.90	KENTUCKY	131	108	2,259	336	311.11
louisiana	4,269	1,180	757	2,025	171.61	LOUISIANA	366	159	1,190	43	27.04
MICHIGAN	7,829	1,610	563	13,425	833.85	MICHIGAN	2,002	654	895	1,259	192.51
Minnesota	12,158	989	223	1,138	115.07	MinNesota	1,224	1,447	3,239	3,813	253.51
MISSISSIPPI	2,878	249	237	10	4.02	MISSISSIPPI					-
Missouri	5,492	305	152	291	95,41	Missouri	873	935	2,934	3,064	327.70
MONTANA	11,306	368	89	411	111.58	MDNTANA	117	76	1.780	17	22.37
nebraska	9,315	263	77	498	189.35	NEBRASKA					
NEVADA	2,483	150	166	108	72.00	NEVADA	340	276	2,224	765	277.17
NEW JERSEY	1,250	1,106	2,349	1,637	148.01	NEW JERSEY	94	31	904	184	593.55
NEW MEXICO	3,176	253	218	34 a	137.55	NEW MEXICO	202	90	1,221	1,00E	1,117.78
NEW YORK	11,039	3,843	954	17,793	463.00	NEW YORK	378	166	1,203	577	347.59
north. dakota	8,136	215	72	204	94.88	NORTH DAKOTA	23	19	2,263	52	273.58
OHIO	7,525	2.742	998	2,930	106.86	OHIO					-
OREGON	9,079	1,054	318	520	58.82	OREGON	174	161	2.535	377	234.16
PENNSYLVANIA	9,049	2,393	725	4,869	203.47	PENNSVLVANIA			-		-
SOUTH Garolina	4,018	476	325 64	301 145	63.24 85.38 17	RHODE ISLAND	611	355	1,592	509	143.38
SOUTH DAKOTA	7,347	2,722	$\begin{array}{r}64 \\ 661 \\ \hline 60\end{array}$	146 478	85.38 17.56	SOUTH CAROLINA	${ }_{47}$	41	2,390	130	317.07
TEXAS	20,598	2,321	307	1,985	85.52	TENNESSEE					-
UTAH	4,920	187	104	269	143.85	texas	3,740	4,136	3,030	53	1.29
VERMONT	1,024	153	409	248	162.09	UTAH	261	213	2,236	592	277.93
Virginia	2,353	351	409	842	239.89	VERMONT					
WASHINGTON	6,469	1,811	767	208	11.49	VIRGINIA	30	13	1,167	41	
West virginia	2,192	318	397	585	183.96	WASHINGTON		18 9	1,761 12.329	245 4	$1,361.11$ 44.44
WISCONSIN	6,696 7,602	935 382	383 138	654 215	59.95 56.28	WEST VIRGINIA WISCONSIN	$531{ }^{2}$	403	12,329 $\mathbf{2}, 079$	73	44.44 181.14
WYOMING	7,602	382	138	215	56.28	WISCONSIN WYOMING	531 38	403 31	2,079 2,235	730	181.14 0.00
subtotal	281,670	40,314	398	85,415	208.77	subtotal	15,720	14,740	2,569	24,429	165.73
INCOMPLETE DATA						INCOMPLETE DATA					
ARKANSAS						ARKANSAS					
Llilinois						FLORIDA					
MAINE						1LLINOIS					
MARYLAND											
NEW HAMPSHIRE						MASSACHUSETTS					
NORTH CAROLINA OKLAHOMA						NEW HAMPSHIRE NORTH CAROLINA					
OKLAHOMA RHODE ISLAND						NORTH CAROLINA OKLAHOMA					

TABLE 6-G. NONFATALLY INJURED PERSONS BY STATE
NONFEDERAL-AID LOCAL HIGHMAYS

State	RURAL					STATE	URBAN				
	HIGHWAY MILES	$\begin{aligned} & \text { VEHICLE } \\ & \text { MILES } \\ & \text { (MILLIONS) } \end{aligned}$	DAILY VEHICLE MILES PER MILE	NONFATALLY INJURED PERSONS			HIGHWAY MILES	$\begin{gathered} \text { VEHICLE } \\ \text { MILES } \\ \text { (MILLIONSS } \end{gathered}$	DAILY VEHICLE MILES PER MILE	NONFATALLY INJURED PERSONS	
				NUMBER	RATE $1 /$					NUMBER	RATE /
COMPLETE DATA						COMPLETE DATA					
ALABAMA	48.648	2,805	158	1,406	50.12	ALABAMA	9,857	2, 228	786	8,588	303.68
ALASKA	2,626	354	369	1,212	342.37	ALASKA	1,048	250	654	-99	35.60
ARIZONA	55,065	1,613	80	5,291	328.02	ARIZONA	6,437	1,306	556	5,939	454.75
CALIFORNIA	75,928	4,197	151	16,780	399.81	CALIFORNIA	41,879	12,728	833	21,029	165.22
COLORADO	38,337	1,423	102	1,714	120.45	colorado	7,047	2,666	1,036	3,001	112.57
CONNECTICUT	5,968	771	354	1,519	209.99	CONNECTICUT	6,679	1,533	- 629	5,037	328.57
DELAWARE	2,678	377	-386	886	235.01	DELAWARE	1,037	- 378	999	603	159.52
${ }_{\text {GEORGIA }}^{\text {GIS }}$ OF COL .			-93		1810	DIST. OF COL.	$\begin{array}{r}1369 \\ \hline 1370\end{array}$	269	1,102	3,878	1,441.64
HAWAII	55,638 1,932	$\begin{array}{r}1,888 \\ \hline 264\end{array}$	93 374	3,420 557	181.14 210.98	GEORGIA	13,370	3,073	630	6,661	216.76
I DAHO	54,026	779	40	1.734	222.59	HAWAI I IDAHO	933 1.491	703 587	2,064	1,585	225.46
INDIANA	49,037	1,760	98	4,566	259.43	INDIANA	11.781	3,258	1,079	1,178	200.68
10 WA	65,279	1,456	61	1,489	102.27	IOWA	1,210	1,055	560	1,132	216.54 106.29
KANSAS	83,527	1,229	40	2,772	225.55	KANSAS	5,773	1,481	703	4.181	106.29 282.31
KENTUCKY	41,275	1,794	119	3,702	206.35	KENTUCKY	4,854	1,403	792	3.528	282.31 251.46
LOUISIANA	30,932	1,632	145	7,634	467.77	LouIsiana	8,992	1,225	377	22,763	1,858.20
MICHIGAN	60,033	1,213	55	20,137	1,660.10	Michigan	16,538	1,940	321	53,281	2,745.44
MINNESOTA	80,368	2,332	79	958	41.08	MINNESOTA	9,082	2,118	639	3,807	179.74
MISSISSIPPI	43,455	1,064	67	2,425	227.91	MISSISSIPPI	4,757	1,415	815	1,581	111.73
MISSOURI	73,415	2,607	97	5,279	202.49	MISSOURI	9,981	911	250	1.544	169.48
MONTANA	46,691 59,313	647 1.095	38	1,834	283.46	MONTANA	1,677	820	1,340	369	45.00
NEVADA	33,697	$\begin{array}{r}1,095 \\ \hline 264\end{array}$	51 21	2,103	192.05	NEBRASKA	3,180	502	432	1,407	280.28
NEW JERSEY	7,451	785	289	2,758	351.34	NEVADA	2,045 15,748	403 9,541	540 1,660	1,145 15,813	284.12 165.74
NEW MEXICO	38,236	726	52	1,493	205.65	NEW MEXICO	1,236	1,056	$\begin{array}{r}1,6604 \\ \hline 894\end{array}$	2,636	165.74 249.62
NEW YORK	48,669	3,521	198	30,485	965.80	NEW YORK	25,026	6,354	696	35,630	550.75
NORTH DAKOTA	59,747	714	33	673	94.26	NORTH DAKOTA	,938	- 251	733	. 529	210.75
OHIO	57,831	6,552	310	8,984	137.12	Ohio mata	19,884	9,758	1,345	30,879	216.75 316.45
OREGON	102,827	1,402	37	1,239	88.37	OREGON	5,638	889	-432	3.863	434.53
PENNSYLVANIA	61.055	5,137	231	8,012	155.97	PENNSYLVANIA	19,083	5,138	738	29,812	580.23
SOUTH CAROLINA	36,148	2,613	198	2,496	95.52	SOUTH CAROLINA	6,180	${ }^{9} 93$	414	2,426	260.02
SOUTH DAKOTA	46,879	, 524	31	823	157.06	SOUTH DAKOTA	1,010	223	605	2,487	218.39
TENNESSEE	49,267	1,564	87	4,753	303.90	TENNESSEE	8,562	3,912	1,252	8,405	214.85
TEXAS UTAH	142,158	4,691	90	15,234	324.75	TEXAS	47.848	18,393	1,053	81,368	442.39
UTAH	30,361 8.770	509 372	46 115	$\begin{array}{r}763 \\ \hline 947\end{array}$	149.90	UTAH	3,701	1,292	955	2,826	218.73
virginia	33,769	5092 2,893	116 235	947 4,696	254.57 162.32	VERMONT	547	. 195	977	281	144.10
WASHINGTON	52,367	- 544	28	1,522	162.32 279.78	VIRGINIA	8.927	3,765	1,155	6,248	165.95
WEST VIRGINIA	20,546	920	123	3,444	374.35	WAST VIRGINIA	9,900	678	188	5.821	858.55
WISCONSIN	67,486	1,648	67	5,633	341.81	WISCONSIN	1,898	- 215	312	2,202	1,019.44
WYOMING	22,756	239	29	615	257.32	WYOMING	893	3,125	884 384	13,520	449.92 308.00
SUBTOTAL	1.894.192	66,918	97	182,285	272.40	subtotal	362,544	108,586	821	402,512	370.68
INCOMPLETE DATA ARKANSAS						INCOMPLETE DATA					
FLORIDA											
ILLINOIS						ILLINOIS		*			.
MARYLAND						MARYLAND					
MASSACHUSETTS						MASSACRUSETTS					
NEW HAMPSHIRE						NEW HAMPSHIRE					
NORTH CAROLINA OKLAHOMA						NORTH CAROLINA					
RHODE ISLAND						OKLAROMA RHODE ISLAND					

A. Highway Mileage

Vehicle mileage rates for the United States; listed in Table 1, are the most common measure of safety performance. For some purposes, rates per mile of highway may be more useful. These are listed in Table 7. Note that, because of the concentration of travel on highway systems with the fewest fatalities per vehicle-mile, highways on these systems tend to have the highest number of fatalities per highway mile.

B. Population

Population rates are most useful for comparing motor vehicle accidents with other public health problems. In 1978, only heart disease, cancer, stroke, and pneumonia were responsible for more deaths, according to the National Center for Health Statistics. State rates per thousand residents are listed in Table 8 for fatal and nonfatal injury accidents, fatalities, and nonfatally injured persons.
C. Licensed Drivers

The number of accidents per licensed driver reflects both the care with which drivers operate their vehicles and the amount of travel under various conditions. State accident, fatality, and injury rates per licensed driver are listed in Table 9.
D. Registered Vehicles

As is the case with licensed drivers, the number of accidents per registered vehicle is affected both by the care with which the vehicle is driven and the amount of travel under various conditions. State rates per registered vehicle are listed in Table 10.
table 7. U.S. highmay-mile rates by highway system - $1983{ }^{1}$

HIGHWAY SYSTEM	HIGHWAY MILES $2 /$	$\begin{gathered} \text { VEHICLE } \\ \text { MILES } \\ \text { (MILLIONS) } \\ Z / \end{gathered}$	DAILY VEHICLE MILES PER MILE	FATAL ACCIDENTS		NONFATAL INJURY ACCIDENTS $4 /$		FATALITIES		NONFATALLY 	
				NUMBER	RATE $3 /$	NUMBER	RATE $3 /$	NUMBER	RATE $3 /$	NUMBER	RATE 3/
INTERSTATE (ARTERIAL) RURAL IJRBAM total	$\begin{aligned} & 32,788 \\ & 10,240 \\ & 43,028 \end{aligned}$	$\begin{aligned} & 144,733 \\ & 191,149 \\ & 335,882 \end{aligned}$	$\begin{aligned} & 12,094 \\ & 51,142 \\ & 21,387 \end{aligned}$	$\begin{aligned} & 1,872 \\ & 1,719 \\ & 3,591 \end{aligned}$	$\begin{array}{r} 57.09 \\ 167.87 \\ 83.46 \end{array}$	$\begin{array}{r} 36,534 \\ 91,765 \\ 128,299 \end{array}$	$\begin{aligned} & 1,114.2 \\ & 8,961.4 \\ & 2,981.8 \end{aligned}$	$\begin{aligned} & 2,178 \\ & 1,929 \\ & 4,107 \end{aligned}$	$\begin{array}{r} 66.43 \\ 188.38 \\ 95.45 \end{array}$	$\begin{array}{r} 58,421 \\ 136,945 \\ 195,366 \end{array}$	$\begin{array}{r} 1,781.8 \\ 13,373.5 \\ 4,540.4 \end{array}$
OTHER FEDERAL-AID PRIMARY (ARTERIAL) RURAL URBAN TOTAL	$\begin{array}{r} 225,928 \\ 31,084 \\ 257,012 \end{array}$	$\begin{aligned} & 269,712 \\ & 213,460 \\ & 483,172 \end{aligned}$	$\begin{array}{r} 3,271 \\ 18,814 \\ 5,151 \end{array}$	$\begin{array}{r} 8,540 \\ 3,580 \\ 12,220 \end{array}$	$\begin{array}{r} 38.24 \\ 115.17 \\ 47.55 \end{array}$	$\begin{aligned} & 196.408 \\ & 253.111 \\ & 449.519 \end{aligned}$	$\begin{array}{r} 869.3 \\ 8,142.8 \\ 1,749.0 \end{array}$	$\begin{array}{r} 10,266 \\ 3,987 \\ 14,253 \end{array}$	$\begin{array}{r} 45.44 \\ 128.27 \\ 55.45 \end{array}$	$\begin{aligned} & 326,882 \\ & 386,774 \\ & 713,656 \end{aligned}$	$\begin{array}{r} 1,446.8 \\ 12,442.9 \\ 2,776.7 \end{array}$
FEDERAL-AID URBAN ARTERIAL collectar total (all urban)	$\begin{array}{r} 83,544 \\ 53,251 \\ 137,195 \end{array}$	$\begin{array}{r} 292,638 \\ 67,379 \\ 360,017 \end{array}$	$\begin{aligned} & 9,551 \\ & 3,467 \\ & 7,189 \end{aligned}$	$\begin{aligned} & 6,595 \\ & 1,368 \\ & 7,963 \end{aligned}$	$\begin{aligned} & 78.56 \\ & 25.65 \\ & 58.04 \end{aligned}$	$\begin{aligned} & 513,500 \\ & 112,276 \\ & 625,776 \end{aligned}$	$\begin{aligned} & 6,117.2 \\ & 2,100.4 \\ & 4,561.2 \end{aligned}$	$\begin{aligned} & 7,091 \\ & 1,469 \\ & 8,560 \end{aligned}$	$\begin{aligned} & 84.47 \\ & 27.59 \\ & 62.39 \end{aligned}$	$\begin{aligned} & 762,635 \\ & 160,505 \\ & 923,140 \end{aligned}$	$\begin{aligned} & 9,085.0 \\ & 3,014.1 \\ & 6,728.7 \end{aligned}$
FEDERAL-AID sECONDARY (COLLECTOR) TOTAL (ALL RURAL)	397,329	148,250	1,022	5,259	13.24	146,211	369.0	6,017	15.14	227,177	571.8
```NON-FEDERAL-AID ARTERIAL RURAL URBAN TOTAL```	$\begin{array}{r} 2,861 \\ 8,317 \\ 11,178 \end{array}$	$\begin{array}{r} 3,671 \\ 24,487 \\ 28,158 \end{array}$	$\begin{aligned} & 3,515 \\ & 8,066 \\ & 5,902 \end{aligned}$	69 613 682	$\begin{aligned} & 24.12 \\ & 73.70 \\ & 61.01 \end{aligned}$	$\begin{array}{r} 2,392 \\ 24,150 \\ 26,542 \end{array}$	$\begin{array}{r} 836.1 \\ 2,903.7 \\ 2,374.5 \end{array}$	$\begin{array}{r} 87 \\ 640 \\ 727 \end{array}$	$\begin{aligned} & 30.41 \\ & 76.95 \\ & 65.04 \end{aligned}$	$\begin{array}{r} 4,316 \\ 36,063 \\ 40,379 \end{array}$	$\begin{aligned} & 1,508.6 \\ & 4,336.1 \\ & 3,612.4 \end{aligned}$
```NON-FEDERAL-AID COLLECTOR RURAL URBAN TOTAL```	$\begin{array}{r} 336,990 \\ 19,278 \\ 356,268 \end{array}$	$\begin{aligned} & 52,342 \\ & 19,213 \\ & 71,555 \end{aligned}$	426 2,730 550	$\begin{array}{r} 1,867 \\ 332 \\ 2,199 \end{array}$	5.54 17.22 6.17	$\begin{aligned} & 74,936 \\ & 22,383 \\ & 97,319 \end{aligned}$	$\begin{array}{r} 222.4 \\ 1,161.1 \\ 273.2 \end{array}$	$\begin{array}{r} 2,061 \\ 355 \\ 2,416 \end{array}$	6.12 18.41 6.78	$\begin{aligned} & 111,441 \\ & 32,473 \\ & 143,914 \end{aligned}$	$\begin{array}{r} 330.7 \\ 1,684.5 \\ 403.9 \end{array}$
NON-FEDERAL-AID LOCAL RURAL URBAN total	$\begin{aligned} & 2,221,392 \\ & 456,236 \\ & 2,677,628 \end{aligned}$	$\begin{array}{r} 81,825 \\ 140,247 \\ 222,072 \end{array}$	101 842 227	3,373 2,679 6,052	1.52 5.87 2.26	$\begin{aligned} & 156,210 \\ & 375,562 \\ & 531,772 \end{aligned}$	$\begin{array}{r} 70.3 \\ 823.2 \\ 198.6 \end{array}$	$\begin{aligned} & 3,684 \\ & 2,832 \\ & 6,516 \end{aligned}$	1.66 6.21 2.43	$\begin{aligned} & 227,311 \\ & 530,177 \\ & 757,488 \end{aligned}$	$\begin{array}{r} 102.3 \\ 1.152 .1 \\ 282.9 \end{array}$
	$\begin{aligned} & 656,045 \\ & 178,519 \\ & 834,564 \end{aligned}$	$\begin{array}{r} 562,695 \\ 764,626 \\ 1,327,321 \end{array}$	$\begin{array}{r} 2,350 \\ 11,735 \\ 4,357 \end{array}$	$\begin{aligned} & 15,771 \\ & 13,262 \\ & 29,033 \end{aligned}$	$\begin{aligned} & 24.04 \\ & 74.29 \\ & 34.79 \end{aligned}$	$\begin{array}{r} 379,153 \\ 970,652 \\ 1,349,605 \end{array}$	$\begin{array}{r} 577.9 \\ 5,437.2 \\ 1.617 .4 \end{array}$	$\begin{aligned} & 18,461 \\ & 14,476 \\ & 32,937 \end{aligned}$	$\begin{aligned} & 28.14 \\ & 81.09 \\ & 39.47 \end{aligned}$	$\begin{array}{r} 612,480 \\ 1,446,859 \\ 2,059,339 \end{array}$	$\begin{array}{r} 933.8 \\ 8,104.8 \\ 2,467.6 \end{array}$
$\begin{aligned} & \text { ALL NON-FEDERAL-AID } \\ & \text { RURAL } \\ & \text { URBAN } \\ & \text { TOTAL } \\ & \hline \end{aligned}$	$\begin{aligned} & 2,561,243 \\ & 483,831 \\ & 3,045,074 \end{aligned}$	$\begin{aligned} & 137,838 \\ & 183,947 \\ & 321,785 \end{aligned}$	147 1.042 290	$\begin{aligned} & 5,309 \\ & 3,624 \\ & 8,933 \end{aligned}$	2.07 7.49 2.93	$\begin{aligned} & 233,538 \\ & 422,095 \\ & 655,633 \end{aligned}$	91.2 972.4 215.3	$\begin{aligned} & 5,832 \\ & 3,827 \\ & 9,659 \end{aligned}$	2.28 7.91 3.17	$\begin{aligned} & 343,068 \\ & 598,713 \\ & 941,781 \end{aligned}$	$\begin{array}{r} 133.5 \\ 1,237.4 \\ 309.3 \end{array}$
NON-INTERSTATE rural URBAN total	$\begin{aligned} & 3,184,500 \\ & 652,110 \\ & 3,836,610 \end{aligned}$	$\begin{array}{r} 555,800 \\ 757,424 \\ 1,313,224 \end{array}$	$\begin{array}{r} 478 \\ 3,182 \\ 938 \end{array}$	$\begin{aligned} & 19,208 \\ & 15,167 \\ & 34,375 \end{aligned}$	6.03 23.26 8.96	$\begin{array}{r} 576,157 \\ 1,300,982 \\ 1,877,139 \end{array}$	$\begin{array}{r} 180.9 \\ 1,995.0 \\ 489.3 \end{array}$	$\begin{aligned} & 22,115 \\ & 16,374 \\ & 38,489 \end{aligned}$	$\begin{array}{r} 6.94 \\ 25.11 \\ 10.03 \end{array}$	$\begin{array}{r} 897,127 \\ 1,908,627 \\ 2,805,754 \end{array}$	$\begin{array}{r} 291.7 \\ 2.526 .8 \\ 731.3 \end{array}$
TOTAL RURAL URBAN TOTAL	$\begin{array}{r} 3,217,288 \\ 362,350 \\ 3,879,638 \end{array}$	$\begin{array}{r} 700,533 \\ 948,573 \\ 1,649,106 \end{array}$	$\begin{array}{r} 597 \\ 3,924 \\ 1,165 \end{array}$	$\begin{aligned} & 21,080 \\ & 16,886 \\ & 37,966 \end{aligned}$	6.55 25.49 9.79	$\begin{array}{r} 612,691 \\ 1,392,747 \\ 2,005,438 \end{array}$	$\begin{array}{r} 190.4 \\ 2.102 .7 \\ 516.9 \end{array}$	$\begin{aligned} & 24,293 \\ & 19,303 \\ & 42,596 \end{aligned}$	$\begin{array}{r} 7.55 \\ 27.63 \\ 10.58 \end{array}$	$\begin{array}{r} 955,548 \\ 2,045,572 \\ 3,001,120 \end{array}$	$\begin{array}{r} 297.0 \\ 3,083.4 \\ 773.6 \end{array}$
					OF TRAVEL ARE FROM THE HPMS AREANIDE SUMMARY TABLES AS OF SEPTEMBER 30, 1984. FEDERAL HIGHWAY ADMINISTRATION ESTIMATES WERE MADE FOR MAJOR HIGHWAY CATEGORIES WHERE COMPLETE FUNCTIONAL OR FEDERAL-AID SYSTEM DATA WERE NOT REPORTED. 3/ RATES ARE PER 1000 HIGHWAY MILES. INJURED PERSONS WERE ESTIMATED SY FHWA FOR ARKANSAS, FLORIDA, illinois, maine, maryland, massachusetts, new hampshire and rhode ISLAND.						

TABLE 8. FATAL AND INJURY ACCIDENT DATA
 RELATED TO POPULATION - 1983

STATE	POPULATION		RATES PER THOUSAND PERSONS			
	NUMBER (THOUSANDS)	```VEHICLE MILES PER CAPITA```	FATAL ACCIDENT RATE	$\begin{aligned} & \text { FATALITY } \\ & \text { RATE } \end{aligned}$	NONFATAL INJURY ACCIDENT RATE	NONFATAL INJURY RATE
ALABAMA ALASKA ARIZONA ARKANSAS	$\begin{array}{r} 3,959 \\ 479 \\ 2,963 \\ 2,328 \end{array}$	$\begin{aligned} & 7,838 \\ & 7,010 \\ & 6,619 \\ & 7,167 \end{aligned}$	$\begin{aligned} & 0.21 \\ & 0.28 \\ & 0.21 \\ & 0.21 \end{aligned}$	$\begin{aligned} & 0.24 \\ & 0.31 \\ & 0.23 \\ & 0.24 \end{aligned}$	$\begin{array}{r} 5.74 \\ 9.35 \\ 10.69 \\ 1 / 0.00 \end{array}$	$\begin{array}{r} 8.25 \\ 14.00 \\ 16.90 \\ 1 \quad 0.00 \end{array}$
CALIFORNIA COLORADO CONNECTICUT DELAWARE	$\begin{array}{r} 25,174 \\ 3,139 \\ 3,138 \\ 606 \end{array}$	$\begin{aligned} & 7,256 \\ & 7,680 \\ & 6,574 \\ & 8,063 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.19 \\ & 0.13 \\ & 0.16 \end{aligned}$	$\begin{aligned} & 0.18 \\ & 0.21 \\ & 0.14 \\ & 0.18 \end{aligned}$	$\begin{array}{r} 7.80 \\ 8.86 \\ 10.27 \\ 7.59 \end{array}$	$\begin{aligned} & 11.62 \\ & 12.94 \\ & 14.34 \\ & 11.44 \end{aligned}$
$\begin{aligned} & \text { DIST. OF COL. } \\ & \text { FLORIDA } \\ & \text { GEORGIA } \\ & \text { HAWAII } \end{aligned}$	$\begin{array}{r} 623 \\ 10,680 \\ 5,732 \\ 1,023 \end{array}$	$\begin{aligned} & 4,974 \\ & 7,657 \\ & 8,520 \\ & 5,741 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.23 \\ & 0.20 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.12 \\ & 0.25 \\ & 0.23 \\ & 0.14 \end{aligned}$	$\begin{array}{r} 14.60 \\ 1 / 0.00 \\ 7.56 \\ 8.08 \end{array}$	$\begin{array}{r} 21.63 \\ 0.00 \\ 11.26 \\ 11.56 \end{array}$
IDAHO ILLINOIS I NDIANA I OWA	$\begin{array}{r} 989 \\ 11,486 \\ 5,479 \\ 2,905 \end{array}$	$\begin{aligned} & 8,379 \\ & 5,865 \\ & 7,271 \\ & 6,768 \end{aligned}$	$\begin{aligned} & 0.23 \\ & 0.12 \\ & 0.16 \\ & 0.15 \end{aligned}$	$\begin{aligned} & 0.27 \\ & 0.13 \\ & 0.19 \\ & 0.18 \end{aligned}$	$1 / 8.33$ 1 $\begin{aligned} & 0.00 \\ & 7.75 \\ & 6.21\end{aligned}$	$\begin{array}{r} 11.33 \\ 0.00 \\ 11.37 \\ 8.97 \end{array}$
KANSAS KENTUCKY LOUISIANA MAINE	$\begin{aligned} & 2,425 \\ & 3,714 \\ & 4,438 \\ & 1,146 \end{aligned}$	$\begin{aligned} & 7,486 \\ & 7,194 \\ & 6,213 \\ & 6,914 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.19 \\ & 0.19 \\ & 0.17 \end{aligned}$	$\begin{aligned} & 0.17 \\ & 0.21 \\ & 0.21 \\ & 0.20 \end{aligned}$	$\begin{array}{r} 8.12 \\ 7.47 \\ 10.08 \\ 1 \quad 0.00 \end{array}$	$\begin{array}{r} 12.09 \\ 11.18 \\ 16.72 \\ 1 \quad 0.00 \end{array}$
MARVLAND MASSACHUSETTS MICHIGAN MINNESOTA	$\begin{aligned} & 4,304 \\ & 5,767 \\ & 9,069 \\ & 4,144 \end{aligned}$	$\begin{aligned} & 7,114 \\ & 6,510 \\ & 6,710 \\ & 7,496 \end{aligned}$	$\begin{aligned} & 0.14 \\ & 0.10 \\ & 0.13 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.11 \\ & 0.14 \\ & 0.13 \end{aligned}$	$\begin{array}{r} 1 / 0.00 \\ 1 / \\ \\ \\ \\ \\ \\ \\ 6.0 .02 \\ 6.38 \end{array}$	$\begin{array}{r} 1 / \\ 1 / 000 \\ \\ \\ \\ \\ \\ \\ \hline .0 .98 \\ 9.20 \end{array}$
MISSISSIPPI MISSOURI MONTANA NEBRASKA	$\begin{array}{r} 2,587 \\ 4,970 \\ 817 \\ 1,597 \end{array}$	$\begin{aligned} & 6,881 \\ & 7,353 \\ & 8,789 \\ & 7,222 \end{aligned}$	$\begin{aligned} & 0.24 \\ & 0.16 \\ & 0.31 \\ & 0.14 \end{aligned}$	$\begin{aligned} & 0.28 \\ & 0.18 \\ & 0.35 \\ & 0.16 \end{aligned}$	$\begin{aligned} & 3.70 \\ & 7.33 \\ & 7.48 \\ & 8.34 \end{aligned}$	$\begin{array}{r} 5.57 \\ 11.04 \\ 11.44 \\ 12.45 \end{array}$
NEVADA NEW HAMPSHIRE NEW JERSEY NEW MEXICO	$\begin{array}{r} 891 \\ 959 \\ 7,468 \\ 1,399 \end{array}$	$\begin{aligned} & 7,713 \\ & 7,488 \\ & 6,992 \\ & 8,347 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.17 \\ & 0.12 \\ & 0.34 \end{aligned}$	$\begin{aligned} & 0.28 \\ & 0.20 \\ & 0.12 \\ & 0.39 \end{aligned}$	$\begin{array}{r} 8.87 \\ 1 \\ 0.00 \\ 10.83 \\ 10.69 \end{array}$	$\begin{array}{r} 13.44 \\ 0.00 \\ 16.15 \\ 16.53 \end{array}$
NEW YORK NORTH CAROLINA NORTH DAKOTA OHIO	$\begin{array}{r} 17,667 \\ 6,092 \\ 680 \\ 10,746 \end{array}$	$\begin{aligned} & 4,742 \\ & 7,405 \\ & 7,887 \\ & 6,813 \end{aligned}$	$\begin{aligned} & 0.11 \\ & 0.18 \\ & 0.15 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.12 \\ & 0.20 \\ & 0.17 \\ & 0.15 \end{aligned}$	$\begin{aligned} & 9.73 \\ & 8.76 \\ & 5.31 \\ & 9.62 \end{aligned}$	$\begin{array}{r} 14.22 \\ 13.81 \\ 8.08 \\ 15.12 \end{array}$
$\begin{aligned} & \text { OKLAHOMA } \\ & \text { OREGON } \\ & \text { PENNSYLVANIA } \\ & \text { RHODE ISLAND } \end{aligned}$	$\begin{array}{r} 3,298 \\ 2,662 \\ 11,895 \\ 955 \end{array}$	$\begin{aligned} & 8,965 \\ & 7,722 \\ & 6,078 \\ & 6,297 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.18 \\ & 0.13 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.21 \\ & 0.14 \\ & 0.10 \end{aligned}$	$\begin{array}{r} E .60 \\ 8.67 \\ 7.09 \\ 1 \quad 0.00 \end{array}$	$\begin{array}{r} 9.77 \\ 14.04 \\ 10.60 \\ 1 \quad 0.00 \end{array}$
SOUTH CAROLINA SOUTH DAKOTA TENNESSEE TEXAS	$\begin{array}{r} 3,264 \\ 700 \\ 4,685 \\ 15,724 \end{array}$	$\begin{aligned} & 7,652 \\ & 9,024 \\ & 7,740 \\ & 8,387 \end{aligned}$	$\begin{aligned} & 0.23 \\ & 0.21 \\ & 0.20 \\ & 0.21 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.25 \\ & 0.22 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 4.88 \\ & 5.95 \\ & 8.01 \\ & 8.76 \end{aligned}$	$\begin{array}{r} 7.19 \\ 8.95 \\ 11.58 \\ 13.24 \end{array}$
UTAH VERMDNT VIRGINIA WASHINGTON	$\begin{array}{r} 1,619 \\ 525 \\ 5,550 \\ 4,300 \end{array}$	$\begin{aligned} & 6,931 \\ & 7,907 \\ & 7,621 \\ & 8,406 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.16 \\ & 0.14 \\ & 0.15 \end{aligned}$	$\begin{aligned} & 0.17 \\ & 0.18 \\ & 0.16 \\ & 0.16 \end{aligned}$	$\begin{aligned} & 7.61 \\ & 7.69 \\ & 7.87 \\ & 9.37 \end{aligned}$	$\begin{aligned} & 11.68 \\ & 11.50 \\ & 11.18 \\ & 13.95 \end{aligned}$
WEST VIRGINIA WISCONSIN WYOMING	$\begin{array}{r} 1,965 \\ 4,751 \\ 514 \end{array}$	$\begin{aligned} & 5,952 \\ & 7,179 \\ & 9, B 42 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.14 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.15 \\ & 0.34 \end{aligned}$	$\begin{aligned} & \text { B. } 24 \\ & 8.06 \\ & 6.99 \end{aligned}$	$\begin{aligned} & 12.91 \\ & 11.59 \\ & 10.72 \end{aligned}$
U.S. TOTAL	233,980	7.048	0.16	0.18	$2 / 8.57$	$3 / 12.83$
$1 /$ RATE COULD NOT BE COMPUTED BECAUSE DATA WAS NOT REPORTED OR WAS NOT USABLE$\frac{2}{2 /}$ THE RATE IS BASED ON THE ESTIMATED U. S. TOTAL OF NONFATAL INJURY ACCIDENTS FROM TABLE 2 .3/ THE RATE IS BASED ON THE ESTIMATED U. S. TOTAL OF NONFATALLY INJURED PERSONS FROM TABLE 2 .						

TABLE 9. FATAL AND INJURY ACCIDENT DATA RELATED TO LICENSED DRIVERS - 1983

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{STATE} \& \multicolumn{2}{|l|}{LICENSED DRIVERS} \& \multicolumn{4}{|c|}{RATES PER THOUSAND DRIVERS} \\
\hline \& NUMBER (THOUSANDS) \& ```
VEHICLE
MILES
PER
DRIVER
``` \& FATAL ACCIDENT RATE \& \[
\begin{aligned}
\& \text { FATALITY } \\
\& \text { RATE }
\end{aligned}
\] \& NONFATAL INJURY ACCIDENT RATE \& NONFATAL INJURY RATE \\
\hline \begin{tabular}{l}
alabama \\
ALASKA \\
ARIZONA \\
ARKANSAS
\end{tabular} \& \[
\begin{aligned}
\& 2,394 \\
\& 289 \\
\& 2,179 \\
\& 1,650
\end{aligned}
\] \& \[
\begin{array}{r}
12,962 \\
11,619 \\
9,000 \\
10,112
\end{array}
\] \& \[
\begin{aligned}
\& 0.34 \\
\& 0.47 \\
\& 0.28 \\
\& 0.29
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.39 \\
\& 0.52 \\
\& 0.31 \\
\& 0.34
\end{aligned}
\] \& \[
\begin{array}{r}
9.49 \\
15.49 \\
14.54 \\
1 \quad 0.00
\end{array}
\] \& \[
\begin{array}{r}
13.65 \\
23.20 \\
22.98 \\
1 / \quad 0.00
\end{array}
\] \\
\hline \[
\begin{aligned}
\& \text { CALIFORNIA } \\
\& \text { COLORADO } \\
\& \text { CONNECTICUT } \\
\& \text { DELAWARE }
\end{aligned}
\] \& \[
\begin{array}{r}
16,649 \\
2,229 \\
2,250 \\
432
\end{array}
\] \& \[
\begin{array}{r}
10,971 \\
10,816 \\
9,169 \\
11,310
\end{array}
\] \& \[
\begin{aligned}
\& 0.25 \\
\& 0.27 \\
\& 0.18 \\
\& 0.23
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.27 \\
\& 0.29 \\
\& 0.19 \\
\& 0.25
\end{aligned}
\] \& \[
\begin{aligned}
\& 11.80 \\
\& 12.47 \\
\& 14.33 \\
\& 10.64
\end{aligned}
\] \& \[
\begin{aligned}
\& 17.57 \\
\& 18.22 \\
\& 20.00 \\
\& 16.05
\end{aligned}
\] \\
\hline ```
DIST. OF COL.
FLORIDA
GEORGIA
HAWAII
``` \& \[
\begin{array}{r}
370 \\
8,347 \\
3+725 \\
575
\end{array}
\] \& \[
\begin{array}{r}
8,376 \\
9,797 \\
13,111 \\
10,214
\end{array}
\] \& \[
\begin{aligned}
\& 0.17 \\
\& 0.29 \\
\& 0.31 \\
\& 0.23
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.19 \\
\& 0.32 \\
\& 0.35 \\
\& 0.24
\end{aligned}
\] \& \[
\begin{array}{r}
24.58 \\
0.00 \\
11.63 \\
14.37
\end{array}
\] \& \[
\begin{array}{r}
36.43 \\
0.00 \\
17.33 \\
20.57
\end{array}
\] \\
\hline \begin{tabular}{l}
IDAHO \\
ILLINOIS \\
INDIANA I OWA
\end{tabular} \& \[
\begin{aligned}
\& 648 \\
\& 6,985 \\
\& 3,551 \\
\& 1,929
\end{aligned}
\] \& \[
\begin{array}{r}
12,789 \\
9,645 \\
11,219 \\
10,192
\end{array}
\] \& \[
\begin{aligned}
\& 0.36 \\
\& 0.20 \\
\& 0.25 \\
\& 0.22
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.41 \\
\& 0.22 \\
\& 0.29 \\
\& 0.26
\end{aligned}
\] \& \(1 \begin{array}{r}11.19 \\ 0.00 \\ 11.95 \\ 9.36\end{array}\) \& \[
\begin{array}{r}
17.30 \\
1 / 0.00 \\
17.54 \\
13.50
\end{array}
\] \\
\hline \begin{tabular}{l}
KANSAS \\
KENTUCKY \\
LOUISIANA \\
MA INE
\end{tabular} \& \[
\begin{array}{r}
1,681 \\
2,193 \\
2,767 \\
770
\end{array}
\] \& \[
\begin{array}{r}
10,799 \\
12,184 \\
9,965 \\
10,291
\end{array}
\] \& \[
\begin{aligned}
\& 0.21 \\
\& 0.31 \\
\& 0.30 \\
\& 0.26
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.24 \\
\& 0.35 \\
\& 0.34 \\
\& 0.29
\end{aligned}
\] \& \[
\begin{array}{r}
11.71 \\
\\
12.65 \\
16.16 \\
1 \quad 0.00
\end{array}
\] \& \[
\begin{array}{r}
17.44 \\
18.93 \\
26.82 \\
1 \quad 0.00
\end{array}
\] \\
\hline MAR YLAND MASSACHUSETTS MICHIGAN MINNESOTA \& \[
\begin{aligned}
\& 2,799 \\
\& 3,679 \\
\& 6,345 \\
\& 2,374
\end{aligned}
\] \& \[
\begin{array}{r}
10,939 \\
10,204 \\
9,591 \\
13,085
\end{array}
\] \& \[
\begin{aligned}
\& 0.22 \\
\& 0.16 \\
\& 0.19 \\
\& 0.21
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.23 \\
\& 0.18 \\
\& 0.21 \\
\& 0.23
\end{aligned}
\] \& \(1 / 1\)
\(1 /\)

0.000
14.32

11.15 \& $$
\begin{array}{ll}
\nu & 0.00 \\
\nu & 0.00 \\
21.40 \\
& 16.05
\end{array}
$$

\hline ```
MISSISSIPPI
MISSOURI
MONTANA
NEBRASKA

``` & \[
\begin{aligned}
& 1,803 \\
& 3,323 \\
& 489 \\
& 1,095
\end{aligned}
\] & \[
\begin{array}{r}
9,874 \\
10,997 \\
14,585 \\
10,533
\end{array}
\] & \[
\begin{aligned}
& 0.35 \\
& 0.24 \\
& 0.52 \\
& 0.20
\end{aligned}
\] & \[
\begin{aligned}
& 0.40 \\
& 0.27 \\
& 0.58 \\
& 0.23
\end{aligned}
\] & \[
\begin{array}{r}
5.30 \\
10.96 \\
12.49 \\
12.16
\end{array}
\] & \[
\begin{array}{r}
8.00 \\
16.51 \\
19.11 \\
18.16
\end{array}
\] \\
\hline \begin{tabular}{l}
NEVADA \\
NEW HAMPSHIRE \\
NEW JERSEY \\
NEW MEXICO
\end{tabular} & \[
\begin{array}{r}
676 \\
697 \\
5,459 \\
765
\end{array}
\] & \[
\begin{array}{r}
10,166 \\
10,303 \\
9,565 \\
15,245
\end{array}
\] & \[
\begin{aligned}
& 0.32 \\
& 0.24 \\
& 0.16 \\
& 0.62
\end{aligned}
\] & \[
\begin{aligned}
& 0.37 \\
& 0.27 \\
& 0.17 \\
& 0.72
\end{aligned}
\] & \[
1 / \begin{array}{r}
11.69 \\
0.00 \\
14.81 \\
19.52
\end{array}
\] & \[
\begin{array}{r}
17.71 \\
0.00 \\
22.09 \\
30.18
\end{array}
\] \\
\hline \begin{tabular}{l}
NEW YORK \\
NORTH CAROLINA \\
NORTH DAKOTA \\
OHIO
\end{tabular} & \[
\begin{array}{r}
9,606 \\
3,966 \\
432 \\
7,397
\end{array}
\] & \[
\begin{array}{r}
8,722 \\
11,356 \\
12,414 \\
9,898
\end{array}
\] & \[
\begin{aligned}
& 0.20 \\
& 0.27 \\
& 0.24 \\
& 0.19
\end{aligned}
\] & \[
\begin{aligned}
& 0.22 \\
& 0.31 \\
& 0.27 \\
& 0.21
\end{aligned}
\] & \[
\begin{array}{r}
17.89 \\
13.44 \\
8.37 \\
13.98
\end{array}
\] & \[
\begin{aligned}
& 26.16 \\
& 21.18 \\
& 12.72 \\
& 21.96
\end{aligned}
\] \\
\hline \begin{tabular}{l}
OKLAHOMA \\
OREGON \\
PENNSYLVANIA \\
RHODE ISLAND
\end{tabular} & \[
\begin{array}{r}
2,174 \\
1,901 \\
7,443 \\
603
\end{array}
\] & \[
\begin{array}{r}
13,599 \\
10,814 \\
9,714 \\
9,973
\end{array}
\] & \[
\begin{aligned}
& 0.33 \\
& 0.25 \\
& 0.21 \\
& 0.16
\end{aligned}
\] & \[
\begin{aligned}
& 0.39 \\
& 0.29 \\
& 0.23 \\
& 0.17
\end{aligned}
\] & \[
\begin{array}{r}
10.02 \\
12.13 \\
11.34 \\
1 / 0.00
\end{array}
\] & \[
\begin{array}{r}
14.83 \\
19.66 \\
16.94 \\
1 \quad 0.00
\end{array}
\] \\
\hline SOUTH CAROLINA SOUTH DAKOTA tennessee TEXAS & \[
\begin{array}{r}
2,008 \\
482 \\
2,933 \\
11,406
\end{array}
\] & \[
\begin{aligned}
& 12,439 \\
& 13,106 \\
& 12,363 \\
& 11,563
\end{aligned}
\] & \[
\begin{aligned}
& 0.37 \\
& 0.30 \\
& 0.31 \\
& 0.29
\end{aligned}
\] & \[
\begin{aligned}
& 0.42 \\
& 0.36 \\
& 0.35 \\
& 0.34
\end{aligned}
\] & \[
\begin{array}{r}
7.93 \\
8.64 \\
12.80 \\
12.07
\end{array}
\] & \[
\begin{aligned}
& 11.68 \\
& 13.00 \\
& 18.49 \\
& 18.25
\end{aligned}
\] \\
\hline \begin{tabular}{l}
UTAH \\
VERMONT \\
VIRGINIA \\
WASHINGTON
\end{tabular} & \[
\begin{array}{r}
926 \\
361 \\
3,704 \\
2,867
\end{array}
\] & \[
\begin{aligned}
& 12,118 \\
& 11,499 \\
& 11,420 \\
& 12,607
\end{aligned}
\] & \[
\begin{aligned}
& 0.27 \\
& 0.24 \\
& 0.22 \\
& 0.22
\end{aligned}
\] & \[
\begin{aligned}
& 0.31 \\
& 0.26 \\
& 0.24 \\
& 0.24
\end{aligned}
\] & \[
\begin{aligned}
& 13.30 \\
& 11.18 \\
& 11.80 \\
& 14.05
\end{aligned}
\] & \[
\begin{aligned}
& 20.42 \\
& 16.73 \\
& 16.75 \\
& 20.92
\end{aligned}
\] \\
\hline WEST VIRGINIA WISCONSIN WYOMING & \[
\begin{array}{r}
1,417 \\
3,086 \\
394
\end{array}
\] & \[
\begin{array}{r}
8,254 \\
11,052 \\
12,840
\end{array}
\] & \[
\begin{aligned}
& 0.28 \\
& 0.21 \\
& 0.39
\end{aligned}
\] & \[
\begin{aligned}
& 0.31 \\
& 0.23 \\
& 0.44
\end{aligned}
\] & \[
\begin{array}{r}
11.43 \\
12.41 \\
9.12
\end{array}
\] & \[
\begin{aligned}
& 17.91 \\
& 17.84 \\
& 13.99
\end{aligned}
\] \\
\hline U.S. TOTAL & 154,220 & 10,693 & 0.25 & 0.28 & 2113.00 & 3/19.46 \\
\hline \multicolumn{7}{|l|}{\(1 /\) RATE COULD NOT BE COMPUTED BECAUSE DATA WAS NOT REPORTED OR WAS NOT USABLE.
\(2 /\) THE RATE IS BASED ON THE ESTIMATED U. S. TOTAL OF NONFATAL INJURY ACCIDENTS FROM TABLE 2 .
\(3 / ~ T H E ~ R A T E ~ I S ~ B A S E D ~ O N ~ T H E ~ E S T I M A T E D ~ U . ~ S . ~ T O T A L ~ O F ~ N O N F A T A L L Y ~ I N J U R E D ~ P E R S O N S ~ F R O M ~ T A B L E ~\)
\(2 / 2\)} \\
\hline
\end{tabular}

\title{
TABLE 10. FATAL AND INJURY ACCIDENT DATA \\ RELATED TO VEHICLE REGISTRATIONS - 1983
}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{STATE} & \multicolumn{2}{|l|}{REGISTERED VEHICLES} & \multicolumn{4}{|c|}{RATES PER THOUSAND VEHICLES} \\
\hline & NUMBER (THOUSANDS) & \[
\begin{aligned}
& \text { VEHICLE } \\
& \text { MILES } \\
& \text { PER } \\
& \text { VEHICLE }
\end{aligned}
\] & FATAL ACCIDENT RATE & \[
\begin{aligned}
& \text { FATALITY } \\
& \text { RATE }
\end{aligned}
\] & \begin{tabular}{l}
NONFATAL \\
INJURY ACCIDENT RATE
\end{tabular} & NONFATAL INJURY RATE \\
\hline \begin{tabular}{l}
ALABAMA \\
ALASKA \\
ARIZONA \\
ARKANSAS
\end{tabular} & \[
\begin{array}{r}
3,145 \\
350 \\
2,289 \\
1,445
\end{array}
\] & \[
\begin{array}{r}
9,867 \\
9,594 \\
8,567 \\
11,546
\end{array}
\] & \[
\begin{aligned}
& 0.26 \\
& 0.39 \\
& 0.27 \\
& 0.34
\end{aligned}
\] & \[
\begin{aligned}
& 0.30 \\
& 0.43 \\
& 0.29 \\
& 0.39
\end{aligned}
\] & \[
\begin{array}{r}
7.22 \\
12.79 \\
13.84 \\
1 \quad 0.00
\end{array}
\] & \[
\begin{array}{r}
10.39 \\
19.16 \\
21.88 \\
1 / \quad 0.00
\end{array}
\] \\
\hline CALIFORNIA colorado CONNECTICUT DELAWARE & \[
\begin{array}{r}
17,767 \\
2,649 \\
2,305 \\
427
\end{array}
\] & \[
\begin{array}{r}
10,280 \\
9,101 \\
8,950 \\
11,443
\end{array}
\] & \[
\begin{aligned}
& 0.23 \\
& 0.22 \\
& 0.18 \\
& 0.23
\end{aligned}
\] & \[
\begin{aligned}
& 0.26 \\
& 0.24 \\
& 0.19 \\
& 0.26
\end{aligned}
\] & \[
\begin{aligned}
& 11.05 \\
& 10.50 \\
& 13.98 \\
& 10.77
\end{aligned}
\] & \[
\begin{aligned}
& 16.47 \\
& 15.33 \\
& 19.53 \\
& 16.23
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { DIST. OF COL. } \\
& \text { FLORIDA } \\
& \text { GEORGIA } \\
& \text { HAWAII }
\end{aligned}
\] & \[
\begin{array}{r}
233 \\
8,808 \\
4,208 \\
616
\end{array}
\] & \[
\begin{array}{r}
13,300 \\
9,284 \\
11,606 \\
9,534
\end{array}
\] & \[
\begin{aligned}
& 0.27 \\
& 0.27 \\
& 0.27 \\
& 0.21
\end{aligned}
\] & \[
\begin{aligned}
& 0.31 \\
& 0.30 \\
& 0.31 \\
& 0.23
\end{aligned}
\] & \[
\begin{array}{r}
39.03 \\
10.00 \\
10.29 \\
13.42
\end{array}
\] & \[
\begin{array}{r}
57.85 \\
0.00 \\
15.34 \\
19.20
\end{array}
\] \\
\hline \begin{tabular}{l}
IDAHO \\
ILLINOIS \\
INDIANA \\
I OWA
\end{tabular} & \[
\begin{array}{r}
877 \\
7,513 \\
3,852 \\
2,479
\end{array}
\] & \[
\begin{array}{r}
9,449 \\
8,967 \\
10,342 \\
7,931
\end{array}
\] & \[
\begin{aligned}
& 0.25 \\
& 0.18 \\
& 0.23 \\
& 0.18
\end{aligned}
\] & \[
\begin{aligned}
& 0.30 \\
& 0.20 \\
& 0.26 \\
& 0.21
\end{aligned}
\] & \[
\begin{array}{r}
8.25 \\
1.00 \\
11.02 \\
7.28
\end{array}
\] & \[
\begin{array}{r}
12.78 \\
0.00 \\
16.17 \\
10.51
\end{array}
\] \\
\hline \begin{tabular}{l}
KANSAS \\
KENTUCKY \\
LOUISIANA \\
MAINE
\end{tabular} & \[
\begin{array}{r}
2,048 \\
2,621 \\
2,877 \\
766
\end{array}
\] & \[
\begin{array}{r}
8,864 \\
10,194 \\
9,584 \\
10,345
\end{array}
\] & \[
\begin{aligned}
& 0.18 \\
& 0.25 \\
& 0.29 \\
& 0.26
\end{aligned}
\] & \[
\begin{aligned}
& 0.20 \\
& 0.30 \\
& 0.32 \\
& 0.29
\end{aligned}
\] & \[
\begin{array}{r}
9.61 \\
10.58 \\
15.54 \\
1 / 0.00
\end{array}
\] & \[
\begin{array}{r}
14.32 \\
15.84 \\
25.79 \\
1 \quad 0.00
\end{array}
\] \\
\hline \begin{tabular}{l}
MARYLAND \\
MASSACHUSETTS \\
MICHIGAN \\
MINNESOTA
\end{tabular} & \[
\begin{aligned}
& 3,011 \\
& 3,840 \\
& 6,295 \\
& 3,282
\end{aligned}
\] & \[
\begin{array}{r}
10,169 \\
9,776 \\
9,667 \\
9,465
\end{array}
\] & \[
\begin{aligned}
& 0.20 \\
& 0.16 \\
& 0.19 \\
& 0.15
\end{aligned}
\] & \[
\begin{aligned}
& 0.22 \\
& 0.17 \\
& 0.21 \\
& 0.17
\end{aligned}
\] & \[
\begin{array}{rr}
1 / & 0.00 \\
1 / 0.00 \\
& 14.44 \\
& 8.06
\end{array}
\] & \[
\begin{aligned}
& 1 / 0.00 \\
& 1 / 2.00 \\
& \\
& \\
& \\
& \\
& 11.57
\end{aligned}
\] \\
\hline \begin{tabular}{l}
MISSISSIPPI \\
MISSOURI \\
MONTANA \\
NEBRASKA
\end{tabular} & \[
\begin{array}{r}
1,560 \\
3,433 \\
829 \\
1,235
\end{array}
\] & \[
\begin{array}{r}
11,412 \\
10,645 \\
8,562 \\
9,339
\end{array}
\] & \[
\begin{aligned}
& 0.40 \\
& 0.23 \\
& 0.31 \\
& 0.18
\end{aligned}
\] & \[
\begin{aligned}
& 0.46 \\
& 0.27 \\
& 0.34 \\
& 0.21
\end{aligned}
\] & \[
\begin{array}{r}
6.13 \\
10.61 \\
7.37 \\
10.78
\end{array}
\] & \[
\begin{array}{r}
9.24 \\
15.98 \\
11.28 \\
16.10
\end{array}
\] \\
\hline \begin{tabular}{l}
NEVADA \\
NEW HAMPSHIRE \\
NEW JERSEY \\
NEW MEXICO
\end{tabular} & \[
\begin{array}{r}
730 \\
803 \\
4,941 \\
1,237
\end{array}
\] & \[
\begin{array}{r}
9,414 \\
8,943 \\
10,568 \\
9,441
\end{array}
\] & \[
\begin{aligned}
& 0.30 \\
& 0.21 \\
& 0.18 \\
& 0.38
\end{aligned}
\] & \[
\begin{aligned}
& 0.35 \\
& 0.24 \\
& 0.19 \\
& 0.44
\end{aligned}
\] & \[
\begin{array}{r}
10.83 \\
1 / 0.00 \\
16.36 \\
12.09
\end{array}
\] & \[
\begin{array}{r}
16.40 \\
0.00 \\
24.41 \\
18.69
\end{array}
\] \\
\hline \begin{tabular}{l}
NEW YORK \\
NORTH CAROLINA \\
NORTH DAKOTA \\
OHIO
\end{tabular} & \[
\begin{array}{r}
8,417 \\
4,603 \\
666 \\
7,768
\end{array}
\] & \[
\begin{aligned}
& 9,954 \\
& 9,784 \\
& 8,053 \\
& 9,425
\end{aligned}
\] & \[
\begin{aligned}
& 0.23 \\
& 0.24 \\
& 0.16 \\
& 0.18
\end{aligned}
\] & \[
\begin{aligned}
& 0.25 \\
& 0.27 \\
& 0.17 \\
& 0.20
\end{aligned}
\] & \[
\begin{array}{r}
20.42 \\
11.58 \\
5.43 \\
13.31
\end{array}
\] & \[
\begin{array}{r}
29.86 \\
18.25 \\
8.25 \\
20.91
\end{array}
\] \\
\hline \begin{tabular}{l}
OKLAHOMA \\
OREGON \\
PENNSYLVANIA \\
RHODE ISLAND
\end{tabular} & \[
\begin{array}{r}
2,769 \\
2,121 \\
6,844 \\
598
\end{array}
\] & \[
\begin{array}{r}
10,677 \\
9,692 \\
10,564 \\
10,057
\end{array}
\] & \[
\begin{aligned}
& 0.26 \\
& 0.23 \\
& 0.22 \\
& 0.16
\end{aligned}
\] & \[
\begin{aligned}
& 0.30 \\
& 0.26 \\
& 0.25 \\
& 0.17
\end{aligned}
\] & \[
\begin{array}{r}
7.86 \\
10.88 \\
12.33 \\
1 \quad 0.00
\end{array}
\] & \[
\begin{array}{r}
11.64 \\
17.62 \\
18.42 \\
1 \quad 0.00
\end{array}
\] \\
\hline SOUTH CAROLINA SOUTH DAKOTA TENNESSEE TEXAS & \[
\begin{array}{r}
2,058 \\
629 \\
3,537 \\
11,695
\end{array}
\] & \[
\begin{aligned}
& 12,137 \\
& 10,043 \\
& 10,252 \\
& 11,277
\end{aligned}
\] & \[
\begin{aligned}
& 0.36 \\
& 0.23 \\
& 0.26 \\
& 0.28
\end{aligned}
\] & \[
\begin{aligned}
& 0.41 \\
& 0.28 \\
& 0.25 \\
& 0.33
\end{aligned}
\] & \[
\begin{array}{r}
7.74 \\
6.62 \\
10.61 \\
11.77
\end{array}
\] & \[
\begin{array}{r}
11.40 \\
9.96 \\
15.33 \\
17.80
\end{array}
\] \\
\hline \begin{tabular}{l}
UTAH \\
VERMONT \\
VIRGINIA \\
WASHINGTON
\end{tabular} & \[
\begin{array}{r}
1,074 \\
367 \\
3,894 \\
3,338
\end{array}
\] & \[
\begin{aligned}
& 10,448 \\
& 11,311 \\
& 10,863 \\
& 10,828
\end{aligned}
\] & \[
\begin{aligned}
& 0.24 \\
& 0.23 \\
& 0.21 \\
& 0.19
\end{aligned}
\] & \[
\begin{aligned}
& 0.26 \\
& 0.25 \\
& 0.23 \\
& 0.21
\end{aligned}
\] & \[
\begin{aligned}
& 11.47 \\
& 10.99 \\
& 11.22 \\
& 12.07
\end{aligned}
\] & \[
\begin{aligned}
& 17.61 \\
& 16.46 \\
& 15.93 \\
& 17.97
\end{aligned}
\] \\
\hline WEST VIRGINIA WISCONSIN WYOMING & \[
\begin{array}{r}
1,295 \\
3,214 \\
502
\end{array}
\] & \[
\begin{array}{r}
9,032 \\
10,612 \\
10,078
\end{array}
\] & \[
\begin{aligned}
& 0.30 \\
& 0.20 \\
& 0.30
\end{aligned}
\] & \[
\begin{aligned}
& 0.34 \\
& 0.23 \\
& 0.35
\end{aligned}
\] & \[
\begin{array}{r}
12.50 \\
11.91 \\
7.16
\end{array}
\] & \[
\begin{aligned}
& 19.60 \\
& 17.13 \\
& 10.98
\end{aligned}
\] \\
\hline U.S. TOTAL & 163,860 & 10,064 & 0.23 & 0.26 & \(2 / 12.24\) & 3/ 18.32 \\
\hline \multicolumn{7}{|l|}{\(1 /\) RATE COULD NOT BE COMPUTED BECAUSE DATA WAS NOT REPORTED OR WAS NOT USABLE.
2/ THE RATE IS BASED ON THE ESTIMATED U. S. TOTAL OF NONFATAL INJURY ACCIDENTS FROM TABLE 2 .
3/ THE RATE IS BASED ON THE ESTIMATED U. S. TOTAL OF NONFATALLY INJURED PERSONS FROM TABLE 2 .} \\
\hline
\end{tabular}

SECTION IV＿PUERTO RICO AND U．S．TERRITORIES
Travel and accident data reported by Puerto Rico for calendar year 1983 are
tabulated below．Data were not reported for 1983 by U．S．territories．

\begin{tabular}{|c|c|c|c|c|c|}
\hline & 足 & \[
\frac{\text { 悉 }}{\stackrel{\rightharpoonup}{c}}
\] &  &  &  \\
\hline \[
\begin{aligned}
& \text { 总 } \\
& \text { 恶 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 复 } \\
& \text { 妾 }
\end{aligned}
\] &  &  &  & \[
\begin{aligned}
& \text { 点㗊 } \\
& 9_{0}^{2}
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { 至 } \\
& \text { 至 }
\end{aligned}
\]} & \[
\frac{\text { 空 }}{\text { ت }}
\] & 田 &  & \[
\begin{aligned}
& \infty 8 \\
& m=1 \\
& m
\end{aligned}
\] \\
\hline & &  &  &  & 呂哭 \\
\hline \multirow{4}{*}{} & \multirow[t]{2}{*}{豆
空} &  & \begin{tabular}{l}
 \\

\end{tabular} &  & \[
\begin{aligned}
& \underset{0}{8} \\
& \text { 品 }
\end{aligned}
\] \\
\hline & &  &  &  & \[
\begin{aligned}
& \text { 骂硈 } \\
& \Rightarrow 55
\end{aligned}
\] \\
\hline & \multirow[t]{2}{*}{\[
\frac{\vec{x}}{\frac{1}{4}}
\]} &  &  &  & 突 \\
\hline & & \[
\begin{aligned}
& \text { 离 } \\
& \text { 壁 }
\end{aligned}
\] &  & 읔끔 & 呂嵒 \\
\hline
\end{tabular}

㐯

 （14－764303－NEM
pry－teapaj－unn ITH

76101
＊Per 100 million vehicle－miles

\section*{SECTION V—RELATIONSHIP OF FATALITY RATES TO TRAVEL DENSTTY}

The vehicle-mile fatality rate is the measure most cormonly used for comparing the safety of different highway systems or the safety of highways in different States. A State often judges its own performance by comparing its fatality rates with the national fatality rate. The primary reason for differences in fatality rates appears to be variation in travel density over which the States have little control. Because the travel density varies widely among the States, it should not be expected that all States will have similar fatality rates. While there are without question many reasons other than variation in travel density for differences among the fatality rates of the States, it is difficult to quantify these reasons well enough to develop reliable definitions of relationships between fatality rates and specific features.

The general characteristics of the relationship between fatality rates and travel density were described in Section. I. Curves illustrating provisional rate-density relationships have been derived from reported data for the 4 -year period from 1979 through 1982. The relationships must be regarded as provisional because they are based on data which are incomplete and known to contain errors. Despite their flaws, the curves provide a more suitable base than the national fatality rate for evaluating State rates. A curve describing the provisional rate-density relationship for all highways in the States is shown in Figure 7-A1.

In comparing State fatality rates a second consideration should be taken into account. Even if the risk (probability) of traffic fatalities were dependent only on travel density, rates would vary at random from those on the rate-density curve. (Accidents and related rates are "random" in a statistical sense-while any attempt to drive a vehicle a given distance may or may not result in an accident, there is nonetheless a degree of statistical regularity which permits reasonably reliable estimation of the number of accidents expected from a large number of attempts. To speak of accidents as random events is not to say that accidents are unrelated to driving hazards or driver skill.) The random variation of fatality rates is larger when the volume of traffic is small. For example, a random variation of 10 percent would be much more likely to occur in the Delaware fatality rate than in fatality rates for California or New York.

The random variation of fatality rates is somewhat analogous to the random variation observed when flipping a coin repeatedly. If the probability of "heads" is 1 in 2, the ratio of the number of heads to the number of flips approaches \(1 / 2\) as the number of flips increases. Similarly, if the probability that a fatality will result from an attempt to drive one vehicle-mile is 3 in 100 million, the ratio of fatalities to vehicle-miles will approach \(3 /(100\) million \()\) as the number of vehicle-miles increases. While the number of vehicle-miles or flips of a coin is increasing, ratios vary at random. The amount of variation can be computed by applying the binomial probability law for the appropriate number of vehicle-miles or flips. Approximations of the binomial law are commonly used to simplify computation.


The application of the binomial probability law to accident rates yields results that approximate observed experience. This procedure is widely used by the States to identify hazardous sections of highway. It does not give precise results primarily because the probability of a fatality (or other event of interest) is not the same for every attempt that is made to drive a vehicle-mile without an accident.

The rate-density curve in Figare 7A-1 is an exponential curve fitted to the data points by a weighted least squares procedure. Fach data point is defined by a State fatality rate and travel density for the 4-year period. The point is weighted in proportion to the vehicle-miles of travel in the State during those 4 years.

Because the volume of travel is different for each State, the magnitude of random variation is also different. To illustrate the effect of the differences, provisional ranges have been computed and are shown in Figure 7-A2. For each State, the observed 1983 fatality rate is shown along with a provisional range centered upon a value taken from the rate density curve in Figure 7-A1. If variations from rates on the rate-density curve in Figure 7-A1 followed a binomial distribution, the probability would be 99 out of 100 that each observed rate would fall within the provisional range shown in Figure 7-A2. Conversely, the chances would be only 1 in 100 that an observed rate would fall outside the provisional range if the risk were the same in 1983 as in the proceeding 4 years and variation from the rate-density curve were random. If a rate falls above or below the range show, it is likely that it is unusually high or low for some reason other than random variation. It is evident from Figure 7-A2 that most State fatality rates varied significantly from the provisional rate-density curve. While the 1983 fatality rates were about the same for New York and Delaware, New York's rate was substantially lower than State rates observed for a similar travel density in the preceding 4-year period. Delaware's rate, on the other hand, is well within the provisional range, where deviation from the rate-density curve is less significant. Analysis of the possible reasons for the low rate in New York and the rates outside provisional ranges in many other States is beyond the scope of this report. In Figure 7-A2, States are arranged in order of travel density to facilitate comparison of States with similar travel densities; the State with the most vehicle miles per mile of highway (i.e., the highest average daily traffic) is at the top.

In Figures 7-B1, 7-B2a, and 7-B2b, rural and urban fatality rates for each State are shown separately but in the same manner as the information in Figures 7-A1 and 7-A2.

Other provisional ranges relationships, as well as provisional rate changes and observed fatality rates for the highway systems in each State, are shown in Figures 7-C1 through 7-F2b.

It can be seen in Figure 7 that, for every system, fatality rates observed in 1983 were rarely above the provisional range based on 1979 through 1982 experience.


Figure 7-A2 Fatality rate by state-all highways [1983)


Figure 7-B2a FATALITY RATE BY STATE--ALL RURAL HIGHWAYS (1983)


Figure 7-B2b FATALITY RATE BY STATE-ALL URBAN HIGHWAYS (1983)



Figure 7-C2a FATALITY RATE BY STATE--RURAL INTERSTATE HIGHWAYS (1983)


Figure 7-C2b FATALITY RATE BY STATE-URBAN INTERSTATE HIGHWAYS [1983]


Fig. 7-D1. PROVISIONAL RATE-DENSITY RELATIONSHIP (1979-82) OTHER FEDERAL-AID PRIMARY HIGHWAYS


Figura 7-D2a FATALITY RATES BY STATES-OTHER RURAL FEDERAL-AID PRIMARY HIGHWAYS (1983)


\section*{Figure 7-02b FATALITY RATES BY STATE-OTHER URBAN FEDERAL-AID PRIMARY HIGHWAYS (1983)}

STATE FATALITY RATE ( \(f / 100 \mathrm{mvm}\) )


Figura 7-E2a FATALITY RATE BY STATE-FEderal-AID SECONDARY highways [1983]


Figure 7-F2a FATALITY RATE BY STATE-RURAL NON-FEDERAL-AID HIGHWayS (1983)


Figure 7-F2b FATALITY RATE BY STATE-URBAN NON-FEDERAL-AID HIGHWAYS (1983)


\section*{SECTION VI--STATE FATALITY RATE TRENDS}

It is sometimes more useful to know the trend within a State than to know how that State compares with others. Figure 8 illustrates changes in State rates over the 5 -year period from 1979 through 1983. The format of the graphs is similar to that in Figure 7-A2. The provisional range for each of the 5 years is based on the provisional rate-density curve shown in Figure 7-A1.

Figure 8 is designed to show, within each state, the pattern of observed rates over the 5 -year period and the relationship of observed rates to provisional ranges. Because of differences in the magnitude of individual State rates, not all States are shown at the same scale. It is not intended that Figure 8 be used to compare the magnitude of fatality rates in different States.

While some States like Illinois and Minnesota demonstrate steadily decreasing fatality rates throughout the 5-year period, Arkansas reports little improvement since 1979. In the majority of States, the rate reported for 1983 is substantially lower than the rates for preceding years. Only a few States have a 1983 fatality rate above the provisional range.
\begin{tabular}{|c|c|c|}
\hline * & & * \\
\hline * & Figure 8 may be used to answer questions such as: & \\
\hline * & & * \\
\hline * & 1. Are the fatality rates in a State improving? & * \\
\hline * & & * \\
\hline * & See pages 71-81. Most States show steadily & * \\
\hline * & improving fatality rates. A few do not. & * \\
\hline * & & * \\
\hline * & 2. How have fatality rates in a particular State & * \\
\hline * & . compared with those in the rest of the United & * \\
\hline * & States over the past five years? & * \\
\hline * & & * \\
\hline * & See pages 71-31. For any year in a selected & * \\
\hline * & State, a fatality rate to the left of the & * \\
\hline * & provisional range indicates that the State & * \\
\hline * & fatality rate is significantly below the & * \\
\hline * & 1979-82 national experience for States with & * \\
\hline * & similar travel density. A fatality rate to & * \\
\hline * & the right of the provisional range is & * \\
\hline * & significantly above such national experience. & * \\
\hline * & & * \\
\hline * & & * \\
\hline
\end{tabular}

Figure 8 STATE FATALITY RATES (1979-1983)
[Fatalities per 100 million vehicle-miles)

ALABAMA


ALASKA


ARI ZONA


ARKANSAS


CAL IFORNIA


Figure 8 (conlinued) STATE FATALITY RATES (1979-1983)

COLORADO


CONNECTICUT


DELAWARE


DISTRICT OF COLUMBIA


FLORIDA


Figure 8 Icontinuad) STATE FATALITY RATES (1979-1983)
genrgia


HAWAI I


IDAMO


ILLINOIS


IND IANA


Figure 8 (continued) STATE FATALITY RATES (1979-1983)

IOWA


KANSAS


KENTUCKY


\section*{LDUISIANA}


\section*{MAINE}


Figure 8 (continued) STATE FATALITY RATES (1979-1983]

MARYLAND


MASSACHUSETTS


MICHIGAN


HINNESOTA


MISSISSIPPI


Figure 8 Icontinuad) STATE fatality rates (1979-1983)

MISSUURI


MONTANA
\begin{tabular}{|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 \\
\hline & 1 & I & 1 & 1 \\
\hline 1980 & 1 & 1 & 1 & 1 \\
\hline 1981 & 1 & 1 & 1 & 1 \\
\hline 1982 & 1 & 1 & 1 & \\
\hline 1983 & & & 1 & \\
\hline
\end{tabular}

NEBRASKA


NEVADA


NEW HAMPSHIRE


Figure 8 [continued) STATE FATALITY RATES (1979-1983)

NEW JERGEY


NEW MEXICO


NEW YORK


NORTH CAROLINA


MORTH DAKOTA


Figure 8 [continuad] STATE FATALITY RATES [1979-1983]

OHIO


OKLAHOMA


OREGON


PENNGYLVANIA


RHDDE ISLAND


Figure 8 (continuedl STATE FATALITY RATES [1979-1983)

SOUTH CAROLINA


SOUTH DAKOTA
\begin{tabular}{|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 \\
\hline 1979 & 1 & 1 & 1 & 1 \\
\hline 1980 & 1 & 1 & & 1 \\
\hline 1981 & I & 1 & 1 & 1 \\
\hline 1982 & , & 1 & 1 & 1 \\
\hline 1993 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

TENNESSEE


TEXAS


UTAH


Figure 8 [continued) STATE FATALITY RATES (1979-1983)

VERMONT


VIRGINIA


\section*{WASHINGTON}


\section*{WEST VIFGINIA}


\section*{WISCONSIN}


Figure 8 [continued) STATE FATALITY RATES (1979-1983)

WYOMING



LEGEND:
Reported fatality rate


Provisional range

\section*{SECTION VII--STMMARY}

The data presented in this report are intended for use in the evaluation of the highway safety performance of the States. The data were submitted by the States through the Highway Performance Monitoring System operated by the Federal Highway Administration.

A few States were unable to submit the data requested in time for inclusion in this compilation.

Analysis of the travel and accident data which have been presented is beyond the scope of this report.

Rate-Density Relationships:
```

Chatfield, Benjamin V., "Fatal Accidents and Travel Density," Highway Research Record 469, pp. 40-51, 1973.

```

Smith, R.N., "Predictive Parameters for Accident Rates," California Division of Highways, Analytical Studies Branch, 1973.

National Highway Traffic Safety Administration, "Highway Safety Needs Study - 1981 Update of 1976 Report to Congress," October 1981, DOT-HS-806 283, pp. 72-73.

Fee, Julie Anna, et al., "Interstate System Accident Research Study 1," Federal Highway Administration, U.S. Department of Transportation, October 1970, pp. I-14, 15, 42.

Provisional Rates:

Morin, D.A., "Application of Statistical Concepts to Accident Data,"
Highway Research Record 188, 1967, pp. 72-79.
```


[^0]: 1/Federal Highway Administration/National Highway Traffic Safety AdminisTration; "Highway Fatality Counting Rule"; Federal Register, Volume 43, No. 191; pp. 45486-45487; October 2, 1978.

[^1]:

