Alaska Transportation Profile

Acknowledgments

U.S. Department of Transportation

Norman Y. Mineta
Secretary
Michael P. Jackson
Deputy Secretary

Bureau of Transportation Statistics

Ashish K. Sen
Director

Rick Kowalewski
Deputy Director
Susan J. Lapham
Associate Director for
Statistical Programs
John V. Wells
Chief Economist
Wendell Fletcher
Assistant Director for
Transportation Analysis

Project Manager
Ron Duych
Major C ontributors
Martha Courtney
Derald Dudley
Pamela LaFontaine
Matt Sheppard

0 ther C ontributors

Steve Lewis
Chip Moore
Lorisa Smith

Data Collection and Production- Battelle
William Mallett
Mary Field
Alexa Getting
Leonard Hughes
David Kall
Laurie Scovell

Bureau of Transportation Statistics

Our mission: To lead in developing transportation data and information of high quality and to advance their effective use in both public and private transportation decisionmaking.

Our vision for the future: Data and information of high quality supporting every significant transportation policy decision, thus advancing the quality of life and the economic well-being of all Americans.

To obtain this and other BTS publications:
Internet: www.bts.gov
Phone: 202/366-DATA [press 1]
Fax: 202/366-3640

Mail: Product Orders
Bureau of Transportation Statistics
U.S. Department of Transportation
$4007^{\text {th }}$ Street, SW, Room 7412
Washington, DC 20590
Your comments for improving State Transportation Profile reports are welcome.
Contact the BTS Information Service:
E-mail: answers@bts.gov
Phone: 800/853-1351

Alaska Fast Facts 2000

Transportation System Extent

All public roads: 12,823 miles
Interstate: 1,083 miles
Road bridges: 1,049
Railroad trackage: 482 miles
Inland waterways: 5,497 miles
Ferry routes: 65
Ferry route-miles: 8,520
Public use airports: 301 (34 certificated for air carrier operations) ${ }^{1}$

Vehicles and C onveyances

Automobiles registered: 623,000
Light trucks registered: 330,000
Heavy trucks registered: 3,000
Buses registered: 2,500
Motorcycles registered: 16,000
Numbered boats: 29,000

G eographic

Land area: 571,951 sq. miles (rank: 1)
Percent of land area owned by federal government: 62.4^{4} (rank: 4)

Persons per square mile: 1.1 (rank: 50)
Highest point: Mt. McKinley (20,320 ft.)
Lowest point: Pacific Ocean (0 ft .)
${ }^{1} 2002$
${ }^{2} 1990$
${ }^{3} 1997$
${ }^{4} 1999$

Political Subdivisions

Boroughs: 26
Municipal governments: 149^{3}
Congressional districts: 1

Demographic

Population: 626,932 (rank: 48)
Percent urban population: 68^{2} (rank: 29)

Socioeconomic

Gross state product: $\$ 26$ billion 4 (rank: 45)
Civilian labor force: $322,000^{4}$ (rank: 49)
Median household income: \$50,746
(rank: 4)

C ommuting (percent of workers)

Car, truck, or van-drove alone: 68.6
Car, truck, or van-carpooled: 13.4
Public transportation (including taxi): 2.8
Walked: 7.5
Other means: 4.3
Worked at home: 3.2
State Transportation Department
Alaska Department of Transportation and Public Facilities

3132 Channel Drive, Juneau, AK 99801
(907) 465-3900
http://www.dot.state.ak.us/

The Bureau of Transportation Statistics (BTS) presents a profile of transportation in Alaska-part of a series covering the 50 states and the District of Columbia. This collection of transportation information from BTS, other federal government agencies, and other national sources provides a picture of the state's infrastructure, freight movement and passenger travel, safety, vehicles, economy and finance, and energy and environment.

All tables do not necessarily appear in every state profile report due to geographic and other characteristics. For example, border-crossing data are given only for states bordering Canada and Mexico. Data source and accuracy profiles are provided at the end of the report.

Table of Contents

A Infrastructure
TABLES PAGE
Alaska Public Road Length, Miles by Functional System: 1995-2000 A-1
Public Roads in Alaska by Ownership: 2000 A-1
Alaska Toll Ferries: 2001 A-2
Alaska Road Condition by Functional System - Rural: 1995-2000 A-3
Alaska Road Condition by Functional System - Urban: 1995-2000 A-4
Highway Bridge Condition: 2001 A-5
Characteristics of Directly Operated Motor Bus Transit in Alaska: 2000 A-7
Civil and Joint-Use Airports, Heliports, STOLports, and Seaplane Bases in Alaska: 2002 A-8
Alaska Commercial Service Airport Enplanements: 2000 A-9
Freight Railroads in Alaska and the United States: 2000 A-10
Freight Railroads Operating in Alaska by Class: 2000. A-11
Alaska Water Ports Ranked in Top 150 U.S. Ports by Tonnage: 2000 A-12
Inland Waterway Mileage: 2000 A-12
FIGURES
Rural Road Conditions in Alaska: 2000 A-3
Urban Road Conditions in Alaska: 2000 A-4
Highway Bridge Condition in Alaska and the United States: 1995-2000 A-6
B Safety
TABLES
Highway Traffic Fatalities and Fatality Rates: 2000 B-1
Passenger Car Occupants Killed and Restraint Use: 2000 B-2
Key Provisions of Safety Belt Use Laws: 2000 B-3
Shoulder Belt Use: 2000 B-4
Pedestrian Fatalities Involving Motor Vehicles: 2000 B-5
Motor Vehicle Fatalities Involving High Blood Alcohol Concentration: 1995 and 2000 B-6
Impaired Driving Laws: 2000 B-7
Maximum Posted Speed Limits by System: 2001 B-8
Total Rail Accidents/Incidents: 2000 B-9
Highway-Rail Grade Crossing Incidents: 2000 B-10
Highway-Rail Grade Crossings by Type: 2000 B-11
Warning Devices at Public Highway-Rail Grade Crossings: 2000 B-11
Types of People Injured in Alaska Train Accidents/Incidents: 2000 B-12
Alaska Transit Safety Data: 2000 B-13
U.S. Transit Safety Data: 2000 B-13
Recreational Boating Accidents: 2000 B-14
Alcohol Involvement in Recreational Boating Accidents: 1999 and 2000 B-15
Hazardous Materials Incidents: 2000 B-16
Alaska Hazardous Materials Incidents by Mode: 2000 B-17
Natural Gas Distribution Pipeline Incidents: 1995-2000. B-18
Natural Gas Transmission Pipeline Incidents: 1995-2000. B-18
Hazardous Liquid Pipeline Incidents: 1995-2000 B-19
FIGURES
Shoulder Belt Use: 1998-2000 B-4
Alaska Train Accidents: 1995-2000 B-9
Alaska Highway-Rail Grade Crossing Fatalities and Injuries: 1995-2000 B-10
Railroad Trespasser Deaths and Injuries in Alaska: 1995-2000 B-12
Alaska Recreational Boating Accidents: 1995-2000 B-14
Alaska Recreational Boating Accidents Involving Alcohol: 1996-2000. B-15
Alaska Hazardous Materials Incidents: 1995-2000 B-16
Alaska Hazardous Materials Incidents by Mode: 1995-2000 B-17
C Freight Transportation
TABLES
Domestic Shipments to Alaska by State: 1997 C-1
Domestic Shipments from Alaska by State: 1997 C-2
Shipments Originating in Alaska by Mode of Transportation: 1997 C-3
Domestic Shipments from Alaska by Truck: 1997 C-4
Domestic Shipments to Alaska by Truck: 1997 C-4
Truck Shipments from Alaska by Commodity: 1997 C-7
Rail Shipments Terminating in Alaska C-8
Rail Shipments Originating in Alaska C-8
Foreign and Domestic Waterborne Shipments Originating in Alaska by Destination: 2000 C-9
Foreign and Domestic Waterborne Shipments to Alaska by Origin: 2000. C-9
Foreign and Domestic Waterborne Shipments Originating in Alaska by Commodity: 2000 C-10
Domestic Waterborne Shipments Originating in Alaska by Commodity: 2000 C-10
Foreign and Domestic Waterborne Shipments to Alaska by Commodity: 2000 C-11
Domestic Waterborne Shipments to Alaska by Commodity: 2000 C-11
U.S. Waterborne Imports by State and Vessel Type: 1999 C-12
U.S. Waterborne Exports by State and Vessel Type: 1999 C-13
Scheduled and Nonscheduled Air Freight and Mail Enplaned: 2000. C-14
Surface Merchandise Trade with Canada and Mexico: 2000 C-15
Incoming Truck Crossings, U.S.-Canadian Border: 1995-2000 C-17
Incoming Truck Container (Loaded) Crossings, U.S.-Canadian Border: 1995-2000 C-17
Incoming Truck Container (Unloaded) Crossings, U.S.-Canadian Border: 1995-2000 C-17
Incoming Train Crossings, U.S.-Canadian Border: 1995-2000 C-18
PAGE
Incoming Rail Container (Full) Crossings, U.S.-Canadian Border: 1995-2000 C-18
Incoming Rail Containers (Empty) Crossings, U.S.-Canadian Border 1995-2000 C-18
Top 50 U.S. Foreign Trade Freight Gateways: 2000 C-19
FIGURES
Alaska Surface Merchandise Trade with Canada and Mexico: 1995-2000 C-15
Truck and Rail Imports from Mexico to Alaska by Weight: 1997-2000 C-16
Truck and Rail Imports from Canada to Alaska by Weight: 1997-2000 C-16
MAP
Alaska Network Truck Flows: 1998 C-5
D Passenger Travel
TABLES
Commuting to Work: 2000 D-1
Licensed Drivers: 2000 D-1
Urban Transit Agencies in Alaska: 2000 D-2
Incoming Personal Vehicle Crossings, U.S.-Canadian Border: 1995-2000 D-3
Incoming Passengers in Personal Vehicles, U.S.-Canadian Border: 1995-2000 D-3
Incoming Train Passengers, U.S.-Canadian Border: 1995-2000 D-3
Incoming Bus Crossings, U.S.-Canadian Border: 1995-2000 D-4
Incoming Passengers on Buses, U.S.-Canadian Border: 1995-2000 D-4
Incoming Pedestrians, U.S.-Canadian Border: 1995-2000 D-4
FIGURES
Licensed Drivers in Alaska by Age and Sex: 2000 D-1
Overseas Visitors to Alaska: 1995-2000 D-5
E Registered Vehicles and Vehicle-Miles Traveled
TABLES
Alaska and U.S. Motor-Vehicle Registrations: 2000 E-1
Alaska and U.S. Trailer and Semi-Trailer Registrations: 2000 E-1
Alaska Truck Characteristics and Use: 1997 E-2
Highway Vehicle-Miles Traveled (VMT): 2000 E-3
Highway, Demographic, and Geographic Characteristics of Urbanized Areas in Alaska: 2000 E-4
Alaska and U.S. Recreational Boat Registrations by Propulsion Type: 1999 and 2000 E-5
General Aviation and Air Taxi Aircraft and Hours Flown: 2000 E-6
Active Aviation Pilots and Flight Instructors: 2000 E-7

FIGURES

Highway Vehicle-Miles Traveled, United States and Alaska E-3
Alaska Recreational Boat Registrations: 1996-2000 E-5
F Economy and Finance
TABLES
Transportation and Warehousing Establishments and Employment in Alaska: 1999 F-1
Transportation and Warehousing Establishments and Employment in the United States: 1999 F-1
Transportation Revenues Collected by State and Local Governments in Alaska: 1995-1999 F-2
Transportation Expenditures by State and Local Government in Alaska: 1995-1999 F-2
State Motor-Fuel Tax Rates: 2000 F-3
G Energy and Environment
TABLES
Transportation Energy Consumption: 1999 G-1
Energy Consumption by End-Use Sector: 1999 G-2
Transportation Energy Consumption per Capita: 1999 G-5
Alaska and U.S. Motor-Fuel Use: 2000 G-6
Alaska Air Quality Nonattainment Areas for Carbon Monoxide (CO): 2001 G-7
Alaska Air Quality Nonattainment Areas for Particulate Matter (PM-10): 2001 G-7
Highway Noise Barriers: 1999 G-8
FIGURES
Energy Consumption by End-Use Sector: 1999 G-3
Alaska Transportation Energy Consumption: 1995-1999 G-4
H Information on Data Sources H-1
I Glossary I-1
Map: Alaska Major Transportation Facilities

A Infrastructure

Table 1-1: Alaska Public Road Length, Miles by Functional System

	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$
Total rural and urban	13,486	13,255	12,775	12,680	12,667	12,823
Rural	11,705	11,460	10,983	10,870	10,858	11,014
Interstate	1,032	1,033	1,034	1,030	1,030	1,030
Other principal arterial	810	810	810	809	809	809
Minor arterial	442	442	442	437	437	436
Major arterial	1,271	1,382	1,425	1,422	1,417	1,418
Minor collector	958	1,142	1,097	1,093	1,090	1,090
Local	7,192	6,651	6,175	6,079	6,075	6,231
Urban	1,781	1,795	1,792	1,810	1,809	1,809
Interstate	54	53	53	53	53	53
Other freeways and expressways	0	0	0	0	0	0
Other principal arterial	56	56	57	57	57	57
Minor arterial	203	204	203	202	202	202
Collector	215	229	229	229	229	228
Local	1,253	1,253	1,250	1,269	1,268	1,269

SOURCE: U.S. Department of Transportation, Federal Highway Administration, Highway Statistics, Washington, DC: annual editions, table HM-20, available at http://www.fhwa.dot.gov/ohim/hs00/hm20.htm as of Feb. 1, 2002.

Table 1-2: Alaska Public Road Length, Miles by Ownership: 2000

	National Highway System	Other federal-aid highway	Nonfederal-						
aid highway				\quad Total	Total	2,110	2,122	8,590	12,822
:---	---:	---:	---:	---:					
State highway agency	2,109	1,896	1,504	5,509					
County	1	92	3,428	3,521					
Town, township, municipal	NA	36	1,676	1,712					
Other jurisdiction 1	NA	83	473	556					
Federal agency 2	NA	15	1,509	1,524					

${ }^{1}$ Includes state park, state toll, other state agency, other local agency, and roadways not identified by ownership.
${ }^{2}$ Roadways in federal parks, forests, and reservations that are not part of the state and local highway systems.

KEY: NA = not applicable.
SOURCE: U.S. Department of Transportation, Federal Highway Administration, Highway Statistics, Washington, DC: annual editions, table HM-14, available at http://www.fhwa.dot.gov/ohim/hs00/hm14.htm as of Feb. 1, 2002.

Table 1-3: Alaska Toll Ferries: 2001

Vehicular toll ferries	Financing or operating authority	Location	Length in miles	Toll collection direction	Electronic collection system
Motor Vessel le Conte	Alaska DOTPF	From Petersburg to Skagway, AK	U	Both ways	No
Motor Vessel Tustumena	Alaska DOTPF	From Valdez to Dutch Harbor, AK	U	Both ways	No
Motor Vessel Bartlett	Alaska DOTPF	From Cordova to Whittier, AK	U	Both ways	No
Motor Vessel Bob Ellis	Ketchikan Gateway Borough	From Ketchikan to Ketchikan International Airport, AK	U	Both ways	No
Motor Vessel Ken Eichner	Ketchikan Gateway Borough	From Ketchikan to Ketchikan International Airport, AK	U	Both ways	No
Motor Vessel Malaspina	Alaska DOTPF	From Juneau to Skagway, AK	U	Both ways	No
Motor Vessel Taku	Alaska DOTPF	From Prince Rupert, BC to Skagway, AK	U	Both ways	No
Motor Vessel Aurora	Alaska DOTPF	From Prince Rupert, BC to Juneau, AK	U	Both ways	No
Motor Vessel Matanoska	Alaska DOTPF	From Prince Rupert, BC to Skagway, AK	U	Both ways	No
Motor Vessel Kennicott	Alaska DOTPF	From Bellingham, WA to Skagway, AK	U	Both ways	No
Motor Vessel Columbia	Alaska DOTPF	From Bellingham, WA to Skagway, AK	U	Both ways	No

KEY: DOTPF = Department of Transportation and Public Facilities; $U=$ data are unavailable.
SOURCE: U.S. Department of Transportation, Federal Highway Administration, Toll Facilities in the United States: Bridges-Roads-Tunnels-Ferries, Washington, DC: June 2001, available at http://www.fhwa.dot.gov/ohim/tollpage.htm as of Feb. 18, 2002.

Table 1-4: Alaska Road Condition by Functional System -- Rural
(Miles)

	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$
Interstate (total reported)	1,032	1,033	1,034	1,030	1,030	1,030
Very good	1	1	1	12	23	13
Good	255	310	174	238	318	333
Fair	297	292	336	337	346	313
Mediocre	386	330	424	356	297	370
Poor	93	100	99	87	46	1
Not reported	0	0	0	0	0	0
Other principal arterial (total reported)						
Very good	354	355	356	354	354	353
Good	0	0	0	6	7	7
Fair	65	66	72	90	109	113
Mediocre	85	134	87	68	39	66
Poor	181	137	170	150	181	108
Not reported	23	18	27	40	18	59
	456	455	454	455	455	455
Minor arterial (total reported)						
Very good	160	161	228	225	225	223
Good	0	0	0	0	0	0
Fair	38	44	129	61	52	46
Mediocre	1	14	43	0	17	121
Poor	84	57	19	127	119	46
Not reported	37	46	37	37	37	10
	282	281	214	212	0	0
Major collector (total reported)						
Very good	N	N	N	N	N	845
Good	N	N	N	N	N	42
Fair	N	N	N	N	N	60
Mediocre	N	N	N	N	N	532
Poor	N	N	N	N	N	130
Not reported	N	N	N	N	N	81

KEY: $\mathrm{N}=$ Data do not exist.
NOTE: In 2000, the Federal Highway Administration began reporting road condition for rural major collectors using the International Roughness Index. In prior years, data were only available using the Present Servicability Rating.

Figure 1-1: Rural Road Conditions in Alaska: 2000

NOTE FOR DATA ON THIS PAGE: Road condition is based on measured pavement roughness using the International Roughness Index (IRI). IRI is a measure of surface condition. A comprehensive measure of pavement condition would require data on other pavement distresses such as rutting, cracking, and faulting.

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, Federal Highway Administration, Highway Statistics, Washington, DC: annual editions, tables HM-63 and HM-64, available at http://www.fhwa.dot.gov/ as of Feb. 1, 2002.

Table 1-5: Alaska Road Condition by Functional System -- Urban
(Miles)

	1995	1996	1997	1998	1999	2000
Interstate (total reported)	53	53	53	53	54	53
Very good	0	0	0	0	1	4
Good	24	21	14	22	31	34
Fair	25	22	39	24	12	9
Mediocre	4	8	0	7	9	6
Poor	0	2	0	0	1	0
Not reported	0	0	0	0	0	0
Other freeways and expressways (total reported)	0	0	0	0	0	0
Very good	0	0	0	0	0	0
Good	0	0	0	0	0	0
Fair	0	0	0	0	0	0
Mediocre	0	0	0	0	0	0
Poor	0	0	0	0	0	0
Not reported	0	0	0	0	0	0
Other principal arterial (total reported)	56	56	56	55	55	56
Very good	1	0	0	0	0	7
Good	7	13	9	9	7	15
Fair	38	37	45	42	40	30
Mediocre	7	5	1	4	6	2
Poor	3	1	1	0	2	2
Not reported	0	0	0	0	0	0
Urban minor arterial (total reported)	N	N	N	N	N	202
Very good	N	N	N	N	N	0
Good	N	N	N	N	N	24
Fair	N	N	N	N	N	141
Mediocre	N	N	N	N	N	25
Poor	N	N	N	N	N	12
Not reported	N	N	N	N	N	0
Urban collector (total reported)	N	N	N	N	N	218
Very good	N	N	N	N	N	4
Good	N	N	N	N	N	16
Fair	N	N	N	N	N	88
Mediocre	N	N	N	N	N	49
Poor	N	N	N	N	N	61
Not reported	N	N	N	N	N	0

KEY: $\mathrm{N}=$ data do not exist.
NOTE: In 2000, the Federal Highway Administration began reporting road condition for urban minor arterials and urban collectors using the International Roughness Index. In prior years, data were only available using the Present Servicability Rating.

Figure 1-2: Urban Road Conditions in Alaska: 2000

NOTE FOR DATA ON THIS PAGE: Road condition is based on measured pavement roughness using the International Roughness Index (IRI). IRI is a measure of surface condition. A comprehensive measure of pavement condition would require data on other pavement distresses such as rutting, cracking, and faulting.
SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, Federal Highway Administration, Highway Statistics, Washington, DC: annual editions, tables HM-63 and HM-64, available at http://www.fhwa.dot.gov/ as of Feb. 1, 2002.

Table 1-6: Highway Bridge Condition: 2001

State	All bridges (number)	Structurally deficient (number)	Functionally obsolete (number)	Total of both	
				(number)	(percent)
Alabama	15,641	2,677	2,245	4,922	31.5
Alaska	1,433	169	243	412	28.8
Arizona	6,918	194	541	735	10.6
Arkansas	12,434	1,479	1,996	3,475	27.9
California	23,770	2,636	4,204	6,840	28.8
Colorado	8,082	596	847	1,443	17.9
Connecticut	4,171	362	943	1,305	31.3
Delaware	829	47	82	129	15.6
District of Columbia	243	25	136	161	66.3
Florida	11,303	300	1,814	2,114	18.7
Georgia	14,394	1,578	1,924	3,502	24.3
Hawaii	1,071	193	344	537	50.1
Idaho	4,069	320	436	756	18.6
Illinois	25,529	2,725	2,099	4,824	18.9
Indiana	18,067	2,257	2,161	4,418	24.5
lowa	25,030	5,036	2,060	7,096	28.3
Kansas	25,638	3,465	2,959	6,424	25.1
Kentucky	13,442	1,189	2,864	4,053	30.2
Louisiana	13,426	2,425	2,166	4,591	34.2
Maine	2,367	354	512	866	36.6
Maryland	4,957	436	1,010	1,446	29.2
Massachusetts	4,986	696	1,792	2,488	49.9
Michigan	10,631	2,012	1,354	3,366	31.7
Minnesota	12,830	1,221	563	1,784	13.9
Mississippi	16,825	3,694	1,308	5,002	29.7
Missouri	23,604	6,083	2,747	8,830	37.4
Montana	5,009	570	560	1,130	22.6
N ebraska	15,493	2,676	1,661	4,337	28.0
Nevada	1,510	67	154	221	14.6
New Hampshire	2,354	387	415	802	34.1
New Jersey	6,366	930	1,420	2,350	36.9
New Mexico	3,790	348	355	703	18.5
New York	17,378	2,406	4,182	6,588	37.9
North Carolina	16,991	2,513	2,794	5,307	31.2
North Dakota	4,517	871	266	1,137	25.2
O hio	27,952	3,304	3,862	7,166	25.6
O klahoma	22,708	7,605	1,518	9,123	40.2
Oregon	7,309	362	1,291	1,653	22.6
Pennsylvania	22,092	5,418	4,022	9,440	42.7
Rhode Island	749	187	192	379	50.6
South Carolina	9,064	1,187	869	2,056	22.7
South Dakota	6,001	1,398	346	1,744	29.1
Tennessee	19,362	1,761	2,940	4,701	24.3
Texas	48,085	3,182	7,373	10,555	22.0
Utah	2,743	389	245	634	23.1
Vermont	2,714	452	503	955	35.2
Virginia	12,789	1,222	2,243	3,465	27.1
Washington	7,939	551	1,591	2,142	27.0
West Virginia	6,767	1,172	1,495	2,667	39.4
Wisconsin	13,516	1,862	795	2,657	19.7
Wyoming	3,076	389	253	642	20.9
United States	590,066	83,630	81,469	165,099	28.0

SOURCE: U.S. Department of Transportation, Federal Highway Administration, N ational Bridge Inventory: Deficient Bridges by State and Highway System, Washington, DC: 2001, available at http://www.fhwa.dot.gov/bridge/britab.htm as of Jan. 31, 2002.

Figure 1-3: Highway Bridge Condition

United States

SOURCE: U.S. Department of Transportation, Federal Highway Administration, National Bridge Inventory: Deficient Bridges by State and Highway System, Washington, DC: 2001, available at http://www.fhwa.dot.gov/bridge/britab.htm as of Jan. 31, 2002.

Table 1-7: Characteristics of Directly Operated Motor Bus Transit in Alaska: 2000

	Directional route-miles			
Transit agency	Exclusive right-of-way	Controlled right-of-way	Mixed right-of-way	
Motor bus Municipality of Anchorage	0.0	0.0	275.0	

NOTES: Directional route-miles is the mileage in each direction over which public transportation vehicles travel while in revenue service. Directional route-miles are a measure of the facility or roadway, not the service carried on the facility such as the number of routes or vehicle-miles. Directional route-miles are computed with regard to direction of service, but without regard to the number of traffic lanes or rail tracks existing in the right-of-way. Exclusive right-of-way refers to lanes reserved at all times for transit use and other high occupancy vehicles (HOVs). Controlled right-of-way refers to lanes restricted for at least a portion of the day for use by transit vehicles and other HOVs. Mixed right-of-way refers to lanes used for general automobile traffic.

SOURCE: U.S. Department of Transportation, Federal Transit Administration, National Transit Database, Data Tables, available at http://www.ntdprogram.com/ as of Feb. 19, 2002.

Table 1-8: Civil and J oint-Use Airports, Heliports, STOLports, and Seaplane Bases in Alaska: 2002 ${ }^{1}$

Ownership and usage	Airports	Heliports	STOLports				Seaplane bases	Total
Publicly owned	$\mathbf{3 0 0}$	$\mathbf{1 2}$	$\mathbf{0}$	$\mathbf{7 4}$	$\mathbf{3 8 6}$			
O pen to public	277	4	0	73	354			
Closed to public	23	8	0	1	32			
Privately owned	$\mathbf{1 5 9}$	$\mathbf{1 6}$	$\mathbf{0}$	$\mathbf{3 0}$	$\mathbf{2 0 5}$			
O pen to public	24	2	0	25	51			
Closed to public	135	14	0	5	154			
Total	$\mathbf{4 5 9}$	$\mathbf{2 8}$	$\mathbf{0}$	$\mathbf{1 0 4}$	$\mathbf{5 9 1}$			

${ }^{1}$ Data are current as of Jan. 31, 2002.
KEY: STO Lport = Short take-off and landing airport.

NOTE: Publicly owned facilities are open for public use with no prior authorization or permission. Publicly owned facilities closed to the public include medical, law enforcement, and other such facilities.

SOURCE: U.S. Department of Transportation, Federal Aviation Administration, Office of Airports, Airport Safety Data Branch.

Table 1-9: Alaska Commercial Service Airport Enplanements: 2000
(For airports with scheduled service and 2,500 or more passengers enplaned)

Airport	Large certificated air carriers	\qquad	Air taxi commuter operators	Foreign air carriers	Total enplanements	Airport	Large certificated air carriers	\qquad	Air taxi commuter operators	Foreign air carriers	Total enplanements
Ted Stevens Anchorage International	1,708,249	279,481	215	515,193	2,503,138	Point Hope	0	4,533	0	0	4,533
Juneau International	255,362	75,917	61,592	1,034	393,905	Sand Point	2,151	2,239	0	0	4,390
Fairbanks International	331,890	54,743	2,100	0	388,733	Nuiqsut	1	4,184	0	0	4,185
Bethel	44,108	85,459	0	0	129,567	Ralph M Calhoun Memorial	0	3,967	200	0	4,167
Ketchikan International	99,730	7,397	5,083	0	112,210	Kalskag	0	4,146	0	0	4,146
Kenai Municipal	0	100,876	89	0	100,965	Chevak	0	4,141	0	0	4,141
Sitka Rocky Gutierrez	67,322	547	133	0	68,002	Togiak	0	3,397	728	0	4,125
Kodiak	30,411	35,489	5	0	65,905	Noatak	0	4,120	0	0	4,120
Ralph Wien Memorial	26,187	31,925	0	0	58,112	Beluga	0	4,090	0	0	4,090
Nome	27,500	27,640	5	0	55,145	Alakanuk	0	4,054	0	0	4,054
King Salmon	11,748	35,119	394	0	47,261	Pilot Station	0	3,903	0	0	3,903
Ketchikan Harbor	0	46,192	0	0	46,192	Savoonga	0	3,812	0	0	3,812
Dillingham	11,966	31,512	1,920	0	45,398	Kake	0	3,754	0	0	3,754
Wiley Post-Will Rogers Memorial	27,874	11,006	0	0	38,880	Bob Baker Memorial	0	3,735	0	0	3,735
Unalaska	20,373	10,736	0	0	31,109	Shishmaref/New	0	3,667	0	0	3,667
Homer	0	27,519	1,218	0	28,737	Toksook Bay	0	3,516	0	0	3,516
Skagway	0	23,002	0	0	23,002	Kotlik/New	0	3,511	0	0	3,511
Valdez	0	22,530	250	0	22,780	Gambell	0	3,486	0	0	3,486
Merle K (Mudhole) Smith	11,342	9,012	0	0	20,354	Tuntutuliak	0	3,461	0	0	3,461
Lake Hood	0	1,056	18,071	0	19,127	Hollis	0	2,863	549	0	3,412
Petersburg James A Johnson	17,643	1,229	126	0	18,998	Kivalina	0	3,320	0	0	3,320
Aniak	0	17,184	10	0	17,194	St Paul Island	2,826	491	0	0	3,317
Deadhorse	10,581	6,360	0	0	16,941	Larsen bay	0	3,309	0	0	3,309
Yakutat	12,010	3,335	13	0	15,358	Nulato	0	3,226	0	0	3,226
Gustavus	4,855	5,130	4,791	0	14,776	New Stuyahok	0	1,917	1,305	0	3,222
Wrangell	9,633	87	3,339	0	13,059	Kwigillingok	0	3,209	0	0	3,209
Kodiak Municipal	0	12,165	804	0	12,969	Wainwright	0	3,166	0	0	3,166
Manokotak	0	2,023	10,499	0	12,522	Buckland	0	3,163	0	0	3,163
Haines	0	10,655	0	0	10,655	Port Alsworth	0	157	3,000	0	3,157
Fort Yukon	1	10,452	45	0	10,498	Anaktuvuk Pass	0	3,079	0	0	3,079
Hoonah	0	10,483	0	0	10,483	Tuluksak	0	3,072	0	0	3,072
Red Dog	6,171	4,086	0	0	10,257	Kongiganak	0	3,041	0	0	3,041
Metlakatla	0	8,849	1,178	0	10,027	Chefornak	0	3,022	0	0	3,022
Iliamna	0	8,517	679	0	9,196	Scammon Bay	0	3,022	0	0	3,022
Merrill Field	0	4,269	4,904	0	9,173	Angoon	0	3,009	0	0	3,009
Edward G. Pitka Sr.	0	9,089	0	0	9,089	Kwethluk		2,971	0	0	2,971
Cold Bay	4,470	3,934	132	0	8,536	Huslia	0	2,848	0	0	2,848
Unalakleet	0	8,413		0	8,413	Kasigluk	0	2,805	0	0	2,805
St Mary's	0	7,126	0	0	7,126	Nunapitchuk	0	2,772	0	0	2,772
Craig	0	5,060	1,342	0	6,402	Marshell	0	2,711	0	0	2,711
Emmonak	0	5,981	0	0	5,981	Kokhankok	0	1,777	931	0	2,708
Mc Grath	0	5,484	3	0	5,487	Akiachak	0	2,681	0	0	2,681
Mountain Village	0	5,448	0	0	5,448	Stebbins	0	2,666	0	0	2,666
Robert/ Bob/Curtis Memorial	0	5,314	0	0	5,314	Thorne bay	0	1,933	722	0	2,655
Ugnu-Kuparuk	0	5,169	0	0	5,169	Elim	0	2,634	0	0	2,634
Hooper Bay	0	5,109	0	0	5,109	King Cove	0	2,577	0	0	2,577
Selawk	0	5,073	0	0	5,073	Bettles	0	2,564	0	0	2,564
Lake Brooks	114	4,503	0	0	4,617	Russian Mission	0	2,519	0	0	2,519

NOTE: Rank order by total enplaned passengers on air carriers of all types, including foreign air carriers.
SOURCE: U.S. Department of Transportation, Federal Aviation Administration, Office of the Associate Administrator for Airports, CY 2000 Enplanement Activity at U.S. Commercial Service Airports, available at http://www.faa.gov/arp/Planning/v3.htm as of March 26, 2002

Infrastructure

Table 1-10: Freight Railroads in Alaska and the United States: 2000

Type of railroad	Number of railroads		Miles operated ${ }^{2}$			
			United States	Alaska		
	United States	Alaska		Excluding trackage rights	Induding trackage rights	Percent of U.S. total
Total	562	1	172,101	482	482	0.3
Class I	8	0	120,597	0	0	0.0
Regional	35	1	20,978	482	482	2.3
Local	304	0	21,512	0	0	0.0
Switching and terminal	213	0	7,425	0	0	0.0
Canadian ${ }^{1}$	2	0	1,589	0	0	0.0

${ }^{1}$ Refers to non-Class I, Canadian-owned lines.
${ }^{2}$ Miles operated is in terms of railroad so that a mile of single track is counted the same as a mile of double track. Sidings, turnouts, yard switching mileage, and mileage not operated are excluded. Miles operated under trackage rights provided by another (owning) railroad are included.

NOTES:

1. As defined by the Surface Transportation Board in 2000, a Class I Railroad is a railroad with operating revenues of at least $\$ 261.9$ million.
2. A Regional Railroad is a non-Class I, line-haul railroad operating 350 or more miles of road or with revenues of at least $\$ 40$ million or both.
3. A Local Railroad is a railroad which is neither a Class I nor a Regional Railroad, and is engaged primarily in line-haul service.
4. A Switching and Terminal Railroad is a non-Class I railroad engaged primarily in switching and/or terminal services for other railroads.

SOURCE: Association of American Railroads, Railroads and States - 2000, Washington, DC: 2002, available at http://www.aar.org/AboutTheIndustry/StateInformation.asp as of Mar. 19, 2002.

Table 1-11: Freight Railroads Operating in Alaska by Class: 2000

Railroad	Miles operated in Alaska 1
Class I railroads (None)	0
Regional railroads Alaska Railroad	482
Local railroads (None)	0
Switching and terminal railroads (None)	0

${ }^{1}$ Miles operated is in terms of railroad so that a mile of single track is counted the same as a mile of double track. Sidings, turnouts, yard switching mileage, and mileage not operated are excluded. Miles operated under trackage rights provided by another (owning) railroad are included.

NOTE: For definition of railroad types see previous table.
SOURCE: Association of American Railroads, Railroads and States - 2000, Washington, DC: 2002, available at http://www.aar.org/AboutTheIndustry/Statelnformation.asp as of Mar. 19, 2002.

Table 1-12: Alaska Water Ports Ranked in Top 150 U.S. Ports by Tonnage: 2000

		Millions of short tons		
Port	U.S. rank	Total	Foreign	Domestic
Valdez	10	53.4	4.0	49.4
Nikishka	80	5.1	2.8	2.4
Anchorage	93	3.7	1.8	1.9
Kivilina	124	1.9	0.7	1.2
Ketchlkan	138	1.4	0.7	0.7

SOURCE: U.S. Army Corps of Engineers, Waterborne Commerce of the United States, Calendar Year 2000, Part 5 N ational Summaries, Alexandria, VA: 2001, available at: http://www.wrsc.usace.army.mil/ndc/wcusnatl00.pdf as of April 15, 2002.

Table 1-13: Inland Waterway Mileage: 2000
(Includes 39 states and the District of Columbia)

State	Miles	State	Miles
Alabama	1,270	Mississippi	873
Alaska	5,497	Missouri	1,033
Arkansas	1,860	N ebraska	318
California	286	N ew Hampshire	8
Connecticut	117	N ew J ersey	360
Delaware	99	N ew York	394
District of Columbia	7	North Carolina	1,152
Florida	1,540	O hio	444
Georgia	721	O klahoma	150
Idaho	111	Oregon	681
Illinois	1,095	Pennsylvania	259
Indiana	353	Rhode Island	39
Iowa	492	South Carolina	482
Kansas	120	South Dakota	75
Kentucky	1,591	Tennessee	946
Louisiana	2,823	Texas	834
Maine	73	Virginia	674
Maryland	532	Washington	1,057
Massachusetts	90	West Virginia	682
Minnesota	258	Wisconsin	231

NOTES: Waterway mileages were determined by including the length of channels 1) with a controlling draft of nine feet or greater, 2) with commercial cargo traffic reported for 1998 and 1999, but 3) were not offshore (i.e., channels in coastal areas included only the miles from the entrance channel inward). Channels within major bays are included (e.g., Chesapeake Bay, San Francisco Bay, Puget Sound, Long Island Sound, major sounds and straits in southeastern Alaska). Channels in the Great Lakes are not included, but waterways connecting lakes and the St. Lawrence Seaway inside the United States are included.

SOURCE: U.S. Army Corps of Engineers, personal communication, Jan. 8, 2002.

B Safety

Table 2-1: Highway Traffic Fatalities and Fatality Rates: 2000

State	Traffic fatalities	Licensed drivers (thousands)	Registered vehicles (thousands)	Vehide-miles traveled (millions)	Fatality rate per		
					100,000 licensed drivers	$\begin{gathered} 100,000 \\ \text { registered } \\ \text { vehicles } \\ \hline \end{gathered}$	
Alabama	995	3,521	4,015	56,534	28.3	24.8	1.8
Alaska	103	465	611	4,613	22.2	16.9	2.2
Arizona	1,036	3,434	3,960	49,768	30.2	26.2	2.1
Arkansas	652	1,948	1,865	29,167	33.5	35.0	2.2
California	3,753	21,244	28,146	306,649	17.7	13.3	1.2
Colorado	681	3,107	3,724	41,771	21.9	18.3	1.6
Connecticut	342	2,653	2,907	30,756	12.9	11.8	1.1
Delaware	123	557	641	8,240	22.1	19.2	1.5
District of Columbia	49	348	244	3,498	14.1	20.1	1.4
Florida	2,999	12,853	12,036	152,136	23.3	24.9	2.0
Georgia	1,541	5,550	7,243	105,010	27.8	21.3	1.5
Hawaii	131	769	758	8,543	17.0	17.3	1.5
Idaho	276	884	1,220	13,534	31.2	22.6	2.0
Illinois	1,418	7,961	9,168	102,866	17.8	15.5	1.4
Indiana	875	3,976	5,689	70,862	22.0	15.4	1.2
lowa	445	1,953	3,233	29,433	22.8	13.8	1.5
Kansas	461	1,908	2,346	28,130	24.2	19.7	1.6
Kentucky	820	2,694	2,870	46,803	30.4	28.6	1.8
Louisiana	937	2,759	3,605	40,849	34.0	26.0	2.3
Maine	169	920	1,053	14,190	18.4	16.1	1.2
Maryland	588	3,382	3,897	50,174	17.4	15.1	1.2
Massachusetts	433	4,490	5,372	52,796	9.6	8.1	0.8
Michigan	1,382	6,925	8,619	97,792	20.0	16.0	1.4
Minnesota	625	2,941	4,773	52,601	21.3	13.1	1.2
Mississippi	949	2,008	2,321	35,536	47.3	40.9	2.7
Missouri	1,157	3,856	4,641	67,083	30.0	24.9	1.7
Montana	237	679	1,053	9,882	34.9	22.5	2.4
N ebraska	276	1,195	1,640	18,081	23.1	16.8	1.5
Nevada	323	1,371	1,245	17,639	23.6	25.9	1.8
N ew Hampshire	126	930	1,100	12,021	13.6	11.5	1.0
N ew Jersey	731	5,655	6,502	67,446	12.9	11.2	1.1
New Mexico	430	1,239	1,557	22,760	34.7	27.6	1.9
New York	1,458	10,871	10,342	129,057	13.4	14.1	1.1
North Carolina	1,472	5,690	6,305	89,504	25.9	23.3	1.6
N orth Dakota	86	459	711	7,217	18.7	12.1	1.2
O hio	1,351	8,206	10,722	105,898	16.5	12.6	1.3
O klahoma	652	2,295	3,072	43,355	28.4	21.2	1.5
Oregon	451	2,495	3,091	35,010	18.1	14.6	1.3
Pennsylvania	1,520	8,229	9,476	102,337	18.5	16.0	1.5
Rhode Island	80	654	779	8,359	12.2	10.3	1.0
South Carolina	1,065	2,843	3,146	45,538	37.5	33.9	2.3
South Dakota	173	544	822	8,432	31.8	21.0	2.1
Tennessee	1,306	4,251	4,891	65,732	30.7	26.7	2.0
Texas	3,769	13,462	14,257	220,064	28.0	26.4	1.7
Utah	373	1,463	1,656	22,597	25.5	22.5	1.7
Vermont	79	506	537	6,811	15.6	14.7	1.2
Virginia	930	4,837	6,107	74,801	19.2	15.2	1.2
Washington	632	4,155	5,235	53,330	15.2	12.1	1.2
West Virginia	410	1,347	1,468	19,242	30.4	27.9	2.1
Wisconsin	799	3,770	4,545	57,266	21.2	17.6	1.4
Wyoming	152	371	605	8,090	41.0	25.1	1.9
United States	41,821	190,625	217,028	2,749,803	21.9	19.3	1.5

SOURCES: U.S. Department of Transportation, National Highway Traffic Safety Administration, Traffic Safety Facts 2000,
Washington, DC: 2001, available at http://www-nrd.nhtsa.dot.gov/pdf/nrd-30/NCSA/TSFAnn/TSF2000.pdf as of Jan. 4, 2001; U.S. Department of Transportation, Federal Highway Administration, Highway Statistics 2000 , Washington, DC: 2001, available at http://www.fhwa.dot.gov/ohim/ohimstat.htm as of Dec. 6, 2001.

Table 2-2: Passenger Car Occupants Killed and Restraint Use: 2000

State	Restraint used		No restraint used		Restraint use unknown		Total occupants killed	
	Number	Percent	Number	Percent	Number	Percent	Number	Percent
Alabama	204	38.2	308	57.7	22	4.1	534	100.0
Alaska	11	39.3	17	60.7	0	0.0	28	100.0
Arizona	131	36.0	183	50.3	50	13.7	364	100.0
Arkansas	95	32.3	160	54.4	39	13.3	294	100.0
California	917	53.5	499	29.1	298	17.4	1,714	100.0
Colorado	129	47.1	142	51.8	3	1.1	274	100.0
Connecticut	69	38.1	90	49.7	22	12.2	181	100.0
Delaware	20	29.0	47	68.1	2	2.9	69	100.0
District of Columbia	4	22.2	7	38.9	7	38.9	18	100.0
Florida	523	37.7	836	60.3	27	1.9	1,386	100.0
Georgia	337	42.9	351	44.7	98	12.5	786	100.0
Hawaii	23	37.7	29	47.5	9	14.8	61	100.0
Idaho	42	35.9	69	59.0	6	5.1	117	100.0
Illinois	234	34.3	311	45.6	137	20.1	682	100.0
Indiana	203	43.0	222	47.0	47	10.0	472	100.0
Iowa	107	41.6	98	38.1	52	20.2	257	100.0
Kansas	77	33.2	127	54.7	28	12.1	232	100.0
Kentucky	156	36.3	269	62.6	5	1.2	430	100.0
Louisiana	127	30.1	232	55.0	63	14.9	422	100.0
Maine	37	36.6	58	57.4	6	5.9	101	100.0
Maryland	167	55.3	117	38.7	18	6.0	302	100.0
Massachusetts	63	25.9	128	52.7	52	21.4	243	100.0
Michigan	364	51.3	260	36.6	86	12.1	710	100.0
Minnesota	129	37.5	174	50.6	41	11.9	344	100.0
Mississippi	144	28.3	354	69.5	11	2.2	509	100.0
Missouri	198	33.4	326	55.0	69	11.6	593	100.0
Montana	38	37.3	56	54.9	8	7.8	102	100.0
Nebraska	35	27.1	76	58.9	18	14.0	129	100.0
Nevada	52	38.2	81	59.6	3	2.2	136	100.0
New Hampshire	13	21.0	43	69.4	6	9.7	62	100.0
N ew Jersey	161	42.4	197	51.8	22	5.8	380	100.0
New Mexico	72	41.9	90	52.3	10	5.8	172	100.0
N ew York	360	50.8	290	40.9	59	8.3	709	100.0
N orth Carolina	369	45.0	354	43.2	97	11.8	820	100.0
N orth Dakota	8	19.0	33	78.6	1	2.4	42	100.0
O hio	319	41.5	396	51.6	53	6.9	768	100.0
O klahoma	128	40.4	187	59.0	2	0.6	317	100.0
Oregon	147	67.1	60	27.4	12	5.5	219	100.0
Pennsylvania	265	31.7	443	53.1	127	15.2	835	100.0
Rhode Island	8	18.6	33	76.7	2	4.7	43	100.0
South Carolina	158	38.3	246	59.7	8	1.9	412	100.0
South Dakota	11	15.3	58	80.6	3	4.2	72	100.0
Tennessee	207	28.6	479	66.1	39	5.4	725	100.0
Texas	914	54.7	723	43.2	35	2.1	1,672	100.0
Utah	66	39.3	97	57.7	5	3.0	168	100.0
Vermont	23	57.5	15	37.5	2	5.0	40	100.0
Virginia	199	40.4	264	53.7	29	5.9	492	100.0
Washington	153	44.5	185	53.8	6	1.7	344	100.0
West Virginia	71	31.1	151	66.2	6	2.6	228	100.0
Wisconsin	161	37.3	231	53.5	40	9.3	432	100.0
Wyoming	23	46.0	27	54.0	0	0.0	50	100.0
United States	8,472	41.3	10,229	49.9	1,791	8.7	20,492	100.0

NOTE: Fatalities in this table include passenger car occupants only. O ccupants of other vehicle types - light trucks, heavy trucks, motorcycles, and buses - are excluded as are other types of highway related fatalities such as pedestrian fatalities. Hence, the fatalities represented here are lower then those in table 2-1. Percents may not add to totals due to rounding.

SOURCE: U.S. Department of Transportation, National Highway Traffic Safety Administration, Traffic Safety Facts 2000, Washington, DC: 2001, available at http://www-nrd.nhtsa.dot.gov/pdf/nrd-30/N CSA/TSFAnn /TSF2000. pdf as of Jan. 4, 2002.

Table 2-3. Key Provisions of Safety Belt Use Laws: 2000

State	Effective ${ }^{1}$	Enforcement ${ }^{2}$	Fine	Seats	Vehicles exempted ${ }^{3}$
Alabama	7/18/92	Primary	\$25	Front	Designed for more than 10 passengers
Alaska	9/12/90	Secondary	\$15	All	School bus
Arizona	1/1/91	Secondary	\$10	Front	Designed for more than 10 passengers; model year before 1972
Arkansas	7/15/91	Secondary	\$25 ${ }^{4}$	Front	School bus, church bus, public bus
California	1/1/86	Primary	\$20 ${ }^{\text {b }}$	All	None
Colorado	7/1/87	Secondary	\$15	Front	Passenger bus, school bus
Connecticut	1/1/86	Primary	\$15	Front	Truck or bus over 15,000 lbs.
Delaware	1/1/92	Secondary	\$20	Front	None
District of Columbia	12/12/85	Primary	\$50 ${ }^{6}$	All	Seating more than 8 people
Florida	7/1/86	Secondary	\$30	Front	School bus, public bus, truck over 5,000 lbs.
Georgia	9/1/88	Primary	\$15	Front	Designed for more than 10 passengers, pickup
Hawaii	2/16/85	Primary	\$45	Front	Bus or school bus over 10,000 lbs.
Idaho	7/1/86	Secondary	\$5	Front	O ver 8,000 lbs.
Illinois	7/1/85	Secondary	\$25	Front	None
Indiana	7/1/87	Primary	\$25	Front	Truck, tractor, RV
Iowa	7/1/86	Primary	\$10	Front	None
Kansas	7/1/86	Secondary	\$10	Front	Designed for more than 10 people, truck over $12,000 \mathrm{lbs}$.
Kentucky	7/13/94	Secondary	\$25	All	Designed for more than 10 people
Louisiana	7/1/86	Primary	\$25 ${ }^{\prime}$	Front	Manufactured before 1/1/81
Maine	12/27/95	Secondary	\$50	All	None
Maryland	7/1/86	Primary	\$25	Front	Historic vehicle
Massachusetts	2/1/94	Secondary	\$25	All	Truck over 18,000 lbs., bus, taxi
Michigan	7/1/85	Primary	\$25	Front	Bus
Minnesota	8/1/86	Secondary	\$25	Front	Farm pickup truck
Mississippi	3/20/90	Secondary	\$25	Front	Farm vehicle, bus
Missouri	9/28/85	Secondary	\$10	Front	Designed for more than 10 people, truck over $12,000 \mathrm{lbs}$.
Montana	10/1/87	Secondary	\$20	All	None
N ebraska	1/1/93	Secondary	\$25	Front	Manufactured before 1973
Nevada	7/1/87	Secondary	\$25	All	Taxi, bus, school bus
New Hampshire	None	NA	NA	NA	NA
New Jersey	3/1/85	Secondary	\$20	Front	None
New Mexico	1/1/86	Primary	\$25	Front	Vehicle over 10,000 lbs.
New York	12/1/84	Primary	\$50	Front	Bus, school bus, taxi
North Carolina	10/1/85	Primary	\$25	Front	Designed for more than 10 people
N orth Dakota	7/14/94	Secondary	\$20	Front	Designed for more than 10 people
O hio	5/6/86	Secondary	\$25	Front	None
O klahoma	2/1/87	Primary	\$20	Front	Farm vehicle, truck, truck tractor, RV
Oregon	12/7/90	Primary	\$75	All	None
Pennsylvania	11/23/87	Secondary	\$10	Front	Truck over 7,000 lbs.
Rhode Island	6/18/91	Secondary	\$50	All	None
South Carolina	7/1/89	Secondary	\$10	All	School bus, public bus
South Dakota	1/1/95	Secondary	\$20	Front	Bus, school bus
Tennessee	4/21/86	Secondary	\$50	Front	Vehicle over 8,500 lbs.
Texas	9/1/85	Primary	\$50	Front	Designed for more than 10 people, truck over $15,000 \mathrm{lbs}$.
Utah	4/28/86	Secondary	\$45	Front	Vehicle over 10,000 lbs., school/public bus, taxi
Vermont	1/1/94	Secondary	\$10	All	Bus, taxi
Virginia	1/1/88	Secondary	\$25	Front	Designed for more than 10 people, taxi
Washington	6/11/86	Secondary	\$35	All	Designed for more than 10 people
West Virginia	9/1/93	Secondary	\$25	Front	Designed for more than 10 people
Wisconsin	12/1/87	Secondary	\$10	All	Taxi, farm truck
Wyoming	6/8/89	Secondary	\$25	Front	Designed for more than 10 people, bus

${ }^{1}$ Effective date of first belt law in the state; ${ }^{2}$ Primary enforcement enables police officers to stop vehicles and write citations whenever they observe a violation of the seat belt law. Secondary enforcement allows police officers to write a citation for seat belt infractions only after stopping a vehicle for some other traffic infraction; ${ }^{3}$ Most states exempt vehicles not manufactured with seat belts; ${ }^{4}$ Plus 3 points on license; ${ }^{5}$ Fine for first offense; ${ }^{6}$ Plus 2 points on license; ${ }^{7}$ Penalty could include 30 days in jail.

KEY: NA = not applicable; RV = recreational vehicle.
SOURCE: U.S. Department of Transportation, National Highway Traffic Safety Administration, Traffic Safety Facts 2000, Washington, DC: 2001, available at http://www-nrd.nhtsa.dot.gov/pdf/nrd-30/NCSA/TSFAnn/TSF2000.pdf as of Jan. 4, 2002.

Table 2-4: Shoulder Belt Use: 2000

State	Percent
Alabama	70.6
Alaska	$\mathbf{6 1 . 0}$
Arizona	75.2
Arkansas	52.4
California	88.9
Colorado	65.1
Connecticut	76.3
Delaware	66.1
District of Columbia	82.6
Florida	64.8
Georgia	73.6
Hawaii	80.4
Idaho	58.6
Illinois	70.2
Indiana	62.1
Iowa	78.0
Kansas	61.6
Kentucky	60.0
Louisiana	68.2
Maine	N
Maryland	85.0
Massachusetts	50.0
Michigan	83.5
Minnesota	73.4
Mississippi	50.4
Missouri	67.7

State	Percent
Montana	75.6
Nebraska	70.5
Nevada	78.5
New Hampshire	N
New Jersey	74.2
New Mexico	86.6
New York	77.3
North Carolina	80.5
North Dakota	47.7
Ohio	65.3
Oklahoma	67.5
Oregon	83.6
Pennsylvania	70.7
Rhode Island	64.4
South Carolina	73.9
South Dakota	53.4
Tennessee	59.0
Texas	76.6
Utah	75.7
Vermont	61.6
Virginia	69.6
Washington	81.6
West Virginia	49.5
Wisconsin	65.4
Wyoming	66.8

KEY: $\mathrm{N}=$ Data do not exist.

Figure 2-1: Shoulder Belt Use

SOURCE FOR DATA ON THIS PAGEU.S. Department of Transportation, National Highway Traffic Safety Administration, 1998-2000 State Shoulder Belt Use Survey Results, Research Note, Washington, DC: May 2001, available at http://www-nrd.nhtsa.dot.gov/departments/nrd-30/ncsa/availinf.html as of March 20, 2002.

Table 2-5: Pedestrian Fatalities Involving Motor Vehicles: 2000

State	Total traffic fatalities	Pedestrian s killed	Pedestrian fatalities as percent of total	State population (thousands)	Pedestrian fatality rate per 100,000 population
Alabama	995	61	6.1	4,451	1.4
Alaska	103	8	7.8	653	1.2
Arizona	1,036	130	12.5	4,798	2.7
Arkansas	652	38	5.8	2,631	1.4
California	3,753	670	17.9	32,521	2.1
Colorado	681	80	11.7	4,168	1.9
Connecticut	342	49	14.3	3,284	1.5
Delaware	123	22	17.9	768	2.9
District of Columbia	49	18	36.7	523	3.4
Florida	2,999	492	16.4	15,233	3.2
Georgia	1,541	137	8.9	7,875	1.7
Hawaii	131	29	22.1	1,257	2.3
Idaho	276	6	2.2	1,347	0.4
Illinois	1,418	187	13.2	12,051	1.6
Indiana	875	51	5.8	6,045	0.8
lowa	445	25	5.6	2,900	0.9
Kansas	461	19	4.1	2,668	0.7
Kentucky	820	53	6.5	3,995	1.3
Louisiana	937	100	10.7	4,425	2.3
Maine	169	15	8.9	1,259	1.2
Maryland	588	91	15.5	5,275	1.7
Massachusetts	433	82	18.9	6,199	1.3
Michigan	1,382	170	12.3	9,679	1.8
Minnesota	625	38	6.1	4,830	0.8
Mississippi	949	64	6.7	2,816	2.3
Missouri	1,157	88	7.6	5,540	1.6
Montana	237	11	4.6	950	1.2
N ebraska	276	20	7.2	1,705	1.2
Nevada	323	43	13.3	1,871	2.3
New Hampshire	126	7	5.6	1,224	0.6
New Jersey	731	145	19.8	8,178	1.8
New Mexico	430	47	10.9	1,860	2.5
New York	1,458	335	23.0	18,146	1.8
North Carolina	1,472	144	9.8	7,777	1.9
North Dakota	86	5	5.8	662	0.8
Ohio	1,351	96	7.1	11,319	0.8
Oklahoma	652	43	6.6	3,373	1.3
Oregon	451	50	11.1	3,397	1.5
Pennsylvania	1,520	170	11.2	12,202	1.4
Rhode Island	80	6	7.5	998	0.6
South Carolina	1,065	84	7.9	3,858	2.2
South Dakota	173	13	7.5	777	1.7
Tennessee	1,306	99	7.6	5,657	1.7
Texas	3,769	412	10.9	20,119	2.0
Utah	373	33	8.8	2,207	1.5
Vermont	79	7	8.9	617	1.1
Virginia	930	92	9.9	6,997	1.3
Washington	632	66	10.4	5,858	1.1
West Virginia	410	25	6.1	1,841	1.4
Wisconsin	799	51	6.4	5,326	1.0
Wyoming	152	12	7.9	525	2.3
United States	41,821	4,739	11.3	274,634	1.7

SOURCE: U.S. Department of Transportation, N ational Highway Traffic Safety Administration, N ational Center for Statistics and Analysis, Traffic Safety Facts 2000: Pedestrians, Washington, DC: 2001, available at www.nhtsa.dot.gov/people/ncsa/factshet.html as of Dec. 5, 2001.

Table 2-6: Motor Vehicle Fatalities Involving High Blood Alcohol Concentration (BAC $\geq \mathbf{0 . 1 0}$ grams per deciliter)

State	1995 Farallues involving Total high blood alcohol fatalities		Percent	2000			
			Total fatalities	Fatalities involving high blood alcohol	Percent		
Alabama	1,113	381		34	995	326	33
Alaska	87	37	42	103	44	43	
Arizona	1,031	347	34	1,036	354	34	
Arkansas	631	148	23	652	139	21	
California	4,192	1,308	31	3,753	1,061	28	
Colorado	645	226	35	681	198	29	
Connecticut	317	130	41	342	119	35	
Delaware	121	38	31	123	49	40	
District of Columbia	58	25	44	49	14	29	
Florida	2,805	873	31	2,999	930	31	
Georgia	1,488	400	27	1,541	438	28	
Hawaii	130	41	32	131	37	28	
Idaho	262	69	27	276	81	29	
Illinois	1,586	551	35	1,418	489	34	
Indiana	960	263	27	875	214	24	
lowa	527	159	30	445	100	22	
Kansas	442	152	34	461	118	26	
Kentucky	849	227	27	820	203	25	
Louisiana	883	353	40	937	352	38	
Maine	187	44	24	169	38	22	
Maryland	671	176	26	588	161	27	
Massachusetts	444	148	33	433	153	35	
Michigan	1,530	483	32	1,382	397	29	
Minnesota	597	215	36	625	207	33	
Mississippi	868	306	35	949	289	30	
Missouri	1,109	450	41	1,157	387	33	
Montana	215	79	37	237	92	39	
Nebraska	254	64	25	276	70	25	
N evada	313	127	41	323	112	35	
N ew Hampshire	118	30	25	126	40	31	
New Jersey	773	243	32	731	231	32	
New Mexico	485	202	42	430	159	37	
New York	1,674	405	24	1,458	293	20	
North Carolina	1,448	399	28	1,472	419	28	
North Dakota	74	32	44	86	36	42	
Ohio	1,366	344	25	1,351	411	30	
O klahoma	669	205	31	652	169	26	
Oregon	572	176	31	451	132	29	
Pennsylvania	1,480	485	33	1,520	511	34	
Rhode Island	69	22	32	80	31	38	
South Carolina	881	229	26	1,065	329	31	
South Dakota	158	63	40	173	66	38	
Tennessee	1,259	420	33	1,306	399	31	
Texas	3,181	1,407	44	3,769	1,450	38	
Utah	326	69	21	373	68	18	
Vermont	106	33	31	79	27	34	
Virginia	900	272	30	930	257	28	
Washington	653	248	38	632	217	34	
West Virginia	376	132	35	410	149	36	
Wisconsin	745	263	35	799	288	36	
Wyoming	170	63	37	152	40	26	
United States	41,798	13,564	32	41,821	12,892	31	

SOURCE: U.S. Department of Transportation, National Highway Traffic Safety Administration, National Center for Statistics and Analysis, Traffic Safety Facts 2000: State Alcohol Estimates, Washington, DC: 2001, available at www.nhtsa.dot.gov/people/ncsa/factshet.html as of Dec. 5, 2001.

Table 2-7: Impaired Driving Laws: 2000

State	Administrative per se (BAC level)	Illegal per se (BAC level)	Lower BAC for youthful DWI offenders (BAC level and age)	License sanction (Mandatory minimum for a DWI		
				offense S	Second offense	Third offense
Alabama	Y-0.08	0.08	Y-0.02 (<21)	S-90 days	R-1 yr	R-3 yrs
Alaska	Y-0.10	0.10	Y-0.00 (<21)	R-30 days	s R-1 yr	R-10 yrs
Arizona	Y-0.10	0.10	Y-0.00 (<21)	S-90 days	R-1 yr	R-3 yrs
Arkansas	Y-0.10	0.10	Y-0.02 (<21)	N ms	N ms	N ms
California	Y-0.08	0.08	Y-0.01 (<21)	N ms	N ms	$\mathrm{R}-18 \mathrm{mos}$
Colorado	Y-0.10	0.10	Y-0.02 (<21)	Nms	R-1 yr	$\mathrm{R}-1 \mathrm{yr}$
Connecticut	Y-0.10	0.10	Y-0.02 (<21)	Nms	N ms	N ms
Delaware	Y-0.10	0.10	Y-0.02 (<21)	N ms	$\mathrm{R}-6 \mathrm{mos}$	$\mathrm{R}-6 \mathrm{mos}$
District of Columbia	Y-0.05	0.08	Y-0.00 (<21)	R-6 mos	R-1 yr	R-2 yrs
Florida	Y-0.08	0.08	Y-0.02 (<21)	N ms	$\mathrm{R}-12 \mathrm{mos}$	$\mathrm{R}-24 \mathrm{mos}$
Georgia	Y-0.10	0.10	Y-0.02 (<21)	N ms	S-120 days	R-5 yrs
Hawaii	Y-0.08	0.08	Y-0.02 (<21)	S-30 days	S-1 yr	R-1 yr
Idaho	Y-0.08	0.08	Y-0.02 (<21)	S-30 days	S-1 yr	S-1 yr
Illinois	Y-0.08	0.08	Y-0.02 (<21)	N ms	N ms	N ms
Indiana	Y-0.10	0.10	Y-0.02 (<21)	S-30 days	S-1 yr	S-1 yr
Iowa	Y-0.10	0.10	Y-0.02 (<21)	R-30 days	R-1 yr	R-1 yr
Kansas	Y-0.08	0.08	Y-0.02 (<21)	S-30 days	S-1 yr	S-1 yr
Kentucky	A	0.08	Y-0.02 (<21)	S-30 days	$\mathrm{R}-12 \mathrm{mos}$	$\mathrm{R}-24 \mathrm{mos}$
Louisiana	Y-0.10	0.10	Y-0.02 (<21)	N ms	N ms	N ms
Maine	Y-0.08	0.08	Y-0.00 (<21)	S-60 days	$\mathrm{S}-18 \mathrm{mos}$	S-4 yrs
Maryland	Y-0.10	0.10	Y-0.02 (<21)	N ms	N ms	N ms
Massachusetts	Y-0.08	N	Y-0.02 (<21)	S-45 days	$\mathrm{R}-6 \mathrm{mos}$	R-2 yrs
Michigan	N	0.10	Y-0.02 (<21)	N ms	R-1 yr	S-5 yrs
Minnesota	Y-0.10	0.10	Y-0.00 (<21)	R-15 days	R-90 days	R-90 days
Mississippi	Y-0.10	0.10	Y-0.02 (<21)	S-30 days	S-1 yr	S-3 yrs
Missouri	Y-0.10	0.10	Y-0.02 (<21)	S-30 days	$\mathrm{R}-2 \mathrm{yrs}$	R-3 yrs
Montana	N	0.10	Y-0.02 (<21)	N ms	R-3 mos	R-3 mos
Nebraska	Y-0.10	0.10	Y-0.02 (<21)	R-60 days	R-1 yr	R-1 yr
Nevada	Y-0.10	0.10	Y-0.02 (<21)	R-45 days	R-1 yr	R-1.5 yrs
New Hampshire	Y-0.08	0.08	Y-0.02 (<21)	R-90 days	R-3 yrs	R-3 yrs
New Jersey	N	0.10	Y-0.01 (<21)	R-6 mos	R-2 yrs	R-10 yrs
New Mexico	Y-0.08	0.08	Y-0.02 (<21)	N ms	R-30 days	R-30 days
New York	A	0.10	Y-0.02 (<21)	Nms	R-I yr	R-1 yr
North Carolina	Y-0.08	0.08	Y-0.00 (<21)	Nms	R-2 yrs	R-3 yrs
North Dakota	Y-0.10	0.10	Y-0.02 (<21)	S-30 days	S-365 days	S-2 yrs
O hio	Y-0.10	0.10	Y-0.02 (<21)	S-15 days	S-30 days	S-180 days
O klahoma	Y-0.10	0.10	Y-0.00 (<21)	N ms	R-1 yr	R-1 yr
Oregon	Y-0.08	0.08	Y-0.00 (<21)	N ms	S-90 days	S-1 yr
Pennsylvania	N	0.10	Y-0.02 (<21)	S-1 mo	$\mathrm{S}-12 \mathrm{mos}$	$\mathrm{S}-12 \mathrm{mos}$
Rhode Island	N	0.08	Y-0.02 (<21)	$\mathrm{S}-3 \mathrm{mos}$	S-1 yr	S-2 yrs
South Carolina	Y-0.15	0.10	Y-0.02 (<21)	N ms	S-1 yr	S-4 yrs
South Dakota	N	0.10	Y-0.02 (<21)	Nms	R-1 yr	R-1 yr
Tennessee	N	0.10	Y-0.02 (<21)	N ms	R-2 yrs	R-3 yrs
Texas	Y-0.08	0.08	Y-0.00 (<21)	N ms	N ms	N ms
Utah	Y-0.08	0.08	Y-0.00 (<21)	S-90 days	R-1 yrs	R-1 yrs
Vermont	Y-0.08	0.08	Y-0.02 (<21)	S-90 days	$\mathrm{S}-18 \mathrm{mos}$	R-2 yrs
Virginia	Y-0.08	0.08	Y-0.02 (<21)	N ms	R-1 yr	R-3 yrs
Washington	Y-0.08	0.08	Y-0.02 (<21)	S-30 days	R-1 yr	R-2 yrs
West Virginia	Y-0.10	0.10	Y-0.02 (<21)	R-30 days	R-1 yr	R-1 yr
Wisconsin	Y-0.10	0.10	Y-0.02 (<21)	N ms	R-60 days	R-90 days
Wyoming	Y-0.10	0.10	Y-0.02 (<21)	Nms	S-1 yr	R-3 yrs

KEY: BAC = blood alcohol content; DWI = driving while intoxicated; $Y=$ yes; $N=n o ; A=$ alternative; $S=$ suspension; $R=$ revocation; N ms = no mandatory sanction.

NOTES: An "administrative per se law" allows a state's driver licensing agency to either suspend or revoke a driver's license based on a specific alcohol (or drug) concentration or on some other criterion related to alcohol or drug use and driving. Such action is independent of any licensing action related to a DWI criminal offense. The term "illegal per se" refers to state laws that make it a criminal offense to operate a motor vehicle at or above a specified alcohol (or drug) concentration in the blood, breath, or urine. In those columns showing mandatory sanctions, "nms" does not mean that a state does not have a sanction. It only means that the state does not have a mandatory sanction for that offense or violation.

SOURCE: U.S. Department of Transportation, N ational Highway Traffic Safety Administration, Traffic Safety Facts 2000, Washington, DC: 2001, available at http://www-nrd.nhtsa.dot.gov/pdf/nrd-30/NCSA/TSFAnn/TSF2000.pdf as of Jan. 4, 2002.

Table 2-8: Maximum Posted Speed Limits by System: 2001 (Speed limit in miles per hour) ${ }^{\mathbf{1}}$

State	Interstate		Other limitedaccess roads ${ }^{2}$	Other roads
	Rural	Urban		
Alabama	70	70	65	65
Alaska	65	55	65	55
Arizona	75	55	55	55
Arkansas	70, Trucks: 65	55	60	55
California	70, Trucks: 55	65	70	55
Colorado	75	65	65	55
Connecticut	65	55	65	55
Delaware	65	55	65	55
District of Columbia	NA	55	NA	25
Florida	70	65	70	65
Georgia	70	65	65	65
Hawaii	55	50	45	45
Idaho	75, Trucks: 65	65	65	65
Illinois	65, Trucks: 55	55	65	55
Indiana	65, Trucks: 60	55	55	55
Iowa	65	55	65	55
Kansas	70	70	70	65
Kentucky	65	55	55	55
Louisiana	70	55	70	65
Maine	65	55	55	55
Maryland	65	65	65	55
Massachusetts	65	65	65	55
Michigan	70, Trucks: 55	65	70	55
Minnesota	70	65	65	55
Mississippi	70	70	70	65
Missouri	70	60	70	65
Montana	75, Trucks: 65	65	Day: 70, Night: 65	Day: 70, Night: 65
N ebraska	75	65	65	60
Nevada	75	65	70	70
New Hampshire	65	65	55	55
N ew Jersey	65	55	65	55
New Mexico	75	55	65	55
New York	65	65	65	55
North Carolina	70	65	65	55
N orth Dakota	70	55	65	Day: 65, Night: 55
O hio	65, Trucks: 55	65	55	55
O klahoma	75	70	70	70
Oregon	65, Trucks: 55	55	55	55
Pennsylvania	65	55	65	55
Rhode Island	65	55	55	55
South Carolina	70	70	60	55
South Dakota	75	65	65	65
Tennessee	70	70	70	55
Texas	70	70	70	70
Utah	75	65	55	55
Vermont	65	55	50	50
Virginia	65	55	65	55
Washington	70, Trucks: 60	60	55	55
West Virginia	70	55	65	55
Wisconsin	65	65	65	55
Wyoming	75	60	65	65

${ }^{1}$ Many roads, particularly urban interstates, often have a lower posted speed limit than the maximum allowable shown in this table.
${ }^{2}$ Limited-access roads are multi-laned roads with restricted access using exit and entrance ramps rather than intersections.
KEY: NA = N ot applicable.
NOTE: Interstates are divided into urban and rural sections based primarily on population size and population density.
SOURCE: Insurance Institute for Highway Safety, Highway Loss Data Institute, available at http://www.hwysafety.org/ safety_facts/state_laws/speed_limit_laws.htm as of Oct. 1, 2001.

Table 2-9: Total Rail Accidents/Incidents: 2000

State	Accidents/ Incidents	Fatalities	Injuries	State	Accidents/ Incidents	Fatalities	Injuries
Alabama	257	20	143	Montana	156	4	108
Alaska	89	2	82	Nevada	40	1	25
Arizona	222	27	147	New Hampshire	18	0	15
Arkansas	371	30	225	New Jersey	528	28	432
California	1,133	101	808	Nebraska	362	8	247
Colorado	199	10	112	New Mexico	138	4	106
Connecticut	203	6	159	New York	1,330	32	1,168
Delaware	59	2	47	North Carolina	243	24	121
District of Columbia	107	0	90	North Dakota	122	9	82
Florida	405	45	303	O hio	575	28	339
Georgia	395	23	231	O klahoma	231	22	124
Hawaii	0	0	0	Oregon	214	9	152
Idaho	109	11	53	Pennsylvania	752	23	583
Illinois	1,484	69	1,109	Rhode Island	21	1	19
Indiana	540	36	317	South Carolina	192	20	141
lowa	367	9	211	South Dakota	64	3	43
Kansas	337	21	226	Tennessee	296	15	163
Kentucky	272	14	170	Texas	1,260	90	777
Louisiana	465	16	310	Utah	129	5	88
Maine	79	2	58	Vermont	29	1	22
Maryland	173	9	103	Virginia	252	13	169
Massachusetts	228	17	183	Washington	317	16	230
Michigan	434	23	300	West Virginia	128	9	93
Minnesota	431	11	303	Wisconsin	390	20	258
Mississippi	250	17	120	Wyoming	156	2	107
Missouri	367	29	221	United States	16,919	937	11,643

Figure 2-2: Alaska Train Accidents (Exdudes highway-grade crossing incidents and other
incidents)

NOTE FOR DATA ON THIS PAGE: "Accidents/incidents" includes all events reportable to the U.S. Department of Transportation, Federal Railroad Administration under applicable regulations. These include: train accidents, reported on Form F 6180.54, comprised of collisions, derailments, and other events involving the operation of on-track equipment and causing reportable damage above an established threshold (\$6,600 in 1998); highway-rail grade crossing incidents, reported on Form F 6180.57, involving impact between railroad on-track equipment and highway users at crossings; and other incidents, reported on Form F 6180.55a, involving all other reportable incidents or exposures that cause a fatality or injury to any person, or an occupational illness to a railroad employee.

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, Federal Railroad Administration, Railroad Safety Statistics Annual Report 2000, Washington, DC: 2001, table 2-11, available at http://safetydata.fra.dot.gov/ officeofsafety/ as of Oct. 22, 2001.

Table 2-10: Highway-Rail Grade Crossing Incidents: 2000

State	Number of grade	Incidents	Fatalities	Injuries
Alabama	5,418	95	10	39
Alaska	336	$\mathbf{7}$	$\mathbf{0}$	$\mathbf{0}$
Arizona	1,628	29	8	13
Arkansas	4,655	115	27	36
California	12,775	174	27	54
Colorado	3,271	36	6	8
Connecticut	624	8	2	0
Delaware	456	10	0	7
District of Columbia	42	2	0	0
Florida	5,324	86	15	67
Georgia	8,453	128	10	38
Hawaii	8	0	0	0
Idaho	2,645	33	11	1
Illinois	13,916	217	31	68
Indiana	9,129	194	23	55
lowa	9,317	109	6	31
Kansas	10,756	67	11	18
Kentucky	5,037	69	5	20
Louisiana	6,726	181	14	88
Maine	1,680	8	1	1
Maryland	1,390	19	1	2
Massachusetts	1,679	12	1	4
Michigan	8,028	134	13	51
Minnesota	8,219	91	6	40
Mississippi	4,850	113	15	44
Missouri	8,001	88	17	27

State	Number of grade	Incidents	Fatalities	Injuries
Montana	3,514	24	1	2
Nebraska	6,575	55	7	14
Nevada	571	2	0	0
New Hampshire	637	3	0	0
New Jersey	2,493	36	5	10
New Mexico	1,355	17	0	11
New York	6,216	41	5	14
North Carolina	7,813	113	14	25
North Dakota	6,343	17	6	2
Ohio	9,633	148	15	38
Oklahoma	5,913	89	12	47
Oregon	5,213	30	0	13
Pennsylvania	8,946	69	8	17
Rhode Island	189	0	0	0
South Carolina	4,270	80	10	24
South Dakota	3,495	11	0	5
Tennessee	5,062	90	8	26
Texas	18,289	388	52	164
Utah	1,755	18	2	7
Vermont	1,192	2	0	0
Virginia	4,829	54	3	21
Washington	5,749	45	1	10
West Virginia	3,632	20	1	8
Wisconsin	7,043	122	15	49
Wyoming	1,151	3	0	0
United States	256,241	3,502	425	1,219

Figure 2-3: Alaska Highway-Rail Grade Crossing Fatalities and Injuries

NOTE FOR DATA ON THIS PAGE: Any impact, regardless of severity, between railroad on-track equipment and any user of a public or private crossing site must be reported to the U.S. Department of Transportation, Federal Railroad Administration on Form F 6180.57. The crossing site includes sidewalks and pathways at, or associated with, the crossing. Counts of fatalities and injuries include motor vehicles occupants, people not in vehicles or on the trains, as well as people on the train or railroad equipment.

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, Federal Railroad Administration, Railroad Safety Statistics Annual Report 2000, Washington, DC: 2001, available at http://safetydata.fra.dot.gov/officeofsafety/ as of Oct. 22, 2001.

Table 2-11: Highway-Rail Grade Crossings by Type: 2000

	Alaska			United States	
	Number	Percent	Number	Percent	
Total	336	100.0		256,241	100.0
Public, motor vehicle	224	66.7		155,370	60.6
Private, motor vehicle	104	31.0		98,918	38.6
Pedestrian	8	2.4		1,953	0.8

SOURCE: U.S. Department of Transportation, Federal Railway Administration, Office of Railway Safety, Railroad Safety Statistics Annual Report 2000, table 9-2, available at http://safetydata.fra.dot.gov/officeofsafety as of Nov. 21, 2001.

Table 2-12: Warning Devices at Public Highway-Rail Grade Crossings: 2000

	Alaska			United States	
	Number	Percent		Number	Percent
Total	224	100.0		155,370	100.0
\quad Cross bucks	98	43.8		71,468	46.0
Gates	51	22.8		34,296	22.1
Flashing lights	30	13.4		27,100	17.4
Stop signs	29	12.9		11,630	7.5
Unknown	9	4.0		5,253	3.4
Special warning	7	3.1		3,723	2.4
HWTS, WW, bells	0	0.0		1,417	0.9
Other	0	0.0		483	0.3

KEY: HWTS = highway traffic signals, WW = wigwags.

SOURCE: U.S. Department of Transportation, Federal Railway Administration, Office of Railway Safety, Railroad Safety Statistics Annual Report 2000, Washington, DC: 2001, table 9-4, available at http://safetydata.fra.dot.gov/officeofsafety as of Nov. 21, 2001.

Table 2-13: Types of People Injured in Alaska
Train Accidents/Incidents: 2000 (Indudes highway-rail crossing)

Type of person	Fatalities	Injuries
Worker on duty (railroad employee)	2	66
Employee not on duty	0	0
Passenger on train	0	7
Nontrespasser	0	0
Trespasser	0	0
Worker on duty (contractor)	0	9
Contractor (other)	0	0
Worker on duty (volunteer)	0	0
Volunteer (other)	0	0
Nontrespasser (off railroad property)	0	0

Figure 2-4: Railroad Trespasser Deaths and Injuries in Alaska (Excludes highway-rail crossing)

NOTE FOR DATA ON THIS PAGE: As defined by the U.S. Department of Transportation, Federal Railroad
Administration, a trespasser is any person on a part of railroad property used in railroad operations whose presence is prohibited, forbidden, or unlawful. Employees who are trespassing on railroad property are reported as trespassers.

SOURCE FOR DATA ON THIS PAGE U.S. Department of Transportation, Federal Railroad Administration, Railroad Safety Statistics Annual Report 2000, Washington, DC: 2001, available at http://safetydata.fra. dot.gov/ officeofsafety/ as of Oct. 22, 2001.

Table 2-14: Alaska Transit Safety Data: 2000

	Collision			Non-collision			Total property damage (\$ thousands)
	Number of incidents	Fatalities	Injuries	Number of incidents	Fatalities	Injuries	
Cable car	0	0	0	0	0	0	0
Commuter rail	0	0	0	0	0	0	0
Demand responsive	6	0	1	1	0	1	30
Ferry boat	0	0	0	0	0	0	0
Heavy rail	0	0	0	0	0	0	0
Light rail	0	0	0	0	0	0	0
Motor bus	6	0	3	14	0	14	102
Trolley bus	0	0	0	0	0	0	0
Van pool	2	0	2	0	0	0	33

Table 2-15: U.S. Transit Safety Data: 2000

	Collision			Non-collision			Total property damage (\$ thousands)
	Number of incidents	Fatalities	Injuries	Number of incidents	Fatalities	Injuries	
Cable car	10	0	15	10	0	11	10
Commuter rail	267	104	95	1,981	2	1,865	8,047
Demand responsive	3,055	6	1,603	1,510	11	1,494	6,910
Ferry boat	7	0	6	719	0	730	106
Heavy rail	389	55	316	12,388	22	10,530	5,034
Light rail	343	30	361	979	0	978	3,062
Motor bus	23,184	93	20,800	19,847	8	20,967	43,717
Trolley bus	122	0	103	257	0	265	103
Van pool	186	1	65	5	0	5	563

NOTES FOR DATA ON THIS PAGE: Collision includes at-grade crossings and suicides. Non-collision includes: 1) derailments/buses going off road; 2) personal casualties in parking facilities, inside vehicles, on right of way, boarding/alighting, and in station/bus stops; and 3) non-arson fires.

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, Federal Transit Administration, 2000 National Transit Database, available at www.ntdprogram.com as of Dec. 5, 2001.

Table 2-16: Recreational Boating Accidents: 2000

	Alaska	United States
Number of accidents		
\quad Total	68	7,740
\quad Fatal	16	616
\quad Non-fatal injury	13	3,292
\quad Property damage	39	3,832
Number of persons		
\quad Killed	18	701
\quad Injured	18	4,355

NOTE: Guam, Puerto Rico, and the Virgin Islands are included in the U.S. total.

Figure 2-5: Alaska Recreational Boating Accidents

NOTES FOR DATA ON THIS PAGE: An accident is listed under one category only, with fatal being the highest priority, followed by non-fatal injury, followed by property damage. For example, if two vessels are in an accident resulting in a fatality and a non-fatal injury, the accident is counted as a fatal accident involving two vessels.

These data do not include: 1) accidents involving only slight injury not requiring medical treatment beyond first-aid; 2) accidents involving property damage of $\$ 500$ or less; 3) accidents not caused or contributed to by a vessel, its equipment, or its appendages; and 4) accidents in which the boat was used solely as a platform for other activities, such as swimming or skin diving. Such cases are not included because the victims freely left the safety of a boat. However, the data do include accidents involving people in the water who are struck by their boat or another boat.

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, U.S. Coast Guard, Boating Statistics, 2000, Washington, DC: 2001, available at www.uscgboating.org/Saf/pdf/Boating_Statistics_2000.pdf as of Nov. 14, 2001.

Table 2-17: Alcohol Involvement in Recreational Boating

| | 1999 | | | 2000 | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | Alaska | United States | | Alaska | United States |
| N umber of accidents
 \quadTotal
 Number of persons | 8 | 633 | | 5 | 696 |
| \quadKilled
 Injured | 3 | 191 | | 4 | 215 |

Figure 2-6: Alaska Recreational Boating Accidents Involving Alcohol

NOTE FOR DATA ON THIS PAGE: Alcohol involvement in a boating accident includes any accident in which alcoholic beverages are consumed in the boat and the investigating official has determined that the operator was impaired or affected while operating the boat.

SOURCES FOR DATA ON THIS PAGE: U.S. Department of Transportation, U.S. Coast Guard, Boating Statistics 2000, Washington, DC: 2001; U.S. Department of Transportation, U.S. Coast Guard, Boating Statistics 1999, W ashington, DC: 2000, available at www.uscgboating.org/Saf/pdf/ Boating_Statistics_2000.pdf and www.uscgboating.org /Saf/pdf/Boating_Statistics_1999.pdf as of Nov. 14, 2001.

Table 2-18: Hazardous Materials Incidents: 2000 (Not including pipelines)

			Injuries			
	Incidents	Deaths	Total	Major	Minor	Dages (\$ thousands)
Alaska	43	0	0	0	0	384
United States	17,347	13	244	16	228	66,619

NOTES: U.S. total includes U.S. territories or foreign locations.
Hazardous material incident locations are often listed as the terminals or sorting centers where they are discovered. Therefore, states with this type of a facility may show a disproportionate number of incidents.
Hazardous materials transportation incidents required to be reported are defined in the Code of Federal Regulations (CFR), 49 CFR Part 171.15, 171.16 (Form F 5800.1). Hazardous materials deaths and injuries are caused by the hazardous material in commerce.

Figure 2-7: Alaska Hazardous Materials Incidents (Not including pipelines)

NOTE FOR DATA ON THIS PAGE: Hazardous materials incident data are subject to revision and correction by the O ffice of Hazardous Materials Safety.

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, Research and Special Programs Administration, Office of Hazardous Materials Safety, Hazmat Summary by State for Calendar Year 2000, and earlier years, Washington, DC: 2002, available at http://hazmat.dot.gov as of April 24, 2002.

Table 2-19: Alaska Hazardous Materials Incidents by Mode: 2000 (Not including pipelines)

Mode	Total incidents	Deaths	Injuries		
	5	Major	Minor	Damages (\$ thousands)	
Highway	5	0	0	0	22
Rail	32	0	0	0	362
Air	1	0	0	0	0.4
Water ${ }^{1}$	43	0	0	0	0
Total	0	0	0	384	

${ }^{1}$ Includes only packaged shipments (i.e., non-bulk shipments).

Figure 2-8: Alaska Hazardous Materials Incidents by Mode (Not including pipelines)

NOTE FOR DATA ON THIS PAGE: Hazardous materials incident data are subject to revision and correction by the O ffice of Hazardous Materials Safety.

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, Research and Special Programs Administration, O ffice of Hazardous Materials Safety, Hazmat Summary by State for Calendar Year 2000, and earlier years, Washington, DC: 2002, available at http://hazmat.dot.gov/ as of April 24, 2002.

Table 2-20: Natural Gas Distribution Pipeline Incidents

	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$
Alaska						
N umber of incidents	1	3	4	9	1	8
Number of fatalities	0	1	0	0	0	0
N umber of injuries	0	0	0	1	0	0
Property damage (\$ thousands)	50	100	345	1,500	100	1,400
United States, total						
N umber of incidents	97	110	102	137	119	154
Number of fatalities	16	47^{1}	9	17	19	22
N umber of injuries	43	109^{1}	67	65	85	59
Property damage (\$ thousands)	10,951	$16,253^{1}$	12,493	19,055	25,914	23,399

${ }^{1}$ Includes 33 fatalities, 42 injuries, and $\$ 5,000,000$ property damage associated with an incident in San Juan, Puerto Rico that was attributed to natural gas at the time. The cause of the incident is currently in dispute and subject to litigation.

NOTE: Incidents are reported on Form RSPA F 7100.1.

Table 2-21: Natural Gas Transmission Pipeline Incidents

	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$
Alaska						
N umber of incidents	0	0	0	1	1	0
N umber of fatalities	0	0	0	0	0	0
N umber of injuries	0	0	0	0	0	0
Property damage (\$ thousands)	0	0	0	2,000	100	0
United States, total						
N umber of incidents	24	77	73	99	54	80
N umber of fatalities	2	1	1	1	2	15
N umber of injuries	10	5	5	11	8	18
Property damage (\$ thousands)	9,958	13,078	12,078	29,749	17,696	17,868

NOTE: Incidents are reported on Form RSPA F 7100.2.
NOTES FOR DATA ON THIS PAGE: Incident means any of the following events:
I. An event that involves a release of gas from a pipeline or of liquefied natural gas (LN G) facility and a) a death or personal injury necessitating in-patient hospitalization or b) estimated property damage, including cost of gas lost, of the operator or others, or both, of $\$ 50,000$ or more.
II. An event that results in an emergency shutdown of an LNG facility.
III. An event that is significant, in the judgment of the operator, even though it did not meet the criteria of I or II.
Historical totals may change as the Office of Pipeline Safety receives supplemental information on incidents.

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, Research and Special Programs Administration, O ffice of Pipeline Safety, available at http://ops.dot.gov as of Jan. 7, 2002.

Table 2-22: Hazardous Liquid Pipeline Incidents

	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$
Alaska						
N umber of incidents	0	2	0	0	0	0
N umber of fatalities	0	0	0	0	0	0
Number of injuries	0	0	0	0	0	0
Property damage (\$ thousands)	0	100	0	0	0	0
United States, total	188	193	171	153	168	147
N umber of incidents	3	5	0	2	4	1
N umber of fatalities	11	13	5	6	20	4
Number of injuries				0		
Property damage (\$ thousands)	32,519	53,647	42,671	59,824	42,977	115,658

NOTES: Historical totals may change as the O ffice of Pipeline Safety receives supplemental information on incidents. Incidents are reported on Form RSPA F 7100.1. An accident report is required for each failure in a pipeline system in which there is a release of the hazardous liquid or carbon dioxide transported resulting in any of the following:

1. Explosion or fire not intentionally set by the operator;
2. Loss of 50 or more barrels (8 or more cubic meters) of hazardous liquid or carbon dioxide;
3. Escape to the atmosphere of more than 5 barrels (0.8 cubic meters) a day of highly volatile liquids;
4. Death of any person;
5. Bodily harm to any person resulting in: a. loss of consciousness; or b. necessity to carry the person from the scene; or c. necessity for medical treatment; or d. disability which prevents the discharge of normal duties or the pursuit of normal activities beyond the day of the accident;
6. Estimated property damage, including cost of clean-up and recovery, value of lost product, and damage to the property of the operator or others, or both, exceeding $\$ 50,000$.

SOURCE: U.S. Department of Transportation, Research and Special Programs Administration, O ffice of Pipeline Safety, available at http://ops.dot.gov as of Jan 7, 2002.

C Freight Transportation

Table 3-1: Domestic Shipments to Alaska by State: 1997 (Descending order by weight)

State of origin	Rank	Value (\$ millions)	Weight (thousand short tons)	State of origin	Rank	Value (\$ millions)	Weight (thousand short tons)
Alaska	1	5,376	17,448	District of Columbia	22	Z	Z
Washington	2	2,535	2,446	Hawaii	22	S	S
Oregon	3	1,007	171	Idaho	22	6	S
California	4	764	131	Iowa	22	11	Z
Texas	5	S	47	Kansas	22	S	S
O klahoma	6	78	35	Kentucky	22	S	S
Indiana	7	136	13	Louisiana	22	S	S
Illinois	8	109	6	Maine	22	S	S
Missouri	9	52	5	Maryland	22	8	S
Minnesota	10	47	3	Mississippi	22	S	S
North Carolina	10	48	3	Montana	22	S	S
Pennsylvania	10	44	3	N ebraska	22	7	S
Virginia	10	27	3	Nevada	22	S	S
Colorado	14	S	2	New Hampshire	22	S	S
Florida	14	49	2	New Mexico	22	17	S
Georgia	14	39	2	N ew York	22	S	S
South Carolina	14	25	2	N orth Dakota	22	S	S
Tennessee	14	29	2	O hio	22	70	S
Massachusetts	19	33	1	Rhode Island	22	S	S
Michigan	19	13	1	South Dakota	22	S	S
N ew Jersey	19	54	1	Utah	22	39	S
Alabama	22	5	S	Vermont	22	S	S
Arizona	22	22	S	West Virginia	22	S	Z
Arkansas	22	7	S	Wisconsin	22	64	S
Connecticut	22	12	Z	Wyoming	22	S	S
Delaware	22	S	S	From all states		12,610	20,571

KEY: S = data do not meet publication standards because of high sampling variability or other reasons;
$Z=$ zero or less than 1 unit of measure.
NOTES: The Commodity Flow Survey covers business establishments in mining, manufacturing, wholesale trade, and selected retail industries. The survey also covers selected auxiliary establishments (e.g., warehouses) of in-scope multiunit and retail companies. The survey excludes establishments classified as farms, forestry, fisheries, governments, construction, transportation, foreign establishments, services, and most establishments in retail. Due to industry-wide reporting problems, shipments by oil and gas extraction establishments are also excluded. "From all states" total includes all domestic shipments to the destination state, including intrastate shipments.

SOURCE: U.S. Department of Transportation, Bureau of Transportation Statistics and U.S. Department of Commerce, U.S. Census Bureau, 1997 Commodity Flow Survey, Washington, DC: 1999, available at http://www.bts.gov/ntda/cfs/ cfs97od.html as of Nov. 2, 2001.

Table 3-2: Domestic Shipments from Alaska by State: 1997 (Descending order by weight)

State of destination	Rank	Value (\$ millions)	Weight (thousand short tons)	State of destination	Rank	Value (\$ millions)	Weight (thousand short tons)
Alaska	1	5,376	17,448	Montana	-	S	S
Alabama	-	S	S	Nebraska	-	S	S
Arizona	-	S	S	Nevada	-	Z	S
Arkansas	-	S	S	New Hampshire	-	S	S
California	-	S	S	New Jersey	-	S	S
Colorado	-	S	S	New Mexico	-	S	S
Connecticut	-	S	S	New York	-	18	S
Delaware	-	S	S	North Carolina	-	S	S
District of Columbia	-	S	S	North Dakota	-	S	S
Florida	-	S	Z	Ohio	-	Z	Z
Georgia	-	S	S	O klahoma	-	S	S
Hawaii	-	S	S	Oregon	-	S	S
Idaho	-	S	S	Pennsylvania	-	5	Z
Illinois	-	1	Z	Rhode Island	-	S	S
Indiana	-	S	Z	South Carolina	-	Z	z
lowa	-	S	S	South Dakota	-	Z	Z
Kansas	-	S	S	Tennessee	-	S	S
Kentucky	-	S	S	Texas	-	S	Z
Louisiana	-	S	S	Utah	-	S	S
Maine	-	S	S	Vermont	-	S	S
Maryland	-	S	S	Virginia	-	S	S
Massachusetts	-	S	S	Washington	-	878	S
Michigan	-	1	S	West Virginia	-	Z	Z
Minnesota	-	S	S	Wisconsin	-	S	S
Mississippi	-	S	S	Wyoming	-	S	S
Missouri	-	S	S	To all states		6,653	19,673

KEY: $\mathrm{S}=$ data do not meet publication standards because of high sampling variability or other reasons;
$Z=$ zero or less than 1 unit of measure.
NOTES: The Commodity Flow Survey covers business establishments in mining, manufacturing, wholesale trade, and selected retail industries. The survey also covers selected auxiliary establishments (e.g., warehouses) of in-scope multiunit and retail companies. The survey excludes establishments classified as farms, forestry, fisheries, governments, construction, transportation, foreign establishments, services, and most establishments in retail. Due to industry-wide reporting problems, shipments by oil and gas extraction establishments are also excluded. "To all states" total includes all domestic shipments from the state of origin, including intrastate shipments.

SOURCE: U.S. Department of Transportation, Bureau of Transportation Statistics and U.S. Department of Commerce, U.S. Census Bureau, 1997 Commodity Flow Survey, Washington, DC: 1999, available at http://www.bts.gov/ntda/cfs/cfs97od.html as of Nov. 2, 2001.

Table 3-3: Shipments Originating in Alaska by Mode of Transportation: 1997

	Value		Short tons		Ton-miles	
	Number (\$ millions)	Percent	Number (thousands)	Percent	Number (millions)	Percent
All modes	6,653	100.0	19,673	100.0	7,047	100.0
Single modes	5,617	84.4	16,068	81.7	6,556	93.0
Truck	3,469	52.1	9,509	48.3	414	5.9
For-hire	1,109	16.7	2,829	14.4	216	3.1
Private truck	2,339	35.2	6,677	33.9	197	2.8
Rail	354	5.3	2,065	10.5	880	12.5
Water	1,194	18.0	3,707	18.8	S	S
Shallow draft	S	S	137	0.7	30	0.4
Great Lakes	Z	Z	Z	Z	Z	Z
Deep draft	1,058	15.9	3,570	18.1	S	S
Air (including truck and air)	450	6.8	43	0.2	34	0.5
Pipeline	149	2.2	745	3.8	S	S
Multiple modes	452	6.8	170	0.9	82	1.2
Parcel, U.S. Postal Service, or courier service	237	3.6	11	Z	9	0.1
Truck and rail intermodal combination	S	S	S	S	S	S
Truck and water	196	2.9	63	0.3	65	0.9
Rail and water	Z	Z	Z	Z	Z	Z
O ther multiple modes	Z	Z	Z	Z	Z	Z
Other and unknown modes	584	8.8	3,435	17.5	409	5.8

KEY: $\mathrm{S}=$ data do not meet publication standards because of high sampling variability or other reasons;
$Z=$ zero or less than 1 unit of measure.
NOTE: The Commodity Flow Survey covers business establishments in mining, manufacturing, wholesale trade, and selected retail industries. The survey also covers selected auxiliary establishments (e.g., warehouses) of in-scope multiunit and retail companies. The survey excludes establishments classified as farms, forestry, fisheries, governments, construction, transportation, foreign establishments, services, and most establishments in retail. Due to industry-wide reporting problems, shipments by oil and gas extraction establishments are also excluded.
SOURCE: U.S. Department of Transportation, Bureau of Transportation Statistics and U.S. Department of Commerce, U.S. Census Bureau, 1997 Commodity Flow Survey: United States, Washington, DC: 1999, available at http://www.bts.gov/ntda/cfs/cfs97od.html as of Nov. 2, 2001.

Table 3-4: Domestic Shipments from Alaska by Truck: 1997

State of destination	Value $\mathbf{(\$ ~ m i l l i o n s) ~}$	Weight (thousand short tons)
Alaska	$\mathbf{3 , 4 3 8}$	$\mathbf{9 , 4 9 5}$
Washington	20	S
Arizona	S	S
California	S	S
Kansas	S	S
Louisiana	S	S
O hio	S	S
Oregon	S	S
Texas	S	S
All other states	Z	Z
Total, all states	3,469	9,509

Table 3-5: Domestic Shipments to Alaska by Truck: 1997

State of origin	Value $\mathbf{(\$ ~ m i l l i o n s) ~}$	Weight (thousand short tons)
Alaska	$\mathbf{3 , 4 3 8}$	$\mathbf{9 , 4 9 5}$
Washington	483	178
California	385	47
Illinois	27	4
N orth Carolina	19	3
Missouri	S	2
Georgia	S	1
Minnesota	S	1
O hio	11	1
Texas	126	S
All other states	32	S
Total, all states	5,660	9,980

KEY FOR DATA ON THIS PAGE: $\mathrm{S}=$ Data do not meet publication standards because of high sampling variability or other reasons; $Z=$ zero or less than 1 unit of measure.

NOTE FOR DATA ON THIS PAGE: Some unpublished estimates can be derived from other data published on this table. However, figures obtained in this manner are subject to these same limitations.

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, Bureau of Transportation Statistics and U.S. Department of Commerce, U.S. Census Bureau, 1997 Commodity Flow Survey, Washington, DC: 2000, data from CD-ROM, CD-EC97-CFS.

Map 3-1: Alaska Network Truck Flows: 1998

SOURCE: U.S. Department of Transportation, Federal Highway Administration, Operations Core Business Unit, Office of Freight Management and Operations

Table 3-6 : Truck Shipments from Alaska by Commodity: 1997 (Descending order by weight)

	Value (\$ millions)	Weight (thousand short tons)
Commodity (2-digit commodity code)	1,136	3,488
Gasoline and aviation turbine fuel (17)	475	1,784
Fuel oils (18)	141	93
Printed products (29)	75	80
Other prepared foodstuffs and fats and oils (07)	124	63
Alcoholic beverages (08)	116	40
Articles of base metal (33)	46	35
Base metal in primary or semifinished forms and in finished basic shapes (32)	39	23
Other agricultural products (03)	68	21
Plastics and rubber (24)	22	17
Chemical products and preparations, n.e.c. (23)	112	15
Motorized and other vehicles (including parts) (36)	143	14
Electronic and other electrical equipment and components and office equipments (35)	24	9
Paper or paperboard articles (28)	61	8
Miscellaneous manufactured products (40)	75	5
Machinery (34)	17	5
Pulp, newsprint, paper, and paperboard (27)	S	5
Textiles, leather, and articles of textiles or leather (30)	81	1
Coal and petroleum products, n.e.c. (19)	57	S
Nonmetallic mineral products (31)	21	S
Wood products (26)	S	S
All other commodities	3,469	S
Total, all commodities		9,509

KEY: n.e.c. $=$ not elsewhere classified.
NOTE: There are 41 two-digit Standard Classification of Transported Goods (SCTG) commodity codes.
SOURCE: U.S. Department of Transportation, Bureau of Transportation Statistics and U.S. Department of Commerce, U.S. Census Bureau, 1997 Commodity Flow Survey, Washington, DC: 2000, data from CD-ROM, CD-EC97-CFS.

Table 3-7: Rail Shipments Terminating in Alaska (Short tons)

Commodity	1999	Percent of total	$\mathbf{2 0 0 0}$	Percent of total
Petroleum	$1,967,987$	27	$2,043,466$	33
Nonmetallic minerals	$3,527,842$	48	$1,972,535$	32
Coal	$1,352,176$	18	$1,104,209$	18
Mixed frieght	472,827	6	Z	Z
All other	U	U	U	U
Alaska, total	$2,320,834$	100	$5,120,210$	100

Table 3-8: Rail Shipments Originating in Alaska (Short tons)

Commodity	1999	Percent of total	$\mathbf{2 0 0 0}$	Percent of total
Petroleum	$1,967,987$	27	$2,043,466$	33
Nonmetallic minerals	$3,527,842$	48	$1,972,535$	32
Coal	$1,352,178$	18	$1,104,209$	18
Mixed frieght	472,827	6	U	U
All other	U	U	$1,110,969$	18
Alaska, total	$7,320,834$	100	$6,231,179$	100

KEY: $\mathrm{U}=$ data are unavailable; $\mathrm{Z}=$ zero or less than 1 unit of measure.

NOTE FOR DATA ON THIS PAGE: Includes the five largest commodities (by tonnage terminated or originated) of the 38 two-digit Standard Transportation Commodity Code groupings plus all others for state total. Includes intrastate shipments.

SOURCE FOR DATA ON THIS PAGE: Association of American Railroads, Railroads and States-2000, Washington, DC: Jan. 2002, available at http://www.aar.org/abouttheindustry/stateinformation.asp as of Mar. 18, 2002; and Railroads and States -1999, Washington, DC: Jan. 2002, available at http://www.aar.org/abouttheindustry/stateinformation.asp as of Mar. 18, 2002.

Table 3-9: Foreign and Domestic Waterborne Shipments Originating in Alaska by Destination: 2000

Destination	Short tons	Percent of total
Total orginating in Alaska	$60,671,502$	100.0
Washington	$23,022,732$	37.9
California	$22,202,298$	36.6
Foreign (excluding Canada)	$7,772,294$	12.8
Alaska (intrastate)	$\mathbf{4 , 0 8 1 , 3 9 3}$	$\mathbf{6 . 7}$
Hawaii	$1,961,413$	3.2
Other	$1,248,442$	2.1
Canada	262,290	0.4
Oregon	120,640	0.2

Table 3-10: Foreign and Domestic Waterborne Shipments to Alaska by Origin: 2000

Origin	Short tons	Percent of total
Total shipped to Alaska	$7,894,934$	100.0
Alaska (intrastate)	$\mathbf{4 , 0 8 1 , 3 9 3}$	$\mathbf{5 1 . 7}$
Washington	$2,471,982$	31.3
Foreign (exluding Canada)	$1,004,450$	12.7
Canada	223,216	2.8
California	68,233	0.9
O ther	32,843	0.4
O regon	7,783	0.1
Hawaii	4,419	0.1
Guam	615	0.0

SOURCE FOR DATA ON THIS PAGE: U.S. Army Corps of Engineers,
Waterborne Commerce Statistics Center, O rigin and Destination of Waterborne Commerce of the United States, 2000, available at http://www.wrsc.usace.army.mil as of Feb.12, 2002.

Table 3-11: Foreign and Domestic Waterborne Shipments Originating in Alaska by Commodity: $\mathbf{2 0 0 0}^{\mathbf{1}}$

Commodity	Short tons	Percent of total
Total	$58,416,588$	100.0
Crude petroleum	$4,561,766$	81.4
Petroleum products	$3,853,173$	6.6
Lumber, logs, wood chips, and pulp	$2,248,308$	3.8
Primary metal products	$1,278,338$	2.2
Coal, lignite, and coal coke	690,387	1.2
Chemicals excluding fertilizers	661,785	1.1
Food and food products	657,594	1.1
Chemical fertilizers	543,771	0.9
Manufactured goods	427,922	0.7
Primary non-metal products	240,855	0.4
Sand, gravel, shells, clay, salt, and slag	220,690	0.4
Iron ore, iron, and steel waste and scrap	31,977	0.1
Non-ferrous ores and scrap	22	0.0
Unknown and not elsewhere classified products ${ }^{2}$	$2,254,914$	3.9

Table 3-12: Domestic Waterborne Shipments Originating in Alaska by Commodity: 2000 ${ }^{\mathbf{1}}$

Commodity	Short tons	Percent of total
Total	$50,384,061$	100.0
\quad Crude petroleum	$45,894,676$	91.1
Petroleum products	$1,771,913$	3.5
Lumber, logs, wood chips, and pulp	$1,591,689$	3.2
Manufactured goods	388,141	0.8
Primary non-metal products	240,852	0.5
Sand, gravel, shells, clay, salt, and slag	220,690	0.4
Food and food products	215,589	0.4
Iron ore, iron, and steel waste and scrap	31,977	0.1
Primary metal products	15,099	0.0
Chemicals excluding fertilizers	13,435	0.0
Unknown and not elsewhere classified products ${ }^{2}$	$2,252,857$	4.5

${ }^{1}$ Domestic includes intrastate shipments.
${ }^{2}$ To protect confidentiality, if three or more vessel operating companies do not carry a particular commodity from a state of origin to a state of destination, then that commodity is reclassified to "unknown and not elsewhere classified products."

SOURCE FOR DATA ON THIS PAGE: U.S. Army Corps of Engineers, Waterborne Commerce Statistics Center, State to State and Region to Region Commodity Tonnages, Public Domain database, available at http://www.wrsc.usace.army.mil/ndc/datapdom.htm as of Oct. 30, 2001.

Table 3-13: Foreign and Domestic Waterborne Shipments to Alaska by Commodity: $\mathbf{2 0 0 0}^{\mathbf{1}}$

Commodity	Short tons	Percent of total
Total	$6,957,501$	100.0
Petroleum products	$1,761,512$	25.3
Lumber, logs, wood chips, and pulp	$1,601,977$	23.0
Manufactured goods	$1,589,624$	22.8
Crude petroleum	638,354	9.2
Primary non-metal products	474,258	6.8
Food and food products	466,977	6.7
Sand, gravel, shells, clay, salt, and slag	266,391	3.8
Primary metal products	91,396	1.3
Chemicals excluding fertilizers	56,264	0.8
Chemical fertilizers	10,748	0.2
Unknown and not elsewhere classified products ${ }^{2}$	937,433	13.5

Table 3-14: Domestic Waterborne Shipments to Alaska by
Commodity: $\mathbf{2 0 0 0}^{\mathbf{1}}$

Commodity	Short tons	Percent of total
Total	$5,730,464$	100.0
\quad Lumber, logs, wood chips, and pulp	$1,598,313$	27.9
Manufactured goods	$1,586,433$	27.7
Petroleum products	$1,396,407$	24.4
Food and food products	462,309	8.1
Primary non-metal products	346,056	6.0
Sand, gravel, shells, clay, salt, and slag	233,324	4.1
Primary metal products	84,961	1.5
Chemicals excluding fertilizers	22,661	0.4
Unknown and not elsewhere classified products ${ }^{2}$	936,804	16.3

${ }^{1}$ Domestic includes intrastate shipments.
${ }^{2}$ To protect confidentiality, if three or more vessel operating companies do not carry a particular commodity from a state of origin to a state of destination, then that commodity is reclassified to "unknown and not elsewhere classified products."

SOURCE FOR DATA ON THIS PAGE: U.S. Army Corps of Engineers, Waterborne Commerce Statistics Center, State to State and Region to Region Commodity Tonnages, Public Domain database, available at http://www.wrsc.usace.army.mil/ndc/ datapdom.htm as of Oct. 30, 2001.

Table 3-15: U.S. Waterborne Imports by State and Vessel Type: 1999
(Thousands of metric tons) (Descending order by weight)

Cargo discharged in	Total	Vessel type			
		Tanker	Dry-bulk carrier	Full container	Other freighter ${ }^{1}$
Texas	215,154	177,950	31,448	3,442	2,314
Louisiana	140,682	98,723	37,092	1,101	3,766
California	75,162	31,143	10,345	29,169	4,505
New York	55,174	30,575	11,814	10,701	2,084
Pennsylvania	38,382	26,980	8,319	1,140	1,943
Florida	28,499	10,565	10,166	3,656	4,112
Virgin Islands	21,954	19,634	2,294	16	10
Maine	21,795	19,616	1,521	29	629
Mississippi	18,719	16,446	1,435	556	282
Washington	18,311	2,595	6,708	5,915	3,093
N ew Jersey	17,842	14,230	2,916	41	655
Alabama	14,211	5,620	8,046	53	492
Maryland	14,090	1,448	8,948	1,462	2,232
Puerto Rico	14,058	8,863	3,096	1,049	1,050
Massachusetts	12,588	9,538	2,347	501	202
Virginia	10,705	4,032	1,903	4,064	706
Georgia	9,614	2,353	3,845	2,403	1,013
South Carolina	8,755	384	3,455	4,257	659
Delaware	7,957	4,656	1,474	1,275	552
Michigan	6,771	173	6,302	81	215
Hawaii	5,955	4,832	957	82	84
Ohio	5,257	69	4,930	20	238
Illinois	4,883	231	4,489	25	138
Oregon	4,369	1,215	1,776	421	957
Rhode Island	3,650	2,662	919	23	46
North Carolina	3,256	1,575	1,077	320	284
New Hampshire	3,212	1,505	1,691		12
Connecticut	2,930	1,534	786	78	532
Wisconsin	1,383	0	1,280	5	98
Alaska	1,241	967	224	19	31
Minnesota	629	23	399	4	203
District of Columbia	53.065	0	48	0.065	5
Indiana	0.025	U	0.025	U	U
United States, total	787,241	500,137	182,050	71,912	33,142

${ }^{1}$ Roll-on/roll-off, breakbulk ships, partial containerships, refrigerated cargo ships, barge carriers, and specialized cargo ships.
KEY: U = data are unavailable.
SOURCE: U.S. Department of Transportation, Maritime Administration, personal communication, May 29, 2002.

Table 3-16: U.S. Waterborne Exports by State and Vessel Type: 1999 (Thousands of metric tons) (Descending order by weight)

Cargo loaded in	Total	Vessel type			
		Tanker	Dry-bulk carrier	Full container	Other freighter ${ }^{1}$
Louisiana	97,093	9,842	77,773	3,669	5,809
Texas	50,331	23,279	18,917	4,769	3,366
California	34,585	4,778	11,074	17,011	1,722
Washington	30,810	2,459	19,189	6,897	2,265
Virginia	27,374	269	22,106	4,018	981
Florida	17,797	692	9,332	2,773	5,000
Ohio	12,936	74	12,505	130	227
Oregon	12,712	501	8,535	2,181	1,495
Alaska	10,122	5,794	3,300	319	709
New York	9,644	508	2,992	5,476	668
Michigan	8,392	190	7,673	348	181
Maryland	7,834	129	6,257	734	714
Alabama	7,724	126	4,656	366	2,576
Wisconsin	7,492	117	7,007	142	226
Georgia	6,291	173	1,323	3,246	1,549
South Carolina	5,929	39	222	5,157	511
Minnesota	3,994	45	3,721	125	103
North Carolina	2,614	305	1,212	323	774
Mississippi	2,456	421	1,095	329	611
Puerto Rico	1,054	593	33	238	190
Virgin Islands	772	699	35	14	24
Illinois	624	1	521	90	12
Pennsylvania	616	89	116	276	135
Massachusetts	576	19	226	297	34
Hawaii	509	328	63	57	61
Delaware	513	17	173	189	134
Maine	329	57	61	44	167
New Jersey	285	113	63	47	62
Connecticut	126	8	81	19	18
Rhode Island	111	9	98	2	2
New Hampshire	23.6	20	0.6	1	2
Indiana	18.7	0.3	18	0.2	0.2
District of Columbia	0.01	0	0	0.01	0
United States, total	361,687	51,694	220,378	59,287	30,328

${ }^{1}$ Roll-on/roll-off, breakbulk ships, partial containerships, refrigerated cargo ships, barge carriers, and specialized cargo ships.

SOURCE: U.S. Department of Transportation, Maritime Administration, personal communication, May 29, 2002.

Table 3-17: Scheduled and Nonscheduled Air Freight and Mail
Enplaned: 2000 (Short tons)

State	Freight		Mail	
	Scheduled	Nonscheduled	Scheduled	Nonscheduled
Alabama	17,233	139,250	6,796	25
Alaska	467,057	141,482	52,354	10,232
Arizona	70,430	66,143	36,115	27,465
Arkansas	1,886	12,578	6,534	2,955
California	1,176,476	504,757	237,537	87,278
Colorado	106,816	61,503	55,370	31,711
Connecticut	14,802	54,627	10,260	1,575
Delaware	0	3,251	0	0
District of Columbia	92,526	6,208	46,511	6,615
Florida	461,831	334,177	85,818	14,182
Georgia	204,986	66,293	116,174	3,961
Hawaii	208,048	52,473	33,768	476
Idaho	11,231	5,064	3,065	1,307
Illinois	318,957	202,867	112,959	9,111
Indiana	408,262	85,326	24,814	134,145
Iowa	15,346	53,766	7,429	3,984
Kansas	6,200	20,199	2,597	18
Kentucky	16,427	823,924	5,093	0
Louisiana	29,577	21,753	11,399	1,758
Maine	8,428	11,368	185	91
Maryland	25,723	24,781	19,850	3,573
Massachusetts	114,243	422,158	31,133	9,384
Michigan	87,127	68,108	41,678	4,848
Minnesota	85,691	51,285	59,550	9,192
Mississippi	398	11,338	2,198	0
Missouri	71,317	67,157	67,876	4,120
Montana	16,261	7,917	1,987	3,341
N ebraska	12,188	26,366	10,825	6,546
N evada	45,636	12,641	30,407	1,373
New Hampshire	17,995	30,439	740	11
N ew Jersey	352,556	115,712	54,837	4,550
New Mexico	12,845	29,355	9,327	3,379
N ew York	317,258	167,388	113,892	5,622
N orth Carolina	85,996	85,765	35,985	3,498
N orth Dakota	5,424	383	222	2,820
O hio	283,292	292,529	48,750	6,442
O klahoma	25,773	16,804	9,022	9
Oregon	73,035	59,101	12,655	22,729
Pennsylvania	156,043	312,359	45,377	9,035
Puerto Rico	78,117	44,530	4,319	3,312
Rhode Island	3,883	2,753	2,543	0
South Carolina	17,237	76,688	3,234	6
South Dakota	8,114	12,298	1,040	4,583
Tennessee	1,324,829	60,779	31,342	6,417
Texas	440,864	482,724	138,548	47,644
Utah	66,549	133,609	30,908	25,073
Vermont	3,257	19	122	0
Virginia	20,961	35,881	5,189	3,492
Washington	152,299	84,367	34,449	55,975
West Virginia	4,306	128	4	0
Wisconsin	30,060	19,618	11,558	1,088
Wyoming	6,786	11	5	0
United States, total	7,582,577	5,422,002	1,714,348	584,950

SOURCE: U.S. Department of Transportation, Bureau of Transportation Statistics, Airport Activity Statistics of Certificated Air Carriers: Summary Tables, Twelve Months Ending December 31, 2000, Washington, DC: 2001, available at www.bts.gov/publications/airactstats2000/ as of Oct. 29, 2001.

Table 3-18: Surface Merchandise Trade with Canada and Mexico: 2000 (Millions of current dollars)

| | Exports to | | | Imports from | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| | Canada | Mexico | Canada | Mexico | |
| Alaska | 58 | | | 128 | 4 |
| United States, total | 154,847 | 97,159 | | 210,270 | 113,437 |

Figure 3-1: Alaska Surface Merchandise Trade with Canada and Mexico (Millions of current dollars)

SOURCE FOR DATA ON THIS PAGE U.S. Department of Transportation, Bureau of Transportation Statistics, Transborder Surface Freight Data, available at http://www.bts.gov/ntda/tbscd/reports.html as of Aug.9, 2002.

Figure 3-2: Truck and Rail Imports from Mexico to Alaska by Weight
-Total \square Truck 图Rail
Thousands of metric tons

Figure 3-3: Truck and Rail Imports from Canada to Alaska by Weight
Thousands of metric tons \square Total \square Truck 图Rail

NOTES FOR DATA ON THIS PAGE: Data do not include transshipment activity. Transshipments are shipments that enter or exit the United States by way of a U.S. Customs port on the northern or southern border, but whose origin or destination is a country other than Canada or Mexico. All figures are based on the declared gross shipment weight and include packaging. Shipping weight for imports may be underestimated because U.S. Customs Service does not require weight to be reported at the individual commodity level for surface trade.

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, Bureau of Transportation Statistics, Transborder Surface Freight Data, available at http://www.bts.gov/ntda/tbscd/reports as of Oct. 31, 2001.

Table 3-19: Incoming Truck Crossings, U.S.-Canadian Border
(Thousands)

State/port	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$
Alaska	$\mathbf{1 2}$	$\mathbf{1 9}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{1 1}$
Alcan	4	5	5	7	6	8
Dalton Cache	2	1	1	1	1	<1
\quad Skagway	6	13	5	3	2	2
Idaho	47	51	52	52	59	59
Maine	363	396	405	445	497	536
Michigan	1,881	2,032	2,186	2,348	2,620	2,676
Minnesota	136	121	143	115	119	130
Montana	133	148	157	166	183	206
New York	1,505	1,555	1,662	1,797	1,955	1,983
North Dakota	258	271	301	307	325	345
Vermont	241	240	254	281	313	325
Washington	559	597	655	748	736	778
United States, total	5,135	5,431	5,827	6,271	6,817	7,048

NOTE: Data represent the number of truck crossings, not the number of unique vehicles, and include both loaded and unloaded trucks.

Table 3-20: Incoming Truck Container (Loaded) Crossings, U.S.-Canadian Border (Thousands)

State/port	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$
Alaska	\mathbf{U}	\mathbf{U}	$<\mathbf{1}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{7}$
\quad Alcan	U	U	<1	5	5	6
Dalton Cache	U	U	<1	<1	<1	<1
\quad Skagway	U	U	U	2	1	1
Idaho	U	45	42	42	47	51
Maine	U	164	222	332	343	344
Michigan	U	656	899	1,982	2,186	2,069
Minnesota	U	31	37	77	83	100
Montana	U	121	137	147	165	170
New York	U	1	145	805	1,544	1,708
North Dakota	U	74	<1	138	268	305
Vermont	U	235	116	148	171	217
Washington	U	1,421	1,966	4,232	5,331	5,335
United States, total						

Table 3-21: Incoming Truck Container (Unloaded) Crossings, U.S.-Canadian Border (Thousands)

State/port	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$
Alaska	\mathbf{U}	\mathbf{U}	$<\mathbf{1}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{2}$
Alcan	U	U	<1	<1	<1	<1
Dalton Cache	U	U	<1	<1	<1	<1
Skagway	U	U	U	2	1	
Idaho	U	<1	<1	2	2	2
Maine	U	44	48	59	52	50
Michigan	U	75	130	274	335	402
Minnesota	U	14	17	30	32	31
Montana	U	18	19	22	19	28
New York	<1	22	99	191	202	
North Dakota	U	10	<1	26	38	36
Vermont	10	11	7	6	9	
Washington	U	62	110	163	174	134
United States, total	U	235	358	685	852	897

KEY: $\mathrm{U}=$ data are unavailable.
SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, Bureau of Transportation Statistics, special tabulation, April 2002. Based on the following primary data source: U.S. Department of Treasury, U.S. Customs Service, O ffice of Field O perations, O perations Management Database, special tabulation, Washington, DC: 2001.

Table 3-22: Incoming Train Crossings, U.S.-Canadian Border

State/port	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$
Alaska	$\mathbf{2 2 7}$	$\mathbf{2 3 4}$	$\mathbf{2 5 9}$	$\mathbf{2 7 7}$	$\mathbf{2 6 6}$	$\mathbf{3 2 6}$
Ilcan	NA	NA	NA	NA	NA	NA
Dalton Cache	NA	NA	NA	NA	NA	NA
Skagway	227	234	259	277	266	326
Idaho	506	443	482	577	673	699
Maine	1,201	1,357	1,380	1,698	1,653	1,428
Michigan	7,576	8,654	9,278	9,224	8,993	9,757
Minnesota	10,052	9,451	9,754	11,351	9,207	9,162
Montana	366	340	348	373	392	471
New York	5,274	5,134	5,418	5,837	5,961	5,725
North Dakota	1,268	1,283	1,406	1,621	1,596	1,728
Vermont	1,427	1,316	1,410	1,287	1,238	1,119
Washington	3,124	3,245	3,128	3,190	2,951	3,032
United States, total	31,021	3,457	32,863	35,435	32,930	33,447

Table 3-23: Incoming Rail Container (Full) Crossings, U.S.-Canadian Border

State/port	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$
Alaska	NA	NA	NA	NA	NA	NA
Alcan	NA	NA	NA	NA	NA	NA
Dalton Cache	NA	NA	NA	NA	NA	NA
\quad Skagway	NA	NA	NA	NA	NA	NA
Idaho	U	24,912	27,371	33,623	39,872	47,263
Maine	U	9,917	11,496	23,324	31,210	28,139
Michigan	U	197,196	269,954	433,779	459,213	528,096
Minnesota	U	20,940	44,891	175,229	210,011	204,386
Montana	U	18,195	18,596	17,824	17,595	15,964
New York	U	U	17,931	105,854	190,227	192,614
North Dakota	U	U	U	20,087	102,225	112,462
Vermont	U	15,408	21,396	33,122	34,857	37,745
Washington	U	43,415	52,446	60,742	65,726	48,770
United States, total	U	329,983	464,081	903,584	$1,150,936$	$1,215,439$

Table 3-24: Incoming Rail Containers (Empty) Crossings, U.S.-Canadian Border

State/port	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$
Alaska	NA	NA	NA	NA	NA	NA
Alcan	NA	NA	NA	NA	NA	NA
Dalton Cache	NA	NA	NA	NA	NA	NA
Skagway	NA	NA	NA	NA	NA	NA
Idaho	U	2,095	2,295	3,956	2,464	2,977
Maine	U	16,902	17,293	23,558	35,738	32,219
Michigan	U	75,756	116,426	153,538	140,390	151,651
Minnesota	U	3,553	8,283	40,670	45,482	46,557
Montana	U	5,095	7,323	5,905	5,737	9,291
New York	U	U	5,331	34,568	43,950	64,541
North Dakota	U	U	U	6,595	36,818	42,236
Vermont	U	5,372	5,554	10,429	11,385	13,324
Washington	U	15,234	17,910	22,086	15,603	16,602
United States, total	U	124,007	180,415	301,305	337,567	379,398

KEY: $N A=$ not applicable; $U=$ data are unavailable.

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, Bureau of Transportation Statistics, special tabulation, April 2002. Based on the following primary data source: U.S. Department of Treasury, U.S. Customs Service, O ffice of Field O perations, O perations Management Database, special tabulation, Washington, DC: 2001.

Table 3-25: Top 50 U.S. Foreign Trade Freight Gateways: 2000 (Ranked by value of shipments in $\$$ billions)

	Mode	U.S. rank	Exports	Imports	Total
Alaska gateways ${ }^{1}$ in top 50					
Anchorage, AK	Air	21	3.5	19.7	23.2
U.S. gateway ${ }^{1}$ in top 50					
JFK International Airport, NY	Air	1	56.0	75.5	131.6
Port of Los Angeles, CA	Water	2	16.7	85.1	101.8
Port of Long Beach, CA	Water	3	16.9	81.3	98.2
Port of Detroit, MI	Land	4	49.5	44.9	94.4
San Francisco Airport, CA	Air	5	41.8	46.9	88.7
Port of Laredo, TX	Land	6	39.2	44.4	83.7
Port of New York, NY and NJ	Water	7	19.7	61.2	80.9
Los Angeles International Airport, CA	Air	8	41.7	35.6	77.3
Port of Buffalo-Niagra Falls, NY	Land	9	36.2	33.9	70.1
Port of Huron, MI	Land	10	18.8	40.9	59.7
Chicago, IL	Air	11	20.4	25.4	45.7
Port of Houston, TX	Water	12	18.7	24.6	43.4
Port of El Paso, TX	Land	13	17.5	21.9	39.4
Port of Seattle, WA	Water	14	5.4	26.9	32.3
New Orleans, LA	Air	15	16.2	15.9	32.0
Port of Charleston, SC	Water	16	11.3	20.2	31.5
Port of Norfolk Harbor, VA	Water	17	11.1	14.1	25.2
Port of Oakland, CA	Water	18	9.6	15.5	25.1
Cleveland, OH	Air	19	11.8	12.7	24.5
Miami International Airport, FL	Air	20	15.9	7.7	23.6
Anchorage, AK	Air	21	3.5	19.7	23.2
Port of Baltimore, MD	Water	22	5.3	15.3	20.6
Dallas-Fort Worth, TX	Air	23	10.1	10.2	20.4
Port of Tacoma, WA	Water	24	4.4	15.5	19.8
Port of Otay Mesa, TX	Land	25	8.1	10.7	18.8
Port of New Orleans, LA	Water	26	7.6	11.2	18.8
Port of Miami, FL	Water	27	8.4	9.1	17.5
Port of Champlain-Rouses Pt., NY	Land	28	6.0	11.3	17.3
Atlanta, GA	Air	29	8.4	8.7	17.2
Port of Savannah, GA	Water	30	5.9	10.5	16.3
Port of Nogales, AZ	Land	31	5.3	8.3	13.6
Port of Hildago, TX	Land	32	6.2	6.4	12.6
Port of Blaine, WA	Land	33	5.6	6.7	12.3
Port of Brownsville-Cameron, TX	Land	34	6.2	5.9	12.1
Port of Alexandria Bay, NY	Land	35	4.6	7.4	12.0
Port of South Louisiana, LA	Water	36	7.1	4.0	11.1
Port of Beaumont, TX	Water	37	1.0	9.6	10.6
Newark, NJ	Air	38	3.9	6.7	10.6
Port of Pembina, ND	Land	39	5.3	5.2	10.6
Port of Port Everglades, FL	Water	40	4.7	5.8	10.5
Port of Portland, OR	Water	41	3.0	7.5	10.5
Port of Corpus Christi, TX	Water	42	1.6	8.7	10.3
Port of Jacksonville, FL	Water	43	1.9	8.4	10.3
Boston Logan Airport, MA	Air	44	5.9	4.4	10.0
Port of Philadelphia, PA	Water	45	0.5	9.5	10.0
Port of Morgan City, LA	Water	46	0.1	9.3	9.4
Seattle-Tacoma International Airport, WA	Air	47	3.7	4.8	8.5
Port of Calexico-East, TX	Land	48	3.5	4.8	8.3
Port of Sweetgrass, MT	Land	49	3.4	4.4	7.8
Port of Highgate Springs-Alburg, VT	Land	50	3.0	4.6	7.6
Total, top 50	NA	NA	619	989	1,608

${ }^{1}$ Gateway means any port, airport, or border crossing that provides access for the import or export of goods.
KEY: $N A=$ not applicable.
NOTES: Mode of transportation is the type of transportation as a shipment enters or exits at a border port. Flows through individual ports are based on reported data collected from U.S. trade documents. Low-value shipments, generally imports valued at less than $\$ 1,250$ and exports valued at less than $\$ 2,500$, are not included. Data for air gateways include some shipments (generally less than 3% of the total value) from small user-fee airports located in the same region. Air gateways not identified by airport name include major airport(s) in that geographic area in addition to small regional airports. In addition, due to Bureau of Census confidentiality regulations, data for courier operations are included in the airport totals for JFK International Airport, New Orleans, Los Angeles, Cleveland, Chicago, Miami, and Anchorage.

SOURCES:

Air: U.S. Department of Commerce, U.S. Census Bureau, Foreign Trade Division, special tabulation, August 2001.
Water: U.S. Department of Transportation, Maritime Administration, Office of Statistical and Economical Analysis, personal communication, Sept. 5, 2001
Land: U.S. Department of Transportation, Bureau of Transportation Statistics, Transborder Surface Freight Data, 2001.

D Passenger Travel

Table 4-1: Commuting to Work: 2000

	Alaska			United States	
Mode	Number	Percent		Number	Percent
Total	286,788	100.0		$127,448,586$	100.0
\quad Car, truck, or van -- drove alone	196,611	68.6		$97,243,457$	76.3
Car, truck, or van -- carpooled	38,362	13.4		$14,299,090$	11.2
Public transportation (including taxi)	7,894	2.8		$6,592,685$	5.2
Walked	21,432	7.5		$3,417,546$	2.7
O ther means	12,247	4.3		$1,820,578$	1.4
Worked at home	9,242	3.2		$4,075,230$	3.2
					24.3
Mean travel time to work (minutes)	18.2				

NOTE: Data are for workers 16 years and over.
SOURCE: U.S. Department of Commerce, U.S. Census Bureau, Census 2000 Supplementary Survey, Profile of Selected Economic Characteristics, United States, California, available at http://www.census.gov/c2ss/www/ as of Oct. 16, 2001.

Table 4-2: Licensed Drivers: 2000

	Alaska			United States	
Licensed drivers	Number	Percent		Number	Percent
Total	465,256	100.0		$190,625,023$	100.0
\quad Male	215,821	46.4		$95,796,069$	50.3
Female	249,435	53.6		$94,828,953$	49.7

Figure 4-1: Licensed Drivers in Alaska by Age and Sex: 2000

SOURCE FOR TABLE 4-2 and FIGURE 4-1: U.S. Department of Transportation, Federal Highway Administration, Highway Statistics 2000, Washington, DC: 2001.

Table 4-3: Urban Transit Agencies in Alaska: 2000

Transit agencies	Modes provided	Urbanized area	Annual unlinked passenger trip (thousands)	Average weekday unlinked trips (thousands)	Operating funds expended (\$ millions)	Capital funds expended (\$ millions)	Vehides available for maximum service
Municipality of Anchorage-Public Transportation Department (People Mover)	Bus, demand responsive, vanpool	Anchorage	3,591	12.3	12.6	1.6	107

SOURCE: U.S. Department of Transportation, Federal Transit Administration, National Transit Database, available at http://www.ntdprogram.com/NTD/Profiles.nsf/ProfileInformation?O penForm\&2000\&All as of Dec. 6, 2001.

Table 4-4: Incoming Personal Vehicle Crossings, U.S. - Canadian Border (Thousands)

State/port	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$
Alaska	$\mathbf{1 2 5}$	$\mathbf{1 1 7}$	$\mathbf{1 1 5}$	$\mathbf{1 2 4}$	$\mathbf{1 2 0}$	$\mathbf{1 1 8}$
\quad Alcan	62	57	55	63	65	59
Dalton Cache	22	21	20	21	17	20
\quad Skagway	41	38	39	40	37	39
Idaho	247	239	234	219	219	209
Maine	4,436	4,273	4,263	4,026	3,903	3,909
Michigan	11,427	11,859	11,776	12,019	12,396	11,970
Minnesota	1,104	1,100	1,024	1,049	1,137	1,104
Montana	560	530	540	526	577	490
New York	10,694	10,773	11,101	10,555	10,658	10,833
North Dakota	754	705	666	620	636	632
Vermont	1,640	1,630	1,539	1,422	1,573	1,599
Washington	8,158	8,305	7,694	6,036	6,002	6,052
United States	39,146	39,531	38,950	36,597	37,220	36,915

Table 4-5: Incoming Passengers in Personal Vehicles, U.S. - Canadian Border (Thousands)

State/port	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$
Alaska	$\mathbf{2 7 1}$	$\mathbf{2 5 9}$	$\mathbf{2 5 7}$	$\mathbf{3 0 3}$	$\mathbf{2 6 0}$	$\mathbf{2 6 4}$
\quad Alcan	128	122	118	161	138	127
Dalton Cache	50	46	44	45	87	43
Skagway	93	91	94	98	36	94
Idaho	595	533	540	497	526	510
Maine	9,883	9,535	9,216	8,549	8,176	7,968
Michigan	32,425	34,869	27,690	29,634	29,456	32,471
Minnesota	3,049	3,028	2,782	2,882	2,932	3,040
Montana	1,717	1,639	1,661	1,616	1,806	1,453
New York	24,583	26,097	27,579	26,083	25,478	25,302
North Dakota	1,975	1,861	1,700	1,577	1,629	1,675
Vermont	3,408	3,541	3,275	3,042	3,302	3,123
Washington	18,901	19,708	17,948	14,100	15,803	14,239
United States	96,807	101,071	92,647	88,283	89,369	90,047

Table 4-6: Incoming Train Passengers, U.S. - Canadian Border (Thousands)

State/port	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$
Alaska	$\mathbf{1 9}$	$\mathbf{2 3}$	$\mathbf{2 2}$	$\mathbf{3 1}$	$\mathbf{2 8}$	$\mathbf{3 5}$
Alcan	NA	NA	NA	NA	NA	NA
Dalton Cache	NA	NA	NA	NA	NA	NA
Skagway	19	23	22	31	28	35
Idaho	2	1	1	2	2	2
Maine	3	3	3	3	3	3
Michigan	36	44	47	53	52	54
Minnesota	30	26	26	20	20	20
Montana	1	1	1	1	1	1
New York	82	62	73	76	85	93
North Dakota	4	4	4	4	5	5
Vermont	13	3	4	3	3	3
Washington	39	47	67	52	50	52
United States	227	214	249	246	249	270

KEY FOR DATA ON THIS PAGE: $N A=$ not applicable.
SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, Bureau of Transportation Statistics, special tabulation, August 2001. Based on the following primary data source: U.S. Department of Treasury, U.S. Customs Service, Office of Field O perations, O perations Management Database, special tabulation, Washington, DC: 2001.

Table 4-7: Incoming Bus Crossings, U.S. - Canadian Border (Thousands)

State/port	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$
Alaska	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 0}$	$\mathbf{1 0}$
\quad Alcan	<1	<1	<1	1	<1	<1
Dalton Cache	<1	<1	<1	<1	<1	<1
\quad Skagway	5	6	8	8	9	9
Idaho	<1	<1	<1	<1	<1	<1
Maine	2	2	2	2	2	2
Michigan	51	53	31	48	51	54
Minnesota	5	5	4	4	4	4
Montana	2	2	2	2	3	2
New York	68	71	81	74	77	85
North Dakota	4	3	3	3	3	3
Vermont	6	6	6	6	6	7
Washington	21	23	25	23	24	22
United States	166	173	164	173	182	189

Table 4-8: Incoming Passengers on Buses, U.S. - Canadian Border (Thousands)

State/port	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$
Alaska	$\mathbf{8 6}$	$\mathbf{1 0 7}$	$\mathbf{1 3 3}$	$\mathbf{1 5 0}$	$\mathbf{1 5 6}$	$\mathbf{1 4 9}$
\quad Alcan	21	22	20	23	16	16
Dalton Cache	3	3	3	4	2	2
\quad Skagway	63	82	109	123	138	131
Idaho	9	11	12	14	18	18
Maine	74	66	61	110	60	64
Michigan	754	792	671	767	864	1,157
Minnesota	104	96	100	93	100	98
Montana	53	45	46	44	54	40
New York	1,624	1,880	2,195	1,948	2,245	2,475
North Dakota	134	117	117	119	117	112
Vermont	165	180	177	174	180	192
Washington	526	577	613	550	573	567
United States	3,530	3,870	4,124	3,970	4,367	4,873

Table 4-9: Incoming Pedestrians, U.S. - Canadian Border (Thousands)

State/port	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$
Alaska	$<\mathbf{1}$	$<\mathbf{1}$	$<\mathbf{1}$	$<\mathbf{1}$	$<\mathbf{1}$	$<\mathbf{1}$
\quad Alcan	<1	<1	<1	<1	<1	<1
Dalton Cache	<1	<1	<1	<1	<1	<1
Skagway	<1	0	<1	0	<1	0
Idaho	3	2	4	3	3	3
Maine	120	113	112	122	121	122
Michigan	35	33	15	U	U	U
Minnesota	39	36	38	45	26	28
Montana	13	18	16	16	21	14
New York	361	267	225	306	313	287
North Dakota	10	11	10	10	8	7
Vermont	23	22	23	22	29	22
Washington	93	105	105	74	67	102
United States	698	608	550	598	588	585

KEY: U = data are unavailable.
SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, Bureau of Transportation Statistics, special tabulation, August 2001. Based on the following primary data source: U.S.
Department of Treasury, U.S. Customs Service, Office of Field O perations, O perations Management Database, special tabulation, Washington, DC: 2001.

Figure 4-2: Overseas Visitors to Alaska ${ }^{1}$

${ }^{1}$ International travelers to the United States from Canada and Mexico are not included.

SOURCES: U.S. Department of Commerce, International Trade Administration, Office of Tourism Industries, O verseas Visitors ot Select U.S. States and Territories 2000-1999 (Ranked by 2000 M arket Share), Washington, DC: 2001, available at http://tinet.ita.doc.gov/ as of Oct. 19, 2001; U.S. Department of Commerce, International Trade Administration, Office of Tourism Industries, O verseas Visitors ot Select U.S. States and Territories 1996-1995, Washington, DC: 2001, available at http://tinet.ita.doc.gov/ as of Nov. 13, 2001.

D-6

E Registered Vehicles and Vehicle-Miles Traveled

Table 5-1: Alaska and U.S. Motor-Vehide Registrations: 2000

Motor vehicle type	Private and commercial	Publidy owned	Alaska total	United States total
All motor vehicles	597,746	25,476	623,222	$225,821,241$
Automobiles	241,775	2,530	244,305	$133,621,420$
Buses	2,120	390	2,510	746,125
Trucks 1	337,788	9,796	347,584	$87,107,628$
\quad Light trucks	330,018	U	330,018	$77,796,827$
Farm trucks	530	U	530	$1,885,170$
\quad Truck tractors	3,019	U	3,019	$1,587,611$
Motorcycles	16,063	44	16,107	$4,346,068$

${ }^{1}$ Includes light trucks (pickups, vans, sport utility vehicles, and other light trucks) as well as medium and large trucks.

KEY: U = data are unavailable.
SOURCE: U.S. Department of Transportation, Federal Highway Administration, Highway Statistics 2000, Washington, DC: 2001, tables MV-1 and MV-9.

Table 5-2: Alaska and U.S. Trailer and Semi-Trailer Registrations: 2000 ${ }^{\mathbf{1}}$

Type	Alaska	United States
Total	100,989	$21,541,490$
Private and commercial	99,222	$21,283,681$
\quad Commercial trailers		
Light farm trailers, car trailers, etc. ${ }^{3}$	12,390	$4,685,606$
\quad House trailers	86,832	$14,113,392$
	U	$2,484,683$
Publicly owned		
\quad Federal government	1,767	257,809
State, county, municipal government	133	4,277

[^0]SOURCE: U.S. Department of Transportation, Federal Highway Administration, Highway Statistics 2000, Washington, DC: 2001, table MV-11.

Table 5-3: Alaska Truck Characteristics and Use: 1997 (Percent unless otherwise specified)

Vehicular and operational characteristics	All trucks	\qquad	Vehicular and operational characteristics	All trucks	
Total, number (thousands)	248.4	12.6			
Major use	100	100	Year model	100	100
Agriculture	4.2	5.0	1 to 2 years old	8.5	6.2
Forestry and lumbering	0.4	3.0	3 to 4 years old	14.8	6.5
Mining and quarrying	0.5	3.5	0 ver 4 years old	76.7	87.3
Construction	7.4	38.6			
Manufacturing	0.8	1.8	Vehide acquisition	100	100
Wholesale and retail trade	4.3	15.8	Purchased new	33.4	28.8
For-hire transportation	1.2	12.6	Purchased used	63.4	64.7
Utilities and service	6.1	8.6	Leased from someone or		
Personal transportation	70.7	5.6	not reported	3.2	6.5
O ther and not reported	4.3	5.5			
			Truck type	100	100
Body type	100.	100	Single-unit trucks	98.5	78.5
Pickup, panel, minivan, and	94.9		2 axles	97.5	60.3
sport utility	1.7	NA	3 axles or more	0.9	18.2
Platform and cattlerack	0.8	33.1	Combination	1.5	21.5
Van	0.1	16.7	3 axles	0.2	0.3
Public utility	0.6	2.4	4 axles	0.54	4.0
Multistop or stepvans	0.8	11.9	5 axles or more	0.9	17.2
Dump	0.4	15.0	Trailer not specified	V	V
Tank for liquids or dry bulk	0.7	7.7			
Other or not reported		13.2	Range of operation	100	100
			Local	78.1	67.8
Vehicle size	100	100	Short-range	9.9	10.7
Light	96.3	29.7	Long-range	7.7	8.3
Medium	1.1	18.1	Off-the-road or not		
Light-heavy	0.7	13.1	reported	4.3	13.2
Heavy-heavy	2.0	39.1			
			Fuel type	100	100
Annual miles driven	100	100	Gasoline	90.7	40.3
Less than 5,000	28.2	49.1	Diesel, liquefied gas,	9.3	59
5,000 to 9,999	24.3	18.2	and other	V	0.7
10,000 to 19,999	37.3	15.9	Not reported		
20,000 to 29,999	7.3	6.9			
30,000 or more	2.9	9.9			

KEY: NA = not applicable; $\mathrm{V}=$ represents less than .05 percent.

SOURCE: U.S. Department of Commerce, U.S. Census Bureau, Vehicle Inventory and Use Survey, California, state-specific reports, Washington, DC: 1999, available at http://www.census.gov/econ/www/viusmain.html as of Dec. 27, 2001.

Table 5-4: Highway Vehicle-Miles Traveled (VMT): 2000

	Total VMT (millions)	VMT per capita
State	56,534	12,716
Alabama	$\mathbf{4 , 6 1 3}$	$\mathbf{7 , 5 0 1}$
Alaska	49,768	11,428
Arizona	29,167	11,107
Arkansas	306,649	9,053
California	41,771	9,712
Colorado	30,756	9,057
Connecticut	8,240	10,510
Delaware	3,498	6,115
Dist. of Columbia	152,136	9,609
Florida	105,010	12,969
Georgia	8,543	7,014
Hawaii	13,534	10,467
Idaho	102,866	8,225
Illinois	70,862	12,779
Indiana	29,433	10,059
lowa	28,130	10,599
Kansas	46,803	11,579
Kentucky	40,849	9,430
Louisiana	14,190	11,129
Maine	50,174	9,809
Maryland	52,796	8,513
Massachusetts	97,792	9,839
Michigan	52,601	10,693
Minnesota	35,536	12,187
Mississippi	67,083	11,990
Missouri		

State	Total VMT (millions)	VMT per capita
Montana	9,882	10,812
Nebraska	18,081	10,568
Nevada	17,639	9,504
New Hampshire	12,021	9,687
New Jersey	67,446	8,015
New Mexico	22,760	13,580
New York	129,057	6,801
North Carolina	89,504	11,120
North Dakota	7,217	11,241
Ohio	105,898	9,328
Oklahoma	43,355	12,563
Oregon	35,010	11,175
Pennsylvania	102,337	8,316
Rhode Island	8,359	8,326
South Carolina	45,538	7,971
South Dakota	8,432	11,168
Tennessee	65,732	11,698
Texas	220,064	10,613
Utah	22,597	11,226
Vermont	6,811	11,184
Virginia	74,801	10,564
Washington	53,330	9,251
West Virginia	19,242	10,684
Wisconsin	57,266	10,261
Wyoming	8,090	16,410
United States	$2,749,803$	9,811

Figure 5-1: Highway Vehide-Miles Traveled, United States and Alaska

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Transportation, Federal Highway Administration, Highway Statistics, annual editions, available at http://www.fhwa.dot.gov/ohim/ohimstat.htm as of Dec. 6, 2001.

Table 5-5: Highway, Demographic, and Geographic Characteristics of Urbanized Areas in Alaska: 2000

Federal-aid urbanized area ${ }^{1}$	Total roadway miles	Total DVMT (thousands)	Estimated population (thousands)	Net land area (square miles)	Persons per square mile	Miles of roadway per person	Total DVMT per capita	Total estimated freeway lane miles ${ }^{2}$	Average daily traffic per freeway lane mile
Anchorage	1,228	4,444	248	255	973	5.0	18	193	7,412

${ }^{1}$ A "federal-aid urbanized area" is an area with 50,000 or more persons that, at a minimum, encompasses the land area delineated as the urbanized area by the U.S. Census Bureau. Areas are ranked by population. ${ }^{2}$ Lane miles estimated by the Federal Highway Administration (FHWA).

KEY: DVMT = daily vehicle-miles of travel.
SOURCE: U.S. Department of Transportation, Federal Highway Administration, Highway Statistics 2000, Washington, DC: 2001, available at: http://www.fhwa.dot.gov/ ohim/ ohimstat.htm as of Dec. 6, 2001.

Table 5-6: Alaska and U.S. Recreational Boat Registrations
by Propulsion Type

	Alaska		United States	
	1999	2000	1999	2000
Total	25,960	29,113	12,738,271	12,782,143
Powered	25,646	28,769	11,811,562	11,648,769
Nonpowered	75	83	481,191	547,271
Other	240	261	445,518	590,103

NOTE: Data are derived from reports of states and other jurisdictions which have varying registration categories. "O ther" includes boats not elsewhere classified by the reporting jurisdiction.

Figure 5-2: Alaska Recreational Boat Registrations

NOTES FOR DATA ON THIS PAGE: U.S. totals include Guam, Puerto Rico, the Virgin Islands, American Samoa, and the Northern Mariana Islands. Alaska statistics include all watercraft, except sailboats; unpowered boats if requested. U.S. total does not include sailboards, which are numbered in some states.

SOURCES FOR DATA ON THIS PAGE: U.S. Department of Transportation, U.S. Coast Guard, Boating Statistics, 2000 and Boating Statistics, 1999, Washington, DC: 2001, available at www.uscgboating.org/Saf/pdf/Boating_Statistics_2000.pdf and 1999.pdf as of Nov. 14, 2001.

Table 5-7: General Aviation and Air Taxi Aircraft and Hours Flown: 2000
(Exdudes commuter aircraft)

State	Active aircraft	Hours flown (thousands)
Alabama	3,480	462
Alaska	5,925	692
Arizona	6,062	824
Arkansas	2,660	442
California	23,454	3,183
Colorado	5,246	651
Connecticut	1,793	241
Delaware	2,068	303
District of Columbia	152	13
Florida	14,096	2,299
Georgia	4,809	702
Hawaii	435	184
Idaho	2,328	336
Illinois	7,478	998
Indiana	3,964	503
lowa	2,772	331
Kansas	3,611	494
Kentucky	2,033	244
Louisiana	3,012	677
Maine	1,086	114
Maryland	3,436	487
Massachusetts	2,717	329
Michigan	7,236	935
Minnesota	5,141	707
Mississippi	2,038	256
Missouri	3,777	545
Montana	2,374	271
Nebraska	2,013	275
Nevada	2,715	774
New Hampshire	1,485	203
New Jersey	3,791	583
New Mexico	2,990	430
New York	6,082	816
North Carolina	5,620	769
North Dakota	1,585	419
O hio	6,486	840
O klahoma	4,080	648
Oregon	4,687	564
Pennsylvania	5,648	724
Rhode Island	393	45
South Carolina	2,689	387
South Dakota	1,376	157
Tennessee	4,228	638
Texas	18,869	2,980
Utah	1,673	234
Vermont	600	57
Virginia	3,354	414
Washington	7,166	912
West Virginia	1,075	136
Wisconsin	4,649	590
Wyoming	778	98
United States, total	217,215	30,916

NOTE: These data are derived from a sample survey of general aviation and air taxi aircraft. The data are estimates subject to sampling as well as nonsampling error.
SOURCE: U.S. Department of Transportation, Federal Aviation Administration, General Aviation and Air Taxi Activity Survey: 2000 . Washington, DC: 2002, available at http://www.api.faa.gov/GASurvey/index.htm as of July 22, 2002.

Table 5-8: Active Aviation Pilots and Flight Instructors: $\mathbf{2 0 0 0}^{\mathbf{1}}$

State	Total	Students	Airplane pilots ${ }^{2}$			Misc. ${ }^{3}$	Flight instructor ${ }^{4}$
			Private	Commercial	Airline transport		
Alabama	7,262	1,170	3,065	1,649	1,084	294	920
Alaska	8,638	833	3,686	2,130	1,906	83	1,118
Arizona	17,429	2,329	6,508	3,345	4,654	593	2,617
Arkansas	4,988	776	2,153	1,206	788	65	634
California	71,053	10,173	31,571	13,448	12,786	3,075	8,984
Colorado	17,539	2,320	6,256	3,144	5,138	681	2,549
Connecticut	6,523	944	2,714	989	1,648	228	837
Delaware	1,462	245	532	236	413	36	233
District of Columbia	476	86	191	99	69	31	45
Florida	47,191	6,672	16,324	10,059	13,267	869	6,890
Georgia	18,087	2,441	6,053	2,845	6,448	300	2,107
Hawaii	2,927	471	611	587	1,031	227	0
Idaho	4,480	581	2,148	950	711	90	535
Illinois	21,521	3,497	9,168	3,832	4,606	418	3,054
Indiana	11,715	1,874	5,728	2,091	1,867	155	1,488
Iowa	6,135	912	3,372	1,130	667	54	771
Kansas	8,412	1,169	4,136	1,729	1,268	110	1,184
Kentucky	6,720	988	2,397	1,155	2,104	76	919
Louisiana	5,894	911	2,224	1,474	1,035	250	701
Maine	3,105	444	1,494	608	522	37	384
Maryland	8,383	1,217	3,499	1,535	1,869	263	1,194
Massachusetts	9,692	1,583	4,535	1,711	1,480	383	1,242
Michigan	17,755	3,008	8,517	3,008	2,852	370	2,388
Minnesota	15,530	2,244	6,728	2,949	3,417	192	2,025
Mississippi	4,111	594	1,595	1,086	750	86	490
Missouri	11,070	1,549	5,008	2,045	2,312	156	1,548
Montana	3,613	481	1,718	878	469	67	431
Nebraska	4,141	654	2,054	884	524	25	432
Nevada	6,270	691	2,131	1,141	2,095	212	864
New Hampshire	4,242	499	1,544	676	1,417	106	613
New Jersey	11,403	1,826	4,909	1,833	2,417	418	1,517
New Mexico	4,406	787	1,788	916	772	143	549
New York	18,649	3,628	8,020	3,305	2,819	877	2,516
North Carolina	14,769	2,148	6,144	2,600	3,615	262	1,732
North Dakota	2,458	401	1,153	688	199	17	292
O hio	19,301	3,065	8,602	3,338	3,857	439	2,839
O klahoma	8,654	1,392	3,839	1,893	1,453	77	1,180
Oregon	9,942	1,625	4,972	1,910	1,175	260	1,123
Pennsylvania	18,022	2,683	7,604	3,075	4,124	536	2,575
Rhode Island	1,216	184	569	210	223	30	136
South Carolina	6,363	933	2,708	1,343	1,244	135	714
South Dakota	2,230	328	1,034	549	302	17	263
Tennessee	12,132	1,675	4,351	2,024	3,826	256	1,600
Texas	48,396	6,613	16,857	9,044	14,839	1,043	6,487
Utah	6,591	1,205	2,678	1,116	1,468	124	768
Vermont	1,487	220	681	261	264	61	162
Virginia	14,640	1,987	5,114	2,835	4,299	405	2,055
Washington	21,116	2,929	8,170	3,896	5,535	586	2,658
West Virginia	1,992	312	953	399	293	35	274
Wisconsin	11,275	1,768	5,682	1,884	1,830	111	1,455
Wyoming	1,812	254	901	354	273	30	195
United States, total	593,218	87,319	244,389	112,092	134,024	15,394	78,287

${ }^{1}$ An active pilot is a person who holds a pilot certificate and a valid medical certificate issued within the last 25 months.
${ }^{2}$ Includes pilots with an airplane only certificate and those with an airplane and a helicopter and/or glider certificate.
${ }^{3}$ Includes helicopter, glider, and recreational pilots. Does not include pilots holding an airplane certificate. A recreational pilot may fly no more than one passenger in a light, single engine aircraft with no more than four seats during good weather and daylight hours and, unless authorized, no more than 50 miles from the home airport.
${ }^{4} \mathrm{~N}$ ot included in total. A flight instructor must hold a flight instructor certificate in addition to a pilot certificate.
NOTE: Excludes U.S. military personnel holding civilian certificates who are stationed in a foreign country and pilots in U.S. territories.

SOURCE: U.S. Department of Transportation, Federal Aviation Administration, U.S. Civil Airmen Statistics 2000 . Washington, DC: 2002, available at http://www.api.faa.gov/CivilAir/index.htm as of July 22, 2002.

F Economy and Finance

Table 6-1: Transportation and Warehousing Establishments and Employment in Alaska: 1999

Business type	Establishments (number)	Number of employees	Annual payroll (\$ thousands)
Total transportation and warehousing	$\mathbf{9 8 2}$	$\mathbf{1 6 , 8 3 5}$	$\mathbf{7 3 5 , 3 1 7}$
\quad Air transportation	230	6,336	256,897
Water transportation	50	809	41205
Truck transportation	225	3,114	123,081
Transit and ground passenger transportation	81	$1,000-2,499$	D
Pipeline transportation	9	$500-999$	D
Scenic and sightseeing transportation	124	458	23,355
Support activities for transportation	186	2,326	72,461
Couriers and messengers	66	$1,000-2,499$	D
Warehousing and storage	11	$20-99$	D

KEY: D = withheld to avoid disclosing data for individual companies.

Table 6-2: Transportation and Warehousing Establishments and Employment in the United States: 1999

Business type	Establishments (number)	Number of employees	Annual payroll (\$ thousands)
Total transportation and warehousing	$\mathbf{1 8 7 , 3 3 9}$	$\mathbf{3 , 6 2 7 , 0 5 7}$	$\mathbf{1 1 6 , 6 8 2 , \mathbf { 2 1 4 }}$
Air transportation	5,285	582,838	$24,414,357$
Water transportation	1,950	71,844	$3,039,510$
Truck transportation	108,749	$1,384,178$	$43,626,168$
Transit and ground passenger transportation	16,254	370,022	$6,729,332$
Pipeline transportation	2,550	48,149	$3,032,689$
Scenic and sightseeing transportation	2,267	22,877	540,702
Support activities for transportation	31,392	440,175	$14,915,625$
Couriers and messengers	11,938	578,368	$16,725,960$
Warehousing and storage	6,954	128,606	$3,657,871$

${ }^{1}$ The transportation and warehousing sector (North American Industrial Classification System [N AICS] 48
and 49) includes industries providing transportation of passengers and cargo, warehousing and storage
for goods, scenic and sightseeing transportation, and support activities related to modes of
transportation. Establishments in these industries use transportation equipment or transportation related
facilities as a productive asset. The type of equipment depends on the mode of transportation. The
modes of transportation comprise air, rail, water, road, and pipeline.
SOURCE FOR DATA ON THIS PAGE: U.S. Department of Commerce, U.S. Census Bureau, 1999
County Business Patterns, Washington, DC: May 2001, available at http://www.census.gov/ epcd/cbp/map/99data/02/999.txt as of Oct. 25, 2001.

Table 6-3: Transportation Revenues Collected by State and Local Governments in Alaska (\$ millions)

Mode	1995		1996		1997		1998		1999	
	State	Local								
Total (current \$)	163	49	162	50	163	52	170	53	168	51
Highway	114	11	112	11	107	12	115	14	116	15
Transit	Z	4	Z	4	Z	4	Z	4	Z	4
Air	49	8	51	8	56	8	54	7	52	7
Water	Z	27	Z	27	Z	28	Z	29	Z	26
Total (chained 1996 \$)	167	50	162	50	159	51	163	51	157	48
Highway	116	11	112	11	104	12	111	13	108	14
Transit	Z	4	Z	4	Z	4	Z	4	Z	4
Air	50	8	51	8	55	8	52	7	49	6
Water	Z	27	Z	27	Z	28	Z	28	Z	24

Table 6-4: Transportation Expenditures ${ }^{1}$ by State and Local Governments in Alaska (\$ millions)

Mode	1995		1996		1997		1998		1999	
	State	Local								
Total (current \$)	639	177	695	162	665	188	630	214	683	267
Highway	551	116	589	110	559	125	527	118	553	198
Transit	Z	20	Z	19	Z	23	Z	20	Z	27
Air	87	10	106	11	106	12	103	13	130	16
Water	Z	30	Z	22	Z	28	Z	63	Z	26
Total (chained 1996 \$)	653	181	695	162	648	183	604	205	638	249
Highway	564	119	589	110	545	121	505	113	517	185
Transit	Z	20	Z	19	Z	23	Z	19	Z	25
Air	89	10	106	11	103	12	99	12	121	15
Water	Z	31	Z	22	Z	27	Z	60	Z	24

${ }^{1}$ Includes federal grants.
KEY FOR DATA ON THIS PAGE: $Z=$ represents zero or less than 1 unit of measure.
NOTE FOR DATA ON THIS PAGE: Dollars are converted using a chain-type price index from U.S. Department of Commerce, Bureau of Economic Analysis, National Income and Product Accounts Tables, Washington, DC: 2001, table 7.1, available at http://www.bea.doc.gov/bea/dn/nipaweb/ as of Dec. 12, 2001.

SOURCE FOR DATA ON THIS PAGE: U.S. Department of Commerce, U.S. Census Bureau, State and Local Government Finance Estimates, available at ftp://ftp.census.gov/pub/outgoing/govs/ as of Oct. 2001.

Table 6-5: State Motor-Fuel Tax Rates: 2000 (Cents per gallon)

State	Gasoline	Diesel	Liquified petroleum gas	Gasohol ${ }^{1}$
Alabama	18.00	19.00	17.00	18.00
Alaska	8.00	8.00	0.00	0.00
Arizona	18.00	27.00	18.00	18.00
Arkansas	19.50	20.50	16.50	18.60
California	18.00	18.00	6.00	18.00
Colorado	22.00	20.50	20.50	22.00
Connecticut	32.00	18.00	0.00	31.00
Delaware	23.00	22.00	22.00	23.00
District of Columbia	20.00	20.00	20.00	20.00
Florida	13.10	25.10	16.00	13.10
Georgia	7.50	7.50	7.50	7.50
Hawaii	16.00	16.00	11.00	16.00
Idaho	25.00	25.00	18.10	22.50
Illinois	19.00	21.50	19.00	19.00
Indiana	15.00	16.00	0.00	15.00
lowa	20.00	22.50	20.00	19.00
Kansas	20.00	22.00	19.00	20.00
Kentucky	16.40	13.40	15.00	16.40
Louisiana	20.00	20.00	16.00	20.00
Maine	19.00	20.00	18.00	19.00
Maryland	23.50	24.25	23.50	23.50
Massachusetts	21.00	21.00	8.10	21.00
Michigan	19.00	15.00	15.00	19.00
Minnesota	20.00	20.00	15.00	20.00
Mississippi	18.40	18.40	17.00	18.40
Missouri	17.00	17.00	17.00	17.00
Montana	27.00	27.75	0.00	27.00
Nebraska	22.80	22.80	22.80	22.80
Nevada	24.75	27.75	22.00	24.75
New Hampshire	19.50	19.50	18.00	19.50
New Jersey	10.50	13.50	5.25	10.50
New Mexico	18.50	19.50	0.00	18.50
New York	29.30	27.95	8.00	29.30
North Carolina	21.20	21.20	21.20	21.20
North Dakota	21.00	21.00	21.00	21.00
O hio	22.00	22.00	22.00	22.00
O klahoma	17.00	14.00	17.00	17.00
Oregon	24.00	24.00	24.00	24.00
Pennsylvania	25.90	30.80	18.90	25.90
Rhode Island	29.00	29.00	29.00	29.00
South Carolina	16.00	16.00	16.00	16.00
South Dakota	22.00	22.00	16.00	20.00
Tennessee	20.00	17.00	20.00	20.00
Texas	20.00	20.00	14.00	20.00
Utah	24.50	24.50	15.00	24.50
Vermont	20.00	17.00	24.50	20.00
Virginia	17.50	16.00	0.00	17.50
Washington	23.00	23.00	10.00	23.00
West Virginia	25.35	25.35	0.00	25.35
Wisconsin	25.40	25.40	25.25	25.40
Wyoming	14.00	14.00	25.40	14.00
Federal tax	18.40	24.40	13.60	13.00

${ }^{1}$ Tax rates for gasoline blended with 10 percent ethanol.
NOTE: Tax rates in effect as of January 1, 2000.
SOURCE: U.S. Department of Transportation, Federal Highway Administration, Highway Statistics 2000, Washington, DC: 2001, table MF-121T.

G Energy and Environment

Table 7-1: Transportation Energy Consumption: 1999 (Trillion Btu)

State	Petroleum							Ethanol ${ }^{4}$ Electricity		Net energy	Electrical system energy losses ${ }^{5}$	Total
	Natural gas ${ }^{1}$	Distillate fuel (diesel)	Jet fuel	Motor gasoline ${ }^{2}$	Residual fuel	Other ${ }^{3}$	Total					
Alabama	22.9	118.4	11.1	298.0	6.5	3.7	437.8	S	0.0	460.7	0.0	460.7
Alaska	4.5	21.5	134.1	32.9	1.7	3.3	193.5	0.4	0.0	198.0	0.0	198.0
Arizona	19.0	92.0	54.6	283.9	0.0	3.1	433.5	1.3	0.0	452.5	0.0	452.5
Arkansas	9.1	84.5	25.9	172.6	0.0	5.1	288.0	0.0	0.0	297.2	0.0	297.2
California	12.9	373.3	559.5	1,749.0	175.3	23.6	2,880.6	4.9	1.8	2,895.3	3.6	2,898.9
Colorado	8.4	67.8	44.2	241.5	0.0	3.9	357.4	4.5	S	365.8	S	365.9
Connecticut	0.8	34.4	13.9	183.9	0.1	1.9	234.2	0.3	0.0	234.9	0.0	234.9
Delaware	0.1	8.6	0.6	47.7	13.2	0.5	70.6	0.0	0.0	70.6	0.0	70.6
Dist. of Columbia	0.3	3.6	0.0	20.5	0.0	0.3	24.5	0.0	0.6	25.3	1.2	26.5
Florida	7.2	210.3	164.3	897.5	57.4	8.7	1,338.1	0.1	0.2	1,345.4	0.4	1,345.8
Georgia	9.1	196.7	86.8	566.9	5.7	5.2	861.3	0.0	0.3	870.8	0.7	871.4
Hawaii	0.0	9.1	53.7	45.8	12.9	0.8	122.3	0.0	0.0	122.3	0.0	122.3
Idaho	4.7	34.0	4.9	80.8	0.0	1.2	121.0	0.0	0.0	125.7	0.0	125.7
Illinois	55.3	202.6	103.4	612.7	0.2	11.8	930.8	20.3	1.5	987.5	2.9	990.5
Indiana	14.6	186.4	63.5	373.7	1.9	5.1	630.6	9.0	0.1	645.3	0.1	645.4
Iowa	7.9	74.9	5.0	185.9	0.0	3.8	269.6	6.7	S	277.5	S	277.5
Kansas	31.6	60.5	19.7	170.7	0.1	5.2	256.2	0.5	0.0	287.8	0.0	287.8
Kentucky	17.2	122.9	39.5	261.0	0.0	3.6	427.0	0.3	0.0	444.2	0.0	444.2
Louisiana	50.0	147.4	192.9	255.9	153.5	5.1	754.9	0.1	S	804.9	S	804.9
Maine	0.0	22.2	4.9	83.7	1.4	1.0	113.2	0.0	S	113.2	S	113.2
Maryland	3.4	73.3	22.3	295.0	7.4	2.2	400.3	0.2	0.5	404.1	1.0	405.1
Massachusetts	2.8	57.0	45.8	328.7	0.2	4.1	435.7	0.0	0.8	439.2	1.6	440.8
Michigan	23.3	132.7	51.7	624.5	0.3	12.2	821.4	3.4	S	844.7	S	844.8
Minnesota	22.5	93.4	71.4	306.5	S	5.8	477.1	19.5	0.0	499.6	0.0	499.6
Mississippi	66.1	81.2	54.8	196.2	6.9	3.6	342.7	0.0	0.0	408.9	0.0	408.9
Missouri	6.8	172.0	72.3	364.6	S	6.6	615.6	1.4	0.1	622.5	0.1	622.6
Montana	6.1	34.7	4.7	59.1	0.0	1.9	100.4	S	0.0	106.5	0.0	106.5
N ebraska	2.9	76.9	8.9	103.1	0.0	2.7	191.5	2.1	0.0	194.4	0.0	194.4
Nevada	0.9	36.9	47.4	111.7	0.0	0.9	196.9	2.3	0.0	197.8	0.0	197.8
New Hampshire	S	14.5	4.6	80.8	S	0.5	100.5	0.0	0.0	100.5	0.0	100.5
New Jersey	4.3	120.9	206.1	476.6	48.9	5.1	857.6	0.7	0.5	862.4	0.9	863.3
New Mexico	47.4	55.5	15.4	113.7	0.0	1.9	186.5	2.0	0.0	233.9	0.0	233.9
New York	8.6	147.5	51.7	690.6	47.1	7.3	944.2	1.2	9.1	961.9	17.7	979.6
North Carolina	10.9	132.6	38.6	502.6	1.0	5.3	680.0	3.0	0.0	690.9	0.0	690.9
North Dakota	9.9	26.0	2.3	43.0	0.0	1.2	72.5	0.4	0.0	82.4	0.0	82.4
Ohio	18.5	222.5	93.3	623.2	0.1	11.1	950.2	19.6	0.2	968.9	0.3	969.2
O klahoma	24.5	111.7	37.3	223.3	0.0	5.7	378.0	0.0	0.0	402.5	0.0	402.5
Oregon	10.9	70.2	36.5	188.0	18.0	4.3	317.0	1.1	0.1	328.0	0.2	328.2
Pennsylvania	37.3	197.6	90.4	607.0	37.8	9.7	942.6	1.0	1.3	981.3	2.6	983.9
Rhode Island	0.3	9.3	6.0	49.8	S	0.5	65.6	0.0	0.0	65.9	0.0	65.9
South Carolina	3.7	85.8	8.7	273.0	2.8	2.3	372.7	0.0	0.0	376.4	0.0	376.4
South Dakota	6.1	21.1	4.4	51.5	0.0	1.3	78.2	1.8	0.0	84.3	0.0	84.3
Tennessee	25.9	131.7	67.0	360.3	0.0	5.1	564.2	0.0	S	590.1	S	590.1
Texas	73.0	479.2	594.8	1,252.3	131.9	17.6	2,475.8	4.8	0.1	2,548.8	0.1	2,549.0
Utah	2.8	45.1	42.2	119.2	0.0	1.7	208.2	0.9	S	211.1	S	211.1
Vermont	S	12.3	0.8	39.7	0.0	0.4	53.2	0.0	0.0	53.2	0.0	53.2
Virginia	8.3	142.3	52.8	438.1	9.2	3.9	646.5	2.8	0.3	655.1	0.6	655.7
Washington	8.2	95.9	125.6	325.2	57.4	4.6	608.9	2.5	0.1	617.1	0.1	617.3
West Virginia	31.5	46.9	1.0	100.5	0.0	1.7	150.1	S	0	181.6	0	181.6
Wisconsin	4.2	101.0	19.3	303.0	S	4.3	427.6	2.5	S	431.8	S	431.8
Wyoming	14.5	62.4	1.0	39.8	0.0	2.2	105.3	0.0	0	119.8	0	119.8
United States	761.1	5,160.9	3,461.8	15,855.4	798.9	234.8	25,511.8	121.6	17.5	26,290.3	34.3	26,324.6

${ }^{1}$ Includes supplemental gaseous fuels. Transportation use of natural gas is consumed in the operation of pipelines, primarily in compressors, or consumed as vehicle fuel.
${ }^{2}$ Includes ethanol blended into motor gasoline.
${ }^{3}$ O ther is the sum of aviation gasoline, liquefied petroleum gas (LPG), and lubricants.
${ }^{4}$ Ethanol blended into motor gasoline is included in motor gasoline, but is also shown separately to display the use of renewable energy by the transportation sector. It is counted only once in the total.
${ }^{5}$ Incurred in the generation, transmission, and distribution of electricity plus plant use and unaccounted for electrical system energy losses.
KEY: Btu = British thermal unit; $\mathrm{S}=$ Less than 0.05 trillion Btu.
NOTE: Totals may not equal sum of components due to rounding.
SOURCE: U.S. Department of Energy, Energy Information Administration, State Energy Data Report 1999, Washington, DC: May 2001, table 7, available at http://www.eia.doe.gov/pub/state.data/pdf/sedr.pdf as of Feb. 21, 2002.

Table 7-2: Energy Consumption by End-Use Sector: 1999 (Trillion Btu)

KEY: Btu = British thermal unit; Number $=$ trillion Btu.
SOURCE: U.S. Department of Energy, Energy Information Administration, State Energy Data Report 1999, Washington, DC: May 2001, available at http://www.eia.doe.gov/pub/state.data/pdf/sedr.pdf as of Feb. 21, 2002.

Figure 7-1: Energy Consumption by End-Use Sector: 1999

SOURCE: U.S. Department of Energy, Energy Information Administration, State Energy Data Report 1999, Washington, DC: May 2001, table 9, available at http://www.eia.doe.gov/pub/state.data/pdf/sedr.pdf as of Feb. 21, 2002.

Figure 7-2: Alaska Transportation Energy Consumption

SOURCE: U.S. Department of Energy, Energy Information Administration, State Energy Data Report 1999, Washington, DC: May 2001, available at http://www.eia.doe.gov/pub/state.data/pdf/sedr.pdf as of Feb. 21, 2002.

Table 7-3: Transportation Energy Consumption per Capita: 1999

State	Population (thousands)	Petroleum		All energy sources	
		Total (trillion Btu)	Per capita ${ }^{1}$ (million Btu)	Total (trillion Btu)	Per capita ${ }^{1}$ (million Btu)
Alabama	4,370	437.8	100.2	460.7	105.4
Alaska	620	193.5	312.1	198.0	319.4
Arizona	4,778	433.5	90.7	452.5	94.7
Arkansas	2,551	288.0	112.9	297.2	116.5
California	33,145	2,880.6	86.9	2,898.9	87.5
Colorado	4,056	357.4	88.1	365.9	90.2
Connecticut	3,282	234.2	71.4	234.9	71.6
Delaware	754	70.6	93.6	70.6	93.6
District of Columbia	519	24.5	47.2	26.5	51.1
Florida	15,111	1,338.1	88.6	1,345.8	89.1
Georgia	7,788	861.3	110.6	871.4	111.9
Hawaii	1,185	122.3	103.2	122.3	103.2
Idaho	1,252	121.0	96.6	125.7	100.4
Illinois	12,128	930.8	76.7	990.5	81.7
Indiana	5,943	630.6	106.1	645.4	108.6
lowa	2,869	269.6	94.0	277.5	96.7
Kansas	2,654	256.2	96.5	287.8	108.4
Kentucky	3,961	427.0	107.8	444.2	112.1
Louisiana	4,372	754.9	172.7	804.9	184.1
Maine	1,253	113.2	90.3	113.2	90.3
Maryland	5,172	400.3	77.4	405.1	78.3
Massachusetts	6,175	435.7	70.6	440.8	71.4
Michigan	9,864	821.4	83.3	844.8	85.6
Minnesota	4,776	477.1	99.9	499.6	104.6
Mississippi	2,768	342.7	123.8	408.9	147.7
Missouri	5,468	615.6	112.6	622.6	113.9
Montana	883	100.4	113.7	106.5	120.6
Nebraska	1,666	191.5	114.9	194.4	116.7
Nevada	1,809	196.9	108.8	197.8	109.3
New Hampshire	1,201	100.5	83.7	100.5	83.7
New Jersey	8,143	857.6	105.3	863.3	106.0
New Mexico	1,740	186.5	107.2	233.9	134.4
New York	18,197	944.2	51.9	979.6	53.8
North Carolina	7,651	680.0	88.9	690.9	90.3
North Dakota	634	72.5	114.4	82.4	130.0
O hio	11,257	950.2	84.4	969.2	86.1
O klahoma	3,358	378.0	112.6	402.5	119.9
Oregon	3,316	317.0	95.6	328.2	99.0
Pennsylvania	11,994	942.6	78.6	983.9	82.0
Rhode Island	991	65.6	66.2	65.9	66.5
South Carolina	3,886	372.7	95.9	376.4	96.9
South Dakota	733	78.2	106.7	84.3	115.0
Tennessee	5,484	564.2	102.9	590.1	107.6
Texas	20,044	2,475.8	123.5	2,549.0	127.2
Utah	2,130	208.2	97.7	211.1	99.1
Vermont	594	53.2	89.6	53.2	89.6
Virginia	6,873	646.5	94.1	655.7	95.4
Washington	5,756	608.9	105.8	617.3	107.2
West Virginia	1,807	150.1	83.1	181.6	100.5
Wisconsin	5,250	427.6	81.4	431.8	82.2
Wyoming	480	105.3	219.4	119.8	249.6
United States	272,691	25,511.8	93.6	26,324.6	96.5

${ }^{1}$ Calculated by the Bureau of Transportation Statistics.
$\mathbf{K E Y}: B t u=$ British thermal unit.
SOURCE: U.S. Department of Energy, Energy Information Administration, State Energy Data Report 1999, Washington, DC: May 2001, available at http://www.eia.doe.gov/pub/state.data/pdf/sedr.pdf as of Feb. 21, 2002.

Table 7-4: Alaska and U.S. Motor-Fuel Use: $\mathbf{2 0 0 0}^{\mathbf{1}}$ (Millions of gallons)

Vehicle ownership	Gasoline				Special fuel (mainly diesel)		Total use	
	Highway use		Nonhighway use					
	Alaska	United States						
Private and commercial	239	126,735	27	2,876	91	33,377	357	162,987
Public use	8	2,149	<1	96	N	N	9	2,245
Total	247	128,884	28	2,972	91	33,377	366	165,232

${ }^{1}$ Based on reports from state motor-fuel tax agencies. Gasohol is included with gasoline. Public use and nonhighway use were estimated by the Federal Highway Administration.

KEY: $\mathrm{N}=$ Data do not exist.
NOTE: The term "motor fuel" applies to gasoline and all other fuels, including special fuels, coming under the purview of the state motor-fuel tax laws. "Special fuels" include diesel fuel and, to the extent they can be quantified, liquefied petroleum gases such as propane. Gasohol, a blend of gasoline and fuel alcohol, is included with gasoline.

SOURCE: U.S. Department of Transportation, Federal Highway Administration, Highway Statistics 2000, Washington, DC: O ct. 2001, available at http://www.fhwa.dot.gov/ohim/hs00/pdf/mf21.pdf as of Apr. 20, 2002.

Table 7-5: Alaska Air Quality Nonattainment Areas for Carbon Monoxide (CO)

			Redesignation to		Part or whole	Population
County	Area	Nonattainment in year	attainment	Classification	county	(2000)
Anchorage ED	Anchorage	95969798990001	$N A$	Serious	Part	255,286
Fairbanks ED	Fairbanks	95969798990001	NA	Serious	Part	39,231

Table 7-6: Alaska Air Quality Nonattainment Areas for Particulate Matter (PM-10)

			Redesignation to		Part or whole	Population
County	Area	Nonattainment in year	attainment	Classification	county	(2000)
Anchorage ED	Eagle River	95969798990001	NA	Moderate	Part	195,499
Juneau ED	Juneau	95969798990001	NA	Moderate	Part	13,777

KEY: ED = election district; NA = not applicable.

NOTES FOR DATA ON THIS PAGE: N onattainment areas do not meet the national primary or secondary ambient air quality standard for the specified pollutant. Nonattainment areas are classified based on design values: Serious = an area with a design value of 16.5 parts per million (ppm) and above; Moderate = an area with a design value of 9.1 up to 16.4 ppm .

SOURCES FOR DATA ON THIS PAGE: U.S. Environmental Protection Agency, Green Book, available at http://www.epa.gov/oar/oaqps/greenbk/anay.html as of April 20, 2002.

Table 7-7: Highway Noise Barriers: 1999

State	Total length (meters)	$\begin{gathered} \text { Barrier cost } \\ \text { (\$ 1998) } \\ \hline \end{gathered}$
Alabama	0	0
Alaska	9,338	2,742,486
Arizona	48,593	15,130,670
Arkansas	1,989	653,497
California	777,160	487,177,331
Colorado	104,377	45,351,408
Connecticut	46,049	28,335,802
Delaware	1,262	242,013
District of Columbia	0	0
Florida	70,991	62,276,735
Georgia	33,530	20,247,589
Hawaii	3,103	1,743,452
Idaho	200	583,002
Illinois	97,803	70,985,221
Indiana	18,568	20,297,106
lowa	7,857	3,215,640
Kansas	2,103	2,082,034
Kentucky	8,249	5,306,199
Louisiana	12,077	5,974,212
Maine	561	292,861
Maryland	99,587	153,227,923
Massachusetts	10,250	5,259,055
Michigan	67,071	60,139,968
Minnesota	101,811	62,694,176
Mississippi	0	0
Missouri	6,113	4,179,360
Montana	0	0
N ebraska	5,060	4,026,138
Nevada	17,847	10,855,220
New Hampshire	6,392	5,785,519
New Jersey	142,055	210,429,029
New Mexico	21,196	9,306,885
New York	110,698	116,448,616
North Carolina	45,977	24,702,615
North Dakota	0	0
Ohio	138,197	68,064,386
O klahoma	13,186	4,229,909
Oregon	72,552	30,075,899
Pennsylvania	83,526	88,259,488
Rhode Island	0	0
South Carolina	2,665	1,713,629
South Dakota	0	0
Tennessee	28,846	20,574,450
Texas	55,310	39,635,228
Utah	70,260	24,841,367
Vermont	1,004	356,344
Virginia ${ }^{1}$	153,313	143,003,313
Washington	74,812	32,296,683
West Virginia	408	170,529
Wisconsin	29,730	28,768,150
Wyoming	293	100,271
United States	2,611,953	1,931,107,534

SOURCE: U.S. Department of Transportation, Federal Highway
Administration, O ffice of Planning, Environment, and Real Estate, available at www.fhwa.dot.gov/environment/ab_noise.htm as of Feb. 20, 2002.

H Information on Data Sources

Airline freight and passenger data

The U.S. Department of Transportation's (USDOT) Bureau of Transportation Statistics (BTS) collects and compiles data on the volume of revenue passengers, freight, and mail traffic handled and reported by the nation's large certificated air carriers. These carriers hold Certificates of Public Convenience and Necessity (CPN) issued by the USDOT authorizing the performance of air transportation. Large certificated air carriers operate aircraft with seating capacity of more than 60 seats or a maximum payload capacity of more than 18,000 pounds or conduct international operations. Data for commuters, intrastate, nonscheduled air taxi operators, and foreign flag air carriers are not included in this BTS data.

Additional information:

Contact: USDOT, Bureau of Transportation Statistics, Office of Airline Information

Print source: USDOT, Bureau of Transportation Statistics, Office of Airline Information. Airport Activity Statistics. Washington, DC: Annual issues.

Internet: www.bts.gov

Commodity Flow Survey

The Commodity Flow Survey (CFS) provides data on the movement of freight by type of commodity shipped and by mode of transport. In 1997, 100,000 domestic establishments were randomly selected from a universe of approximately 800,000 engaged in mining, manufacturing, wholesale, warehouses of multi-establishment companies, and some selected activities in retail and service. The survey excluded establishments classified as farms, forestry, fisheries, governments, construction, transportation, foreign establishments, services, and most
establishments in retail. For the 1997 CFS, each selected establishment reported a sample of about 25 outbound shipments for a oneweek period in each of four calendar quarters in 1997. This produced a total sample of over 5 million shipments. Due to industry-wide reporting problems, shipments by oil and gas extraction establishments were excluded from data tabulations.

For each sampled 1997 CFS shipment, zip code of origin and destination, 5-digit Standard Classification of Transported Goods (SCTG) code, weight, value, and modes of transport were provided. Information on whether the shipment was containerized, a hazardous material, or an export was also obtained. Route-distance for each mode, for each shipment, is imputed from a ModeDistance Table developed by Oak Ridge National Laboratory. Distance was used to compute ton-mileage by mode of transport. The CFS provides nationwide geographic coverage in 89 National Transportation Analysis Regions, stratified by state and, for the 1997 CFS, metropolitan area.

Additional information:

Contact: USDOT, Bureau of Transportation Statistics, Office of Statistical Programs

Print source: USDOT, Bureau of Transportation Statistics and U.S. Department of Commerce, Bureau of the Census, California: 1997 Commodity Flow Survey. EC97TCF-CA, Washington, DC: 1999.

Internet: www.bts.gov/ntda/cfs/

Commuting data

Commuting data are derived from the Census 2000 Supplementary Survey (C2SS). The C2SS used the questionnaire and methods developed for the American Community Survey to collect demographic, social,
economic, and housing data from a national sample of 700,000 households. Group quarters were not included in the sample. The C2SS was conducted in 1,203 counties with monthly samples of about 58,000 housing units. Economic, demographic, and housing characteristics from the Census 2000 Supplementary Survey are reported for the United States as a whole, the 50 states, and the District of Columbia.

The Census 2000 Supplementary Survey is not directly comparable with the 1990 Census for several reasons, one being that the former did not include group quarters. This may understate some categories such as walking.

Additional information:

Contact: USDOC, U.S. Census Bureau, Demographic Surveys Division

Internet: www.census.gov

G as and hazardous liquid pipeline data

U.S. fatality and injury data for natural gas pipelines and hazardous liquid pipelines are based on reports filed with the U.S. Department of Transportation, Office of Pipeline Safety (OPS) under 49 CFR 191. Accidents must be reported as soon as possible, but no later than 30 days after discovery. Undetected releases are a possible source of error; even if subsequently detected and reported, it may not be possible to accurately reconstruct the accident. Property damage figures are estimates.

Gas pipeline incidents involve: 1) releases of gas from a pipeline or liquefied natural gas (LNG) or gas from an LNG facility that results in a) death or personal injury necessitating inpatient hospitalization, or b) estimated property damage, including cost of gas lost, of the operator or others, or both, of $\$ 50,000$ or more; 2) an event that results in an emergency
shutdown of an LNG facility; or 3) an event that is significant, in the judgment of the operator, even though it did not meet the criteria of 1) or 2).

For hazardous liquids pipelines, an accident report is required for each failure in a pipeline system in which there is a release of the hazardous liquid or carbon dioxide transported resulting in any of the following: 1) explosion or fire not intentionally set by the operator; 2) loss of 50 or more barrels (8 or more cubic meters) of hazardous liquid or carbon dioxide; 3) escape to the atmosphere of more than 5 barrels (0.8 cubic meters) a day of highly volatile liquids; 4) death of any person; 5) bodily harm to any person resulting in one or more of the following: a) loss of consciousness, b) an individual being carried from the scene, c) medical treatment, or d) disability which prevents the discharge of normal duties or the pursuit of normal activities beyond the day of the accident; or 6) estimated property damage, including cost of clean-up and recovery, value of lost product, and damage to the property of the operator or others, or both, exceeding $\$ 50,000$.

Additional information:

Contact: USDOT, Research and Special Programs Administration, Office of Pipeline Safety
Internet: http://ops.dot.gov

G overnment transportation revenue and expenditure data

The U.S. Department of Commerce (USDOC), U.S. Census Bureau conducts an Annual Survey of Government Finances. Alternatively, every five years, in years ending in a ' 2 ' or ' 7 ', a Census of Governments, including a finance portion, is conducted. The survey coverage includes all state and local governments in the United States. For both the

Census and annual survey, the finance detail data is equivalent, encompassing the entire range of government finance activitiesrevenue, expenditure, debt, and assets.

The data collection for the annual survey uses two methods: mail canvas and central collection from state sources. Data for local governments includes county, municipal, township, special district, and school district data. Data for state governments are compiled from state government audits, budgets, and other financial reports into the classification categories used for reporting by the Census Bureau.

Reporting of government finances by the Census Bureau involves presentation of data in terms of uniform categories. While often similar to, or identical to, the classification used by the state or local government, there could be instances in which a significant difference exists between the name of a state or local financial item and the final category to which it is assigned by the Census Bureau.

Like financial transactions are combined. The financial categories for revenue involve grouping of items by source. Revenue items of the same kind are merged. Financial transactions for expenditures are classified both by function and by object category. Debt items are classified by term (short- and longterm), as well as by type of debt and, to a limited extent, by purpose. Assets also are put into uniform categories, grouped by type of holding, with holdings for insurance trust systems grouped separately from general government.

The share of government sector financial totals contributed by a state government or by local governments differs materially from one state to another. Users can review the Government Finance and Employment

Classification Manual for additional information regarding the financial categories. The financial amounts in the tables and files are statistical in nature and do not represent accounting statements or conditions.

The local government statistics are developed from a sample survey. Therefore, the local totals, as well as state and local aggregates, are considered estimated amounts subject to sampling error. State government finance data are not subject to sampling. Consequently, state-local aggregates for individual states are more reliable (on a relative standard error basis) than the local government estimates they include.

Additional information:

Contact: USDOC, U.S. Census Bureau, Finance Branch

Print Sources: USDOC, U.S. Census Bureau, Federal Aid to States: 2000

Internet: www.census.gov

Hazardous materials incidents data

Incidents resulting in certain unintentional releases of hazardous materials must be reported under 49 CFR 171.16. Each carrier must submit a report to the USDOT, Research and Special Programs Administration (RSPA) within 30 days of the incident, including information on the mode of transportation involved, results of the incident, and a narrative description of the accident. These reports are generally made available on RSPA's incident database within 90 days of receipt.

Fatalities and injuries are counted only if directly caused by a hazardous material. For example, a truck operator killed by impact forces during a motor vehicle crash would not be counted as a hazardous-material fatality.

RSPA contacts the submitting carrier by telephone to verify all reported fatalities.

Although RSPA acknowledges that there is some level of underreporting, it believes that the underreporting is mostly limited to small, nonserious incidents. The reporting requirements were extended to intrastate highway carriers on October 1, 1998, and the response rate from this new group is expected to increase over time. Property damage figures are estimates determined by the carrier prior to the 30-day reporting deadline, and are generally not subsequently updated. Property damage figures, therefore, may underestimate actual damages.

Additional information:

Contact: USDOT, Research and Special Programs Administration, Office of Hazardous Materials Planning and Analysis

Print source: USDOT, Research and Special Programs Administration, Office of Hazardous Materials Safety, Hazmat Summary by State for Calendar Year 2000. Washington, DC: 2001

Internet: http://hazmat.dot.gov

Highway mileage, condition, and use, driver licenses, and highway vehicle registrations data

Data on roadway mileage, condition, and use are extracted from the Highway Performance Monitoring System (HPMS), which uses a stratified simple random sample of highway links (small sections of roadway) selected from state inventory files. The HPMS sample was designed as a fixed sample to minimize data collection costs, but adjustments to maintain representativeness are carried out periodically. The HPMS also consists of universe reporting (a complete census) for the Interstate and the National Highway System,
and tabular summary reporting of limited information.

Data are collected independently by the 50 states, Metropolitan Planning Organizations (MPOs), and lower jurisdictions. Many of the geometric data items rarely change, such as number of lanes; others change frequently, such as traffic. The U.S. Department of Transportation, Federal Highway Administration (FHWA) provides guidelines for data collection in the HPMS Field Manual, which the states follow to varying extents depending on matters such as staff, resources, state perspective, uses of the data, and state/MPO/local needs for the data. State Departments of Transportation (DOTs) report HPMS data annually to the FHWA.

HPMS data are subject to sampling and nonsampling error. Nonsampling error is the major concern with these data. For some of the most variable and important data items, such as traffic, guidelines for measurement and data collection have been produced. States have the option of using the guidelines or using their own procedures. Many data items are difficult and costly to collect and are reported as estimates not based on direct measurement. The data are collected and reported by many entities and individuals within the responsible organizations. Most do a reasonably good job, but staff turnover, cost, equipment issues, etc., can create difficulties.

States provide vehicle registration data to the FHWA. Vehicle registration data are shown on a calendar-year basis. Efforts are made to exclude transfers, re-registrations, and any other factors that could result in duplication in the vehicle counts. Registration practices for commercial vehicles differ greatly among the states. Some states register a tractorsemitrailer combination as a single unit; others register the tractor and the semitrailer
separately. Some states register buses with trucks or automobiles, while many states do not report house and light utility trailers separately from commercial trailers or semitrailers. Some states do not require registration of car or light utility trailers. In some instances, FHWA has supplemented the data supplied by the states with information obtained from other sources.

States also provide driver licensing data to the FHWA. Although efforts are made to minimize license duplication, drivers who move from one state to another are sometimes counted in both states until the license from the previous state of residence expires. Problems with the data also arise from the fact that: 1) some individuals obtain their drivers licenses in states other than those of legal residence; 2) some individuals fraudulently obtain multiple licenses; 3) not all individuals who drive are licensed; and 4) the purging of expired licenses or licenses from deceased individuals is not performed on a continual basis.

Additional information:

Contact: USDOT, Federal Highway
Administration, Office of Highway Policy Information

Print source: USDOT, Federal Highway Administration, Highway Statistics. Washington, DC: Annual issues.

Internet: www.fhwa.dot.gov/ohim/index.html

Highway safety data

Fatalities: Highway fatality data are extracted from the Fatality Analysis Reporting System (FARS), which is compiled by the U.S. Department of Transportation (USDOT), National Highway Traffic Safety Administration (NHTSA). Data are gathered from a census of police accident reports
(PARs), state vehicle registration files, state drivers licensing files, state highway department data, vital statistics, death certificates, coroner/medical examiner reports, hospital medical reports, and emergency medical service reports. A separate form is completed for each fatal crash. Blood alcohol concentration (BAC) is estimated when not known. Statistical procedures used for unknown data in FARS can be found in the NHTSA report, A Method for Estimating Posterior BAC Distributions for Persons Involved in Fatal Traffic Accidents, DOT HS 807094 (Washington, DC: July 1986).

Data are collected from relevant state agencies and electronically submitted for inclusion in the FARs database on a continuous basis. Cross-verification of PARs with death certificates helps prevent undercounting. Moreover, when data are entered, they are checked automatically for acceptable range values and consistency, enabling quick corrections when necessary. Several programs continually monitor the data for completeness and accuracy. Periodically, sample cases are analyzed for accuracy and consistency.

FARS data do not include motor vehicle fatalities on nonpublic roads. These are thought to account for about 2 percent or fewer of the total motor vehicle fatalities per year.

Injuries and crashes: NHTSA's General Estimates System (GES) data are a nationally representative sample of police-reported crashes that contributed to an injury or fatality or resulted in property damage and involved at least one motor vehicle traveling on a trafficway. GES data collectors randomly sample PARs and forward copies to a central contractor for coding into a standard GES system format. Documents such as police diagrams or supporting text provided by the
officers might be further reviewed to complete a data entry. A NHTSA study of injuries from motor vehicle crashes estimated the total count of nonfatal injuries at over 5 million compared with the GES's estimate of 3.2 million in 1998.

Additional information:

Contact: USDOT, National Highway Traffic Safety Administration, National Center for Statistics and Analysis

Print source: USDOT, National Highway Traffic Safety Administration, Traffic Safety Facts. Washington, DC: Annual issues.

Internet: www.nhtsa.dot.gov

International visitors data

Data on international visitors to the United States are based on international arrivals by air to the United States (excluding those from Canada and Mexico). Information is derived from the Immigration and Naturalization Service's (INS) Visitor Arrivals Program (I94) and the U.S. Department of Commerce, Tourism Industries Office's Survey of International Air Travelers. The survey obtains data on overseas travel patterns, characteristics, and spending patterns of international travelers to and from the United States. Between 69,000 and 95,000 travelers are surveyed each year. The survey results are weighted so they represent the international travel populations of U.S. residents and nonresidents based upon Immigration and Naturalization Service data.

Additional information:

Contact: U.S. Department of Commerce (USDOC), International Trade Administration, Tourism Industries Office

Print source: USDOC, International Trade Administration, Tourism Industries Office,

Overseas Visitors to Select U.S. States and Territories. Washington, DC: Annual issues; and USDOC, International Trade Administration, Tourism Industries Office, Overseas Visitors to Select U.S.
Cities/Hawaiian Islands. Washington, DC: Annual issues.

Internet: http://tinet.ita.doc.gov/

Passenger border crossing data

U.S. Custom Service personnel collect passenger border-crossing entry data for all U.S. land, air, and maritime ports. These numbers reflect all entries, and it is not possible to divide these data into separate entries for same-day and overnight travel or by country of residence for the traveler. Additionally, for border-crossing figures, the total number of people is not the number of unique individuals, but rather indicates the number of border crossings. Multiple crossings by the same individual count as multiple border crossings.

Additional information:

Contact: USDOT, Bureau of Transportation Statistics, Office of Transportation Analysis

Internet: www.bts.gov

Railroad industry and shipments data

The Association of American Railroads (AAR) database aggregates data from several sources concerning the freight railroad industry and movement of freight, both nationally and statewide. The state-specific data include commerce, employment, and financial contributions.

The primary source of data for Class I railroads is Schedule 700 of the R-1 Annual Report to the Surface Transportation Board (STB) by individual carriers (100 percent reporting) and the 2000 Carload Waybill

Sample. The primary source of data for nonClass I railroads is AAR's Profiles of U.S. Railroads from statistics supplied annually by nearly all operating U.S. freight railroads. Some of the data are estimated based on more aggregated, national figures.

The STB defines Class I railroads as having operating revenues at or above a threshold indexed to a base of $\$ 250$ million (1991) and adjusted annually in concert with changes in the Railroad Freight Rate Index published by the Bureau of Labor Statistics.
Declassification from Class I status occurs when a railroad falls below the applicable threshold for three consecutive years. Although few in number, Class I railroads account for over 90 percent of the industry's revenue.

The AAR determines the number of non-Class I railroads through an annual survey sent to each U.S. freight railroad.

Historical reliability may vary due to changes in the railroad industry, including bankruptcies, mergers, and declassification by the STB. Small data errors may also have occurred because of independent rounding in this series by the AAR.

Additional information:

Contact: Association of American Railroads, Policy and Economics Department

Internet: www.aar.org

Railroad safety data

Railroads are required to file a report for each accident or incident to the Federal Railroad Administration (FRA). These include: 1) train accidents, reported on Form F 6180.54, comprised of collisions, derailments, and other events involving the operation of on-track equipment and causing reportable damage above an established threshold (\$6,600 in 1998); 2) highway-rail grade crossing incidents, reported on Form F 6180.57, involving impact between railroad on-track equipment and highway users at crossings; and 3) other incidents, reported on Form F 6180.55a, involving all other reportable incidents or exposures that cause a fatality or injury to any person or an occupational illness to a railroad employee.

Railroads are required by FRA regulations to use the current FRA Guide for Preparing Accident/Incident Reports when preparing reports.

The Systems Support Division of FRA maintains the Railroad Accident/Incident Reporting System (RAIRS), consisting of four databases: rail equipment, injury/illness, grade-crossing accidents, and railroad summary (freight and passenger). These databases include information on all railroad accidents, grade-crossing accidents, railroad employee casualties, and any other injuries on railroad property, and provide the basis for accident analyses and assessment as well as annual reports. The databases are updated monthly from information submitted by the railroads.

Additional information:

Contact: USDOT, Federal Railroad
Administration, Office of Safety

Print publication: USDOT, Federal Railroad Administration, Railroad Safety Statistics. Washington, DC: Annual issues.

Internet: www.fra.dot.gov

Recreational boating safety and vehicles data

The U.S. Coast Guard, of the U.S. Department of Transportation, collects data on recreational boating accidents from two sources: 1)
Boating Accident Report (BAR) data forwarded to the Coast Guard by jurisdictions with an approved boat numbering and casualty reporting system, and 2) reports of Coast Guard investigations of fatal boating accidents that occurred on waters under federal jurisdiction. Recreational Boating Accident Investigation data are used if submitted to the Coast Guard and are relied on as much as possible to provide accident statistics. In the absence of investigations, information is collected from reports filed by boat operators.

Boat operators are required to file a BAR if an accident results in 1) loss of life, 2) personal injury that requires medical treatment beyond first aid, 3) damage to the vessel and other property exceeding $\$ 500$, or 4) complete loss of the vessel.

Boat operators are required to report their accidents to authorities in the state where the accident occurred. States with approved boat numbering systems furnish the Coast Guard with BAR data. The minimum reporting requirements are set by federal regulation, but states are allowed to have stricter requirements. The Coast Guard reports recreational boating safety data in the report Boating Statistics, which only covers accidents meeting the federal minimum reporting requirements.

The statistics in Boating Statistics cover boating accidents reported on waters of joint federal and state jurisdiction, and exclusive state jurisdiction.

The Coast Guard believes over 90 percent of fatal accidents are included in Boating Statistics. A smaller percentage of nonfatal accidents are reported because of reporting thresholds, ignorance of the law, and difficulties enforcing the law. Federal law does not require the reporting of accidents on private waters where states have no jurisdiction. Reports of accidents on such waters are included when received by the Coast Guard if they satisfy the other requirements of inclusion. Accidents excluded are those in which the boat was used as a platform for other activities (e.g., swimming), and those in which a person dies of natural causes aboard a boat. However, the data do include accidents involving people in the water who are struck by their boat or another boat.

Additional information:

Contact: USDOT, U.S. Coast Guard, Office of Boating Safety

Print source: USDOT, U.S. Coast Guard, Office of Boating Safety, Boating Statistics, Washington, DC: Annual issues.

Internet: www.uscgboating.org

Transborder surface freight data

The Transborder Surface Freight Dataset is extracted from the Census Foreign Trade Statistics Program and made available by the Bureau of Transportation Statistics. Import and export data are extracted from administrative records required by the Departments of Commerce and Treasury. This dataset incorporates all shipments entering or exiting the United States by surface modes of
transport (that is, other than air or maritime vessel) to and from Canada or Mexico. Prior to January 1997, this dataset also included transhipments in its detailed tables, that is, shipments entering or exiting the United States by way of U.S. Customs ports on the northern or southern borders, even when the actual origin or final destination of the goods was other than Canada or Mexico. Shipments that neither originate nor terminate in the United States (i.e., intransit shipments) are beyond the scope of this dataset because they are not considered U.S. international trade shipments.

Users should be aware that the trade data fields (such as value and commodity classification) are typically more rigorously reviewed than transportation data fields (i.e., mode of transportation and port of entry/exit). Users should also be aware that the use of foreign trade data to describe physical transportation flows might not be direct. For example, this dataset provides surface transportation information for individual Customs districts and ports on the northern and southern borders. However, because of filing procedures for trade documents, these ports may or may not reflect where goods physically crossed the border. This is because the filer of information may choose to file trade documents at one port, while shipments actually enter or exit at another port.

Import data are generally more accurate than export data. This is primarily due to the fact that Customs uses import documents for enforcement purposes, while it performs no similar function for exports.

Additional information:

Contact: USDOT, Bureau of Transportation Statistics, Office of Transportation Analysis

Internet: www.bts.gov

Transit operating, financial, and safety data

Transit data are from the National Transit Database (NTD) produced by the USDOT, Federal Transit Administration (FTA). Data are collected from transit agencies that receive Urbanized Area Formula Program funds. Transit operators that do not report to FTA are those that do not receive federal funding, typically private, small, and rural operators. FTA reviews and validates information submitted by individual transit agencies. Reliability may vary because some transit agencies cannot obtain accurate information or may interpret certain data definitions differently than intended.

In 2000, 592 agencies reported to the NTD. Of that total, 67 transit agencies received exemptions from detailed reporting because they operated 9 or fewer vehicles, and 7 were excluded because their data were incomplete. Thus, 518 individual reporters were included in the NTD accounting for 90 to 95 percent of transit passenger-miles.

Data are collected on a range of variables including capital and operating funding, transit service supplied and consumed, and transit safety and security. Transit operators must report fatalities, injuries, accidents, incidents, and property damage in excess of $\$ 1,000$.

Additional information:

Contact: USDOT, Federal Transit Administration

Print source: USDOT, Federal Transit Administration, Data Tables. Washington, DC: Annual issues; and USDOT, Federal Transit Administration, National Transit Database Reporting Manual. Washington, DC: Annual issues.

Internet: www.fta.dot.gov

Transportation establishment, employees, and payroll data

Data on employees, establishments, and payroll are taken from County Business Patterns, a database of employment in the United States using the North American Industry Classification System (NAICS). Data are collected annually. Data are extracted from the Business Register, the Census Bureau's file of all known single and multiestablishment companies. The Annual Company Organization Survey and quinquennial Economic Censuses provide individual establishment data for multilocation firms. Data for single-location firms are obtained from various programs conducted by the Census Bureau, such as the Economic Censuses, the Annual Survey of Manufactures, and Current Business Surveys. They are also obtained from administrative records of the Internal Revenue Service (IRS), the Social Security Administration (SSA), and the Bureau of Labor Statistics (BLS).

Additional information:

Contact: USDOC, U.S. Census Bureau, Economic Planning and Coordination Division

Print source: USDOC, U.S. Census Bureau, California: County Business Patterns 1999. CBP/99-6. Washington, DC: 2001.

Internet: www.census.gov/epcd/ cbp/view/cbpview.html

Vehicle Inventory and Use Survey

The Vehicle Inventory and Use Survey (VIUS) collects data on the physical and operational characteristics of private and commercial trucks in the United States. The 1997 VIUS sampled about 131,000 trucks from an estimated universe of over 75 million trucks. The sample excludes vehicles owned by federal, state, and local government
including ambulances, buses, motor homes, farm tractors, unpowered trailer units, and trucks reported to have been sold, junked, or wrecked prior to July 1, 1996. Light trucks registered as cars, as is the practice in many states, were included. Unregistered trucks used off-road are not included. Census delivered a mail-out/mail-back survey to the owner identified in the vehicle registration records. Data collection is staggered as state records become available. Owners report data only for the vehicles selected. The response rate for the 1997 VIUS was about 85 percent.

Additional information:

Contact: USDOC, U.S. Census Bureau, Service Sector Statistics Division

Print source: USDOC, U.S. Census Bureau, California: 1997 Vehicle Inventory and Use Survey. EC97TV-CA. Washington, DC: 1999.

Internet: www.census.gov/svsd/www/ tiusview.html

Waterborne imports and vessel data

The U.S. Department of Transportation's Maritime Administration (MARAD) classifies merchant-based vessels by size and type and reports this information in its annual publication, Merchant Fleets of the World. MARAD compiles these figures from a data service provided by Lloyd's Maritime Information Service. The parent company, Lloyd's Register (LR), collects data from several sources, including its offices around the world, data transfers and agreements with other classification societies, questionnaires to ship owners and shipbuilders, feedback from government agencies, and input from port agents.

MARAD's Office of Statistical and Economic Analysis maintains the waterborne databank used to compile the annual import and export
statistics from monthly and quarterly data provided by the U.S. Army Corps of Engineers. MARAD publishes the data in reports of vessel movements, trade and cargo by type of service, U.S. and foreign port, country of origin/destination, commodity, value, weight, and containerized cargo.

MARAD distributes the reports and performs special tabulations and customized maritime data reports created for other government agencies and the private sector on a reimbursable basis. MARAD also provides these services for historic data and maintains the Schedule K Classification of Foreign Ports by Geographic Trade Area and Country.

Additional information:

Contact: USDOT, Maritime Administration, Office of Statistical and Economic Analysis

Print source: USDOT, Maritime Administration, Merchant Fleets of the World.

Internet: www.marad.dot.gov

Waterborne shipments data

The U.S. Army Corps of Engineers' (Corps) Navigation Data Center (NDC) collects data on waterborne commodity and vessel movements, domestic commercial vessel characteristics, port and waterway facilities, and navigation dredging projects.

The NDC's databases contain information on physical characteristics, infrastructure, and commodities for principal facilities on the U.S. coast, Great Lakes, and inland ports. The data consists of listings of port area's waterfront facilities, including information on berthing, cranes, transit sheds, grain elevators, marine repair plants, fleeting areas, and docking and storage facilities.

All vessel operators of record report their domestic waterborne traffic movements to the

Corps via ENG Forms 3925 and 3925b. Cargo movements are reported according to points of loading and unloading. Excluded cargo movements are: 1) cargo carried on general ferries, 2) coal and petroleum products loaded from shore facilities directly into vessels for fuel use, 3) military cargo moved in U.S. Department of Defense vessels, and 4) cargo weighing less than 100 tons moved on government equipment. The Corps calculates ton-miles by multiplying the cargo's tonnage by the distance between points of loading and unloading.

An annual survey of companies that operate inland waterway vessels is the principal source of data for inland non self-propelled vessels, self-propelled vessels, and flag passenger and cargo vessels. More than 3,000 surveys are sent to these companies, and response rates are typically above 90 percent.

Additional information:

Contact: U.S. Army Corps of Engineers, Waterborne Commerce Statistics Center

Print source: U.S. Army Corps of Engineers, Waterborne Commerce of the United States. New Orleans, LA: Annual issues.

Internet: www.wrsc.usace.army.mil

I Glossary

British thermal unit (Btu): The amount of energy required to raise the temperature of 1 pound of water 1 degree Fahrenheit (F) at or near 39.2 degrees F and 1 atmosphere of pressure.

Commuter rail: Urban passenger train service for short-distance travel between a central city and adjacent suburb. Does not include rapid rail transit or light rail transit service.

Container: A box-like device used to store, protect, and handle a number of packages or items as a unit of transit that can be interchanged between trucks, trains, and ships without rehandling the contents.

Controlled right-of-way: Lanes restricted for at least a portion of the day for use by transit vehicles and other high occupancy vehicles (HOVs).

Demand responsive: Transit service provided without a fixed-route and without a fixed schedule that operates in response to calls from passengers or their agents to the transit operator or dispatcher. Service is usually provided using cars, vans, or buses with fewer than 25 seats.

Directional route-miles: The mileage in each direction over which public transportation vehicles travel while in revenue service. Directional route-miles are a measure of the facility or roadway, not the service carried on the facility such as the number of routes or vehicle-miles. Directional route-miles are computed with regard to direction of service, but without regard to the number of traffic lanes or rail tracks existing in the right-of-way.

Dry-bulk carrier (water): A ship with specialized holds for carrying dry cargo such
as coal, grain, and iron ore in unpackaged bulk form.

Enplanements: The total number of revenue passengers boarding aircraft.

Exclusive right-of-way: Lanes reserved at all times for transit use and other high occupancy vehicles (HOVs).

Ferryboat (transit): Vessels that carry passengers and/or vehicles over a body of water. Generally steam or diesel-powered, ferryboats may also be hovercraft, hydrofoil, and other high-speed vessels. The vessel is limited in its use to the carriage of deck passengers or vehicles or both, operates on a short run on a frequent schedule between two points over the most direct water routes other than in ocean or coastwise service, and is offered as a public service of a type normally attributed to a bridge or tunnel.

Full container ship: Ships equipped with permanent container cells, with little or no space for other types of cargo.

Heavy rail: An electric railway with the capacity to transport a heavy volume of passenger traffic and characterized by exclusive rights-of-way, multi-car trains, high speed, rapid acceleration, sophisticated signaling, and high-platform loading. Also known as "subway," "elevated (railway)," or metropolitan railway (metro)."

Light rail: A streetcar-type vehicle operated on city streets, semi-exclusive rights-of-way, or exclusive rights-of-way. Service may be provided by step-entry vehicles or by level boarding.

Major arterial highway: A major highway used primarily for through traffic.

Metric ton: 1,814 pounds (2,000 pounds multiplied by 0.907).

Minor arterial: In rural areas, roads linking cities and larger towns. In urban areas, roads distributing trips to small geographic area but not penetrating identifiable neighborhoods.

Minor collector highway: In rural areas, routes that serve intracounty rather than statewide travel. In urban areas, streets that provide direct access to neighborhoods and arterials.

Mixed right-of-way: Lanes used for general automobile traffic.

Motor bus: A rubber-tired, self-propelled, manually steered bus with fuel supply onboard the vehicle. Motor bus types include intercity, school, and transit.

Natural gas distribution pipeline: Smaller than transmission pipelines and maintained by companies that distribute natural gas locally (intrastate). Distribution pipeline systems are analogous to networks of lesser roads and residential streets that people travel after getting off the freeway.

Natural gas transmission pipeline:

Analogous to a major freeway, it is the main interstate transportation route for moving large amounts of natural gas from the source of production to points of distribution. Transmission pipelines are designed to move large amounts of natural gas from areas where the gas is extracted and stored to the local distribution companies that provide natural gas to homes and businesses.

Principal arterial highway: Major streets or highways, many of multilane or freeway design, serving high-volume traffic corridor
movements that connect major generators of travel.

Short ton: 2,000 pounds.
Tanker: An oceangoing ship designed to haul liquid bulk cargo in world trade.

Ton-mile: The movement of one ton of cargo the distance of one statute mile.

Trackage rights: The authority of one railroad to use the tracks of another railroad for a fee.

Trolley bus: Rubber-tired, electric transit vehicle, manually steered and propelled by a motor drawing current, normally through overhead wires, from a central power source.

Unlinked passenger trips: The number of passengers who board public transportation vehicles. A passenger is counted each time he or she boards a vehicle even if on the same journey from origin to destination.

Vanpool: Public-sponsored commuter service operating under prearranged schedules for previously formed groups of riders in 8 - to 18 -seat vehicles. Drivers are also commuters who receive little or no compensation besides the free ride.

Vehicle-miles traveled (highway): Miles of travel by all types of motor vehicles as determined by the states on the basis of actual traffic counts and established estimating procedures.

[^0]: ${ }^{1}$ The completeness of data on trailer registrations varies greatly among states. Data are reported to the extent available and, in some cases, are supplemented by estimates of the Federal Highway Administration.
 ${ }^{2}$ This row includes all commercial type vehicles and semi-trailers that are in private or for-hire use.
 ${ }^{3}$ Several states do not require the registration of light farm or automobile trailers.
 KEY: $\mathbf{U}=$ data are unavailable.
 NOTE: Mobile homes and house trailers are shown for states that require registration and are able to segregate them from other trailers. In states where this classification is not available, house trailers are included with light car trailers.

