Appendix B – Selected Costs of Alternative Disinfection Systems

B.1 Technologies and Costs for Control of Disinfection By-Products

Costs were developed for modifying a "base" or "typical" treatment plant to add disinfection and other technologies. The base plant is described as a conventional treatment plant using chlorine/chlorine disinfection consisting of rapid mixing, flocculation, sedimentation, chlorination, filtration, contact basin, chemical feed systems and finished water storage. This appendix contains figures and tables from *Technologies and Costs for Control of Disinfection By-Products* (USEPA, 1998), retaining the report's original figure and table numbers. Incremental costs are shown, determined by calculating the cost for the modified treatment plant and subtracting the base treatment plant cost.

The base treatment plant shown in Figure 7-1, is a basic alum coagulation and filtration plant, with chlorine disinfection. This plant was modified to meet disinfection requirements. The bases for the cost estimates are shown in Tables 7-3, 7-4, 7-5, and 7-6. The 12 flow categories for which the costs were determined are shown in Table 7-2.

Schematics and costs to add the following schemes are shown in the attached figures and tables.

- Base treatment plant Figure 7-1 and Table 7-7.
- Move point of chlorination. This modification assumes no cost for moving the chlorine addition point, but costs for an added contact basin are shown in Table 7-8.
- Change to Chlorine/Chloramine Figure 7-2 and Table 7-9.
- Change to Ozone/Chloramine Figure 7-3 and Table 7-12.
- Change to Chlorine Dioxide Table 7-13.

See USEPA, 1998 for more details and information upon the costs of other technologies.

EPA FLOW CATEGORIES	POPULATION	AVERAGE FLOW mgd)	CAPACITY mgd)	
			-	
1		0.0056		
2		0.024		
3		0.086		
4		0.23		
LARGE SYSTEMS - DE	SIGN FLOW > 1 MGD			
	5,500		1.8	
	15,000		4.8	
	35,000		11	
	60,000		18	
	88,000		26	
	175,000		51	
	73	120		
12		270		
12a		350		

TABLE 7-2. EPA FLOW CATEGORIES

TABLE 7-3. SMALL SYSTEMS BASIS FOR COST ESTIMATES FOR DBP CONTROL					
Process	WATER Model Assumptions	Engineering Assumption			
Package Raw Water Pumping	Premanufactured packaged pumping station using submersible pump contained in a 20 ft deep steel pump sump.				
	Manifold piping, sump intake valve, pump check valves, and electrical controls.				
	Total dynamic head is 50 ft.				
	Pump and motor efficiencies are 80 and 90%, respectively.				
Package Complete Treatment Plant	Coagulation, flocculation, sedimentation, and filtration equipment provided including tube settlers rated at 1,500 gpd/sf, mixed media filters with application rates of 2 to 5 gpm/sf and media depth of 30 in.				
	Chemical feed facilities include storage tanks and feed pumps.				
	Filter backwash pumps and, where applicable, surface wash water pumps.				
	Flow measurement and control devices, pneumatic air supply (for 200 gpm or larger plants), effluent pumps, and building.				
Hypochlorite Solution	Solution tanks, mixers, and metering pumps	Sodium hypochlorite dose of 2.4 mg/L determined by WTP model.			
Chlorination System	Metering pumps, PVC pipes, valves and controls are included.				
Sodium Hydroxide Feed System	Storage tanks, heater, manual transfer pump, mixers, feed tanks and metering pumps are included.				
	PVC pipes, valves and control are also included.				
Alum Feed System	Solution tanks, mixers, and calibrated metering pumps are included.	Alum dose is determined by DBP control alternatives.			
	PVC pipes, valves and controls are also included.				

	WATER Model	Engineering
Process	Assumptions	Assumption
Package High Service Pump Station	Includes 2 or 3 centrifugal pumps, pressure sensing, flow control valves, instrumentation and equipment.	
	Pumps provide a maximum output of 70 psi.	
Clearwell Storage Above Ground	Above ground, steel tanks including instrumentation and control of clearwell water level and instrumentation for turbidity and residual monitoring is provided.	Clearwell size is based on storage of 25% of the daily operating flow.
Sludge Dewatering Lagoons	Unlined lagoon and inlet, outlet structures are provided.	Sizing of lagoons is based on solids content of 5%.
	2 ft freeboard, 3:1 side slopes, 5 ft depth are also provided.	Sludge is thickened to a solids concentration of 30%.
Dewatered Sludge Hauling	Loading facilities including sludge conveyer, hopper, and hopper enclosure are provided.	
	Length of haul is 20 miles one-way.	
Contact Basin		Below ground tanks without repumping are assumed.
		Size of basin is 60 minutes, as determined by the WTP model.
		The well baffled tanks are assumed to provide actual contact time of 0.7 times the theoretical according to the SWTR Guidance Manual.
		O&M costs were unpredictable and were assumed to be negligible.

Process	WATER Model Assumptions	Engineering Assumption
Raw Water	Total dynamic head 100 ft	
Pumping	Manifold piping velocity	
	Standby pump, manifold piping, and instrumentation are provided	
Alum Feed System	Diaphragm metering pumps, steel storage hoppers with dust collector, and mechanical weight belt feeders	Alum dose is determined by DBP control alternatives
	Commercial alum density 60 lb/cu ft	
	Dissolving tank detention time 5 min with 2 gal of water per lb of dry alum added	
	Maximum hopper volume 6,000 cu ft with fifteen days of storage	
Rapid Mix	Vertical shaft, variable speed turbine mixers with stainless steel shafts and paddles and TEFC motors	G = 900/sec
	Maximum basin capacity 2,500 cu ft	Detention time is 1 min at design flow
	Water temperature 15 [°] C Overall mechanism efficiency 70%	
Flocculation (Horizontal	Rectangular-shaped, reinforced concrete basins with 12 ft depth, 4:1 length to width ratio, and 12,500 cu ft individual maximum basin size	G = 50/sec
Paddle)	Variable speed drive units requiring 15 min/day routine O&M and an oil change every 6 months requiring 4 hrs of labor	Detention time is 30 min at design flow
	Overall mechanism efficiency 60%	
Rectangular Clarifiers	Chain and flight collector with drive mechanism, sludge pumps, reinforced concrete structure, and withdraw pumps are included	Overflow rate = 1,000 gpd/sq ft

TABLE 7-4. LARGE SYSTEMS BASIS FOR COST ESTIMATES FOR DBP CONTROL

Process	WATER Model Assumptions	Engineering Assumption
	Side wall depth = 12 ft	Maximum number of units is 2 Maximum basin area = 20,000 sq ft
Gravity Filtration Systems	Filter structure, underdrains, wash water troughs, pipe gallery piping and valves, instrumentation, control panel, and filter housing are provided Filter box depth = 16 ft	Minimum 4 filters per plant Filter loading rate = 4 gpm/sq ft
Filtration Dual Media	20 in of 1.0 to 1.2 mm effective size anthracite coal (UC = 1.7) 10 in of 0.42 to 0.52 mm effective size silica sand (UC = 1.6) 12 in underdrains. Media consisting of 4 sizes of silica gravel	
Backwash Pumping Facilities	All required pumps and motors, flow control, sequencing control, valves and backwash headers are included Pumping head = 50 ft Overall mechanism efficiency 70%	Backwash rate = 18 gpm/sq ft One filter is backwashed at a time with each filter backwashed approximately every two days
Wash Water Surge Basins	Below ground, reinforced concrete basins and level control instrumentation provided	Sized to store a 20 min volume of backwash water at design flow
Unthickened Sludge Pumping	Variable speed, centrifugal pumps, piping and valves, electrical equipment housing, dry well, and a wet well are included	Unthickened sludge solids concentration = 1%
	Pipe velocity = 5 ft/sec Total dynamic head = 30 ft	12 hr/day of sludge pumping

TABLE 7-4. LARGE SYSTEMS BASIS FOR COST ESTIMATES FOR DBP CONTROL

Process	WATER Model Assumptions	Engineering Assumption
	Overall pump-motor efficiency = 65%	*
Sludge Dewatering Lagoons	Unlined lagoon and inlet and outlet structures are provided 2 ft freeboard, 3:1 side slopes, and 10 ft depth are also provided	Solids production is determined by WTP model Sludge is thickened to a solids concentration of 30% Sizing of lagoons is based on a solids content of 5%
Dewatered Sludge Hauling	Loading facilities including sludge conveyor, hopper, and hopper enclosure are provided Length of haul is 20 miles one-way	Dewatered sludge has a solids content of 30%
In-plant Pumping	Constant speed, vertical turbine pumps, pump motor, wet well, and piping and valves are included Pipe velocity = 5 ft/sec	Total dynamic head = 50 ft
Chlorine Feed Facilities	Chlorinator, standby chlorinator, cylinder scales, evaporators, residual analyzers with flow proportioning device injector pumps, and housing to include 30 days of cylinder storage are provided Injector pumps deliver water at 25 psi to allow production of 3,500 mg/L solution	Chlorine dose is 2.4 mg/L as determined by WTP model
Sodium Hydroxide Feed System	Storage tanks, heater, manual transfer pump mixers, feed tanks and metering pumps are included PVC pipes, valves and controls are also included	Sodium hydroxide dose is 16 mg/L as determined by WTP model
Finished Water Pumping	Vertical turbine pumps powered by constant speed motors, electrical equipment instrumentation, valves, and manifolds are provided Total dynamic head is 300 ft	

TABLE 7-4. LARGE SYSTEMS BASIS FOR COST ESTIMATES FOR DBP CONTROL

	TABLE 7-4. LARGE STSTEMS BASIS FOR COST ESTIMATES FOR DBI	ADDE 7-4, DAKOE SISIEMS DASIS FOR COST ESTIMATES FOR DDI CONTROL				
Process	WATER Model Assumptions	Engineering Assumption				
	Standby pump is also included					

TABLE 7-4. LARGE SYSTEMS BASIS FOR COST ESTIMATES FOR DBP CONTROL

Item	Small Systems Water Model (%)	Large Systems WATERCO\$T Model(%)				
	10	17				
Site work and Interface	10	15				
riping	10	10				
Subsurface Considerations	10	10				
	5	5				
Standby Power						
Companyal Country atoms	12	12				
Overhead and Profit	12	12				
Engineering	15 ⁽¹⁾	15 ⁽²⁾				
Legal Engel and						
Administration fees	5 to $6^{(1)}$	9 to $11^{(2)}$				
	2.000	2001				
Notes:						
⁽¹⁾ Percentages added to estimate	d construction cost plus a	stimated cost for other				
allowances factors						
⁽²⁾ Percentages added to estimated construction cost only.						

TABLE 7-5. COST ALLOWANCE FACTORS

TABLE 7-6. INDICES USED IN THE ESCALATION OF COSTS

DESCRIPTION	INDEX REFERENCE	NUMERICAL VALUE	ESCALATION VALUE	
Building Cost Index	ENR ¹	3391.86	1.23	
Chemical & Allied Products	BLS ²	147.2	1.19	
Skilled Labor	ENR ¹	5231.35	1.178	
Materials	ENR ¹	2268.57	1.328	
Utility Natural Gas	BLS 055 ²	111.3	1.679	

¹ Engineering News Record (July, 1997) ² Bureau of Labor Statistics (March, 1997)

TABLE 7-7. ESTIMATED BASE PLANT COSTS

Design Flow (mgd)	Capital Cost ¹ (\$M)	O & M Cost ² (4/1000 gal)	Total Cost @ 3% (4/1000 gal)	Total Cost @ 7% (4/1000 gal)	Total Cost @ 10% (4/1000 gal)
0.024	0.63	600	2672	3509	4233
0.087	0.86	188	848	1115	1343
0.27	1.4	90	390	496	605
0.65	2.0	56	216	277	330

SMALL SYSTEMS

LARGE SYSTEMS

Design Flow (mgd)	Capital Cost ¹ (\$M)	O & M Cost ² (4/1000 gal)	Total Cost @ 3% (4/1000 gal)	Total Cost @ 7% (4/1000 gal)	Total Cost @ 10% (4/1000 gal)
1.8	4.3	74	187	233	272
4.8	7.3	47	111	137	159
11	12	39	83	102	118
18	17	36	72	86	98
26	22	35	66	78	89
51	36	33	58	68	76
210	120	32	50	58	65
430	230	31	47	53	59
520	380	26	46	54	61

¹ 1991 Cost escalated based upon a factor of 1.23 derived from the ENR BCI

² 1991 Cost escalated based upon a factor of 1.19 derived from the BLS Chemical and Allied Products Index

DESIGN	Chlorine Contact Basin Time						
FLOW	30 min	60 min	120 min	180 min	240 min	300 min	360 min
0.024	14	21	26	28	38	46	55
0.087	25	34	66	76	82	84	100
0.27	52	80	103	140	180	220	234
0.65	77	112	218	251	284	317	351
1.8	197	244	335	427	519	611	702
4.8	274	396	642	887	1,132	1,376	1622
11	432	713	1,274	1,836	2,399	2,961	3521
18	611	1,070	1,990	2,909	3,828	4,748	5667
26	815	1,478	2,807	4,135	5,462	6,791	8118
51	1,454	2,755	5,360	7,965	10,569	13,175	15,778
210	5514	10,876	21,600	32,324	43,050	53,774	64,499
430	11,132	22,112	44,071	66,031	87,991	109,951	131,910
520	13,374	26,639	53,224	79,785	106,352	132,193	159,456

TABLE 7-8. ESTIMATED UPGRADE COSTS FOR ADDITIONAL CONTACTBASIN SIZE (x \$1000)1

¹ 1991 Cost escalated based upon a factor of 1.23 derived from the ENR BCI

FIGURE 7-2. ALUM COAGULATION / FILTRATION SYSTEM UPGRADED WITH CHLORINE / CHLORAMINE DISINFECTION

TABLE 7-9. ESTIMATED UPGRADE COSTS FOR CHLORAMINES AS SECONDARY DISINFECTANT

SMALL SYSTEMS

Design Flow (mgd)	Capital Cost ¹ (\$M)	O & M Cost ² (4/1000 gal)	Total Cost @ 3% (4/1000 gal)	Total Cost @ 7% (4/1000 gal)	Total Cost @ 10% (4/1000 gal)
0.024	0.011	21	57	71	83
0.087	0.012	5.5	15	19	22
0.27	0.015	1.9	5.1	6.3	7.4
0.65	0.016	0.98	2.3	2.8	3.2

LARGE SYSTEMS

Design Flow (mgd)	Capital Cost ¹ (\$M)	O & M Cost ² (4/1000 gal)	Total Cost @ 3% (4/1000 gal)	Total Cost @ 7% (4/1000 gal)	Total Cost @ 10% (4/1000 gal)
1.8	0.04	1.4	2.5	3.0	3.4
4.8	0.07	0.70	1.3	1.5	1.8
11	0.11	0.49	0.9	1.1	1.2
18	0.16	0.40	0.73	0.87	0.99
26	0.21	0.37	0.67	0.79	0.89
51	0.28	0.33	0.52	0.60	0.67
210	0.47	0.29	0.36	0.39	0.41
430	0.85	0.26	0.32	0.34	0.36
520	0.91	0.20	0.25	0.27	0.28

¹ 1991 Cost escalated based upon a factor of 1.23 derived from the ENR BCI

² 1991 Cost escalated based upon a factor of 1.19 derived from the BLS Chemical and

Allied Products Index

FIGURE 7-3. ALUM COAGULATION / FILTRATION SYSTEMS UPGRADED WITH OZONE / CHLORAMINE DISINFECTION

Design		Log Inactivation =	= 1	Log Inactivation = 3			Log Inactivation = 5			
Flow (mgd)	Upgrade Capital Cost (\$M)	Upgrade O&M Cost (4/1000 gal)	Total Upgrade Cost @ 3% (4/1000 gal)	Upgrade Capital Cost (\$M)	Upgrade O&M Cost (4/1000 gal)	Total Upgrade Cost @ 3% (4/1000 gal)	Upgrade Capital Cost (\$M)	Upgrade O&M Cost (4/1000 gal)	Total Upgrade Cost @ 3% (4/1000 gal)	
0.024	0.22	161	885	0.23	322	1078	0.24	644	1433	
0.086	0.24	38	222	0.28	75	290	0.30	150	380	
0.27	0.29	10	72	0.40	21	107	0.47	42	143	
0.65	0.39	3.9	35	0.64	7.8	59	0.80	16	80	
Design	Log Inactivation = 1			Log Inactivation = 3			Log Inactivation = 5			
0		0			0			8		
Flow (mgd)	Upgrade Capital Cost (\$M)	Upgrade O&M Cost (4/1000 gal)	Total Upgrade Cost @ 7% (4/1000 gal)	Upgrade Capital Cost (\$M)	Upgrade O&M Cost (4/1000 gal)	Total Upgrade Cost @ 7% (4/1000 gal)	Upgrade Capital Cost (\$M)	Upgrade O&M Cost (4/1000 gal)	Total Upgrade Cost @ 7% (4/1000 gal)	
Flow (mgd)	Upgrade Capital Cost (\$M) 0.22	Upgrade O&M Cost (4/1000 gal)	Total Upgrade Cost @ 7% (4/1000 gal) 1177	Upgrade Capital Cost (\$M) 0.23	Upgrade O&M Cost (4/1000 gal) 322	Total Upgrade Cost @ 7% (4/1000 gal) 1384	Upgrade Capital Cost (\$M) 0.24	Upgrade O&M Cost (4/1000 gal) 644	Total Upgrade Cost @ 7% (4/1000 gal) 1752	
Flow (mgd) 0.024 0.086	Upgrade Capital Cost (\$M) 0.22 0.24	Upgrade O&M Cost (4/1000 gal) 161 38	Total Upgrade Cost @ 7% (4/1000 gal) 1177 297	Upgrade Capital Cost (\$M) 0.23 0.28	Upgrade O&M Cost (4/1000 gal) 322 75	Total Upgrade Cost @ 7% (4/1000 gal) 1384 377	Upgrade Capital Cost (\$M) 0.24 0.30	Upgrade O&M Cost (4/1000 gal) 644 150	Total Upgrade Cost @ 7% (4/1000 gal) 1752 473	
Flow (mgd) 0.024 0.086 0.27	Upgrade Capital Cost (\$M) 0.22 0.24 0.29	Upgrade O&M Cost (4/1000 gal) 161 38 10	Total Upgrade Cost @ 7% (4/1000 gal) 11177 297 97	Upgrade Capital Cost (\$M) 0.23 0.28 0.40	Upgrade O&M Cost (4/1000 gal) 322 75 21	Total Upgrade Cost @ 7% (4/1000 gal) 1384 377 145	Upgrade Capital Cost (\$M) 0.24 0.30 0.47	Upgrade O&M Cost (4/1000 gal) 644 150 42	Total Upgrade Cost @ 7% (4/1000 gal) 1752 473 183	

TABLE 7- 12. ESTIMATED INSTALLATION AND UPGRADE COSTS FOR OZONE AS PRIMARY DISINFECTANT -SMALL SYSTEMS

TABLE 7-12 (cont)

ESTIMATED INSTALLATION AND UPGRADE COSTS FOR OZONE AS PRIMARY DISINFECTANT - SMALL SYSTEMS

Design	L	og Inactivation	= 1	Log Inactivation = 3			Log Inactivation = 5		
Flow (mgd)	Upgrade Capital Cost (\$M)	Upgrade O&M Cost (4/1000 gal)	Total Upgrade Cost @ 10% (4/1000 gal)	Upgrade Capital Cost (\$M)	Upgrade O&M Cost (4/1000 gal)	Total Upgrade Cost @ 10% (4/1000 gal)	Upgrade Capital Cost (\$M)	Upgrade O&M Cost (4/1000 gal)	Total Upgrade Cost @ 10% (4/1000 gal)
0.024	0.22	161	1442	0.23	322	1661	0.24	644	2023
0.086	0.24	38	361	0.28	75	445	0.30	150	551
0.27	0.29	10	119	0.40	21	170	0.47	42	217
0.65	0.39	3.9	59	0.64	7.8	98	0.80	16	128

TABLE 7- 12 (cont.)ESTIMATED INSTALLATION AND UPGRADE COSTS FOR OZONE AS PRIMARY DISINFECTANT -
LARGE SYSTEMS

Design	L	og Inactivation	= 1	Lo	g Inactivatio	n = 3	Log Inactivation = 5		
Flow (mgd)	Upgrade Capital Cost (\$M)	Upgrade O&M Cost (4/1000 gal)	Total Upgrade Cost @3% (4/1000 gal)	Upgrade Capital Cost (\$M)	Upgrade O&M Cost (4/1000 gal)	Total Upgrade Cost @ 3% (4/1000 gal)	Upgrade Capital Cost (\$M)	Upgrade O&M Cost (4/1000 gal)	Total Upgrade Cost @ 3% (4/1000 gal)
1.8	0.89	1.8	25	1.5	4.4	44	1.4	6.3	43
4.8	1.5	1.8	15	1.9	4.4	21	2.0	6.3	24
11	1.9	1.8	9.0	2.6	4.4	14	2.8	6.3	17
18	2.4	1.8	7.0	3.0	4.4	11	3.7	6.3	14
26	2.6	1.8	5.5	3.9	4.4	9.9	4.8	6.3	13
51	3.8	1.8	4.4	6.2	4.4	8.6	7.4	6.3	11
210	9.2	1.8	3.2	18	4.4	7.2	24	6.3	10
430	16.5	1.8	2.9	35	4.4	6.8	47	6.3	9.5
520	20	1.8	2.9	42	4.4	6.6	57	6.3	9.3

Design	L	og Inactivation	= 1	Log	g Inactivatio	n = 3	Log Inactivation = 5		
Flow (mgd)	Upgrade Capital Cost (\$M)	Upgrade O&M Cost (4/1000 gal)	Total Upgrade Cost @ 7% (4/1000 gal)	Upgrade Capital Cost (\$M)	Upgrade O&M Cost (4/1000 gal)	Total Upgrade Cost @ 7% (4/1000 gal)	Upgrade Capital Cost (\$M)	Upgrade O&M Cost (4/1000 gal)	Total Upgrade Cost @ 7% (4/1000 gal)
1.8	0.89	1.8	35	1.5	4.4	58	1.4	6.3	56
4.8	1.5	1.8	21	1.9	4.4	28	2.0	6.3	31
11	1.9	1.8	12	2.6	4.4	17	2.8	6.3	21
18	2.4	1.8	8.9	3.0	4.4	13	3.7	6.3	17
26	2.6	1.8	7.2	3.9	4.4	12	4.8	6.3	15
51	3.8	1.8	5.6	6.2	4.4	10	7.4	6.3	13
210	9.2	1.8	4.0	18	4.4	7.8	24	6.3	11
430	16.5	1.8	3.6	35	4.4	7.4	47	6.3	11
520	20	1.8	3.4	42	4.4	6.1	57	6.3	10

TABLE 7- 12 (cont.) ESTIMATED INSTALLATION AND UPGRADE COSTS FOR OZONE AS PRIMARY DISINFECTANT -LARGE SYSTEMS

			FOR OLO	LARGE	SYSTEMS				
Design	L	og Inactivation	= 1	Log Inactivation = 3			Log Inactivation = 5		
(mgd)	Upgrade Capital Cost (\$M)	Upgrade O&M Cost (4/1000 gal)	Total Upgrade Cost @ 10% (4/1000 gal)	Upgrad e Capital Cost (\$M)	Upgrade O&M Cost (4/1000 gal)	Total Upgrade Cost @ 10% (4/1000 gal)	Upgrade Capital Cost (\$M)	Upgrade O&M Cost (4/1000 gal)	Total Upgrade Cost @ 10% (4/1000 gal)
1.8	0.89	1.8	43	1.5	4.4	72	1.4	6.3	69
4.8	1.5	1.8	26	1.9	4.4	34	2.0	6.3	37
11	1.9	1.8	14	2.6	4.4	21	2.8	6.3	24
18	2.4	1.8	11	3.0	4.4	15	3.7	6.3	20
26	2.6	1.8	8.4	3.9	4.4	14	4.8	6.3	18
51	3.8	1.8	6.5	6.2	4.4	11	7.4	6.3	15
210	9.2	1.8	4.5	18	4.4	8.7	24	6.3	12
430	16	1.8	4.0	35	4.4	8.2	47	6.3	12
520	20	1.8	3.6	42	4.4	8.2	57	6.3	10

TABLE 7- 12 (cont.) ESTIMATED INSTALLATION AND UPGRADE COSTS FOR OZONE AS PRIMARY DISINFECTANT LARGE SYSTEMS

TABLE 7-13 ESTIMATED INSTALLATION AND UPGRADE COSTS FOR CHLORINE DIOXIDE AS PRIMARY DISINFECTANT (MANUAL GENERATOR) SMALL SYSTEMS

	L	og Inactivati	$\mathbf{pn} = 1$	Log	Inactivation	i = 3	Log	g Inactivation	n = 5
Design	Upgrade	Upgrade	Total	Upgrade	Upgrade	Total	Upgrade	Upgrade	Total
Flow	Capital	O&M	Upgrade	Capital	O&M	Upgrade	Capital	O&M	Upgrade
(mgd)	Cost ⁽¹⁾	Cost	Cost @ 3%	Cost ⁽¹⁾	Cost	Cost @ 3%	Cost ⁽¹⁾	Cost	Cost @ 3%
	(\$M)	(¢/1000gal)	(¢/1000gal)	(\$M)	(¢/1000gal)	(¢/1000gal)	(\$M)	(¢/1000gal)	(¢/1000gal)
0.024	0.10	1929	2258	0.10	1934	2263	0.13	1934	2362
0.087	0.10	452	529	0.10	456	533	0.15	456	571
0.27	0.10	128	149	0.10	132	153	0.22	132	179
0.65	0.10	49	57	0.10	52	60	0.28	52	74
		Log Inactivation = 1							
	L	og Inactivati	$\mathbf{pn} = 1$	Log	Inactivation	n = 3	Log	g Inactivation	n = 5
Design	L Upgrade	og Inactivatio Upgrade	on = 1 Total	Log Upgrade	Inactivation	i = 3 Total	Log Upgrade	g Inactivation Upgrade	n = 5 Total
Design Flow	L Upgrade Capital	og Inactivatio Upgrade O&M	on = 1 Total Upgrade	Log Upgrade Capital	Inactivation Upgrade O&M	n = 3 Total Upgrade	Log Upgrade Capital	g Inactivation Upgrade O&M	n = 5 Total Upgrade
Design Flow (mgd)	L Upgrade Capital Cost ⁽¹⁾	og Inactivatio Upgrade O&M Cost	on = 1 Total Upgrade Cost @ 7%	Log Upgrade Capital Cost ⁽¹⁾	Inactivation Upgrade O&M Cost	Total Upgrade Cost @ 7%	Log Upgrade Capital Cost ⁽¹⁾	g Inactivation Upgrade O&M Cost	n = 5 Total Upgrade Cost @ 7%
Design Flow (mgd)	L Upgrade Capital Cost ⁽¹⁾ (\$M)	og Inactivatio Upgrade O&M Cost (¢/1000gal)	on = 1 Total Upgrade Cost @ 7% (¢/1000gal)	Log Upgrade Capital Cost ⁽¹⁾ (\$M)	Inactivation Upgrade O&M Cost (¢/1000gal)	n = 3 Total Upgrade Cost @ 7% (¢/1000gal)	Log Upgrade Capital Cost ⁽¹⁾ (\$M)	g Inactivation Upgrade O&M Cost (¢/1000gal)	n = 5 Total Upgrade Cost @ 7% (¢/1000gal)
Design Flow (mgd) 0.024	L Upgrade Capital Cost ⁽¹⁾ (\$M) 0.10	og Inactivatio Upgrade O&M Cost (¢/1000gal) 1929	on = 1 Total Upgrade Cost @ 7% (¢/1000gal) 2391	Log Upgrade Capital Cost ⁽¹⁾ (\$M) 0.10	Inactivation Upgrade O&M Cost (¢/1000gal) 1934	Total Upgrade Cost @ 7% (¢/1000gal) 2396	Log Upgrade Capital Cost ⁽¹⁾ (\$M) 0.13	g Inactivation Upgrade O&M Cost (¢/1000gal) 1934	n = 5 Total Upgrade Cost @ 7% (¢/1000gal) 2534
Design Flow (mgd) 0.024 0.087	L Upgrade Capital Cost ⁽¹⁾ (\$M) 0.10 0.10	og Inactivatio Upgrade O&M Cost (¢/1000gal) 1929 452	on = 1 Total Upgrade Cost @ 7% (¢/1000gal) 2391 560	Log Upgrade Capital Cost ⁽¹⁾ (\$M) 0.10 0.10	Inactivation Upgrade O&M Cost (¢/1000gal) 1934 456	a = 3 Total Upgrade Cost @ 7% (¢/1000gal) 2396 564	Log Upgrade Capital Cost ⁽¹⁾ (\$M) 0.13 0.15	g Inactivation Upgrade O&M Cost (¢/1000gal) 1934 456	n = 5 Total Upgrade Cost @ 7% (¢/1000gal) 2534 618
Design Flow (mgd) 0.024 0.087 0.27	L Upgrade Capital Cost ⁽¹⁾ (\$M) 0.10 0.10 0.10	og Inactivatio Upgrade O&M Cost (¢/1000gal) 1929 452 128	on = 1 Total Upgrade Cost @ 7% (¢/1000gal) 2391 560 158	Log Upgrade Capital Cost ⁽¹⁾ (\$M) 0.10 0.10 0.10	Inactivation Upgrade O&M Cost (¢/1000gal) 1934 456 132	Total Upgrade Cost @ 7% (¢/1000gal) 2396 564 162	Log Upgrade Capital Cost ⁽¹⁾ (\$M) 0.13 0.15 0.22	g Inactivation Upgrade O&M Cost (¢/1000gal) 1934 456 132	n = 5 Total Upgrade Cost @ 7% (¢/1000gal) 2534 618 198

TABLE 7-13 (cont) ESTIMATED INSTALLATION AND UPGRADE COSTS FOR CHLORINE DIOXIDE AS PRIMARY DISINFECTANT (MANUAL GENERATOR) **SMALL SYSTEMS**

Design Flow (mgd)	Upgrade Capital Cost ⁽¹⁾ (\$M)	Upgrade O&M Cost (¢/1000gal)	Total Upgrade Cost @ 10 % (c/1000gal)	Upgrade Capital Cost ⁽¹⁾ (\$M)	Upgrade O&M Cost (¢/1000gal)	Total Upgrade Cost @ 10% (¢/1000gal)	Upgrade Capital Cost ⁽¹⁾ (\$M)	Upgrade O&M Cost (¢/1000gal)	Total Upgrade Cost @ 10% (¢/1000gal)
0.024	0.10	1929	2455	0.10	1934	2460	0.13	1934	2659
0.087	0.10	452	575	0.10	456	579	0.15	456	654
0.27	0.10	128	162	0.10	132	166	0.22	132	215
0.65	0.10	49	62	0.10	52	65	0.28	52	91

Final

TABLE 7-13 (cont.) ESTIMATED INSTALLATION AND UPGRADE COSTS FOR CHLORINE DIOXIDE AS PRIMARY DISINFECTANT (AUTOMATIC GENERATOR) SMALL SYSTEMS

	Lo	og Inactivatio	n = 1	Log	Inactivation	n = 3	Log Inactivation = 5			
Design	Upgrade	Upgrade	Total	Upgrade	Upgrade	Total	Upgrade	Upgrade	Total	
Flow	Capital	O&M	Upgrade	Capital	O&M	Upgrade	Capital	O&M	Upgrade	
(mgd)	Cost ⁽¹⁾	Cost	Cost @ 3%	Cost ⁽¹⁾	Cost	Cost @ 3%	Cost ⁽¹⁾	Cost	Cost @ 3%	
	(\$M)	(¢/1000gal)	(¢/1000gal)	(\$M)	(¢/1000gal)	(¢/1000gal)	(\$M)	(¢/1000gal)	(¢/1000gal)	
0.024	0.33	1548	2633	0.33	1552	2637	0.37	1552	2769	
0.087	0.33	364	617	0.33	367	620	0.39	367	666	
0.27	0.33	104	175	0.33	107	178	0.47	107	208	
0.65	0.33	40	66	0.33	43	69	0.52	43	85	
					Log Inactivation = 3			Log Inactivation = 5		
	Lo	og Inactivatio	n = 1	Log	Inactivation	n = 3	Log	g Inactivation	n = 5	
Design	Lo Upgrade	og Inactivatio Upgrade	n = 1 Total	Log Upgrade	Inactivation	n = 3 Total	Log Upgrade	g Inactivation Upgrade	n = 5 Total	
Design Flow	Lo Upgrade Capital	og Inactivatio Upgrade O&M	n = 1 Total Upgrade	Log Upgrade Capital	Inactivation Upgrade O&M	n = 3 Total Upgrade	Log Upgrade Capital	g Inactivation Upgrade O&M	n = 5 Total Upgrade	
Design Flow (mgd)	Lo Upgrade Capital Cost ⁽¹⁾	og Inactivatio Upgrade O&M Cost	n = 1 Total Upgrade Cost @ 7%	Log Upgrade Capital Cost ⁽¹⁾	Inactivation Upgrade O&M Cost	Total Upgrade Cost @ 7%	Log Upgrade Capital Cost ⁽¹⁾	g Inactivation Upgrade O&M Cost	n = 5 Total Upgrade Cost @ 7%	
Design Flow (mgd)	Lo Upgrade Capital Cost ⁽¹⁾ (\$M)	og Inactivatio Upgrade O&M Cost (¢/1000gal)	n = 1 Total Upgrade Cost @ 7% (¢/1000gal)	Log Upgrade Capital Cost ⁽¹⁾ (\$M)	Inactivation Upgrade O&M Cost (¢/1000gal)	Total Upgrade Cost @ 7% (¢/1000gal)	Log Upgrade Capital Cost ⁽¹⁾ (\$M)	y Inactivation Upgrade O&M Cost (¢/1000gal)	n = 5 Total Upgrade Cost @ 7% (¢/1000gal)	
Design Flow (mgd)	Lo Upgrade Capital Cost ⁽¹⁾ (\$M) 0.33	bg Inactivatio Upgrade O&M Cost (¢/1000gal) 1548	n = 1 Total Upgrade Cost @ 7% (¢/1000gal) 3072	Log Upgrade Capital Cost ⁽¹⁾ (\$M) 0.33	Inactivation Upgrade O&M Cost (¢/1000gal) 1552	Total Upgrade Cost @ 7% (¢/1000gal) 3076	Log Upgrade Capital Cost ⁽¹⁾ (\$M) 0.37	y Inactivation Upgrade O&M Cost (¢/1000gal) 1552	n = 5 Total Upgrade Cost @ 7% (¢/1000gal) 3261	
Design Flow (mgd) 0.024 0.087	Lo Upgrade Capital Cost ⁽¹⁾ (\$M) 0.33 0.33	og Inactivatio Upgrade O&M Cost (¢/1000gal) 1548 364	n = 1 Total Upgrade Cost @ 7% (¢/1000gal) 3072 720	Log Upgrade Capital Cost ⁽¹⁾ (\$M) 0.33 0.33	Inactivation Upgrade O&M Cost (¢/1000gal) 1552 367	a = 3 Total Upgrade Cost @ 7% (¢/1000gal) 3076 723	Log Upgrade Capital Cost ⁽¹⁾ (\$M) 0.37 0.39	Inactivation Upgrade O&M Cost (¢/1000gal) 1552 367	n = 5 Total Upgrade Cost @ 7% (¢/1000gal) 3261 787	
Design Flow (mgd) 0.024 0.087 0.27	Lo Upgrade Capital Cost ⁽¹⁾ (\$M) 0.33 0.33 0.33	bg Inactivatio Upgrade O&M Cost (¢/1000gal) 1548 364 104	n = 1 Total Upgrade Cost @ 7% (¢/1000gal) 3072 720 203	Log Upgrade Capital Cost ⁽¹⁾ (\$M) 0.33 0.33 0.33	Inactivation Upgrade O&M Cost (¢/1000gal) 1552 367 107	■ = 3 Total Upgrade Cost @ 7% (¢/1000gal) 3076 723 206	Log Upgrade Capital Cost ⁽¹⁾ (\$M) 0.37 0.39 0.47	Junactivation Upgrade O&M Cost (¢/1000gal) 1552 367 107	n = 5 Total Upgrade Cost @ 7% (¢/1000gal) 3261 787 248	

TABLE 7-13 (cont.) ESTIMATED INSTALLATION AND UPGRADE COSTS FOR CHLORINE DIOXIDE AS PRIMARY DISINFECTANT (AUTOMATIC GENERATOR) SMALL SYSTEMS

Design	Upgrade	Upgrade	Total	Upgrade	Upgrade	Total	Upgrade	Upgrade	Total
Flow	Capital	O&M	Upgrade	Capital	O&M	Upgrade	Capital	O&M	Upgrade
(mgd)	Cost ⁽¹⁾	Cost	Cost @	Cost ⁽¹⁾	Cost	Cost @	Cost ⁽¹⁾	Cost	Cost @
	(\$M)	(¢/1000gal)	10%	(\$M)	(¢/1000gal)	10%	(\$M)	(¢/1000gal)	10%
			(¢/1000gal)			(¢/1000gal)			(¢/1000gal)
0.024	0.33	1548	3459	0.33	1552	3462	0.37	1552	3662
0.087	0.33	364	810	0.33	367	813	0.39	367	888
0.27	0.33	104	228	0.33	107	231	0.47	107	280
0.65	0.33	40	87	0.33	43	90	0.52	43	115

(1) Cost were adjusted to account for an increase in basin contact time from the information reported in Table 7-10

TABLE 7-13 (cont.) ESTIMATED INSTALLATION AND UPGRADE COSTS FOR CHLORINE DIOXIDE AS PRIMARY DISINFECTANT (MANUAL GENERATOR)

LARGE SYSTEMS

	Lo	og Inactivatio	n = 1	Log	Inactivation	= 3	Log Inactivation = 5			
Design Flow (mgd)	Upgrade Capital Cost ⁽¹⁾ (\$M)	Upgrade O&M Cost (¢/1000gal)	Total Upgrade Cost @ 3% (¢/1000gal)	Upgrade Capital Cost ⁽¹⁾ (\$M)	Upgrade O&M Cost (¢/1000gal)	Total Upgrade Cost @ 3% (¢/1000gal)	Upgrade Capital Cost ⁽¹⁾ (\$M)	Upgrade O&M Cost (¢/1000gal)	Total Upgrade Cost @ 3% (¢/1000gal)	
1.8	0.10	18	20.6	0.10	20	22.6	0.50	20	33	
4.8	0.10	7.4	8.3	0.10	9.6	10.5	0.75	9.6	16	
11	0.10	4.3	4.7	0.10	6.5	6.9	1.3	6.5	11.3	
18	0.20	3.8	4.2	0.20	5.8	6.2	3.7	5.8	13.5	
26	0.20	3.2	3.5	0.20	5.1	5.4	5.1	5.1	12.3	
51	0.28	2.4	2.6	0.28	4.6	4.8	9.4	4.6	11	
210	0.29	1.8	1.8	0.29	3.6	3.6	36	3.6	9.1	
430	0.35	1.6	1.6	0.35	3.2	3.2	73	3.2	8.2	
520	0.35	1.4	1.4	0.35	2.4	2.4	89	2.	7.1	

TABLE 7-13 (cont.) ESTIMATED INSTALLATION AND UPGRADE COSTS FOR CHLORINE DIOXIDE AS PRIMARY DISINFECTANT (MANUAL GENERATOR) LARGE SYSTEMS

	L	og Inactivation	n = 1	Log	Log Inactivation = 3			Log Inactivation = 5		
Design Flow (mgd)	Upgrade Capital Cost ⁽¹⁾ (\$M)	Upgrade O&M Cost (¢/1000gal)	Total Upgrade Cost @ 7% (¢/1000gal)	Upgrade Capital Cost ⁽¹⁾ (\$M)	Upgrade O&M Cost (¢/1000gal)	Total Upgrade Cost @ 7% (¢/1000gal)	Upgrade Capital Cost ⁽¹⁾ (\$M)	Upgrade O&M Cost (¢/1000gal)	Total Upgrade Cost @ 7% (¢/1000gal)	
1.8	0.10	18	22	0.10	20	24	0.50	20	38	
4.8	0.10	7.4	8.2	0.10	9.6	11	0.75	9.6	19	
11	0.10	4.3	4.5	0.10	6.5	6.5	1.3	6.5	13	
18	0.20	3.8	4.6	0.20	5.8	6.6	3.7	5.8	17	
26	0.20	3.2	3.4	0.20	5.1	5.4	5.1	5.1	15	
51	0.28	2.4	2.3	0.28	4.6	4.3	9.4	4.6	13	
210	0.29	1.8	2.1	0.29	3.6	4.1	36	3.6	12	
430	0.35	1.6	2.0	0.35	3.2	3.0	73	3.2	10	
520	0.35	1.4	1.4	0.35	2.4	2.5	89	2.4	9.0	

TABLE 7-13 (cont.) ESTIMATED INSTALLATION AND UPGRADE COSTS FOR CHLORINE DIOXIDE AS PRIMARY DISINFECTANT (MANUAL GENERATOR)

LARGE SYSTEMS

	L	og Inactivatio	n = 1	Log	Log Inactivation = 3			Log Inactivation = 5		
Design	Upgrade	Upgrade	Total	Upgrade	Upgrade	Total	Upgrade	Upgrade	Total	
Flow	Capital	O&M	Upgrade	Capital	O&M	Upgrade	Capital	O&M	Upgrade	
(mgd)	Cost ⁽¹⁾	Cost	Cost @	Cost ⁽¹⁾	Cost	Cost @	Cost ⁽¹⁾	Cost	Cost @	
_	(\$M)	(¢/1000gal)	10%	(\$M)	(¢/1000gal)	10%	(\$M)	(¢/1000gal)	10%	
			(¢/1000gal)			(¢/1000gal)			(¢/1000gal)	
1.8	0.10	18	22	0.10	20	25	0.50	20	43	
4.8	0.10	7.4	8.8	0.10	10	11	0.75	10	21	
11	0.10	4.3	4.9	0.10	6.5	7.1	1.3	6.5	15	
18	0.20	3.8	4.5	0.20	5.8	6.5	3.7	5.8	19	
26	0.20	3.2	3.7	0.20	5.1	5.6	5.1	5.1	18	
51	0.28	2.4	2.8	0.28	4.3	4.6	9.4	4.3	15	
210	0.29	1.8	1.9	0.29	3.5	3.6	36	3.5	13	
430	0.35	1.6	1.7	0.35	3.2	3.2	73	3.2	12	
520	0.35	1.4	1.4	0.35	2.4	2.5	89	2.4	11	

⁽¹⁾ Cost were adjusted to account for an increase in basin contact time from the information reported in Table 7-10

TABLE 7-13 (cont.) ESTIMATED INSTALLATION AND UPGRADE COSTS FOR CHLORINE DIOXIDE AS PRIMARY DISINFECTANT (AUTOMATIC GENERATOR)

LARGE SYSTEMS

	Lo	g Inactivatio	n = 1	Log	Log Inactivation = 3			Log Inactivation = 5		
Design	Upgrade	Upgrade	Total	Upgrade	Upgrade	Total	Upgrade	Upgrade	Total	
Flow		O&M	Upgrade		O&M	Upgrade		O&M	Upgrade	
(mga)	Cost	Cost	Cost @	Cost	Cost	Cost @	Cost	Cost	Cost @	
	(\$M)	(¢/1000gal)	3%	(\$M)	(c/1000gal)	3%	(\$M)	(c/1000gal)	3%	
			(¢/1000gal)			(¢/1000gal)			(¢/1000gal)	
1.8	0.33	15	24	0.33	17	26	0.74	17	37	
4.8	0.33	6.3	9.2	0.33	8.6	12	0.99	8.6	17	
11	0.33	3.9	5.1	0.33	6.0	7.2	1.5	6.0	12	
18	0.68	3.3	4.7	0.68	5.3	6.7	4.2	5.3	14	
26	0.68	2.9	3.9	0.68	4.8	5.8	5.6	4.8	13	
51	0.76	2.3	2.8	0.76	4.1	4.6	10	4.1	11	
210	0.77	1.8	1.9	0.77	3.5	3.6	37	3.5	9.2	
430	0.83	1.6	1.7	0.83	3.1	3.2	74	3.1	8.2	
520	0.91	1.3	1.4	0.91	2.5	2.6	90	2.5	7.2	

TABLE 7-13 (cont.) ESTIMATED INSTALLATION AND UPGRADE COSTS FOR CHLORINE DIOXIDE AS PRIMARY DISINFECTANT (AUTOMATIC GENERATOR)

LARGE SYSTEMS

	Lo	g Inactivatio	n = 1	Log	Log Inactivation = 3			Log Inactivation = 5			
Design Flow	Upgrade Capital	Upgrade O&M	Total Upgrade	Upgrade Capital	Upgrade O&M	Total Upgrade	Upgrade Capital	Upgrade O&M	Total Upgrade		
(mgd)	Cost ⁽¹⁾	Cost	Cost @	Cost ⁽¹⁾	Cost	Cost @	Cost ⁽¹⁾	Cost	Cost @		
	(\$M)	(¢/1000gal)	7%	(\$M)	(¢/1000gal)	7%	(\$M)	(¢/1000gal)	7%		
			(¢/1000gal)			(¢/1000gal)			(¢/1000gal)		
1.8	0.33	15	27	0.33	17	29	0.74	17	44		
4.8	0.33	6.3	10	0.33	8.6	13	0.99	8.6	21		
11	0.33	3.9	5.7	0.33	6.0	7.7	1.5	6.0	14		
18	0.68	3.3	5.0	0.68	5.3	7.0	4.2	5.3	17		
26	0.68	2.9	4.4	0.68	4.8	6.4	5.6	4.8	16		
51	0.76	2.3	2.7	0.76	4.1	4.7	10	4.1	13		
210	0.77	1.8	2.2	0.77	3.5	4.2	37	3.5	12		
430	0.83	1.6	2.1	0.83	3.1	3.1	74	3.1	10		
520	0.91	1.3	1.4	0.91	2.5	2.6	90	2.5	9.1		

B-27

⁽¹⁾ Cost were adjusted to account for an increase in basin contact time from the information reported in Table 7-10

TABLE 7-13 (cont.) ESTIMATED INSTALLATION AND UPGRADE COSTS FOR CHLORINE DIOXIDE AS PRIMARY DISINFECTANT (AUTOMATIC GENERATOR)

	L	og Inactivatio	n = 1	Log Inactivation = 3			Log Inactivation = 5		
Design Flow	Upgrade Capital	Upgrade O&M	Total Upgrade	Upgrade Capital	Upgrade O&M	Total Upgrade	Upgrade Capital	Upgrade O&M	Total Upgrade
(mgd)	Cost ⁽¹⁾	Cost	Cost @	Cost ⁽¹⁾	Cost	Cost @	Cost ⁽¹⁾	Cost	Cost @
	(\$M)	(¢/1000gal)	10%	(\$M)	(¢/1000gal)	10%	(\$M)	(¢/1000gal)	10%
			(¢/1000gal)			(¢/1000gal)			(¢/1000gal)
1.8	0.33	15	30	0.33	17	32	0.74	17	51
4.8	0.33	6.3	11	0.33	8.6	14	0.99	8.6	24
11	0.33	3.9	6.1	0.33	6.0	8.1	1.5	6.0	16
18	0.68	3.3	5.5	0.68	5.3	7.5	4.2	5.3	21
26	0.68	2.9	4.7	0.68	4.8	6.7	5.6	4.8	19
51	0.76	2.3	2.9	0.76	4.1	4.9	10	4.1	16
210	0.77	1.8	2.2	0.77	3.5	4.2	37	3.5	13
430	0.83	1.6	2.1	0.83	3.1	3.1	74	3.1	12
520	0.91	1.3	1.4	0.91	2.5	2.7	90	2.5	11

LARGE SYSTEMS

⁽¹⁾ Cost were adjusted to account for an increase in basin contact time from the information reported in Table 7-10

B.2 References

- 1. USEPA. 1998a. Technologies and Costs for Control of Disinfection By-Products. Washington, DC.
- 2. USEPA. 1998b. *Regulatory Impact Analysis for the Stage 1 Disinfectant/Disinfection Byproduct Rule*. Prepared by Science Applications International Corporation for the USEPA, Office of Ground Water and Drinking Water, Washington, DC.

THIS PAGE INTENTIONALLY LEFT BLANK