Geomechanical Performance of Hydrate-Bearing Sediments in Offshore Environments

Schlumberger Plans Richard A. Plumb N.E.T.L, Morgantown W.Va. January 19, 2007

Develop the capability of building 4D Geomechanical models of the near-seafloor deep-marine hydrate-bearing sediments.
Interface Petrel framework model with FLAC3D

Develop 4D geomechanics models of the near-wellbore region of hydrate-bearing deep-marine sediments

Scope of work 2006

H1 2006

- Review the geological structures on the U.S. continental margins characteristic of the gas hydrate stability zone (GHSZ).
- Determine whether Petrel's framework modeling tools can reproduce realistic fault and sedimentary structures of the (GHSZ)

H2 2006

- Evaluate the capability to interface Petrel with FLAC3D
- Recommend improvements to Petrel developers
- Contract ITASKA to interface Petrel to 3DShop and FLAC3D
- Selected Keathley Canyon as a field test site
- Build a small Petrel model
- Exported Petrel surfaces and geological properties to ITASKA software

Geological environment

Complex structure due to salt diapirism

Gulf of Mexico Gas Hydrates Joint Industry Participation Project

Figure 1. Map showing location of planned JIP coring/logging sites relative to gas hydrate sites and petroleum occurrences in the Gulf of Mexico (modified from Milkov and Sassen, 2001). Water depth contours shown in meters.

Modelling challenges seen in seismic section at Keathley Canyon

Discordant contacts-e.g. BSR

Geomechanical Property Modelling Workflow

Keathley Canyon Horizons in Petrel

© 2006 Schlumberge All rights reserved.

Keathley Canyon- preliminary bulk density volume

Coefficients for mudstone: a=1.75, b=0.265

Coefficients for sandstone: a=1.66, b=0.261

Simplifiled Keathley Canyon model in Petrel

Faults are not explicitly modeled in ITASKA's initial surfaces data set

ITASKA's Modelling Workflow

Geologic Horizons in ITASKA's 3DShop

Proposed Next Steps 2007

ITASKA

- Read Petrel property volume
- Design the software interface
- Perform a sample geomechanical calculation in FLAC3D

Schlumberger

- Refine the input velocity model
- Introduce well log data and perform log-guided seismic inversion
- Construct geomechanical property volumes
- Perform a sample geomechanical calculation in FLAC3D

Questions/Discussion

