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ABSTRACT

In this paper, we develop a monthly output index for
the U.S. transportation sector from January 1980
through April 2002, covering air, rail, water, truck,
transit, and pipeline activities. Separate indexes for
freight and passenger are also constructed. Our total
transportation output index matches very well with
the annual transportation output figures produced by
the Bureau of Labor Statistics and the Bureau of Eco-
nomic Analysis. The strong cyclical movements of
transportation output appear to be more synchro-
nized with the growth slowdowns in the U.S. econ-
omy than full-fledged recessions.  Our index led the
turning points of the six National Bureau of Eco-
nomic Research-defined growth cycles over the
period with an average lead time of six months at
peaks and five months at troughs. 

INTRODUCTION

In this paper, we develop an index of monthly eco-
nomic activity for the transportation sector of the
U.S. economy. In contemporary business cycle
analysis, output is one of the four coincident eco-
nomic indicators of the overall economy. Output
refers to the physical quantity of items produced,
as distinct from the sales value, which combines

KEYWORDS: transportation output, Fisher Ideal Index,
business cycles, growth cycles, freight transportation.
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quantity and price. In our context, transportation
output measures freight movement and passenger
travel by different transportation modes.  Prior to
our work, there was no unique indicator to mea-
sure the output of the transportation sector on a
monthly basis. The Bureau of Economic Analysis
(BEA) and the Bureau of Labor Statistics (BLS) of
the U.S. government produce output measures for
the transportation sector on an annual basis. The
Federal Reserve Board does not produce an index
of production for the manufacturing sector but
does for service industries.

Even though there has been considerable devel-
opment of National Bureau of Economic Research
(NBER)-type indicator analysis for the whole econ-
omy, little work has been done in developing sec-
toral indicators. While Layton and Moore (1989)
have developed leading indicators for the service
sector, no monthly indexes of output for particular
service industries exist.

In order to construct a monthly index of output
for the transportation sector, it is first necessary to
determine the constituent parts of the industry.  We
do that in the next section. Then we discuss the out-
put data available for each of these components of
the transportation sector. We also explore possible
uses of the output index in business and growth
cycle analysis. The newly developed output index is
then compared against the annual transportation
output figures produced by BEA and BLS. 

COMPONENTS OF THE 
TRANSPORTATION SECTOR

We base our definition of the industry on the North
American Industrial Classification System (NAICS).
This definition also conforms to the Transportation
Satellite Accounts (TSAs) associated with the
National Income and Product Accounts (NIPA). 

Although transportation activities generally
include Household Production of Transportation
Services (HPTS) in owner-operated automobiles and
in-house as well as for-hire transportation by com-
mercial establishments, in this study we consider
only for-hire commercial activities for lack of avail-
able monthly data on the other two components.
Official data on transportation services, defined in
either the Standard Industrial Classification codes
or NAICS, are confined to establishments that pro-

vide passenger and/or freight transportation services
for a fee; neither in-house transportation nor HPTS
are counted.1 Although market activities by NAICS-
defined establishments do not cover all transporta-
tion activities, for-hire is nevertheless the most infor-
mative component of the transportation sector. 

For-hire transportation includes six subsectors:
air, rail, water, truck, transit and ground passenger
transportation, and pipeline. Even though these sub-
sectors are representative of economic activity in the
transportation industry and are closely associated
with the sectors in the satellite NIPA, a problem
must be noted. These series do not include all of the
subsectors in the for-hire portion of the transporta-
tion sector. The subsectors included in NAICS but
excluded here are: scenic and sightseeing transporta-
tion, support activities for transportation, postal
service, and couriers and messengers. The industries
included correspond to NAICS codes 481 to 486
and  cover 89.7% to 93.9% of total transportation
between 1980 and 2000, according to the “Gross
Product by Industry” table in the November 2001
issue of the Survey of Current Business. 

A useful monthly index of economic activity in
the transportation sector can be derived from the
available series, because the subsectors they repre-
sent constitute a significant portion of the entire
industry. Moreover, the transportation subsectors
that we used to construct the index of transporta-
tion output account for a substantial portion of U.S.
gross domestic product (GDP). The aggregate value
of for-hire transportation accounted for 3.1% and
3.0% of GDP in 1992 and 1996, respectively2

(Fang et al. 1998 and 2000). Given the critical role
that transportation plays in facilitating economic
activity between sectors and across regions, an
index of its output can be an important indicator

1 Han and Fang (2000) and Chen et al. (2003) have
shown the importance of in-house and household compo-
nents, respectively, but their estimates are currently
annual. Arguably, these two components should be
included as part of transportation output when their
monthly measures are developed.
2 These numbers and other measures of the importance of
transportation were derived from the value added of the
industry. Using different concepts of the scope of the
transportation industry would yield different measures of
its importance, varying anywhere from 3.09% (transpor-
tation GDP) to 16.50% (transportation-driven GDP). See
Han and Fang (2000).
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for either the current or future level of general eco-
nomic activity (see Ghosh and Wolf 1997). 

DATA

The total Transportation Output Index was devel-
oped from eight series. Five of these series measure
the level of freight activity, and the remaining three
measure the level of passenger services. The series
used to measure the freight component were trucking
tonnage, air revenue ton-miles, rail revenue ton-
miles,3 a waterway tonnage indicator, and pipeline
movements of petroleum products and natural gas.
Similarly, the passenger output index was constructed
from three series: air revenue passenger-miles, rail
revenue passenger-miles,4 and national transit rider-
ship.5 The sources and characteristics of all of these
series are provided in appendix 1 (pages 16–23).

With the exception of pipeline, all data were
available from January 1980 to April 2002. The
pipeline data were available starting in January
1985 going to April 2002. The series that we used
to measure pipeline transportation is constructed
from data on movements of crude oil and petroleum
products, consumption of natural gas, and the field
production in Alaska. 

Crude oil and petroleum products are moved
between different Petroleum Administration for
Defense Districts (PADDs), while natural gas is
delivered to final users. The Alaska field production
of crude oil and petroleum products is added,
because it almost never enters the PADD system.6

This addition accounts for the movement within
Alaska along the Trans-Alaska Pipeline from the

North Slope to the port of Valdez. However, move-
ments of crude oil and petroleum and natural gas
are measured in different units. The first is mea-
sured in millions of barrels per day while natural gas
is measured in cubic feet. It is possible to combine
them by converting both to tons (or Btu) with con-
version factors.7 Then the converted tonnage of
petroleum and natural gas are added together as the
measure of total movement by pipelines. Just as
with the other series, these figures are converted into
index number form with 1996 equal to 100.

In constructing the index, the weights were
adjusted for the years in which the pipeline data
were not available. Each series was then seasonally
adjusted using the Census X-11 program.8 We used
the econometric software EViews (version 3.1) for
this purpose.  Because all of these series measure
real quantities, no price deflation was required. 

INDEX CONSTRUCTION

Weights for the Components Series

The total output of the transportation industry is an
aggregate of real output generated by each of the
components, and thus data from the eight series
were used to construct the Transportation Output
Index. Each series, representing the output quantity
of a transportation subsector, was converted into
index number form with 1996 equal to 100.  

In order to construct the Transportation Output
Index, (A denotes “aggregate” and m denotes
the month), for the entire transportation sector, the
subsector indexes were combined by assigning
weights to each of the components. The weights
measure the relative importance of each subsector
to the entire sector. They can also be interpreted as
the “price” of services provided by different modes
in quantity indexes. 

While there are several different ways of measur-
ing the relative importance of each subsector, we
used value-added weights from the NIPA. Here, the
value-added weights are more appropriate than

3 The monthly rail revenue ton-miles data were obtained
by interpolating the quarterly figures. We are now work-
ing on weekly railroad data on carloads and intermodal
traffic to construct a monthly series. These figures will be
used to update the index.
4 Due to a change in data-collection procedure, rail revenue
passenger-mile (RPM) values from January 1980 to Decem-
ber 1985 were unusable. The RPM values for these months
were backcasted based on a regression of rail RPM on rail
Revenue Passengers (RP), Rail_RPM = –27991243.120 +
51725.329*Rail_RP – 0.485*Rail_RP2, estimated over Jan-
uary 1986 to April 2002. Adjusted R2 = 0.562. 
5 The transit data are monthly but are available only on a
quarterly basis.
6 Alaskan petroleum used to be mostly consumed within
Alaska or other PADD  regions due to an export ban. This
ban was lifted in the early 1990s, and now most of it is
exported to Japan. 

7 The conversion factors were obtained from the U.S.
Department of Energy (DOE) and they are presented in
appendix 1. DOE has two types of conversion factors, one
based on Btu and one based on mass; both yield similar
estimates. 
8 The X-11 program was originally developed by Shiskin
et al. (1967).

Im
A
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gross output, because transportation is an interme-
diate sector whose economic contribution is calcu-
lated as the difference in the values of goods being
transported. This definition conforms to the concept
of GDP. 

Weights were obtained from the annually
updated “Gross Product by Industry” table pub-
lished in the Survey of Current Business (November
2001). We disaggregated airline and railroad
weights into their respective freight and passenger
components by using the ratio of their operating
revenues for the particular year. 

Figure 1 shows the historic annual weights for
each component of the Transportation Output
Index. Since 1981, air passenger transportation,
which dominates the airline industry, has an increas-
ing weight relative to other subsectors, and railroad
freight, which dominates rail transportation, has a
decreasing weight. From 1980 to 2000, airline
industry and railroad transportation weights
changed from 18.8% to 33.0% and 21.5% to
8.1%, respectively. 

Trucking maintained the greatest weight among
all subsectors throughout the period, always in
excess of 40.0%. The weights for rail passenger, air
freight, pipelines, water transportation, and public
transit were always below 8.0% and changed little
over this period. The graph also reflects a less
freight-intensive contemporary economy in that the
total weight for freight movement relative to total
transportation activity has steadily shrunk from
72.3% to 61.1% between 1980 and 2000.

Fisher Ideal Index 

Given the weights, component series are aggregated
into one single index using different index methods.
Economic theory indicates that the preferred mea-
sure of quantity change is a geometric mean of the
Laspeyres index and the Paasche index. This results
in the so-called Fisher Ideal Index. The Fisher Ideal
Index is one of the “superlative” aggregate indexes,
which means current-weighted, while the other two
are fixed-weighted using weights in a single period.
The use of fixed-weighted measures for a quantity
index, such as those derived from the Laspeyres
quantity index, may result in “substitution bias”
that overstates output growth for periods after the
base year and understates growth for periods before

the base year (see Landefeld and Parker (1995) for
further explanation). 

The tendency of substitution bias reflects the fact
that those commodities for which output grows
rapidly tend to be those for which prices change less
proportionately. Although this bias may be small
enough to be safely ignored for shorter sample peri-
ods, the output measures derived from a fixed-
weighted index can become increasingly subject to
“weighting effects” as the time between the weight-
ing period and the current period lengthens. A simi-
lar but opposite problem occurs with the other type
of fixed-weighted index, the Paasche quantity index,
which uses current period prices as weights. 

The Fisher Ideal Index, which is a chain index,
registers changes that fall between those of the
Laspeyres and the Paasche indexes.  Because of its
many advantages, BEA has used this new methodol-
ogy since 1996 to publish the NIPA (Landefeld and
Parker 1995). The Board of Governors of the Fed-
eral Reserve Board (FRB) has also adopted the
Fisher Ideal formula in constructing the Industrial
Production Index since the mid-1990s (Corrado et
al. 1997). Conceptually, our transportation output
measure is very similar to FRB’s Industrial Produc-
tion Index in the sense that both measure the physi-
cal production of a sector. 

The new formula for the growth of monthly
transportation indexes is given by

(1)

where 
Ijm is the output index in subsector j in month m; 
Pjy(m) is the value-added weight for subsector j in

year y; 
y(m) is the year containing the month m.
The Transportation Output Index (Fisher Ideal) uses
annual outputs weighted by previous, current, and
next year prices. To compute the output quantity
index as a chain-typed annually-weighted Fisher
Index, we required the unit value added for both the
current and the next year. While the “Gross Product
by Industries” table is usually published in the
November issue of the Survey of Current Business,
the estimates for recent periods were obtained in

I
A

m

I
A
m 1–

------------
IjmPjy m 6–( )

j
∑

Ijm 1– Pjy m 6–( )
j
∑
----------------------------------------- ∗

IjmPjy m 6+( )
j
∑

Ijm 1– Pjy m 6+( )
j
∑
------------------------------------------=
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two steps. First, the industry producer price index
(PPI) for each subsector of transportation (for tran-
sit, we used the consumer price index for intracity
transportation, because PPI is not available for this
subsector) that BLS produces on a monthly basis
were extrapolated to obtain the annual averages for
the current year (2002) and the next year (2003).
Second, the unit value-added measures were extrap-
olated based on these annual averages of industry
PPI. The Transportation Output Index, as well as its

freight and passenger component subtotals, is com-
puted as the cumulative product of a monthly series
of these growth estimates from January 1980
onward. For = 100 in the base year,

(2)

Figure 2 compares the Fisher Ideal Index of total
transportation output with its alternative index

FIGURE 1  Annual Weights for the Aggregation of Transportation

Source: “Gross Product by Industry” table, Survey of Current Business, November 2001.
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computed from the linked Laspeyres.9 They are
found to be almost identical. Any difference would
arise from the weights used. As seen earlier in figure
1, the weight on the largest component, trucking,
has been pretty stable in the sample period, which
limits any potential substitution bias. FRB also
found a similar result when they recomputed their
Industrial Production Index using the Fisher Ideal
Index10 (Corrado et al. 1997). However, because of
its potential advantages, the transportation indexes
derived from the Fisher Ideal Index were used for
our analysis in this paper.

THE CHARACTERISTICS OF THE INDEX

Classic Business Cycles

The monthly values of the resulting indexes for Jan-
uary 1980–April 2002 are tabulated in appendix 2
(pages 24–27). The Total Transportation Output
Index, the Freight Transportation Output Index,
and the Passenger Transportation Output Index are
presented in figures 3a to 3c. Dark shaded areas
represent the NBER-defined recessions in the U.S.
economy and lightly shaded areas represent the

FIGURE 2  Total Transportation Index: Linked Laspeyes vs. Fisher Ideal
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9 The standard formula for the linked Laspeyres quantity
index is where p0 is the
price in the base period. (Note that we set I0 = 100.) It
shows changes in physical movements in the transporta-
tion sector with prices held fixed at base year values,
which is 1996 here (Corrado et al. 1997). Because the
public transit subsector is often supported by public subsi-
dies, its value-added figures are sometimes negative. As a
result, we had to calculate the weight assigned to this sec-
tor as the average of the ratio of its output to the total
transportation industry output for 1996. For airlines and
railroads, we determined the relative amount of operating
revenue obtained from transporting passengers and
freight to disaggregate the weight into passenger and
freight. The weights for the Laspeyres index are obtained
from the 1996 TSA (Fang et al. 2000) and presented in
table 1.
10 We thank Professor Ariel Pakes of Harvard University
for an illuminating discussion on this finding.

IM
A ΣIm ⋅ p0 ΣI0 ⋅ p0⁄=

TABLE 1  Final Weight for Transportation Indexes 
(Linked Laspeyres)

Subsector of transportation

1996 Transportation 
Satellite Accounts 

(adjusted)

Rail 17.3%
  Passenger 0.8%
  Freight 16.5%

Truck 42.2%
Water 4.7%
Air 24.7%

  Passenger 21.3%
  Freight 3.4%
Pipeline 9.7%

Transit 1.4%
Total 100.0%

Source: Adapted from Fang et al. (2000).
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NBER-defined growth cycle recessions. These
indexes are based on the seasonally adjusted com-
ponent series that are individually graphed in
appendix 1.

Certain characteristics of these indexes should be
noted. First, all of them show strong upward trends,
with the Total Transportation Output Index show-
ing a compounded annual growth rate of 2.65%
between January 1980 and August 2001. Both the
passenger and freight indexes also grew over this
period, with rates of 3.19% and 2.56%, respectively.
(We compared the growth rates through August
2001, because the terrorist attacks of September 11,
2001, drastically affected the passenger component
of the transportation sector.) The indexes also show
declines in their values, reflecting the economic
recessions of July 1981–December 1982, July 1990–
March 1991, and March 2001–November 2001.
Sharp downward movement also occurred in both
the freight and passenger indexes after September
11 and was most pronounced in the passenger
index. Overall, the cyclical movement of the freight
index dominates that in the Total Transportation
Output Index. 

The peak (trough) occurs when the Transporta-
tion Output Index reaches the highest (lowest) point
of its cyclical fluctuations, which would exclude
from consideration some temporary positive (nega-
tive) irregular disturbances. We followed the NBER
dating algorithm described in Bry and Boschan
(1971, chapter 2) to identify each of the peaks and
troughs. The algorithm uses a series of rules to dis-
tinguish the real peaks and troughs from spurious
ones. For instance, a movement from a peak to a
trough (phase) cannot be shorter than 6 months and
a complete cycle must be at least 15 months long.
Using these criteria, the cyclical turning points of the
Total Transportation Output Index together with
the NBER business and growth cycle chronologies
are reported in table 2. 

Table 2 shows that cyclical peaks in the Trans-
portation Output Index occurred prior to the eco-
nomic recessions of July 1981–December 1982, July
1990–March 1991, and March 2001–November
2001. In the case of the July 1990–March 1991
recession, we defined the peak in the index to have
occurred in February 1988, nearly 29 months prior
to the beginning of the economic recession.  After

FIGURE 3  Three Transportation Output Indexes: 
Seasonally Adjusted

Note: Dark shaded areas represent the NBER-defined recessions in 
the U.S. economy; lightly shaded areas represent the NBER-defined 
growth cycle recessions in the economy (the trough for the latest 
growth slowdown has not been determined).
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February 1988, index growth stagnated, but surged
in December 1988, followed by a period of steady
decline. Following the Bry-Boschan censoring rule
of identifying real peaks, we regard December 1988
as a temporary disturbance. The transportation sec-
tor started to recover in July 1989, but its growth
was interrupted in August 1990, which is one
month after the beginning of the economic reces-
sion. The Index started to move up at about the
same time as the economic recovery after March
1991. 

The Total Transportation Output Index clearly
peaked 16 months prior to the beginning of the lat-
est recession. It appears that the Index started to
move up in June 2001, but the events of September
11 have distorted the data. September 2001 also
marks the lowest point in aggregate transportation
activity since its last peak in November 1999 and is
roughly coincident with the recently announced
trough of November 2001 for the latest economic
recession. The Index has been recovering since then,
albeit with interruptions. 

Overall, the Transportation Output Index led the
three peaks with a considerable lead time (median 16
months);11 the signals for recovery were almost con-

temporaneous. The index would have given two false
signals for economic recession in August 1984 and
December 1994. However, they were not false in the
sense that these peaks were followed by recessions in
the growth cycle. Hence, the strong cyclical changes
in transportation output appear to be more synchro-
nized with growth slowdowns rather than full-
fledged recessions of the U.S. economy. This also sug-
gests that the cyclical movement in these indexes fore-
shadows the growth cycles of the economy more
consistently than the business cycles. Thus, the newly
constructed Transportation Output Index can be very
useful in monitoring the fluctuations in general eco-
nomic activity from the perspective of transportation.

When we look at the freight and passenger trans-
portation indexes separately in figures 3b and 3c,
we find that the cyclical movements in the Total
Transportation Output Index are mostly deter-
mined by freight movement. The freight index
reached its peak and trough during the same
months as the total index during the July 1981–
November 1982 recession. The passenger index, on
the other hand, did not have the corresponding
cyclical movement during this period. Freight activi-
ties dominated the transportation sector in the early
1980s. 

During the economic recession of July 1990–
March 1991, the freight index peak occurred two
months before that of the total index, while the pas-

TABLE 2  Lead and Lag Analysis Between Transportation and the Economy

NBER-defined
chronologies of economy1 Business cycle of Transportation Output Index

Recessions Growth cycle Chronology

Lead and lag of 
transportation vs.

Recessions
of economy

Growth cycle
of economy

P T P T P T P T P T

– Jul–80 – Jul–80 – Jul–80 – 0 – 0

Jul–81 Nov–82 Jul–81 Dec–82 Feb–81 Oct–82 –5 –1 –5 –2

– – Sep–84 Jan–87 Aug–84 Sep–85 – – –1 –16

Jul–90 Mar–91 Jan–89 Dec–91 Feb–88 Mar–91 –29 0 –11 –9

– – Jan–95 Jan–96 Dec–94 Jul–95 – – –1 –6

Mar–01 Nov–01 Jun–00 – Nov–99 Sep–01 –16 –2 –7 –

Mean –17 –1 –5 –7

Median –16 –0.5 –5 –6

1 Business cycle chronologies are taken from http://www.nber.org/; growth cycle chronologies are taken from Zarnowitz and Ozyildirim (2002).

Key: P = peak; T = trough.

11 Between 1953 and 1982, the average lead time of the
composite index of 11 leading indicators relative to the
NBER-defined reference cycles is 9.7 months at peaks and
4.6 months at troughs (see table 11.4 in Zarnowitz 1992).
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senger index started to decline in September 1990,
which is one month after the peak of the economy.
A similar phenomenon occurred during the latest
recession. The freight index peak occurred at about
the same time as the total index, but with a much
deeper amplitude. The passenger index reached its
peak 12 months later.  Furthermore, September 11
had a more profound impact on passenger transpor-
tation than on freight transportation. As a result,
the total index mimics the movement in the passen-
ger index more closely during this recessionary epi-
sode than on previous occasions. 

The sequence of peaks and troughs in these
indexes and their relationship to business cycles in
the economy may reflect some interesting underly-
ing linkages. Freight movement adjusts early to the
demand or supply shocks in the economy; these
adjustments or fluctuations across different sectors
can eventually lead to a full-fledged recession or be
limited to sectoral cycles. On the other hand, pas-
senger transportation activities are affected when
the state of the overall economy has changed due to
demand shocks, especially in a recession. The last
two recessions seem to follow this stylized scenario.
Because every recession is caused by a mixture of
different demand and supply factors, the relative
changes in the passenger and freight indexes may
not always follow the above sequence. Overall,
turning points in the total index stay between those
of its two components, but tend to be closer to those
of the freight index.  

Growth Cycles

 In a growth cycle, the economy undergoes alternat-
ing periods of deceleration and acceleration that
may not develop into a full-fledged recession (see
Zarnowitz 1992, chapters 7 and 8; and Zarnowitz
and Ozyildirim 2002). Growth cycles are less well
known compared with classic business cycles, and
they usually cover both full-fledged business cycles
and growth slowdowns. Technically, the growth
cycle refers to the cyclical component of a typical
time series, which is the deviation of a seasonally
adjusted series from its estimated trend. Over our
sample period, there were six such episodes in the
overall economy, four of which included the reces-
sions of the period. They are all clearly discernable

with major downswings in the Total Transportation
Output Index in figures 3a to 3c. 

Depending on the method of estimation of the
trend from a time series, growth cycles could differ.
The conventional NBER algorithm to estimate the
secular trend and identify the growth cycles is the
Phase Average Trend (PAT) method (Boschan and
Ebanks 1978). The PAT starts by determining prelim-
inary turning points based on the deviation from a
75-month moving average (first approximation) of a
deseasonalized time series. Then, values at the turn-
ing points are averaged to obtain phase averages
(each phase is defined on two turning points). The
three-item moving averages of these phase averages
are subsequently computed to obtain the so-called
“triplets.” The midpoints of the triplets are con-
nected, and the connected level series is further
adjusted to match the level of the original series. Then
a 12-month moving average (second approximation)
of the adjusted series yields the estimated secular
trend.12 

Using the estimated trend, the NBER growth
cycles are defined based on the deviation of the
deseasonalized series from the PAT. We then com-
pare the growth cycles of the Transportation Out-
put Index obtained using the PAT with the NBER
growth cycle chronology. The growth cycles of the

12 Since the calculation of the PAT can be tedious, a good
alternative would be the use of the H-P filter (Hodrick
and Prescott 1997). The H-P filter chooses the trend value
st of the deseasonalized data yt to minimize 

.

The penalty  parameter controls the smoothness of the
series. The larger the value of  is, the smoother the
trend. Currently, the H-P filter can be implemented using
most econometric software (e.g., EViews). 

Zarnowitz and Ozyildirim (2002) point out that the
selection of the trend is inevitably associated with consider-
able arbitrariness, which has long been a source of confu-
sion in the literature of growth cycles. However, they found
that estimated trends are generally similar for the PAT and
the H-P filter when the value of  is around 108,000 for
monthly data, and the PAT is superior to its alternatives in
the matter of details. Consistent with their finding, with the
value of  = 108,000, the two estimated trends based on
the PAT and the H-P filter were very similar, as depicted in
figure 4. By its very nature, however, the PAT attributes a
somewhat bigger part of the cyclical movements to trend.

yt st–( )2 λ st 1+ st–( ) st st 1––( )–( )
t 2=

T 1–

∑
2

+
t 1=

T

∑

λ
λ

λ

λ



10 JOURNAL OF TRANSPORTATION AND STATISTICS V6, N2/3 2003

Transportation Output Index together with its
smoothed version are compared with the NBER-
defined growth cycles for the overall economy in
figure 5. The smoothing was done using a filter
developed by Statistics Canada (Hertzberg and
Beckman 1989). We found that the Total Transpor-
tation Output Index led the growth cycle consis-
tently with average lead times of six months at
peaks and five months at troughs. Only for the eco-
nomic slowdown of January 1995–January 1996
was the Transportation Output Index roughly coin-
cident both at the peak and the trough. Figure 5 also
reveals slowdowns in the transportation sector from
July 1992–August 1993 (mainly due to a sharp
decline in air passenger travel at that time) and
October 1997–August 1998 (a short and shallow
slowdown compared with others), which were not
followed by corresponding slowdowns in the over-
all economy. Except for these caveats, our Transpor-
tation Output Index gave correct signals for all
economy-wide slowdowns of the period. A look at
the freight and passenger indexes suggests that the
classic business and growth cycle characteristics of
transportation output are mainly due to the freight
component, and the passenger component does not
show a consistent lead-lag relationship with refer-
ence to the economic cycle.

We should, however, point out that the lead time
analysis presented above does not take into account
either the lag involved in obtaining the data necessary
to construct the series or the necessity of employing a
filter rule that by its very nature involves a delay in
identifying changes. It is necessary to develop some
filter rule (e.g., a three consecutive decline rule for sig-
naling a downturn) that would enable analysts, in
real time, to distinguish between the irregular move-
ments and the true signals of cyclical turns.13 After
all, a leading indicator is only as good as the filter rule
that interprets its movements. These rules typically
involve tradeoffs of accuracy for timeliness and
missed signals for false alarms, see Lahiri and Wang
(1994). We have so far identified the peaks and
troughs of the indexes from an ex post perspective.
Further analysis is needed to establish the ex ante pre-
dictive ability of the Transportation Output Index. In
future research, we plan to develop filter rules that
would enable us, in real time, to distinguish between
the irregular movements and the true signals of cycli-
cal turns. 

FIGURE 4  Trends in the Transportation Output Index

50

60

70

80

90

100

110

120

130

Original Series

H-P Trend

Phase Average Trend (PAT)

Index: 1996 = 100

Jan
 1980

Jan
 1982

Jan
 1984

Jan
 1986

Jan
 1988

Jan
 1990

Jan
 1992

Jan
 1994

Jan
 1996

Jan
 1998

Jan
 2000

Jan
 2002

13 For a discussion of alternative rules for forecasting the
cyclical movements of the Composite Index of Leading
Indicators for the economy, see Stekler (1991, pp. 169–
181).
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COMPARISON WITH ALTERNATIVE 
OUTPUT MEASURES

It is also possible to compare our Total Transporta-
tion Output Index with annual data produced by
BEA and BLS on the gross output of the transporta-
tion sector. Gordon (1992) and, more recently, Bos-
worth (2001) and Yuskavage (2001) have provided
valuable insights into the different methodologies
and data that BEA and BLS use to construct the out-
put. The Office of Productivity and Technology of
BLS maintains an annual series on transportation
output that begins at 1987.

Gullickson and Harper (2002) present an analy-
sis using experimental BLS output data based on a
multifactor economic growth model that goes back
to 1947. Since BEA went through a major overhaul
in generating gross output data in the 1980s, and
after 1991 it switched to using BLS’s Producer Price
Index to compute the price deflator, we plotted the
BEA series obtained from the Survey of Current
Business (November 1997) only after 1991. 

Figure 6 shows that even though the four trans-
portation output series are derived using widely dif-
ferent approaches, remarkably similar trends are
exhibited (values of all series were normalized at
1996 = 100). The average values of the four series
are also very similar. The BEA series, which has

more comprehensive coverage and is benchmarked
to the five-year economic census, followed our
Transportation Output Index closely throughout
the 1990s, whereas the BLS series seems to have
slowed down since 1998. More importantly, it
appears that while the three alternative annual out-
put measures reflect the long-term trends, our
monthly transportation output measure is superior
to them in reflecting cyclical movements in this sec-
tor. In figure 6, our Transportation Output Index
deviates temporarily from the other three series
whenever there are recessions and growth slow-
downs in the economy. 

Following Gordon (1992) and Bosworth (2001),
in table 3, we present alternative estimates of output
growth in the transportation sector and in its three
major subsectors—trucking, railroads, and air-
lines—between 1980 and 2000. For this compari-
son, we did not include the BLS real output series
because it is available only after 1987 and it is very
similar to the BLS experimental series. The growth
rates are also reported separately for 1980–1991
and 1992–2000. In computing these rates, we con-
verted our monthly values to annual figures. For the
total output, the growth rates of our index fall
between the BEA and BLS rates in all periods. The
same is true for trucking except that our index has a

FIGURE 5  Growth Cycles in the Transportation Output Index

Note: Shaded areas represent the NBER-defined growth slowdown in the U.S. economy (the trough for the 
latest growth slowdown has not been determined).
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higher growth rate than both BEA and BLS during
1992–2000. For railroads, our index has higher
rates of growth than that of BEA and BLS for the
overall period and in the 1990s. However, during
1980–1991, the rail growth rate of our index was
between the BEA and BLS values. For airlines, our
index is almost the same as that of the BLS index,
whereas the BEA figures are somewhat higher. 

Interestingly, we found that our monthly index
has a lot more cyclical variation than the other three
series. This is not surprising in view of the fact that
the BEA and BLS values are annual and are bench-
marked to five-year economic surveys. Given that
we constructed the Total Transportation Output
Index using monthly data on a series of eight related
factors, most of which were not previously used, it
is heartening to note the level of agreement in the
three series. The advantage of our approach, how-
ever, is that the index can be made available on a
monthly basis such that the health of the transporta-
tion sector can be monitored in real time. 

CONCLUSIONS

In this paper, we developed a monthly output index
of the U.S. transportation sector for January 1980
through April 2002, covering air, rail, water, truck,
transit, and pipeline activities. The included indus-

tries cover from 89.7% to 93.9% of the total for-
hire transportation GDP during 1980 to 2000. We
use both linked Laspeyres and Fisher Ideal Index
methods to construct the indexes. These two series
were found to be very similar. Separate indexes for
freight and passenger transportation were also con-
structed, and freight was found to be the dominant
component in the Total Transportation Output
Index. The index closely follows the annual trans-
portation output figures produced by BLS and BEA,
even though our monthly index displays more pro-
nounced cyclical movements. Thus, our approach to
measuring output in the transportation sector can
be useful for measuring productivity in the sector
and can be extended to other nonmanufacturing
sectors as well.

We also examined the characteristics of the trans-
portation output measure in relation to the classical
business and growth cycles of the overall economy.
The transportation output cycles are studied using
the Phase Average Trend and Hodrick-Prescott fil-
ter. The strong cyclical movements in transportation
output appear to be more synchronized with the
growth slowdowns rather than the full-fledged
recessions of the U.S. economy.  Based on the cycles
generated from the PAT, we found that the index led
the NBER-defined growth cycles with an average
lead time of six months at peaks and five months at

FIGURE 6  Comparison of Monthly Transportation Index
with Annual BEA and BLS Outputs
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troughs with almost no false signals. Admittedly, the
lead-lag analysis reported here is retrospective. In
future research, we would like to develop ex ante fil-
ter rules that would enable us, in real time, to distin-
guish between true cyclical turns and irregular
movements of the transportation series. Further
analysis is needed to establish the ex ante predictive
value of the Transportation Output Index.

While we believe the Total Transportation Out-
put Index yields a valid measure of output in the
industry, we recognize there are some data problems
and that refinements in the indexes may be neces-
sary to improve it in the future. First, this index only
measures output in the services sector of the indus-
try. The activity involved in the production of trans-
portation equipment is not included, nor is the
activity involved in the construction of transporta-
tion infrastructure.

Second, within the services sector only for-hire
transportation is included.  The activity involved in
intrafirm (in-house) and household transportation
(HPTS) has been excluded. To the extent that for-
hire and these two transportation activities display
different trends, the current index will not yield a
precise picture of economic activity in the industry.
Han and Fang (2000) estimated that in-house and

for-hire components of total transportation activity
constituted nearly 1.97% and 3.16%, respectively,
of total GDP in 1997. Furthermore, Chen et al.
(2003) estimated the magnitude of HPTS to be
about 1.9 times that of all for-hire transportation
industries between 1991 and 2000. Inclusion of
both in-house and HPTS components would
increase the contribution of transportation services
to the total GDP from 3.16% to 11.0%, if based on
TSA 1997 data. In the future, it will be useful to
incorporate these two components as part of our
Transportation Output Index once monthly data
are available. In addition, the index excludes activ-
ity in some of the minor for-hire subsectors like sce-
nic and sightseeing, support activities, postal service,
and couriers and messengers.

Third, the waterborne component of the index
only includes internal waterway traffic. It does not
include deep seas, Great Lakes, coastal trade, or
cruise travel.  Again, if the trends in the excluded
items differ from the data included, the results
would be imprecise. Monthly data on some of these
excluded items are currently being developed by the
U.S. Army Corps of Engineers and can be easily
integrated in our analysis as soon as they are
available. 

TABLE 3  Comparisons of Alternative Measures of Output Growth in the
Transportation Sector 
Compound annual rate

Output measures 1980–2000 1980–1991 1992–2000

Trucking
BEA real output 4.8% 4.8% 3.9%
BLS experimental real output 2.3% 1.3% 2.8%
Transportation Output Index 3.4% 1.7% 4.5%

Railroads

BEA real output 1.8% 1.5% 1.7%

BLS experimental real output 1.8% 0.8% 2.6%

Transportation Output Index 2.2% 1.0% 3.3%

Airlines

BEA real output 5.4% 5.7% 4.6%

BLS experimental real output 5.0% 4.9% 4.4%

Transportation Output Index 5.0% 4.9% 4.4%

Total

BEA real output 4.2% 4.1% 3.9%

BLS experimental real output 2.3% 1.3% 2.8%

Transportation Output Index 3.0% 1.9% 3.7%

Sources: BEA output data are from U.S. Department of Commerce, Bureau of Economic Analysis, “Gross 
Output by Detailed Industry,” table. See Gullickson and Harper (2002) for the BLS experimental output series.
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Finally, monthly data on national transit rider-
ship are available on a quarterly basis and lag by
four months. Other monthly data are sometimes
available with a lag of one to three months. For the
purpose of releasing the output index with a usual
lag of one to two months, some of the latest
monthly data must be forecasted on a provisional
basis using methods discussed in McGuckin et al.
(2001). Fortunately, however, the major compo-
nents of the series (trucking, air, and rail freight) are
available quickly, and hence monthly figures for the
total transportation sector can be reported soon
after release with confidence. 

Despite these caveats and suggestions for refining
the indexes, as presently constructed they can pro-
vide sufficiently accurate estimates of the level of
economic activity in the transportation sector.
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Appendix 1 

Documentation of the Data Series

1. Air Revenue Passenger-Miles (RPM)

Name of series Air Revenue Passenger-Miles (RPM)

Explanation One revenue passenger transported one mile

Source U.S. Department of Transportation, Bureau of Transportation Statistics,
Office of Airline Information, Air Carrier Traffic Statistics Monthly,
available at http://www.bts.gov/oai, January 1992

Data format Preliminary data; seasonally adjusted (in thousands)

Publication date Available at the end of the month for the 2 previous months

Revisions The latest 12 months of data are preliminary

Comments Based on BTS Form 41 filed by large certificated air carriers

80 82 84 86 88 90 92 94 96 98 00 02
0

10,000

20,000

30,000

40,000

50,000

60,000

70,000
Air RPM, X11 adjusted



LAHIRI, STEKLER, YAO & YOUNG 17

2. National Transit Ridership

Name of series National Transit Ridership

Explanation Estimated unlinked passenger trips

Source American Public Transportation Association (APTA), APTA Quarterly
Transit Ridership Report, available at http://www.bts.gov since January
1992

Data format Preliminary data; seasonally adjusted (in thousands of riders)

Publication date Available in the first day of each quarter for the 2 previous quarters

Revisions The latest 3 years of data are preliminary

Comments Includes ridership of commuter rail, heavy rail, light rail, and others
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3. Rail Revenue Passenger-Miles (RPM)

Name of series Rail Revenue Passenger-Miles (RPM)

Explanation RPMs carried by Amtrak and Alaska Railroads

Source U.S. Department of Transportation, Federal Railroad Administration
(FRA), Office of Safety Analysis, FRA Accident/Incident Bulletin, avail-
able at http://safetydata.fra.dot.gov/OfficeofSafety/Default.asp)

Data format Preliminary data; seasonally adjusted (in millions of riders)

Publication date Beginning of each month for previous 2 months

Revisions The latest 12 months of data are preliminary

Comments RPM for January 1980–December 1985 were estimated from data of
revenue passengers, because empty trains were counted into RPM
before that time
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4. Trucking Tonnage Index (TTI)

Name of series Trucking Tonnage Index (TTI)

Explanation Truck loads

Source American Trucking Association (ATA), Monthly Trucking Report

Data format Index: 1996 = 100; monthly, seasonally adjusted and unadjusted

Publication date 3rd of each month for the previous 2 months

Revisions The latest monthly data are preliminary

Comments Estimated from tonnage reported by ATA’s members in 50 states
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5. Railroads Revenue Ton-Miles of Freight (RTMF)

Name of series Railroads Revenue Ton-Miles of Freight (RTMF)

Explanation Carloads of 20 railroads (total containers and trailers) in the United
States

Source Association of American Railroads, Weekly Railroad Traffic, avail-
able at http://www.bts.gov since the 1st week of 1996

Data format Preliminary data; quarterly; seasonally adjusted (in billions)

Publication date Second month of each quarter for the 2 previous quarters

Revisions The latest 12 months of data are preliminary

Comments Monthly data were not available. We interpolated from the quarterly
data; however, we expect to work with the monthly series soon.
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6. Total Internal Commerce Tonnage Indicator (TICTI)

Name of series Total Internal Commerce Tonnage Indicator (TICTI), all commodities

Explanation Internal waterway tonnage of coal, petroleum and chemicals, and food
and farm products; estimated from 11 key locks on 9 rivers

Source U.S. Army Corps of Engineers, Waterborne Commerce Statistics Center,
available at http://www.iwr.usace.army.mil/ndc/monthlyindicators.htm,
since January 1994

Data format Preliminary data; seasonally adjusted (in millions of short tons)

Publication date The beginning of each month for the 2 previous months

Revisions The latest 12 months of data are preliminary

Comments The data do not include great lakes, coastal and deep-sea waterborne
traffic, which are currently not available
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7. Air Revenue Ton-Miles of Freight and Mails (RTMFM)

Name of series Air Revenue Ton-Miles of Freight and Mail (RTMFM)

Explanation Ton-miles of freight and express mail transported by the air industry

Source U.S. Department of Transportation, Bureau of Transportation Statis-
tics, Office of Airline Information, Air Carrier Traffic Statistics
Monthly, available at http://www.bts.gov/oai since January 1992

Data format Preliminary data; seasonally adjusted (in thousands)

Publication date The end of the month for the 2 previous months

Revisions The latest 12 months of data are preliminary

Comments Based on BTS Form 41 filed by large certificated air carriers
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8. Index of Energy Movements by Pipeline (IEMP)

Name of series Index of Energy Movements by Pipeline (IEMP)

Explanation Movements of crude oil and petroleum products between PADDs;
Alaska field production and consumption of natural gas

Source U.S. Department of Energy, Energy Information Administration, 
Petroleum Supply Monthly (for movements of crude oil and petroleum
products) and Monthly Energy Review (for natural gas and Alaska field
production)

Data format Final data; seasonally adjusted (in millions of tons)

Publication date 23rd–26th of each month for the 2 previous months

Revisions No revision

Comments Before January 1985, movements of crude oil between PADDs were not
included in the total. In constructing IEMP, crude oil and petroleum
products are in million barrels per day and natural gas is in cubic feet
and are converted into tons using conversion factors. Conversion fac-
tors: 1 cubic foot of natural gas = 1,020 Btu (heat unit); 1 million Btu =
0.025 tons of oil equivalent; 1 barrel of petroleum products = 5.326
millions of Btu (heat unit). 
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Appendix 2

Monthly Values of Transportation
Indexes

Time

Total 
Transportation

Index

Freight 
Transportation

Index

Passenger 
Transportation

Index

Jan-80 68.2 70.9 58.9

Feb-80 66.9 69.1 59.4

Mar-80 64.1 65.8 57.7

Apr-80 62.8 65.0 55.0

May-80 62.3 63.7 57.0

Jun-80 60.8 61.2 58.3

Jul-80 T60.4 60.9 57.7

Aug-80 60.7 61.1 58.4

Sep-80 61.5 62.7 57.1

Oct-80 62.8 64.3 57.2

Nov-80 62.6 64.8 54.9

Dec-80 P65.5 68.2 56.5

Jan-81 65.2 67.4 57.5

Feb-81 64.6 67.0 56.3

Mar-81 63.9 66.5 55.2

Apr-81 63.3 64.9 57.2

May-81 61.7 62.5 58.0

Jun-81 62.3 63.2 58.3

Jul-81 63.2 64.7 57.4

Aug-81 61.0 62.2 56.2

Sep-81 62.2 63.5 57.2

Oct-81 61.7 63.0 56.6

Nov-81 60.2 61.3 55.8

Dec-81 60.7 61.2 58.0

Jan-82 58.0 58.1 56.8

Feb-82 58.6 58.7 57.2

Mar-82 59.1 59.0 57.9

Apr-82 58.5 58.3 58.0

May-82 57.5 57.5 56.1

Jun-82 59.0 58.9 58.2

Jul-82 57.2 56.7 57.4

Aug-82 56.7 55.7 58.4

Sep-82 56.9 56.2 57.6

Oct-82 T54.8 53.6 57.1

Nov-82 55.5 54.3 57.5

Dec-82 57.3 56.1 59.6

Jan-83 57.2 55.5 60.6

Feb-83 57.4 55.7 60.9

Mar-83 58.9 57.1 62.9

Apr-83 57.3 56.0 59.9

Time

Total 
Transportation

Index

Freight 
Transportation

Index

Passenger 
Transportation

Index

May-83 58.6 57.7 60.2

Jun-83 61.1 60.2 62.5

Jul-83 60.9 60.6 60.6

Aug-83 61.0 60.2 62.0

Sep-83 61.2 60.4 62.4

Oct-83 59.7 58.4 62.0

Nov-83 61.3 60.6 62.0

Dec-83 61.8 61.1 62.7

Jan-84 62.7 62.3 62.5

Feb-84 64.8 64.6 64.0

Mar-84 64.7 64.7 63.7

Apr-84 64.2 63.8 64.0

May-84 65.7 65.4 65.1

Jun-84 65.8 65.5 65.3

Jul-84 64.0 63.6 63.8

Aug-84 P66.0 65.4 66.3

Sep-84 63.5 62.2 65.9

Oct-84 64.4 63.0 66.7

Nov-84 64.3 62.8 66.9

Dec-84 63.5 61.8 66.6

Jan-85 64.0 62.5 66.7

Feb-85 62.3 60.4 66.1

Mar-85 62.6 60.1 68.2

Apr-85 64.2 61.7 69.8

May-85 65.0 62.7 70.0

Jun-85 62.9 60.4 68.4

Jul-85 63.4 60.7 69.5

Aug-85 63.7 61.0 69.9

Sep-85 T62.3 60.1 66.8

Oct-85 63.5 61.2 68.4

Nov-85 62.8 60.6 67.6

Dec-85 65.1 62.5 71.0

Jan-86 67.0 64.7 71.9

Feb-86 65.7 63.2 71.3

Mar-86 65.2 62.2 72.0

Apr-86 67.0 64.6 72.2

May-86 66.0 63.6 71.1

Jun-86 65.4 62.9 70.8

Jul-86 68.9 66.9 73.0

Key: P = peak; T = trough.

(continues)
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Monthly Values of Transportation
Indexes (continued)

Time

Total 
Transportation

Index

Freight 
Transportation

Index

Passenger 
Transportation

Index

Aug-86 67.9 65.1 74.1

Sep-86 68.6 66.7 72.7

Oct-86 68.7 66.8 72.7

Nov-86 67.2 64.8 72.4

Dec-86 70.1 67.4 76.2

Jan-87 69.9 67.6 74.6

Feb-87 70.6 68.0 76.3

Mar-87 71.3 68.5 77.5

Apr-87 72.2 69.0 79.4

May-87 69.7 66.6 77.0

Jun-87 71.5 69.2 76.6

Jul-87 74.4 72.1 79.2

Aug-87 71.4 68.0 79.1

Sep-87 74.2 72.7 77.1

Oct-87 74.2 72.5 77.5

Nov-87 74.3 72.9 76.8

Dec-87 76.7 76.0 77.6

Jan-88 74.8 73.5 77.2

Feb-88 P78.5 77.2 80.8

Mar-88 76.9 75.7 79.0

Apr-88 76.4 74.7 79.6

May-88 75.8 74.2 78.8

Jun-88 77.7 76.5 79.8

Jul-88 75.5 73.4 79.8

Aug-88 77.0 74.6 82.0

Sep-88 78.2 76.7 80.9

Oct-88 75.7 73.2 80.6

Nov-88 77.9 76.1 81.4

Dec-88 79.4 78.9 79.8

Jan-89 77.1 75.0 81.2

Feb-89 76.4 74.8 79.5

Mar-89 76.4 74.4 80.2

Apr-89 75.0 73.3 78.4

May-89 76.4 74.4 80.4

Jun-89 77.5 74.8 83.0

Jul-89 73.8 69.7 82.2

Aug-89 76.8 73.2 84.3

Sep-89 77.1 73.8 83.7

Oct-89 76.1 72.6 83.4

Nov-89 77.6 74.0 85.0

Dec-89 77.2 74.4 82.8

Jan-90 77.8 74.0 85.6

Feb-90 78.8 75.7 85.2

Time

Total 
Transportation

Index

Freight 
Transportation

Index

Passenger 
Transportation

Index

Mar-90 79.4 76.6 84.9

Apr-90 77.9 75.1 83.6

May-90 79.2 77.1 83.4

Jun-90 78.2 75.1 84.4

Jul-90 78.2 75.5 83.8

Aug-90 81.3 78.8 86.3

Sep-90 79.0 75.8 85.5

Oct-90 80.8 77.9 86.7

Nov-90 80.4 77.6 86.3

Dec-90 76.7 72.8 84.7

Jan-91 78.5 75.8 83.9

Feb-91 75.9 74.8 78.1

Mar-91 T73.7 71.9 77.4

Apr-91 77.3 74.8 82.6

May-91 78.7 76.3 83.6

Jun-91 75.5 72.0 82.8

Jul-91 80.8 79.1 84.3

Aug-91 81.8 79.8 85.7

Sep-91 82.3 80.1 86.6

Oct-91 83.9 82.8 86.1

Nov-91 80.9 79.5 83.7

Dec-91 80.2 77.0 86.5

Jan-92 82.6 81.6 84.6

Feb-92 83.2 81.8 86.0

Mar-92 82.1 81.7 82.9

Apr-92 82.4 82.3 82.4

May-92 82.2 81.3 84.1

Jun-92 83.9 81.8 88.4

Jul-92 87.9 86.3 91.1

Aug-92 84.5 81.3 91.0

Sep-92 86.2 83.6 91.5

Oct-92 85.7 84.6 88.1

Nov-92 84.0 82.6 87.1

Dec-92 85.5 84.6 87.6

Jan-93 85.3 84.3 87.4

Feb-93 84.5 83.7 86.4

Mar-93 85.7 85.8 85.7

Apr-93 86.8 86.7 87.3

May-93 84.7 83.5 87.2

Jun-93 86.0 86.0 86.0

Jul-93 85.9 85.1 87.5

Aug-93 85.5 84.4 87.7

Sep-93 89.2 88.0 91.6

Key: P = peak; T = trough.

(continues)
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Monthly Values of Transportation
Indexes (continued)

Time

Total 
Transportation

Index

Freight 
Transportation

Index

Passenger 
Transportation

Index

Oct-93 88.7 87.3 91.8

Nov-93 90.3 90.0 91.1

Dec-93 89.7 89.6 90.0

Jan-94 86.7 85.9 88.3

Feb-94 87.9 87.7 88.5

Mar-94 93.5 95.0 90.8

Apr-94 84.5 81.9 89.5

May-94 91.4 91.8 90.7

Jun-94 93.4 94.8 91.0

Jul-94 91.7 91.8 91.8

Aug-94 93.8 95.3 90.9

Sep-94 97.0 97.3 96.4

Oct-94 94.4 93.9 95.5

Nov-94 99.7 101.5 96.3

Dec-94 P104.6 110.0 94.5

Jan-95 101.4 105.2 94.3

Feb-95 100.6 104.7 92.8

Mar-95 100.3 103.8 93.7

Apr-95 94.4 95.0 93.3

May-95 99.1 102.1 93.4

Jun-95 98.0 100.6 93.1

Jul-95 T94.2 94.9 92.7

Aug-95 99.9 103.6 93.0

Sep-95 99.2 100.1 97.6

Oct-95 97.1 97.1 97.2

Nov-95 99.1 99.3 98.7

Dec-95 95.7 95.8 95.4

Jan-96 96.9 97.7 95.4

Feb-96 100.0 98.8 102.3

Mar-96 99.0 98.7 99.6

Apr-96 98.6 98.4 98.7

May-96 101.5 102.5 99.7

Jun-96 97.5 97.2 98.2

Jul-96 100.0 100.7 98.8

Aug-96 100.5 101.5 98.8

Sep-96 99.9 99.0 101.6

Oct-96 102.9 102.8 102.9

Nov-96 101.5 102.2 100.3

Dec-96 101.6 100.4 103.6

Jan-97 104.5 104.9 103.7

Feb-97 104.1 104.2 104.0

Mar-97 103.4 102.4 105.2

Apr-97 105.0 105.9 103.3

Time

Total 
Transportation

Index

Freight 
Transportation

Index

Passenger 
Transportation

Index

May-97 105.5 106.5 103.8

Jun-97 103.7 104.7 101.8

Jul-97 106.4 108.4 102.7

Aug-97 105.3 107.2 101.8

Sep-97 109.8 111.2 107.2

Oct-97 110.6 112.6 106.9

Nov-97 106.9 107.3 106.1

Dec-97 110.9 113.1 106.9

Jan-98 110.3 112.9 105.6

Feb-98 110.5 112.7 106.7

Mar-98 112.0 115.4 105.8

Apr-98 112.7 114.9 108.8

May-98 111.9 114.1 108.1

Jun-98 113.1 117.6 105.1

Jul-98 113.2 118.1 104.5

Aug-98 110.3 114.4 103.1

Sep-98 112.6 115.6 107.1

Oct-98 114.0 115.6 111.1

Nov-98 113.2 114.4 111.1

Dec-98 114.3 117.0 109.4

Jan-99 112.4 114.2 109.2

Feb-99 114.4 116.7 110.5

Mar-99 119.4 123.5 112.2

Apr-99 116.3 118.0 113.4

May-99 115.1 117.2 111.3

Jun-99 116.8 120.3 110.7

Jul-99 116.1 118.5 112.0

Aug-99 116.7 121.7 107.8

Sep-99 119.1 121.5 114.9

Oct-99 118.3 118.5 118.0

Nov-99 P121.8 122.9 119.8

Dec-99 120.0 124.4 112.3

Jan-00 117.6 121.2 111.3

Feb-00 121.4 123.0 118.7

Mar-00 119.4 120.0 118.5

Apr-00 112.6 108.3 120.2

May-00 120.0 119.3 121.5

Jun-00 117.8 116.7 119.8

Jul-00 114.1 112.2 117.6

Aug-00 118.9 122.1 113.3

Sep-00 115.6 112.9 120.3

Oct-00 116.8 114.4 121.1

Nov-00 118.7 115.4 124.7

Key: P = peak; T = trough.

(continues)



LAHIRI, STEKLER, YAO & YOUNG 27

Monthly Values of Transportation
Indexes (continued)

Time

Total 
Transportation

Index

Freight 
Transportation

Index

Passenger 
Transportation

Index

Dec-00 112.3 109.3 117.7

Jan-01 118.8 119.0 118.6

Feb-01 114.5 111.9 119.3

Mar-01 118.2 117.0 120.4

Apr-01 115.5 111.7 122.5

May-01 120.9 121.1 120.6

Jun-01 115.5 113.3 119.5

Jul-01 116.6 115.2 119.3

Aug-01 120.2 122.5 116.4

Sep-01 T101.6 108.4 90.0

Oct-01 108.8 115.5 97.2

Nov-01 110.1 113.1 104.9

Dec-01 108.6 110.4 105.6

Jan-02 114.7 119.5 106.3

Feb-02 110.7 111.5 109.6

Mar-02 112.5 112.9 112.0

Apr-02 116.3 120.0 109.9

Key: T = trough.
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The Importance of Transportation in the Canadian Economy 

JEFF HARRIS

Transport Canada

ABSTRACT

This paper uses direct and indirect demands for
transportation as a proportion of final demand to
assess the relative share of transportation-related
demand in Canadian gross domestic product (GDP)
from 1971 to 1996. The data are derived from the
Canadian input/output tables. Three trends are
highlighted over the time period studied: a growing
share of transportation-related trade in GDP, a
decline in transportation investment, and a decline
in the transportation margins associated with the
distribution of commodities. Overlying these trends,
as a major determinant of transportation as a share
of GDP, is the volatility of transport fuel prices.
Transportation as a share of GDP has been fairly
steady over the time period studied, representing
20.7% of GDP in 1996, with a peak of 21.1% in
1981 corresponding to the peak in fuel prices, and a
low of 19.1% during the recession of the early
1990s. 

INTRODUCTION 

This paper uses the Canadian system of national
accounts (CNA) to estimate the proportion of
Canadian gross domestic product (GDP) that is
transport-related, with transportation final demand

KEYWORDS: transportation, economic analysis, national
accounts, GDP, consumption, investment, imports,
exports, direct and indirect demand, domestic demand.
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as the measure of GDP instead of value added or
income. Final demand is used here because it allows
for a broader definition of transportation, notably
including the use of transportation equipment, fuel,
and infrastructure traditionally not considered to be
part of the transportation industries, but instead
considered private transportation demand by indus-
try and consumers, and public transportation
demand by government. 

The paper draws on the work of Han and Fang
(1998) on the final demand-based methodology
used by the U.S. Department of Transportation and
expands on that methodology in two principal
ways: 

1. by broadening the definition of transporta-
tion-related demand to include both transpor-
tation fuels (e.g., gasoline, diesel oil) and
transportation margins,1 as well as transporta-
tion equipment, infrastructure, and industries; 

2. by including not only direct transportation-
related demand but also indirect demand,
which is embedded in nontransportation-
related final demand. For example, shoes that
are consumed as part of final demand require
transportation as an intermediate input in their
production, thus some part of the final cost of
shoes to consumers can be considered as indi-
rect transportation-related final demand. 

The data used in this paper are from the CNA
input-output (IO) tables, using the industry and
commodity classification system based on the Cana-
dian Standard Industrial Classification (SIC) system.
The SIC has been replaced by the North American
Industry Classification System (NAICS). However,
at the time this paper was written, NAICS-coded
data were not available for the years assessed

(1971–1996). Statistics Canada’s IO division pro-
vided all data described in this paper.2 

It should be noted that this paper does not
develop a satellite account for transportation in the
same sense as the U.S. satellite account for transpor-
tation described in Fang et al. (2000).3 Transporta-
tion satellite accounts typically develop an estimate
for a new industry, for example, private trucking, by
disaggregating and then reaggregating data derived
from other industries. For example, trucking
employment, transportation equipment investment,
or transportation fuel use contained in other indus-
tries, such as the retail or wholesale trade industries,
will form the basis for estimating the private truck-
ing industry. 

This paper neither disaggregates nor reaggregates
data, but uses the existing rows and columns con-
tained in the CNA, while imposing a definition of
transportation-related demand that encompasses
both existing industries (e.g., transportation indus-
tries) and commodities (e.g., transportation equip-
ment, fuel). The same methodology used in this
paper could be applied to transportation satellite
account IO tables where, for example, private
trucking was reconstituted as a separate industry
column, thereby increasing the accuracy of the
description of transportation within the national
economy. A more detailed description of the meth-
odology used here is provided later in this paper. 

The paper is structured in three sections: the
CNA, methodology, and results. The paper traces
the evolution of transportation-related demand
from 1971 to 1996, at five-year intervals based on
the Canadian census years, where 1996 is the most
current IO table available. These time periods were
also selected to allow for observations relative to the
business cycle, with 1971 and 1976 straddling the

1 Transportation margins (TMs) are a concept unique to
the CNA and represent an estimate of the transportation
costs incurred in the distribution of commodities. They
form, along with trade margins and indirect taxes, the
principal difference between commodities at factor prices
and final prices as the sum of final demand categories in
the CNA. In order to fully account for transportation in
the CNA, the margins must either be included separately
in transportation demand or disaggregated and merged
with other appropriate transportation commodities (e.g.,
freight trucking) as a form of satellite account. Because
this paper is not developing a satellite account, the TMs
were included as a separate commodity. 

2 A small amount of suppression for confidentiality of
certain entries in the IO tables was undertaken by Statis-
tics Canada prior to providing the tables, typically
accounting for 1%–2% of the total values contained in
the tables. Estimates of the suppressed data were gener-
ated based on comparisons of the provided actual row
and column total values, and comparisons of the values in
different years with unsuppressed data. 
3 It can be noted that the development of a similar satel-
lite account for private trucking in Canada is proceeding,
and when completed, can be used with the same method-
ology described in this paper to develop a more precise
estimate of the share of transport demand in GDP. 
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1973 OPEC oil crisis, 1981 and 1991 representing
recession years, and 1986 and 1996 representing
years of recovery and positive growth. 

CANADIAN NATIONAL ACCOUNTS

The CNA, as represented by the IO tables, are struc-
tured into the make (M), use (U), and final demand
(FD) matrices. The M table is a commodity by indus-
try matrix that indicates which commodities are
made by which industry. The U table is a commodity
and primary inputs by industry matrix that indicates
the amount of commodities and primary inputs used
by industry. The FD table is a commodity and pri-
mary inputs by FD category matrix that indicates the
amount of commodities and primary inputs that
form part of FD. FD categories are broadly classified
as consumption (C), investment (I), government
spending (G), imports (IM), and exports (EX) where 

FD = GDP = C + I + G – IM + EX, and 

FDD (final domestic demand) = C + I + G. 

In the CNA, detailed commodities are more
numerous than either industry or final demand clas-
sifications, in order to account for industries pro-
ducing more than one commodity or joint
production, thus leading to rectangular matrix
forms. Commodities are goods or services while pri-
mary commodities represent returns to primary fac-
tors (e.g., labor, capital), as well as variables such as
indirect taxes. There are four levels of detail for
which IO tables are available in the CNA: s, m, l,
and w. S corresponds to small (in terms of numbers
of rows and columns), m to medium, and w to
working (the most detailed level available). L refers
to an historical link series, which provides a consis-

tent classification of industries and commodities
going back over time to 1961. This paper uses the
Canadian SIC-based system used at Statistics Can-
ada for the 1986 to 1997 IO tables, which has now
been replaced by the NAICS.4 Table 1 illustrates the
dimensions of the two most detailed levels available
(l, w) based on the SIC, where the l (or historical
link) tables are used in this paper to represent a con-
sistent classification over time, though at some loss
of detail. 

Figure 1 shows the relationship between the three
IO tables and illustrates two common means of cal-
culating GDP—by the sum of primary inputs and
the sum of final demands. The third common means
of calculating GDP is value added, which is done by
subtracting the U from the M matrix, leaving a
commodity by industry matrix of value added. 

In terms of how supply and demand for trans-
portation is represented in the CNA tables, the M
matrix indicates the total supply of transportation
(where M shows the value and type of commodities
produced by each industry, or gross output). The U
and FD matrices represent, respectively, the interme-
diate and final demands for commodities, where U
indicates which commodities are used as inputs in
production and FD indicates those commodities
that are allocated to final demand categories and
thus form GDP. 

In terms of transport demand, the direct demand
for transportation (e.g., automobiles, rail invest-
ment) is found in the FD tables, while indirect
demand is derived from transportation commodities
(e.g., domestic freight) used as inputs in the U
matrix. Indirect demand refers to the proportion of

TABLE 1  Description of the w- and l-Level Matrices

Rows Columns Years

l-level 1961–1996

Final demand 476 commodities 122 categories  

Use 476 commodities 167 industries 

Make 476 commodities 167 industries  

w-level 1986–1996

Final demand 679 commodities 138 categories

Use 679 commodities 244 industries 

Make 679 commodities 244 industries  

4 A NAICS-based l-level historical series is currently
being developed by Statistics Canada, with data for 1961–
1999 expected to be available by the end of 2004. 
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transportation commodities embedded in nontrans-
port final demand. For example, shoes consumed as
part of final demand require transportation as an
intermediate input in their production; thus a pro-
portion of the final cost of shoes to consumers can
be considered as indirect transportation-related final
demand. The definition of the industries and com-
modities classified as transportation-related demand
in this paper is provided in the following section. 

One difficulty, or opportunity, in accounting for
transportation in the CNA is commercial transpor-
tation, which is attributed to “fictive” industries,
notably transportation margins (TMs). Margins are
created to account for the difference between factor
prices, or price at the factory gate, and final prices,
or prices charged to the consumer, with the two
main types of margins being transportation and
trade margins.5 TMs appear as both columns and
rows in the M and U matrices and as a row in the
FD matrix, and can be interpreted as the distribu-
tion costs imputed to transportation industries. The
use of TMs means that transportation industry
commodities are allocated between: 1) transporta-
tion used in distribution, or transportation costs as a
portion of the difference between the factor price
and final price, and 2) transportation used in pro-

duction, or transportation costs as a share of factor
prices. 

The fictive TMs industry uses solely for-hire com-
mercial freight transportation industry commodities
(e.g., trucking, rail) as inputs in the U matrix, while
its commodity output is represented as a single row
in both the U and FD matrices. This means that
components of the TMs (e.g., trucking, rail) cannot
be attributed to specific industries, although they
can be classified in aggregate through the inputs of
the U matrix. Table 2 lists the composition, or
inputs, to the TMs industry from 1971 to 1996.
The trends show the most growth in trucking as a
share of the TMs, going from 41.1% in 1971 to
60.6% in 1996, with the largest growth from 1991
(52.3%) to 1996 (60.6%), possibly reflecting trade
trends and the ongoing movement to just-in-time
distribution. Over the same period, rail declined
from 41.7% to 27.3% and water transport from
11.9% to 3.6% of the TMs. 

These pronounced trends are an early indication
of this paper’s theme—the observation that many
of the most interesting trends in commercial freight
transportation are actually found within the evolu-
tion of the TMs. As an indication of the impor-
tance of the TMs in this area, in 1996 the rail and
truck inputs to the TMs accounted for 81.9% and
62.6%, respectively, of the gross outputs of the
two commercial transportation industries, as table
3 illustrates. However, caution must be taken when
interpreting the TMs, particularly for smaller

FIGURE 1  The Canadian Input/Output Tables

Source: Statistics Canada, 1989.
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5 The other main component of the difference between
factor prices and final prices are indirect taxes (e.g., excise
taxes) and subsidies. 
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freight industries (e.g., air, marine freight) as they
are an artificial industry created within the CNA
to distinguish between factor and final prices. The
TMs also do not include private or in-house freight
transportation. 

METHODOLOGY

The first step in determining the importance of
transportation is the definition of direct transport
demand in terms of the commodities (rows) and
final demand categories (columns) of the FD
matrix. An important point to note is that no disag-
gregation or reaggregation of the existing l-level
rows or columns were used in this paper, as this
would represent the development of a satellite
account for transportation, a partial example of

which is provided in the U.S. national accounts with
the satellite account for private truck transport.

In terms of commodities, all rows associated with
transportation equipment (including tires), trans-
portation industries (including pipelines), as well as
the TMs were used. Selected commodities were also
chosen to represent transportation fuels, transporta-
tion construction, and other transportation services,
three areas where the level of aggregation at the l
level of the CNA leads to somewhat incomplete
datasets. 

In the case of transportation fuels, diesel and avi-
ation fuel are aggregated with heating oil as one
commodity (or row), and thus transport demand
for this commodity will be slightly overestimated.
However, this commodity is included as part of
transport fuels, along with motor gasoline. 

TABLE 2  Composition of the Transportation Margins: 1971–1996
Millions of Canadian dollars

 1971 1976 1981 1986 1991 1996

Transportation 
margins Dollars % Dollars % Dollars % Dollars % Dollars % Dollars %

Air 66 1.9 128 1.9 590 5.2 508 3.3 512 3.2 512 2.5

Other services 
incidental to 
transportation 44 1.2 236 3.6 534 4.7 994 6.4 1,065 6.7 1,481 7.2

Water 421 11.9 986 14.8 1,053 9.2 1,004 6.5 1,250 7.9 735 3.6

Services incidental 
to water 
transportation 147 4.1 296 4.5 380 3.3 588 3.8 520 3.3 258 1.3

Railway 1,479 41.7 2,396 36.1 4,162 36.4 4,838 31.1 4,761 29.9 5,605 27.3

Truck 1,457 41.1 2,729 41.1 5,292 46.3 8,143 52.3 8,320 52.3 12,446 60.6

Total inputs, 
transportation 
margins 3,548 6,643 11,421 15,567 15,916 20,525

TABLE 3  Allocation of Commercial Freight Industries' Gross Output to Transportation Margins, Own Uses,1 
and Commercial Transportation at Factor Prices: 1976–1996

1976 1986 1996

TMs
Own 
use Factor price2 TMs

Own 
use

Factor 
price TMs

Own 
use Factor price

Water 88.4% 24.1% –12.5% 55.6% 20.6% 23.8% 30.8% 7.9% 61.3%

Services 
incidental to 
water 
transportation 61.3% 35.9% 2.8% 48.0% 14.6% 37.4% 17.5% 2.1% 80.4%

Railway 81.3% 2.1% 16.7% 78.2% 1.1% 20.8% 81.9% 0.8% 17.4%

Truck 70.2% 8.6% 21.2% 66.0% 2.3% 31.7% 62.6% 3.8% 33.6%
1 Own use refers to own commodities used by the commodity-producing industry as inputs, for example, trucking commodities used by the 
trucking industry.
2 The negative value reflects a negative entry in commodity final demand generated by the imbalance of imports over exports and little direct 
consumer demand. 
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In terms of construction, the level of detail does
not allow for disaggregating transportation-related
expenditures from several commodities, notably
construction repair, other engineering construction,
and railways and communications. The only row in
construction that is unequivocally transportation-
related is roads, highways, and airport construction.
A similar problem of inadequate detail also occurs
with other service commodities, principally repair
services and trade margins as well as indirect taxes.
The only other services commodity that is unequiv-
ocally transportation-related is car and truck
rentals. 

Thus, in order to develop a more complete pic-
ture of transportation-related demand, certain FD
categories or columns were also classified as direct
transport demand, notably all columns in consump-
tion unequivocally related to transportion demand,
as well as equipment and construction investment
by transportation industries. Therefore, construc-
tion commodities (e.g., railway track) or service
commodites (e.g., trade margins, repair services), as
well as indirect taxes found in these FD columns
will also be classified as direct transport demand.
This should limit, but not completely account for,
the underestimation of transportion-related demand
due to transportation-related expenditures embed-
ded within construction, other services, or indirect
tax commodities. 

Given this definition, the direct demand for
transportation (FDt) can be classified as a matrix of
c * f proportions where c refers to commodities, f to
final demand categories, and all nontransport-
related commodities or columns are specified as
zeros. Summing FDt by commodities generates the
breakdown of direct transportation-related demand
presented in this paper. 

Indirect Demand

Indirect demand refers to the demand for transport
embedded in the factor price of nontransport-
related commodities and FD columns, where trans-
port-related commodities and columns are as
defined above. Determining the indirect demand for
transportation requires all three matrices, the M, U,
and FD. 

The first step in calculating the indirect
demand is to generate a proportional matrix of

U, where all commodity entries are divided by the
total gross inputs to generate a c * i (or industry)
matrix of proportions, here called the UP matrix.
Each individual entry in this matrix indicates the
proportion of industry gross inputs accounted for
by that commodity. 

The second step is multiplying the UP matrix by
the transpose of the M matrix (Mt) where the trans-
pose is required due to the rectangular format of the
CNA.6 Thus 

UP * Mt = C 

where C is a c * c matrix indicating the commodity
values used in the production of other commodities.
Converting the C matrix to proportions in a similar
manner to the U matrix by dividing the commodity
rows by the commodity gross outputs generates the
CP matrix, a c * c matrix where each entry indicates
the proportion of each commodity used in the pro-
duction of all other commodities. 

In the third step, we return to FD, and in order to
avoid double counting, subtract FDt or

FD – FDt = FDnt 

where FDnt represents a c * f matrix with zero
entries and the direct transportation commodities
and columns as defined above are located. This step
ensures that transportation commodities used in the
production of other such commodities (e.g., trans-
portation industries used to produce transportation
equipment) are not double counted. 

In the fourth step, the FDnt matrix is reduced to a
c * 2 matrix, where the two columns represent indi-
rect domestic demand and exports, here called
FDID. Indirect domestic demand (IDD) is calcu-
lated as C + I + G – Ip = IDD , where Ip refers to the
proportion of imports that are attributed to final
demand. This commodity import proportion is cal-

6 The transpose is required given the rectangular matrix
forms of the CNA in order to ensure that the conformabil-
ity condition for matrix multiplication applies, specifically
that the column dimension of the lead matrix (UP) is
equal in number to the row dimension of the lag matrix
(Mt). An alternate, if more cumbersome, procedure would
be to initially merge the various commodity rows to
industry dimensions, thus generating a square set of U and
M matrices. 
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culated as the relative share of final demand by
commodity as a proportion of commodity gross
output, multiplied by total imports. Thus, IDD is an
estimate of the nontransportation-related domestic
demand met by domestic producers. 

The final step requires:
CP * FDID = ID, where ID (indirect demand) refers
to a c * 2 matrix listing the commodity values used
in the production of the FDnt commodities. Using
the same definition of transport commodities as
listed above in FDt allows for the calculation of the
indirect share of transport in FDID. 

RESULTS

Direct Transportation Demand 

Consumption 

Transportation-related consumption has remained
at a fairly steady proportion of total consumption,
varying between a high of 16.2% in 1981, at the
height of the fuel price spike brought about by the
OPEC cartel, to a low of 14.7% in the recession of
the early 1990s (table 4). In 1996, the largest com-
ponent of transport consumption was “other trans-
portation services” associated with equipment sales
and use, that is, trade margins and repairs. The
“other transportation services” category shows a
low of 4.0% in 1981 and a high of 4.4% in 1996.

The second largest category of consumption in
1996 was transportation equipment (at factor
price), varying from a high of 4.5% in 1986, in the
growth period following the recession of the early
1980s, to a low of 3.7% in the recession of the early
1990s. Automobiles constitute the largest segment
of transportation equipment, although a slight
decrease in consumption from 3.1% in 1971 to
2.5% in 1996 is seen. However, increases in the
truck category, from 0.2% in 1971 to 0.9% in
1996, compensate for the decrease in the automo-
bile category. 

Indirect taxes (e.g., sales tax, excise tax) were the
third largest component, accounting for 2.8% of
consumption in both 1991 and 1996. This repre-
sents an increasing trend from a low of 2.1% of
consumption in 1981, with the share of indirect
taxes also lower in the 1970s relative to the 1990s. 

Transportation industries, or commercial trans-
portation, show a steady level of consumption at
approximately 2% in all years. Within commercial

transportation, two slight trends are evident, an
increasing share of air transportation, from 0.7% in
1971 to 1.1% in 1996, and a declining trend for
surface passenger transportation, from 0.8% in
1971 to 0.5% in 1996. The TMs show a more pro-
nounced decline, from 1.0% of consumption in
1971 to 0.5% in 1996, possibly associated with
trucking deregulation and price competition, and
the corresponding increased trend toward truck
freight use in the TMs. 

The most volatile of transportation commodities
are transportation fuels, swinging from a high of
3.0% of consumption in 1981 to a low of 1.2% in
1996, after beginning at 1.5% in 1971. Although
accounting for a relatively low share of consump-
tion, the influence of fuel price swings is evident,
with the 1981 fuel price peak generating the most
atypical year of all years assessed. 

Investment 

Investment can be classified into three separate cate-
gories to distinguish between transportation indus-
tries, other industries, and government. Note that
all investment undertaken by transportation indus-
tries is classified as transportation-related, but only
investment in commodities that are transportation-
specific is counted for government and business. 

The components of investment by transportation
industries experienced a major swing from 1971 to
1996, with an increasing share of transportation
equipment—29.0% in 1971 to 59.5% in 1996—and
a declining share of transportation construction—
63.3% in 1971 to 32.9% in 1996 (table 5). This
reflects the reduced level of construction investment
in railways as they consolidated their construction
capital stock, which is consistent with their declining
market share in freight transportation. It also reflects
a surge in investment in other equipment, particularly
between 1991 and 1996, possibly reflecting a more
recent swing from investment in transportation
equipment to information and communications tech-
nology. As of 1996, “other equipment” was the larg-
est component in the transportation equipment
category, ahead of aircraft and other complete equip-
ment (e.g., trailers and semi-trailers). As expected,
annual investment is rather volatile, particularly air-
craft investment; nevertheless, we can see a slight
upward trend for aircraft and trucks and a slight
downward trend for railroad equipment. 



36 JOURNAL OF TRANSPORTATION AND STATISTICS V6, N2/3 2003

TABLE 4  Transportation-Related Consumption as a Proportion of Total Consumption
Millions of Canadian dollars

1971 1976 1981 1986 1991 1996

 Commodities Dollars % Dollars % Dollars % Dollars % Dollars % Dollars %

Transportation equipment

Aircraft, parts, and 
repairs 3 0.0 7 0.0 12 0.0 21 0.0 24 0.0 31 0.0

Automobiles, including 
passenger vans 1,698 3.1 3,114 2.9 5,146 2.7 9,098 3.1 10,082 2.5 11,926 2.5

Trucks, road tractors, 
and chassis 123 0.2 541 0.5 791 0.4 1,735 0.6 2,357 0.6 4,534 0.9

Other complete 
equipment 289 0.5 609 0.6 932 0.5 1,264 0.4 1,630 0.4 2,080 0.4

Motor vehicle parts, 
including bodies and 
tires 225 0.4 435 0.4 694 0.4 1,030 0.4 736 0.2 944 0.2

Shipbuilding and ship 
repair 2 0.0 3 0.0 4 0.0 6 0.0 7 0.0 8 0.0

   Total 2,340 4.2 4,709 4.4 7,579 4.0 13,154 4.5 14,836 3.7 19,523 4.0

Transportation fuels

Motor gasoline 439 0.8 1,385 1.3 3,986 2.1 3,483 1.2 4,072 1.0 4,728 1.0

Diesel and fuel oil, 
aviation fuel 382 0.7 950 0.9 1,729 0.9 1,119 0.4 948 0.2 1,101 0.2

   Total 821 1.5 2,335 2.2 5,715 3.0 4,602 1.6 5,020 1.3 5,829 1.2

Transportation construction

Road, highway, and 
airport runway 
construction 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0

Highway and bridge 
maintenance 33 0.1 46 0.0 66 0.0 55 0.0 112 0.0 95 0.0

   Total 33 0.1 46 0.0 66 0.0 55 0.0 112 0.0 95 0.0

Transportation industries

Air 392 0.7 947 0.9 2,141 1.1 2,911 1.0 4,459 1.1 5,261 1.1

Railway 60 0.1 90 0.1 165 0.1 207 0.1 183 0.0 161 0.0

Water 19 0.0 42 0.0 150 0.1 203 0.1 333 0.1 406 0.1

Truck 72 0.1 124 0.1 288 0.2 357 0.1 361 0.1 417 0.1

Surface passenger 452 0.8 733 0.7 1,273 0.7 1,867 0.6 2,332 0.6 2,579 0.5

Other transportation 
services 2 0.0 3 0.0 5 0.0 7 0.0 7 0.0 6 0.0

Pipeline 70 0.1 146 0.1 275 0.1 609 0.2 638 0.2 884 0.2

   Total 1,067 1.9 2,085 1.9 4,297 2.2 6,161 2.1 8,313 2.1 9,714 2.0

Transportation 
margins 553 1.0 1,049 1.0 1,553 0.8 2,137 0.7 2,136 0.5 2,264 0.5

Other transportation  services

Trade margins 1,429 2.6 2,366 2.2 4,417 2.3 7,523 2.6 9,912 2.5 12,347 2.6

Other services 
(e.g., repairs) 877 1.6 1,994 1.8 3,163 1.7 4,703 1.6 6,951 1.7 8,345 1.7

Rental of automobiles 
and trucks 60 0.1 103 0.1 156 0.1 303 0.1 462 0.1 323 0.1

   Total 2,366 4.3 4,463 4.1 7,736 4.0 12,529 4.3 17,325 4.3 21,015 4.4

Total, indirect taxes 1,260 2.3 2,622 2.4 3,924 2.1 7,455 2.6 11,037 2.8 13,517 2.8

Total, transportation-
related consumption 8,440 15.3 17,309 16.0 30,870 16.2 46,093 15.9 58,779 14.7 71,957 14.9

Total, consumption 55,073 108,121 191,116 289,559 399,933 482,058



HARRIS 37

Transportation investment by other businesses
accounted for 7.2% of total investment in 1996, with
a low of 5.0% in 1991 and a high of 7.5% in 1986
(table 6). This investment is almost exclusively in
transportation equipment where a pronounced busi-
ness cycle trend is evident, with lower investment in
recessions and higher investment in recoveries. As of
1996, transportation equipment accounted for 6.8%
of total investment, up from a low of 4.4% in the
recession year of 1991. The largest share of business
investment was in automobiles (4.4% in 1996) and
trucks (1.5% in 1996), with a slight increase in auto-

mobiles and a slight decline in trucks, possibly reflect-
ing increased outsourcing from private to commercial
transportation. 

Government investment is primarily road-related
construction, with total transportation investment
accounting for 25.9% of government investment in
1996—with a low of 23.8% in 1991 and a high of
32.2% in 1971 (table 7). Government transporta-
tion investment exhibits a declining trend, with road
investment declining from 29.3% of government
investment in 1971 to a low of 21.3% in 1991, fol-
lowed by a slight upturn to 23.4% in 1996. 

TABLE 5  Investment by Transportation Industries
Millions of Canadian dollars

1971 1976 1981 1986 1991 1996

Commodities Dollars % Dollars % Dollars % Dollars % Dollars % Dollars %

Transportation equipment 

Aircraft, parts, and 
repairs 98 8.3 43 2.5 907 17.6 451 12.3 2,014 28.4 1,095 15.9

Automobiles, 
including 
passenger vans 13 1.1 9 0.5 21 0.4 23 0.6 28 0.4 40 0.6

Trucks, road 
tractors, and 
chassis 22 1.9 49 2.9 50 1.0 315 8.6 292 4.1 283 4.1

Other complete 
equipment 19 1.6 90 5.3 209 4.1 181 4.9 182 2.6 764 11.1

Motor vehicle 
parts, including 
bodies and tires 5 0.4 10 0.6 4 0.1 39 1.1 34 0.5 18 0.3

Railroad 
equipment and 
parts 109 9.3 188 11.0 359 7.0 277 7.6 114 1.6 448 6.5

Shipbuilding and 
ship repair 23 2.0 75 4.4 284 5.5 77 2.1 217 3.1 249 3.6

Other equipment 52 4.4 153 8.9 381 7.4 265 7.2 400 5.7 1,209 17.5

   Total 341 29.0 617 36.1 2,215 42.9 1,628 44.4 3,281 46.3 4,106 59.5

Transportation construction

Road, highway, and 
airport runway 
construction 8 0.7 5 0.3 12 0.2 49 1.3 29 0.4 452 6.5

Other construction 737 62.6 964 56.3 2,697 52.3 1,711 46.6 3,375 47.7 1,816 26.3

   Total 745 63.3 969 56.6 2,709 52.5 1,760 48.0 3,404 48.1 2,268 32.9

Transportation 
margins 9 0.8 7 0.4 17 0.3 17 0.5 43 0.6 24 0.3

Trade margins 30 2.5 63 3.7 102 2.0 133 3.6 239 3.4 366 5.3

Indirect taxes 53 4.5 56 3.3 117 2.3 128 3.5 113 1.6 138 2.0

Total, 
transportation 1,174 100.0 1,712 100.0 5,160 100.0 3,666 99.9 7,080 100.0 6,902 100.0

Total investment by 
transportation 
industries 1,174 1,711 5,159 3,668 7,080 6,902
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Summing the three categories of transportation
investment generates the result that the highest level
of transportation-related investment as a proportion
of total investment was in 1971 (16.4%—table 8).
A contradictory business cycle movement can be
observed, with investment by transportation indus-
tries becoming the largest component of transport
investment in recessions (1981, 1991) while other
business forms the largest component in recoveries
(1986, 1996). The share of government exhibits a
steady decline, from the largest share in 1971
(6.2%) to 3.4% of total investment in 1996. 

Trade: Exports and Imports

Transportation commodities account for a large
share of Canadian exports, 30.0% as of 1996, with
a low of 26.0% in the fuel-price-generated recession
of 1981 and a high of 34.8% in the recovery year of
1986 (table 9). The main component of exports is

transportation equipment, accounting for 23.3% of
exports in 1996, with a high of 27.2% in 1986 and
a low of 17.4% in 1981. In all years, the main com-
ponents of transportation equipment exports are
automobiles, motor vehicle parts, and trucks. 

The second largest component of exports are the
TMs, accounting for 2.8% of final export prices in
1996, down from 5.1% in 1971, with a steady
decline in all years. Again, this steady decline corre-
lates with an increasing share of trucking in the
TMs, and a reorientation and concentration of
trade with the United States. Commercial transpor-
tation (transportation industries) exhibits a steadier
share of exports, also accounting for 2.8% in 1996,
with a high of 3.0% in 1991 and a low of 1.4% in
1976. The upward trend in commercial transporta-
tion is generated by increasing exports of air, truck,
and pipeline services.   

TABLE 6  Transportation-Related Investment by Businesses Other Than Transportation Industries
Proportion of total business investment; millions of Canadian dollars

1971 1976 1981 1986 1991 1996

Commodities Dollars % Dollars % Dollars % Dollars % Dollars % Dollars %

Transportation equipment

Aircraft, parts, 
and repairs 34 0.2 47 0.1 325 0.4 374 0.4 33 0.0 410 0.3

Automobiles, 
including 
passenger vans 311 1.9 778 2.0 1,613 2.2 3,207 3.7 2,451 2.3 5,227 4.4

Trucks, road 
tractors, and 
chassis 351 2.1 1,073 2.8 1,531 2.1 1,818 2.1 1,761 1.7 1,769 1.5

Other complete 
equipment 150 0.9 426 1.1 457 0.6 340 0.4 367 0.3 663 0.6

Railroad 
equipment and 
parts 32 0.2 28 0.1 9 0.0 2 0.0 26 0.0 8 0.0

Shipbuilding and 
ship repair 38 0.2 72 0.2 111 0.2 39 0.0 33 0.0 21 0.0

   Total 916 5.5 2,424 6.2 4,046 5.5 5,780 6.7 4,671 4.4 8,098 6.8

Transportation construction 

Road, highway, 
and airport 
runway 
construction 76 0.5 194 0.5 408 0.6 316 0.4 270 0.3 232 0.2

   Total 76 0.5 194 0.5 408 0.6 316 0.4 270 0.3 232 0.2

Transportation 
margins 84 0.5 206 0.5 353 0.5 412 0.5 397 0.4 320 0.3

Total, 
transportation 1,076 6.5 2,824 7.3 4,807 6.6 6,508 7.5 5,338 5.0 8,650 7.2

Total, business 
Investment 16,560 38,819 73,024 86,867 105,727 119,643
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TABLE 7  Transportation-Related Investment by Government
Proportion of government investment; millions of Canadian dollars

1971 1976 1981 1986 1991 1996

Government Dollars % Dollars % Dollars % Dollars % Dollars % Dollars %

Transportation equipment 

Aircraft, parts, and 
repairs 16 0.4 27 0.4 87 0.8 60 0.4 31 0.2 0 0.0

Automobiles, 
including 
passenger vans 40 1.0 87 1.3 63 0.6 98 0.7 110 0.6 137 0.7

Trucks, road 
tractors, and 
chassis 27 0.6 46 0.7 82 0.8 129 0.9 156 0.8 139 0.7

Other complete 
equipment 17 0.4 32 0.5 24 0.2 73 0.5 64 0.3 90 0.5

Motor vehicle 
parts, including 
bodies and tires 2 0.0 5 0.1 3 0.0 4 0.0 6 0.0 0 0.0

Railroad 
equipment and 
parts 0 0.0 63 0.9 0 0.0 0 0.0 0 0.0 0 0.0

Shipbuilding and 
ship repair 9 0.2 25 0.4 89 0.8 129 0.9 74 0.4 70 0.4

   Total 111 2.6 285 4.3 348 3.3 493 3.5 441 2.3 436 2.3

Transportation construction

Road, highway, and 
airport runway 
construction 1,232 29.3 1,764 26.3 2,805 26.3 3,610 25.6 4,082 21.3 4,463 23.4

   Total 1,232 29.3 1,764 26.3 2,805 26.3 3,610 25.6 4,082 21.3 4,463 23.4

Transportation 
margins 9 0.2 16 0.2 29 0.3 41 0.3 48 0.3 35 0.2

Total, 
transportation 1,352 32.2 2,065 30.8 3,182 29.8 4,144 29.4 4,571 23.8 4,934 25.9

Total, government 
investment  4,205 6,696 10,665 14,089 19,208 19,066

TABLE 8  Transportation-Related Investment as a Proportion of Total Investment
Millions of Canadian dollars

1971 1976 1981 1986 1991 1996

Dollars % Dollars % Dollars % Dollars % Dollars % Dollars %

Transportation 
industries 1,174 5.4 1,712 3.6 5,160 5.8 3,666 3.5 7,080 5.4 6,902 4.7

Other industries 1,076 4.9 2,824 6.0 4,807 5.4 6,508 6.2 5,338 4.0 8,650 5.9

Government 1,352 6.2 2,065 4.4 3,182 3.6 4,144 4.0 4,571 3.5 4,934 3.4

Total, 
transportation 
(% total 
investment) 3,602 16.4 6,601 14.0 13,149 14.8 14,318 13.7 16,989 12.9 20,486 14.1

Total, 
investment 
(% final demand) 21,942 27.9 47,226 30.0 88,848 31.0 104,624 25.9 132,015 25.0 145,611 21.5

Final demand 78,594 157,624 286,236 403,783 527,967 678,222
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Transportation commodities account for a
slightly smaller share of Canadian imports, 25.9%
as of 1996, with a low of 24.7% in the recession of
1981 and a high of 32.6% in the recovery year of

1986 (table 10). As it is for exports, the main com-
ponent of imports is transportation equipment,
accounting for 22.9% of imports in 1996, with a
high of 29.6% in 1986 and a low of 21.7% in

TABLE 9  Transportation Commodities as a Share of Exports
Millions of Canadian dollars

1971 1976 1981 1986 1991 1996

Commodities Dollars % Dollars % Dollars % Dollars % Dollars % Dollars %

Transportation equipment 

Aircraft, parts, 
and repairs 326 1.5 527 1.2 2,055 2.1 3,208 2.2 5,186 3.0 7,501 2.3

Automobiles, 
including 
passenger vans 2,091 9.9 3,794 8.6 5,535 5.7 17,297 12.1 15,455 9.0 33,827 10.5

Trucks, road 
tractors, and 
chassis 554 2.6 1,305 2.9 3,020 3.1 5,253 3.7 7,027 4.1 10,645 3.3

Other complete 
equipment 165 0.8 203 0.5 558 0.6 819 0.6 1,049 0.6 3,168 1.0

Motor vehicle 
parts, including 
bodies and tires 1,354 6.4 3,134 7.1 5,076 5.2 11,485 8.0 9,321 5.4 18,173 5.7

Railroad 
equipment and 
parts 35 0.2 117 0.3 463 0.5 567 0.4 563 0.3 1,422 0.4

Shipbuilding and 
ship repair 4 0.0 230 0.5 208 0.2 153 0.1 37 0.0 117 0.0

   Total 4,529 21.5 9,310 21.0 16,915 17.4 38,782 27.2 38,638 22.4 74,853 23.3

Transportation fuels

Motor gasoline 0 0.0 26 0.1 232 0.2 392 0.3 919 0.5 1,252 0.4

Diesel and  fuel 
oil, aviation fuel 85 0.4 268 0.6 1,114 1.1 864 0.6 1,350 0.8 1,775 0.6

   Total 85 0.4 294 0.7 1,346 1.4 1,256 0.9 2,269 1.3 3,027 0.9

Transportation industries

Air 5 0.0 24 0.1 746 0.8 1,040 0.7 1,198 0.7 2,210 0.7

Railway 67 0.3 90 0.2 208 0.2 226 0.2 208 0.1 231 0.1

Water 142 0.7 248 0.6 724 0.7 638 0.4 914 0.5 1,528 0.5

Truck 79 0.4 143 0.3 132 0.1 561 0.4 1,237 0.7 2,552 0.8

Surface 
passenger 0 0.0 0 0.0 82 0.1 174 0.1 207 0.1 308 0.1

Other 
transportation 
services 12 0.1 24 0.1 247 0.3 397 0.3 542 0.3 641 0.2

Pipeline 21 0.1 79 0.2 487 0.5 424 0.3 888 0.5 1,557 0.5

   Total 326 1.5 608 1.4 2,626 2.7 3,460 2.4 5,194 3.0 9,027 2.8

Transportation 
margins 1,067 5.1 2,048 4.6 4,270 4.4 5,872 4.1 6,202 3.6 9,061 2.8

Rental of 
automobiles and 
trucks 0 0.0 0 0.0 102 0.1 256 0.2 293 0.2 477 0.1

Total, 
transportation 6,007 28.5 12,260 27.7 25,259 26.0 49,626 34.8 52,596 30.6 96,445 30.0

Total, exports 21,109 44,291 97,027 142,757 172,159 320,988
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1981. In all years, the main components of trans-
portation equipment imports are motor vehicle
parts and automobiles, reflecting Canada’s role in
transportation equipment manufacturing. 

The second largest share of transportation
imports is commercial transportation (transporta-
tion industries), accounting for 2.2% of imports in

1996, with a high of 2.4% in 1991 and low of
1.0% in 1971. The increasing share of commercial
transportation relative to the 1970s derives prima-
rily from greater imports of air and trucking ser-
vices. There are no TMs in imports, as import factor
prices are calculated from the border rather than
from the factory gate. 

TABLE 10  Transportation Commodities as a Share of Imports
Millions of Canadian dollars

1971 1976 1981 1986 1991 1996

Commodities Dollars % Dollars % Dollars % Dollars % Dollars % Dollars %

Transportation equipment 

Aircraft, parts, 
and repairs –299 1.6 –425 0.9 –2,396 2.6 –3,111 2.3 –3,745 2.2 –4,973 1.8

Automobiles, 
including 
passenger vans –1,217 6.4 –2,685 6.0 –5,451 5.9 –12,766 9.5 –12,501 7.4 –14,206 5.2

Trucks, road 
tractors, and 
chassis –325 1.7 –840 1.9 –1,429 1.6 –3,071 2.3 –3,111 1.8 –5,618 2.1

Other complete 
equipment  –138 0.7 –438 1.0 –648 0.7 –895 0.7 –1,634 1.0 –2,847 1.1

Motor vehicle 
parts, including 
bodies and tires –2,507 13.1 –5,782 12.9 –9,624 10.5 –19,091 14.3 –17,849 10.6 –33,275 12.3

Railroad 
equipment and 
parts –50 0.3 –99 0.2 –205 0.2 –476 0.4 –392 0.2 –934 0.3

Shipbuilding and 
ship repair –18 0.1 –68 0.2 –197 0.2 –179 0.1 –111 0.1 –95 0.0

   Total –4,554 23.9 –10,337 23.0 –19,950 21.7 –39,589 29.6 –39,343 23.3 –61,948 22.9

Transportation fuels

Motor gasoline –20 0.1 –1 0.0 –128 0.1 –419 0.3 –562 0.3 –787 0.3

Diesel and fuel 
oil, aviation fuel –193 1.0 –228 0.5 –688 0.7 –1,171 0.9 –936 0.6 –1,019 0.4

   Total –213 1.1 –229 0.5 –816 0.9 –1,590 1.2 –1,498 0.9 –1,806 0.7

Transportation industries

Air –8 0.0 –19 0.0 –826 0.9 –1,234 0.9 –2,224 1.3 –3,136 1.2

Railway 0 0.0 0 0.0 –205 0.2 –229 0.2 –292 0.2 –237 0.1

Water –134 0.7 –543 1.2 –327 0.4 –307 0.2 –411 0.2 –464 0.2

Truck –28 0.1 –89 0.2 –215 0.2 –209 0.2 –500 0.3 –1,589 0.6

Surface 
passenger 0 0.0 0 0.0 –208 0.2 –312 0.2 –540 0.3 –639 0.2

Other 
transportation 
services –12 0.1 –13 0.0 –23 0.0 –24 0.0 –24 0.0 –4 0.0

   Total –182 1.0 –664 1.5 –1,804 2.0 –2,315 1.7 –3,991 2.4 –6,069 2.2

Rental of 
automobiles and 
trucks 0 0.0 0 0.0 –107 0.1 –160 0.1 –281 0.2 –333 0.1

Total, 
transportation –4,949 26.0 –11,230 25.0 –22,677 24.7 –43,654 32.6 –45,113 26.8 –70,156 25.9

Total, imports –19,067 –44,899 –91,940 –133,937 –168,606 –270,870
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Indirect Transportation Demand

Indirect transportation demand refers to demand
for transportation commodities, which is embedded
in the price of the nontransportation commodities
that make up part of final demand. For example,
some portion of the price of shoes is accounted for
by the transportation commodities used in the
domestic production and distribution of shoes. Indi-
rect demand can be divided into two categories,
indirect domestic demand (IDD) and exports. 

Government spending on transportation, as
opposed to investment, is contained within IDD. In
the CNA, government is treated as an industry that
primarily produces services. Thus, government ser-
vices commodities are listed primarily as a single
entry in FD, under the column government spending.
In order to produce services, the government uses
inputs such as transportation commodities (table 11).
Detailed government inputs are listed in the U, not
the FD matrix, and thus transportation commodities
used to produce government services will appear in
IDD and not direct FD. 

Indirect Transportation in Domestic Demand

Indirect transportation-related domestic demand
(ITDD) accounted for 2.6% of domestic demand
(DD) in 1996, the lowest level of all years assessed,
with a high of 3.6% in 1981, again reflecting the
price spike in fuels (table 12). As of 1996, transpor-
tation industries represented the largest component
of ITDD at 1.0% of DD, with a surprisingly even
trend over time that extends through all categories
of commercial transportation. The two largest com-
ponents of commercial transportation were air and
surface passenger transportation, with surface pas-
senger transportation consisting mainly of taxicab
use by businesses and ambulance and school bus
transport as part of government services. As with
direct demand, the most interesting trends related to
commercial transportation are found in the TMs,
which accounted for 0.4% of DD in 1996, a steady
decline from 0.9 % in 1971. 

As of 1996, the second largest component of
ITDD was transportation equipment, primarily
motor vehicle parts, at 0.6% of ITDD, with again a
relatively constant trend over time. Fuel was the most
volatile component of ITDD, accounting for 0.4% in
1996 and 1971, with a high of 1.1% in 1981. 

Indirect Exports 

In terms of exports, TMs represent the largest share
of indirect transportation demand, accounting for
0.8% of exports in 1996, a steady decline from
1.2% in 1971 (table 13). Commercial transporta-
tion accounts for 0.5%, a slight decline from 0.7%
in 1971, with pipeline transportation as the leading
component. Transportation equipment, again pri-
marily motor vehicle parts, accounts for 0.3% of
indirect demand from exports, with a relatively
steady trend. Indirect demand for fuel exports is
volatile, ranging from a high of 0.9% in 1981 to a
low of 0.3% in 1996. 

Total Transport Demand as a Share of GDP

The previous sections have provided a detailed
assessment of the share of direct and indirect trans-
portation as a proportion of the relevant compo-
nents of final demand. This section aggregates the
commodities presented earlier to generate estimates
of transportation as a share of GDP and domestic
demand. The detailed descriptions of the different
components of transportation are aggregated to
transportation equipment, fuel, construction, indus-
tries, margins, other transportation services (trade
margins, repairs, automobile rental services), and
indirect taxes. 

The share of transportation in GDP has been rel-
atively stable over the time periods selected,
accounting for 20.7% of GDP in 1996 and 1971,
with a high of 21.1% associated with the fuel price
peak of 1981, and low of 19.1% in the restructur-
ing recession of 1991 (table 14). 

Several broad trends can be discerned, the most
important of which is the increasing trade related
to transportation. In 1996, transportation-related
exports were the largest single component of trans-
port demand at 14.2% of GDP, going from a low
of 7.6% of GDP in 1971. Particularly strong
growth occurred from 1991 (10.0%) to 1996, and
from 1981 (8.8%) to 1986 (12.3%), indicating a
business cycle trend. Imports also grew, but at a
slower pace, from –6.3% in 1971 to –10.3% in
1996, which indicates an increasing trade surplus.
While the transportation equipment category dom-
inates trade, transportation industries also show an
increasing level of trade, with exports accounting
for 1.3% of GDP in 1996, having moved steadily
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up from a low of 0.4% in 1971, with comparable
figures for imports being –0.9% and –0.2%. The
direct export associated TMs have maintained a
fairly steady level over time, accounting for 1.3%
of GDP in 1996, as have the indirect exports TMs
(0.4% in 1996). This indicates that the decreases in
TMs as a share of exports over time, as indicated
in earlier sections on exports and indirect exports,

are compensated by the increasing volume of
exports.  

All of these trade-related trends are consistent
with the growth in importance of trade in the Cana-
dian economy, particularly that associated with the
advent of the North American Free Trade
Agreement. Table 15 presents exports and imports
as a share of GDP for 1971 to 1996, showing

TABLE 11  Government Spending on Transportation as a Share of Total Inputs
Millions of Canadian dollars

1971 1976 1981 1986 1991 1996

Government 
spending Dollars % Dollars % Dollars % Dollars % Dollars % Dollars %

Transportation equipment 

Aircraft, parts, 
and repairs 89 0.4 167 0.3 531 0.6 980 0.7 695 0.4 663 0.3

Other complete 
equipment 12 0.1 72 0.1 94 0.1 144 0.1 165 0.1 255 0.1

Shipbuilding and 
ship repair 73 0.3 32 0.1 109 0.1 368 0.3 711 0.4 304 0.1

  Total 174 0.7 271 0.5 734 0.8 1,492 1.1 1,571 0.8 1,222 0.6

Transportation fuels 

Motor gasoline 44 0.2 97 0.2 260 0.3 224 0.2 221 0.1 233 0.1

Diesel and fuel 
oil, aviation fuel 61 0.3 252 0.5 584 0.7 445 0.3 397 0.2 366 0.2

  Total 105 0.4 349 0.7 844 0.9 669 0.5 618 0.3 599 0.3

Transportation construction

Highway and 
bridge 
maintenance 22 0.1 48 0.1 133 0.1 148 0.1 238 0.1 216 0.1

  Total 22 0.1 48 0.1 133 0.1 148 0.1 238 0.1 216 0.1

Transportation industries

Air 3 0.0 4 0.0 42 0.0 90 0.1 106 0.1 80 0.0

Water 10 0.0 11 0.0 23 0.0 21 0.0 37 0.0 24 0.0

Railway 2 0.0 11 0.0 3 0.0 1 0.0 1 0.0 2 0.0

Truck 52 0.2 105 0.2 191 0.2 256 0.2 286 0.1 254 0.1

Surface 
passenger 156 0.7 274 0.5 723 0.8 1,001 0.7 1,543 0.8 1,695 0.8

Other 
transportation 
services 0 0.0 1 0.0 1 0.0 2 0.0 14 0.0 6 0.0

Pipeline 12 0.1 37 0.1 61 0.1 154 0.1 163 0.1 177 0.1

  Total 235 1.0 443 0.9 1,044 1.2 1,525 1.1 2,150 1.1 2,238 1.0

Transportation 
margins 24 0.1 54 0.1 91 0.1 145 0.1 151 0.1 158 0.1

Rental of 
automobiles and 
trucks 40 0.2 100 0.2 169 0.2 212 0.2 300 0.2 349 0.2

Total, 
transportation 600 2.5 1,265 2.5 3,015 3.4 4,191 3.1 5,028 2.6 4,782 2.2

Total, 
government 
inputs 23,694 50,091 89,697 133,658 195,471 213,483
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TABLE 12  Transportation Commodities as an Indirect Share of Domestic Demand
Millions of Canadian dollars

1971 1976 1981 1986 1991 1996

Indirect transport, 
domestic demand Dollars % Dollars % Dollars % Dollars % Dollars % Dollars %

Transportation equipment 

Aircraft, parts, and 
repairs 87 0.1 163 0.1 508 0.2 923 0.2 674 0.1 659 0.1

Automobiles, 
including 
passenger vans 0 0.0 0 0.0 0 0.0 0 0.0 1 0.0 0 0.0

Trucks, road 
tractors, and 
chassis 1 0.0 6 0.0 9 0.0 0 0.0 13 0.0 3 0.0

Other complete 
equipment  13 0.0 72 0.0 89 0.0 135 0.0 161 0.0 303 0.0

Motor vehicle 
parts, including 
bodies and tires 378 0.5 601 0.4 851 0.3 1,290 0.3 1,594 0.3 2,232 0.4

Railroad 
equipment and 
parts 4 0.0 11 0.0 11 0.0 25 0.0 18 0.0 13 0.0

Shipbuilding and 
ship repair 70 0.1 35 0.0 115 0.0 349 0.1 663 0.1 286 0.0

   Total 553 0.7 887 0.6 1,584 0.6 2,721 0.7 3,124 0.6 3,495 0.6

Transportation fuels 

Motor gasoline 132 0.2 348 0.2 1,527 0.5 1,139 0.3 1,281 0.2 1,251 0.2

Diesel and fuel oil, 
aviation fuel 179 0.2 649 0.4 1,447 0.5 1,060 0.3 1,179 0.2 1,193 0.2

   Total 312 0.4 998 0.6 2,974 1.1 2,199 0.6 2,460 0.5 2,444 0.4

Transportation construction

Highway and 
bridge 
maintenance 21 0.0 46 0.0 129 0.0 146 0.0 231 0.0 208 0.0

   Total 21 0.0 46 0.0 129 0.0 146 0.0 231 0.0 208 0.0

Transportation industries

Air 200 0.3 396 0.3 791 0.3 1,141 0.3 1,574 0.3 2,095 0.3

Railway 42 0.1 77 0.0 104 0.0 131 0.0 135 0.0 182 0.0

Water 44 0.1 76 0.0 118 0.0 127 0.0 129 0.0 147 0.0

Truck 182 0.2 329 0.2 527 0.2 560 0.1 668 0.1 775 0.1

Surface passenger 207 0.3 380 0.2 827 0.3 1,183 0.3 1,849 0.4 1,994 0.3

Other 
transportation 
services 22 0.0 53 0.0 161 0.1 234 0.1 407 0.1 667 0.1

Pipeline 118 0.2 219 0.1 279 0.1 539 0.1 562 0.1 618 0.1

   Total 815 1.1 1,529 1.0 2,806 1.0 3,915 1.0 5,324 1.0 6,478 1.0

Transportation 
margins 690 0.9 1,314 0.8 1,965 0.7 2,550 0.6 2,453 0.5 2,495 0.4

Rental of 
automobiles and 
trucks 146 0.2 391 0.2 713 0.3 1,039 0.3 1,332 0.3 1,522 0.2

Total, 
transportation 2,538 3.3 5,166 3.3 10,171 3.6 12,570 3.2 14,923 2.8 16,643 2.6

Total, domestic 
demand 76,552 158,232 281,149 394,963 524,414 628,104
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TABLE 13  Transportation Commododities as an Indirect Share of Exports
Millions of Canadian dollars

1971 1976 1981 1986 1991 1996

Indirect 
transport, 
exports Dollars % Dollars % Dollars % Dollars % Dollars % Dollars %

Transportation equipment 

Aircraft, parts, 
and repairs 3 0.0 4 0.0 10 0.0 17 0.0 30 0.0 85 0.0

Automobiles, 
including 
passenger vans 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0

Trucks, road 
tractors, and 
chassis 1 0.0 1 0.0 1 0.0 0 0.0 1 0.0 3 0.0

Other complete 
equipment 7 0.0 10 0.0 1 0.0 1 0.0 3 0.0 163 0.1

Motor vehicle 
parts, including 
bodies and tires 38 0.2 89 0.2 195 0.2 277 0.2 310 0.2 561 0.2

Railroad 
equipment and 
parts 3 0.0 6 0.0 6 0.0 20 0.0 14 0.0 12 0.0

Shipbuilding and 
ship repair 6 0.0 12 0.0 25 0.0 27 0.0 41 0.0 52 0.0

   Total 57 0.3 122 0.3 238 0.2 342 0.2 399 0.2 875 0.3

Transportation fuels 

Motor gasoline 50 0.2 91 0.2 299 0.3 241 0.2 258 0.2 337 0.1

Diesel and fuel 
oil, aviation fuel 96 0.5 248 0.6 611 0.6 374 0.3 455 0.3 660 0.2

   Total 146 0.7 339 0.8 909 0.9 615 0.4 713 0.4 997 0.3

Transportation construction

Highway and 
bridge 
maintenance 0 0.0 0 0.0 1 0.0 2 0.0 2 0.0 3 0.0

   Total 0 0.0 0 0.0 1 0.0 2 0.0 2 0.0 3 0.0

Transportation industries

Air 10 0.0 23 0.1 74 0.1 109 0.1 142 0.1 252 0.1

Railway 9 0.0 17 0.0 34 0.0 44 0.0 45 0.0 59 0.0

Water 11 0.1 21 0.0 35 0.0 50 0.0 70 0.0 118 0.0

Truck 53 0.3 84 0.2 115 0.1 162 0.1 248 0.1 442 0.1

Surface 
passenger 3 0.0 6 0.0 17 0.0 30 0.0 48 0.0 69 0.0

Other 
transportation 
services 1 0.0 3 0.0 16 0.0 24 0.0 41 0.0 87 0.0

Pipeline 68 0.3 109 0.2 179 0.2 325 0.2 387 0.2 643 0.2

   Total 156 0.7 264 0.6 470 0.5 744 0.5 980 0.6 1,670 0.5

Transportation 
margins 254 1.2 454 1.0 911 0.9 1,289 0.9 1,433 0.8 2,608 0.8

Rental of 
automobiles and 
trucks 30 0.1 62 0.1 108 0.1 177 0.1 222 0.1 403 0.1

Total, 
transportation 644 3.1 1,240 2.8 2,638 2.7 3,168 2.2 3,750 2.2 6,558 2.0

Total, exports 21,109 44,291 97,027 142,757 172,159 320,988
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TABLE 14  Transportation Demand as a Proportion of GDP and Domestic Demand
Millions of Canadian dollars

1971 1976 1981 1986 1991 1996

Commodities Dollars % Dollars % Dollars % Dollars % Dollars % Dollars %

Transportation consumption
Transportation 

equipment 2,340 3.0 4,709 3.0 7,579 2.6 13,154 3.3 14,836 2.8 19,523 2.9
Transportation 

fuel 821 1.0 2,335 1.5 5,715 2.0 4,602 1.1 5,020 1.0 5,829 0.9
Transportation 

construction 33 0.0 46 0.0 66 0.0 55 0.0 112 0.0 95 0.0
Transportation 

industries 1,067 1.4 2,085 1.3 4,297 1.5 6,161 1.5 8,313 1.6 9,714 1.4
Transportation 

margins 553 0.7 1,049 0.7 1,553 0.5 2,137 0.5 2,136 0.4 2,264 0.3
Other 

transportation 
services 2,366 3.0 4,463 2.8 7,736 2.7 12,529 3.1 17,325 3.3 21,015 3.1

Indirect taxes 1,260 1.6 2,622 1.7 3,924 1.4 7,455 1.8 11,037 2.1 13,517 2.0
   Total 8,440 10.7 17,309 11.0 30,870 10.8 46,093 11.4 58,779 11.1 71,957 10.6

Transportation investment
Transportation 

equipment 1,368 1.7 3,326 2.1 6,609 2.3 7,901 2.0 8,393 1.6 12,640 1.9
Transportation 

construction 2,053 2.6 2,927 1.9 5,922 2.1 5,686 1.4 7,756 1.5 6,963 1.0
Transportation 

margins 102 0.1 229 0.1 399 0.1 470 0.1 488 0.1 379 0.1
Other 

transportation 
services 26 0.0 63 0.0 102 0.0 133 0.0 239 0.0 366 0.1

Indirect taxes 53 0.1 56 0.0 117 0.0 128 0.0 113 0.0 138 0.0
   Total 3,602 4.6 6,601 4.2 13,149 4.6 14,318 3.5 16,989 3.2 20,486 3.0

Transportation exports
Inventory and 

scrap –47 –0.1 170 0.1 992 0.3 1,247 0.3 –1,019 –0.2 –1,238 –0.2
Transportation 

equipment 4,529 5.8 9,310 5.9 16,915 5.9 38,782 9.6 38,638 7.3 74,853 11.0
Transportation 

fuel 85 0.1 294 0.2 1,346 0.5 1,256 0.3 2,269 0.4 3,027 0.4
Transportation 

industries 326 0.4 608 0.4 2,626 0.9 3,460 0.9 5,194 1.0 9,027 1.3
Transportation 

margins 1,067 1.4 2,048 1.3 4,270 1.5 5,872 1.5 6,202 1.2 9,061 1.3
Other 

transportation 
services 0 0.0 0 0.0 102 0.0 256 0.1 293 0.1 477 0.1

   Total 6,007 7.6 12,260 7.8 25,259 8.8 49,626 12.3 52,596 10.0 96,445 14.2

Transportation imports
Transportation 

equipment –4,554 –5.8 –10,337 –6.6 –19,950 –7.0 –39,589 –9.8 –39,343 –7.5 –61,948 –9.1
Transportation 

fuel –213 –0.3 –229 –0.1 –816 –0.3 –1,590 –0.4 –1,498 –0.3 –1,806 –0.3
Transportation 

industries –182 –0.2 –664 –0.4 –1,804 –0.6 –2,315 –0.6 –3,991 –0.8 –6,069 –0.9
Transportation 

margins 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
Other 

transportation 
services 0 0.0 0 0.0 –107 -0.0 –160 -0.0 –281 –0.1 –333 –0.0

   Total –4,949 –6.3 –11,230 –7.1 –22,677 –7.9 –43,654 –10.8 –45,113 –8.5 –70,156 –10.3
(continues)
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exports growing from 26.9% of GDP in 1971 to
47.3% in 1996, with particularly high growth from
1991 to 1996.

A second major trend is the decline in transporta-
tion-related investment as a share of GDP, down
from 4.6% of GDP in 1971 and 1981 to a low of
3.0% in 1996 (see table 14). This is due to a decline
in transportation construction as a share of GDP,
going from 2.6% of GDP in 1971 to 1.0% in 1996.
This results from the ongoing consolidation of rail-
way construction capital stock and a lower level of
government investment in roads as a share of GDP,
possibly indicating a mature transportation infra-
structure. This relative decline may also be associated

with increased investment in information and com-
munications technology (ICT), as investment flows
from mature industries, such as transportation, to
new and growing industries such as ICT. Alterna-
tively, the decline in transportation investment may
point to an infrastructure investment deficit, particu-
larly for road infrastructure, where the government
may not have been investing sufficiently to meet the
increased demand for road infrastructure, as indi-
cated by the growth in consumption and investment
in road transportation equipment as well as trucking.

A third major trend is the decline in the TMs
associated with domestic demand, both direct and
indirect. In consumption, TMs show a steady

TABLE 14  Transportation Demand as a Proportion of GDP and Domestic Demand (Continued)
Millions of Canadian dollars

1971 1976 1981 1986 1991 1996

Commodities Dollars % Dollars % Dollars % Dollars % Dollars % Dollars %
Indirect transportation 
domestic demand
Transportation 

equipment 553 0.7 887 0.6 1,584 0.6 2,721 0.7 3,124 0.6 3,495 0.5
Transportation 

fuel 312 0.4 998 0.6 2,974 1.0 2,199 0.5 2,460 0.5 2,444 0.4
Transportation 

construction 21 0.0 46 0.0 129 0.0 146 0.0 231 0.0 208 0.0
Transportation 

industries 815 1.0 1,529 1.0 2,806 1.0 3,915 1.0 5,324 1.0 6,478 1.0
Transportation 

margins 690 0.9 1,314 0.8 1,965 0.7 2,550 0.6 2,453 0.5 2,495 0.4
Other 

transportation 
services 146 0.2 391 0.2 713 0.2 1,039 0.3 1,332 0.3 1,522 0.2

   Total 2,538 3.2 5,166 3.3 10,171 3.6 12,570 3.1 14,923 2.8 16,643 2.5

Indirect transportation exports
Transportation 

equipment 57 0.1 122 0.1 238 0.1 342 0.1 399 0.1 875 0.1
Transportation 

fuel 146 0.2 339 0.2 909 0.3 615 0.2 713 0.1 997 0.1
Transportation 

construction 0 0.0 0 0.0 1 0.0 2 0.0 2 0.0 3 0.0
Transportation 

industries 156 0.2 264 0.2 470 0.2 744 0.2 980 0.2 1,670 0.2
Transportation 

margins 254 0.3 454 0.3 911 0.3 1,289 0.3 1,433 0.3 2,608 0.4
Other 

transportation 
services 30 0.0 62 0.0 108 0.0 177 0.0 222 0.0 403 0.1

   Total 644 0.8 1,240 0.8 2,638 0.9 3,168 0.8 3,750 0.7 6,558 1.0

Total, 
transportation 16,234 20.7 31,515 20.0 60,402 21.1 83,368 20.6 100,905 19.1 140,695 20.7

Final demand 78,594 157,624 286,236 403,783 527,967 678,222
Total, domestic 

transportation 12,141 15.9 24,419 15.4 45,920 16.3 62,272 15.8 75,462 14.4 92,202 14.7

Domestic 
demand 76,552 158,232 281,149 394,963 524,414 628,104
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decline from 0.7% of GDP in 1971 to 0.3% in
1996, while for indirect domestic demand the TMs
declined from 0.9% to 0.4% (table 14). This corre-
lates with the increasing share of trucking in the
TMs, as discussed above. A possible explanation for
this trend is the growth in the efficiency of the
freight transportation industries, possibly stemming
from deregulation, as well as the advent of more
efficient supply chain management practices, such
as just-in-time production and distribution. Table
16 shows the relative change in freight rail and
trucking prices, gross output (or revenues), and total
factor productivity relative to the economy from
1981 to 1996. However, these price, output, and
productivity figures cannot explain the relative
growth in trucking compared to rail, as rail has
exhibited both higher productivity gains and larger
declines in prices.

Together these three trends explain the relative sta-
bility of transportation as a share of GDP, with the
increasing trends in trade, particularly the surplus in
equipment, compensating for the decreasing trends in
investment and the TMs. A look at table 14 again

shows that because trade is excluded from domestic
demand, transportation as a share of domestic
demand is much lower (14.7% in 1996) than it is as
a share of GDP (20.7%), with a similar pattern of
volatility (e.g., a low of 14.4% in 1991 and a high of
16.3% in 1981). A possible declining trend can also
be observed with the two transportation shares
recorded in the 1990s (1991, 14.4%; 1996, 14.7%)
representing the lowest shares of domestic demand of
all years. This may reflect competition from new con-
sumer durables, such as personal computers. 

Overlying these three trends as the major determi-
nant of transportation as a share of GDP is the vola-
tility of fuel as a share of GDP, which can be
particularly associated with the market strategies of
the OPEC oil cartel. The peak in fuel shares in 1981
(e.g., 2.0% of GDP in consumption and 1.0% in
indirect domestic demand), correlates with the peaks
in transportation share of GDP and domestic
demand (1981 was the most atypical of all years sur-
veyed), along with the restructuring recession of
1991. The trend in fuel shares has followed a triangu-
lar pattern over the years assessed, with low and sim-
ilar fuel shares of GDP in 1971 and 1996, and a peak
in 1981; the total transportation share of GDP in
1971 and 1996 was also similar and shows a peak in
1981. 

One of the advantages of using a commodity-based
classification of transportation demand, as defined in
the IO tables, is that it allows for different levels of
macroeconomic analysis. Table 17 illustrates an
aggregation of the demand for transportation by the
different types of commodities, divided in a standard
manner into goods, services, and indirect taxes. As
can be noted, transportation is fairly evenly split
between transportation goods and services, with a
slight predominance of transportation goods over ser-
vices up until 1986 and then again in 1996, corre-
sponding to the growth in equipment exports. The
largest transportation commodity is equipment,

TABLE 15  Exports and Imports as a Percentage of GDP: 1971–1996
Millions of Canadian dollars

 1971 1976 1981 1986 1991 1996

Dollars % Dollars % Dollars % Dollars % Dollars % Dollars %

Exports 21,109 26.9 44,291 28.1 97,027 33.9 142,757 35.4 172,159 32.6 320,988 47.3

Imports 19,067 24.3 44,899 28.5 91,940 32.1 133,937 33.2 168,606 31.9 270,870 39.9

GDP 78,594 157,624 286,236 403,783 527,967 678,222

Source: Statistics Canada, National Income and Expenditures Accounts.

TABLE 16  Price, Output, and Productivity Changes 
in Rail and Trucking Relative to the 
Economy: 1981–1996
Index, 1981 = 100

1981 1986 1991 1996

Prices

Freight rail1 100.0 95.9 79.5 68.1

Trucking 100.0 96.8 82.9 74.9

Output

Freight rail 100.0 88.1 80.4 77.2

Trucking 100.0 107.9 112.9 158.6

Productivity

Freight rail 100.0 104.7 128.4 146.8

Trucking 100.0 102.3 120.8 134.3
1 Freight rail refers to the two largest rail lines in Canada: 
Canadian Pacific and Canadian National.

Source:  Transport Canada, internal statistics.
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accounting for a high of 35.1% of total transporta-
tion demand in 1996, with a low corresponding to the
1981 fuel price peak (21.5%). The second largest cat-
egory (other transportation services) is also primarily
associated with equipment, notably trade margins and
equipment repairs in transportation consumption.
Three of the trends discussed above are also high-
lighted in looking at the demand for transportation by
commodity class: the impact and volatility of fuel
prices, the declining share of transportation construc-
tion, and the steadily declining share of the TMs. 

CONCLUSION

This paper has used the IO tables maintained in the
CNA to assess the share of transportation-related
demand, both direct and indirect, in Canadian GDP
from 1971 to 1996. The industry and commodity
classification used in this paper is from the standard
industrial classification system that was specific to the
Canadian national accounts. This classification sys-
tem has now been replaced by the NAICS, which will
be common to the Canadian, U.S., and Mexican
national accounts. NAICS should allow for future
work involving a similar methodology to compare

trends in the relative share of transportation in the
national economies of Canada, Mexico, and the
United States. Another future development related to
IO data that would enable a refining of these esti-
mates, while using a similar methodology, is the inte-
gration of one or more transport satellite accounts,
such as private trucking, within the IO tables. 
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TABLE 17  Transportation Demand by Categorization as Goods and Services
Millions of Canadian dollars

1971 1976 1981 1986 1991 1996

Dollars % Dollars % Dollars % Dollars % Dollars % Dollars %

Transportation goods

Transportation 
equipment 4,294 26.4 8,017 25.4 12,975 21.5 23,311 28.0 26,047 25.8 49,439 35.1

Transportation 
fuel 1,151 7.1 3,736 11.9 10,128 16.8 7,081 8.5 8,964 8.9 10,491 7.5

Transportation 
construction 2,107 13.0 3,019 9.6 6,118 10.1 5,888 7.1 8,101 8.0 7,269 5.2

Inventory and 
scrap –47 –0.3 170 0.5 992 1.6 1,247 1.5 –1,019 –1.0 –1,238 –0.9

   Total 7,505 46.2 14,942 47.4 30,213 50.0 37,528 45.0 42,093 41.7 65,962 46.9

Transportation services

Transportation 
industries 2,183 13.4 3,822 12.1 8,395 13.9 11,964 14.4 15,820 15.7 20,820 14.8

Transportation 
margins 2,666 16.4 5,094 16.2 9,098 15.1 12,319 14.8 12,712 12.6 16,808 11.9

Other 
transportation 
services 2,568 15.8 4,979 15.8 8,654 14.3 13,974 16.8 19,130 19.0 23,450 16.7

   Total 7,416 45.7 13,895 44.1 26,147 43.3 38,257 45.9 47,661 47.2 61,078 43.4

Indirect taxes 1,313 8.1 2,678 8.5 4,041 6.7 7,583 9.1 11,150 11.1 13,655 9.7

Total, 
transportation 16,234 31,515 60,402 83,368 100,905 140,695
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Motor Vehicle Crashes Involving Older Drivers
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ABSTRACT

This paper explores aspects of highway safety with
a focus on crashes involving older drivers. As the
“baby boomers” age and move into retirement, a
larger proportion of older drivers will be using the
nation's roads. The analysis here develops and esti-
mates econometric models using a panel dataset
that includes each county in California and spans an
18-year period, 1981–1998. The models are esti-
mated using feasible generalized least squares tech-
niques that account for cross-section heterogeneity,
adjust for county-specific first-order serial correla-
tion, and correct for nonconstant variances due to
the large differences in county sizes across the state.
The results indicate that the set of explanatory vari-
ables for crashes involving older drivers is not iden-
tical to the set for crashes involving younger drivers.
Among the factors that have large effects on older
driver crashes are risk exposure, energy and alcohol
prices, alcohol availability, and increased speed lim-
its on higher speed roads.

INTRODUCTION

As the U.S. population ages, the proportion of older
drivers on our nation’s highways increases. Between
1986 and 1996, the total number of older drivers

KEYWORDS: older driver, highway safety, public health,
speed limits, alcohol policy.
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grew by 45% in comparison with a 13% increase in
the total number of licensed drivers. Although we
would expect a higher proportion of older drivers to
affect the distribution of crashes, existing literature
does not address this subject in great detail. It is well
known, for example, that older drivers have less
exposure and, accordingly, fewer crashes. At the
same time, physical disabilities, a greater consump-
tion of legal medication, and slower reaction times
have all led to higher crash rates among the elderly
relative to their younger driver counterparts
(McCloskey et al. 1994; Hu et al. 1998; Lundberg
et al. 1998). In order to continue developing public
policy that is relevant to current and future charac-
teristics of highway users, policymakers can benefit
by gaining a better understanding of the causes of
crashes among older drivers and how changes in
policies may affect the distribution of crashes in this
group.

The broad objective of this research is to study
the relationship between highway safety public pol-
icy and highway crashes among older drivers. More
specifically, this study focuses on the policies related
to increased speed limits and those affecting the
monetary and time (i.e., resource) costs associated
with driving under the influence of alcohol. 

A number of papers have analyzed the deterrent
effects of legislation that have increased the penal-
ties associated with drinking and driving or the
enforcement of drinking and driving laws. Among
the more recent analyses, Chaloupka et al. (1993)
found that restrictive administrative per se (APS)
laws significantly reduced alcohol-related crashes.
Under APS laws, a driver’s license is revoked or sus-
pended if his or her blood alcohol concentration
(BAC) level equals or exceeds the state legal limits, a
sanction that is independent of other penalties if the
driver is convicted. Other per se sanctions (manda-
tory jail sentences and community service laws)
were ineffective. Legge and Park (1994) concluded
that APS and other per se laws have the largest
impact on single-vehicle nighttime crashes, whereas
laws requiring some jail time for a first conviction
or a fine for a first offender had no effect. Zador et
al. (1989) also found that APS and other per se laws
reduced fatal crashes. Peck (1991) found Califor-
nia’s license suspension program has been more

effective than alcohol rehabilitation programs in
reducing crash risk for driving under the influence
(DUI). Rogers (1995) concluded that reductions in
the BAC level were effective. In contrast to most of
this literature, Evans et al. (1991) found no evidence
that sanctions contained in “punitive legislation”
were effective deterrents of traffic fatalities.

There is also a significant literature on the high-
way safety effects of raised speed limits on higher
speed roads (e.g., U.S. Interstate highways and the
German autobahn), much of which is summarized
in two Transportation Research Board reports
(1984, 1998). As a result of the 1970s energy crisis,
maximum speed limits on U.S. Interstates were fed-
erally set in 1975 at 55 mph. Complementing the
savings in energy, this policy reduced fatal crashes,
and the 55 mph speed limit continued long after the
energy crisis was over. In 1987, Congress passed leg-
islation that permitted states to raise the speed limit
to 65 mph on rural Interstate highways. U.S. speed
limits were again relaxed in 1995, when Congress
ceded to states the authority to set speed limits on
higher speed roads. Existing literature indicates that
higher speed limits increase average speeds, but the
speed increase is typically less than the increase in
limits (e.g., the 10 mph increase in 1987 speed limits
generally resulted in a 4 mph increase in average
speeds). The extensive literature on the 1987
increase and the available, but more minimal, litera-
ture for the 1995 relaxation indicate that higher
limits produce more fatal crashes and fatalities on
the affected roads (McCarthy 2000). However,
there is much less certainty about the systemwide
effects of raising speed limits on higher speed roads
due to “tainting” and “diversion” effects.1 

Notwithstanding the extensive literature on the
effects of alcohol-related and speed limit policies,
with some focus on the younger driver, these studies

1 Speed limit tainting effects occur when changes in speed
limits on one set of roads (e.g., Interstate highways) not
only induce increased actual speeds on the affected roads
but also lead to speed increases on non-affected roads
(e.g., arterials), that is, roads where speed limits did not
change. Speed limit diversion effects occur when changes
in speed limits on one road divert traffic to other roads,
including the affected road. For example, a higher speed
limit on rural Interstates is expected to divert some traffic
from slower roads where speed limits have not changed to
the Interstate highway’s increased speed limit. 
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say little about the impact of highway safety policy
on older drivers.

DATA

This analysis uses the state of California as a case
study for evaluating highway crashes among older
drivers. For this analysis, an older driver is defined
as a driver who is 60 years of age or older. The
cross-section unit of observation in the analysis is a
California county and the time period is one year. In
total, the analysis includes 58 counties over an 18-
year period (1981 through 1998), resulting in a
total of 1,024 observations. Among the sources of
data for this study were the California Highway
Patrol (crash data), the California Bureau of Crimi-
nal Statistics (arrest data), the California Depart-
ment of Alcohol Beverage Control (alcohol license

data), the California Department of Finance (demo-
graphic data, price indexes, per capita county
income), and the California Department of Labor
(unemployment rates). 

Descriptive Statistics

Table 1 provides definitions of the variables used in
this study. Table 2 gives descriptive statistics for the
dependent variables.2 Each of these variables is sub-
divided into two broad age groups—those involving

TABLE 1  Definitions of Variables

Dependent 
variables

Ttlge60 Total crashes involving drivers > 60 years of age
Fatge60 Fatal crashes involving drivers > 60 years of age
Injrge60 Injury crashes involving drivers > 60 years of age

Pdoge60 Property damage only crashes involving drivers > 60 years of age
Ttllt60 Total crashes involving drivers < 60 years of age
Fatlt60 Fatal crashes involving drivers < 60 years of age

Injrlt60 Injury crashes involving drivers < 60 years of age
Pdolt60 Property damage only crashes involving drivers < 60 years of age

Explanatory variables

Rpcinc County real per capita income: 1982–84 US $
Cpigas Regional consumer price index for gasoline: 1982–84 = 100

Cpialc Regional consumer price index for alcohol: 1982–84 = 100
Uerate County unemployment rate
Vmtge60 County vehicle-miles traveled (vmt): drivers > 60 years old

Vmtlt60 County vmt: drivers < 60 years old 
Totvmt Total county vmt
Popden Persons per square mile in the county

Pctge60 Share of the county population > 60 years old
Alclic Number of retail alcohol licenses in the county
AB541 Dummy variable for an omnibus DUI prevention law (effective Jan. 1, 

1982), which equals 0 for 1981 and 1 for 1982–98
APS Dummy variable for an administrative per se license suspension law 

(effective July 1, 1990), which equals 0 for 1981–89 and 1 for 1990–98

Slmt_65 Dummy variable for 65 mph speed limits on rural Interstate highways 
(effective May 1987), which equals 0 for 1981–86 and 1 for 1987–98 

Slmt_70 Dummy variable for 70 mph speed limits on portions of the state's 
Interstate highways (enacted in January 1997), which equals 0 for 
1981–96 and 1 for 1997–98

Pc_dui Per capita DUI arrests in the county

Pcmcyc Per capita motorcycle registrations in the county

2 The dependent variable is defined in levels (i.e., number of
crashes) in order to estimate the sensitivity of older and
younger driver-involved crashes to changes in vehicle-miles
traveled (vmt) exposure, which is not possible when the
dependent variable is defined as a rate (e.g., crashes per 100
million vmt). Tables 7 and 8 below show that crash sensi-
tivity to vmt varies by age group as well as by crash type,
which is discussed in more detail later in this paper.
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drivers 60 years of age or older (older drivers) and
those involving drivers less than 60 years of age
(younger drivers). 

Included in table 2 is the overall mean of the vari-
able in the sample and three measures of variation.
The overall measure is the standard deviation across
all groups and time periods. The “across-counties”
measure is the standard deviation across the 58
counties (i.e., averaging over the 18-year period for
each county and then calculating the measure of
variation), and the “across-years” measure is the
variation across the 18-year period (i.e., averaging
all counties for each year and then calculating the
measure of variation over the period). 

Looking at the means, we see that younger driv-
ers were involved in over six times as many crashes
per county per year as older drivers, 7,492 versus
1,195. (The younger population is also about 6
times the size of the older population, but younger
drivers account for 7.6 times as many vehicle-miles
traveled (vmt) as older drivers.) This ratio was also
true for fatal crashes. On average, there were 61
fatal crashes per county-year involving younger
drivers compared with 11 fatal crashes involving
older drivers. Nonfatal injury and property damage
only (PDO) crashes show similar patterns between
the two groups of drivers. Also not surprisingly, the
overall and across-counties measures of variation
are very similar, whereas the across-years variation
is an order of magnitude smaller. An across-counties
measure that virtually mimics the overall measure is
not surprising, because it reflects the large variation
in population and vmt across counties, as does the
overall measure. 

In contrast, the across-years measure reflects the
average variation across the time period. We would
expect that for any given county, the year-to-year
variation in crashes would be relatively small, which
is consistent with the results reported in table 2.

Table 3 provides summary statistics for the
explanatory variables used in the econometric anal-
ysis.3 For the entire panel, average per capita
income was $13,736 and the annual countywide
unemployment rate was relatively high at 10%. The
mean price index for gasoline was close to its base
index value of 100, whereas the mean price index
for alcohol was 28% above the base level. 

Looking at the exposure-related variables, annual
estimated per-county travel for older drivers, who
made up 16.8% of the population, averaged 501
million vmt, whereas estimated per-county average
vmt for younger drivers was substantially higher at

TABLE 2  Descriptive Statistics: Dependent 
Variables

Variable Mean
Standard 
deviation

Ttlge60 overall 1195.32 2527.11
 across-counties 2532.24

across-years 280.26

Fatge60 overall 10.61 19.28
 across-counties 19.12

 across-years 3.48

Injrge60 overall 526.19 1257.33

 across-counties 1261.96
 across-years 119.57

Pdoge60 overall 658.52 1273.48
 across-counties 1269.68
 across-years 189.60

Ttllt60 overall 7492.10 17902.68
 across-counties 17949.75

 across-years 1887.81

Fatlt60 overall 60.70 122.32

 across-counties 120.56
 across-years 25.77

Injrlt60 overall 3103.00 7890.45
 across-counties 7885.63
 across-years 1043.86

Pdolt60 overall 4328.40 9988.92
 across-counties 10016.22

 across-years 1043.56
Key: Overall standard deviation: calculated across all groups and 
time periods. Across-counties standard deviation: obtained by first 
calculating the 18-year average for each county and then 
calculating the standard deviation across counties. Across-years 
standard deviation: obtained by first calculating, for each year, the 
average over all counties and then calculating the standard 
deviation for the 18-year period.

3 A correlation analysis indicates that the explanatory
variables are not in general highly correlated. With two
exceptions, correlation coefficients are less than 0.50. Vmt
measures, not surprisingly, are highly correlated. Also, the
number of retail alcohol licenses is highly correlated with
exposure measures, which reflects the relationship
between population and alcohol licenses.
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3.8 billion vmt. Population density averaged 560
persons per square mile.4

In addition to the price index for alcohol, the
analysis includes two alcohol-related variables—the
number of retail establishments selling alcohol and
the number of misdemeanor and felony arrests for
DUIs. Overall, there are over 14,000 licenses to sell
alcohol per county, but the overall and across-coun-
ties standard deviations are quite high. This reflects
the large variation in population, and, therefore,
alcohol consumption, across counties. On the other
hand, if we normalize for population, as is done for
per capita DUI arrests, we see that, based on an
overall mean of 0.013 arrests per capita, the across-
counties and across-years variations are equal—
0.005 in each case. 

The model also includes four regulatory variables
that are specific to driving under the influence of
alcohol and to highway speeds. These variables do
not have an across-counties measure, which reflects
the fact that these are statewide rather than county
laws so there is only temporal and no cross-section
variation in these variables. 

Assembly Bill 541 (AB541) was an omnibus bill
that increased various penalties for driving under
the influence of alcohol. Senate Bill 1623 (APS)
enacted an administrative per se BAC level at 0.08
under which a driver’s license is immediately
revoked upon arrest for driving with a BAC equal to

TABLE 3  Descriptive Statistics: Explanatory 
Variables

  
Mean 

Standard 
deviation

Economic variables
Rpcinc overall 13736.4 3444.1
 across-counties 3327.3
 across-years 985.5

Cpigas overall 98.93 9.89
 across-counties 1.01
 across-years 9.84
Cpialc overall 128.73 24.30
 across-counties 3.42
 across-years 24.07
Uerate overall 0.101 0.047
 across-counties 0.041
 across-years 0.023

Exposure variables
Vmtge60 overall 5.01E+08 1.01E+09
 across-counties 1.00E+09
 across-years 1.53E+08

Vmtlt60 overall 3.80E+09 8.45E+09
 across-counties 8.42E+09
 across-years 1.27E+09
Pctge60 overall 0.168 0.042
 across-counties 0.041
 across-years 0.009
Popden overall 560.27 2088.10
 across-counties 2103.30
 across-years 90.93

Alcohol variables
Alclic overall 14272.9 29331.9
         across-counties 29496.8
         across-years 2116.3

Pc_dui overall 0.013 0.007
         across-counties 0.005
         across-years 0.005

Regulatory variables
AB541 overall 0.944 0.229

across-years 0.229
APS overall 0.500 0.500

across-years 0.500
Slmt_65 overall 0.667 0.472
         across-years 0.472

Slmt_70 overall 0.167 0.373
         across-years 0.373
Key:
Overall standard deviation: calculated across all groups and time 
periods.
Across-counties standard deviation: obtained by first calculating 
the 18-year average for each county and then calculating the 
standard deviation across counties.
Across-years standard deviation: obtained by first calculating, for 
each year, the average over all counties and then calculating the 
standard deviation for the 18-year period.

4 Because countywide vmt data do not exist for Califor-
nia, a methodology was developed to estimate age-gender
vmt data by county from available aggregate annual vmt
data for California. The procedure included the following
steps: 1) using aggregate annual data, “vmt per driver”
was regressed on a constant term, “% of statewide drivers
� 60,” “% of statewide drivers � 24,” and “#persons per
driver” (R2 = 0.97 from this regression); 2) using county-
wide values for each of these explanatory variables, the
regression model coefficients were used to predict the
countywide vmt per driver; 3) countywide vmt was
obtained by multiplying the number of drivers in each
county by the estimated countywide vmt per driver. In
order to allocate the estimated countywide vmt to various
age-gender specific groups, data on the proportion of
annual vmt per driver, disaggregated by alternative age-
gender categories, were obtained from the Nationwide
Personal Transportation Survey (NPTS) for 1983, 1990,
and 1995. These data were then used to scale the esti-
mated countywide vmt data. Specifically, NPTS data for
1983 (1990; 1995) were used to develop the weights for
observations in this study during the period 1981–1986
(1987–1993; 1994–1998) to obtain vmt in each county
for different age-gender groups. 



56 JOURNAL OF TRANSPORTATION AND STATISTICS V6, N2/3 2003

or greater than 0.08 regardless of whether the per-
son demonstrates any behavioral signs of alcohol
impairment.5 Respectively, AB541 and APS were
active for 94% and 50% of the time period covered
in this analysis.

In addition to these laws, California relaxed
speed limits on its high-speed roads. In 1987, Cali-
fornia increased speed limits on rural Interstates
from 55 mph to 65 mph, and, on selected roads, it
raised speed limits from 65 mph to 70 mph in 1995.
These two laws were active 66% and 16.6% of the
time during the 18-year period. 

ECONOMETRIC METHODOLOGY

The econometric formulation for this study assumes
that crashes among older drivers, yit, are a function
of a set of explanatory variables, xit, and can be
expressed as 

 
(1)

where i indexes the county and t indexes the year. 
is a scalar parameter and  is a parameter vector,
both of which are to be estimated. eit is an error
term assumed to have a mean of zero and a constant
variance. For a given county, i, the term ui is con-
stant over time but is assumed to vary by county.
Depending on the distribution assumption associ-
ated with ui, the resulting statistical model will
either be a fixed-effects or a random-effects model.
If ui (i = 1,…,I) is assumed to be a fixed parameter,
then, in addition to  and , the model estimates
each effect ui (normalizing on one of the cross sec-
tions). The estimator for this model is also referred
to as the across-years estimator because it is equiva-
lent to estimating the 

 
(i = 1,…, I; t = 1,…, T).
Alternatively, if ui is assumed to vary randomly

(e.g., the cross-section units are a sample from a
larger set of cross-section units), then the model’s
error term becomes (ui + eit), which is assumed to
satisfy the standard assumptions of a zero mean,
constant variance, and zero correlation with the

explanatory variables. The choice between fixed
effects and random effects specification generally
revolves around the correlation between ui and xit in
the random effects specification. In particular, if the
random effect ui is correlated with the vector of
explanatory variables xit (i.e., corr(ui, xit) ≠ 0), then
the parameter estimates are unbiased, but the stan-
dard errors are biased and we have no confidence in
our t-statistics. 

How can we determine whether the indepen-
dence assumption between ui and xit is reasonable?
Theoretically, the issue hinges on whether there are
unobserved time-invariant effects that are correlated
with a subset of the included variables. In a fixed
effects specification, ui is a fixed parameter and the
correlation between ui and xit does not affect the
model's properties. However, in a random effects
specification, ui reflects time-invariant effects that
become part of the error structure. If these effects
are correlated with the set of explanatory variables,
biases in the standard errors arise. As an example,
consider a county's topography, which is time
invariant. Counties with less mountainous terrains
will likely have greater vmt. Thus, a random effects
specification will not be able to determine the extent
to which higher crashes are due to more traveling
and how much are due to unobserved topography. 

In general, ui captures county heterogeneity,
which means that it reflects the net effect of unob-
served variables (e.g., topography in the above
example or the presence of “through routes”) on
the dependent variable. Thus, in ui’s picking up the
influence of a variable that is correlated with an
explanatory variable in the model, the independence
assumption is violated and a random effects specifi-
cation is not valid. 

In addition to a fixed or random effects specifica-
tion, panel data may suffer from serially correlated
errors if the time span is sufficiently long and from
heteroskedastic errors if the cross-section units have
different scales. It is likely that the dataset for this
analysis includes both problems, given the 18-year
time horizon for these data and the fact that some
counties in California are heavily populated (e.g.,
Los Angeles, San Diego, and San Francisco),
whereas other counties have considerably smaller
populations (e.g., Alpine and Tulare counties) and,
accordingly, many fewer highway crashes. To

5 Under California's law, a 30-day temporary license is
issued to allow for due process, which provides drivers
with time to challenge the suspension. 

yit α β'xit ui eit+ + +=
i 1,...,58  t; 1981,...,1998= =

α
β

α β

yit yi–( ) xit xit–( )β e( it ei ),–+=
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account simultaneously for serial correlation and
heteroskedasticity, a feasible generalized least
squares (FGLS) approach provides an alternative
estimator. The model for this estimator is 

(2)

which accommodates fixed effects, first order serial
correlation, and cross-section heteroskedasticity.6 

For this study, fixed effects, random effects, and
FGLS models were estimated. Since, theoretically
and empirically, an FGLS specification provided the
best fits to the data for older drivers, only these
results will be reported.7 For each of the FGLS mod-
els, the estimation results and marginal effects of
selected variables will be discussed. In addition to
reporting results for older driver involved crashes,
similar results will be reported for highway crashes
involving drivers less than 60 years of age. 

Tables 4 and 5 report the estimation results for
older drivers and tables 6 and 7 report comparable
results for younger drivers. 

Estimation Results for Older Drivers

For crashes involving older drivers, tables 4 and 5
report the FGLS estimation results. In addition to
estimating separate autocorrelation coefficients for
each county and county-specific variances, these
models include a full set of fixed effects for 57 of the
58 counties in California, normalizing on Yuba
County. With regard to serial correlation, note that

average estimated ρ varies across crash types and
there is significant variation across counties, as
reflected in the range of estimates for each crash
type. For example, the estimated range of correla-
tion coefficients varied from –0.46 to 0.47 for fatal
crashes (with an average of –0.02), whereas the esti-
mated range was 0.18 to 0.95 for PDO crashes
(with an average of 0.71). This indicates there is
likely to be significant bias in the variance estimates
if the serial correlation is ignored. 

Overall, the results reported in table 4 column (a)
are consistent with expectations. For total crashes,
an increase in real per capita income (Rpcinc) or
unemployment rate (Uerate) has relatively little
effect on crashes involving older drivers. But to the
extent that an effect is present, a weaker economy is
seen to increase the frequency of crashes. On the
other hand, the price indexes for alcohol (Cpialc)
and gasoline (Cpigas) have strong negative effects
on total crashes. If all else remains constant, an

6 FGLS preserves the first time series observation in each
cross section by applying the Prais-Winston transforma-
tion. See Baltagi (1995, p. 83). 
7 A commonly used alternative methodology is a negative
binomial model that accounts for the overdispersion prop-
erty typically seen in highway crash data (and the data for
this analysis are no exception) by relaxing the mean-vari-
ance equivalence property of the Poisson model. Fixed
effects negative binomial models generally account for
cross-section heterogeneity and overdispersion but not
heteroskedasticity and serial correlation. FGLS, on the
other hand, accounts for cross-section heterogeneity, het-
eroskedasticity, and serial correlation but does not address
the overdispersion problem. As will be seen later, the esti-
mated serial correlation coefficients varied across crash
types and varied significantly across counties, which indi-
cates that in models that fail to adjust for serial correla-
tion, the coefficient estimates are inefficient and the
estimated variances of the coefficients will be biased. 

yit αi β'xit eit      i+ + 1,..., I; t 1,...,T= = =
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2                i 1,..., I; t 1,...,T= = =

TABLE 4  FGLS Regression: Involved Drivers in 
Total and Fatal Crashes, > 601

Total crashes Fatal crashes
(a) (b)

Variable Coeff z-stat Coeff z-stat

Rpcinc –3.60E–04 –0.67 –1.00E–04 –1.45
Cpigas –0.262 –4.35 –0.012 –1.48
Cpialc –0.118 –1.98 –0.010 –1.28

Uerate 15.901 0.99 2.044 1.08
Vmtge60 3.91E–07 3.47 — —
Vmtlt60 3.31E–08 1.71 — —

Totvmt — — 2.83E–10 1.78
Popden –0.169 –3.15 –2.33E–04 –0.18
Pctge60 147.575 3.14 5.054 0.78

Alclic 0.016 4.06 4.18E–04 4.53
AB541 –2.901 –1.80 0.033 0.14
APS 0.022 0.01 –0.071 –0.23

Slmt_65 2.062 1.24 0.713 3.66
Slmt_70 4.108 2.67 0.084 0.48

Pc_dui2 98.784 2.51 –19.779 –0.14

Constant 138.594 5.11 3.993 2.17
 ρ range: (–0.131,

0.929)
 ρ range: (–0.465,

0.470)

mean ρ: 0.660 ρ mean : –0.022

Wald χ2(71) = 31837.1 Wald χ2(71) = 2416.6

Prob > χ2(71) = 0.0 Prob > χ2(71) = 0.0
1  Estimates of the constant term and fixed effects are not reported 
for 57 counties, normalizing on the 58th county, Yuba.
2 Predicted Pc_dui was used in the fatal crashes equation.
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increase in the consumption price of gasoline or
alcohol reduces crashes involving older drivers.

As expected, risk exposure produces more crashes.
From the results, we see that a 100 million vmt
increase by older drivers (Vmtge60) leads to 39 more
crashes involving older drivers. Further, we see that
younger driver exposure has a similar effect on older
driver crashes. Specifically, a 1 billion vmt increase in
younger driver exposure (Vmtlt60) produces 33
additional total crashes involving older drivers. Also,
the greater the share of the population that is older
than 60 (Pctge60), the greater the number of crashes.
Given that vmt is constant, this result is consistent
with older drivers having reduced driving skills rela-
tive to their younger driver counterparts. However, as
reported below, the share of the population that is
older than 60 has a negative and significant impact
on younger driver crashes. The positive sign for older
(negative for younger) involved crashes suggests that
this variable may be capturing an aspect of vmt expo-

sure that is not reflected in the included aggregate
vmt variable.8 Increases in population density are
also associated with fewer older driver crashes. A
100-person increase per square mile (Popden) leads
to 17 fewer crashes.

The last set of variables in table 4 column (a)
relates to statewide alcohol and highway speed poli-
cies. First, and consistent with other research, alco-
hol availability (Alclic) is detrimental to highway
safety, producing 1.6 additional crashes per 100
increase in the number of licenses. Second, the
model includes two major pieces of alcohol-related

TABLE 5  FGLS Regression: Involved Drivers in 
Injury and PDO Crashes, > 601

Injury crashes PDO crashes
(a) (b)

Variable Coeff z-stat Coeff z-stat

Rpcinc –6.00E–04 –1.39 4.59E–04 1.39
Cpigas –0.128 –2.99 –0.124 –3.39
Cpialc –0.190 –4.72 0.015 0.41

Uerate –9.786 –0.88 9.707 1.07
Vmtge60 1.89E–07 3.95 — —
Vmtlt60 2.55E–08 3.30 — —

Totvmt — — 4.15E–08 6.53
Popden –8.07E–03 –0.26 –0.189 –3.79
Pctge60 67.756 2.00 72.219 2.55

Alclic 9.14E–03 5.51 9.88E–03 3.36
AB541 0.369 0.33 –2.147 –2.17
APS 6.513 4.19 –3.329 –2.27

Slmt_65 1.616 1.49 1.439 1.39
Slmt_70 1.388 1.38 1.317 1.37
Pc_dui 10.984 0.42 45.035 1.93

Constant 57.206 4.63 76.007 4.74
ρ range: (–0.261,

0.863)
 ρ range: (–0.179,

0.953)

mean ρ: 0.471 mean ρ: 0.710

Wald χ2(71) =
47027.8

Wald χ2(71) =
12211.8

Prob > χ2(71) = 0.0 Prob > χ2(71) = 0.0
1  Estimates of the constant term and fixed effects are not reported 
for 57 counties, normalizing on the 58th county, Yuba.

TABLE 6  FGLS Regression: Involved Drivers in 
Total and Fatal Crashes, < 601

Total crashes Fatal crashes
(a) (b)

Variable Coeff z-stat Coeff z-stat

Rpcinc 2.67E–02 4.65 –9.87E–04 –6.11
Cpigas –6.842 –8.90 –0.069 –2.89

Cpialc –7.910 –8.12 –0.116 –5.30
Uerate 945.280 5.98 –9.812 –1.60
Vmtlt60 1.37E–07 2.73 — —

log(Totvmt) — — 2.757 6.56
Popden 0.852 2.36 –3.70E–02 –5.56
Pctge60 –1878.053 –10.54 –23.971 –4.70

Alclic 0.279 23.77 3.95E–03 17.07
AB541 –52.419 –4.83 –2.261 –3.47
APS 250.065 8.58 1.965 2.32

Slmt_65 72.421 6.22 0.627 1.09
Slmt_70 –48.308 –3.66 –0.444 –0.82

Pc_dui2 –32947.750 –6.72 85.661 3.57

Pcmcyc –2922.915 –4.92 –136.231 –5.41
Const 2060.190 9.66 –6.947 –0.78

ρ range: (–0.035,
0.963)

 range: (–0.133,
0.898)

mean ρ: 0.670 mean ρ: 0.381

Wald χ2(37) =
13330.9

Wald χ2(37) =
5764.4

Prob > χ2(37) = 0.0 Prob > χ2(37) = 0.0
1 Not reported are estimates of the constant term and fixed effects 
for 24 consolidated metropolitan statistical area counties—
Alameda, Butte, Contra Costa, El Dorado, Kern, Los Angeles, 
Marin, Napa, Orange, Placer, Riverside, Sacramento, San Benito, 
San Bernardino, San Diego, San Francisco, San Luis Obispo, San 
Mateo, Santa Clara, Santa Cruz, Solano, Sonoma, Sutter, and 
Ventura.
2 Predicted pc_dui was used in the total crashes equation. 

8 I would like to thank the editors and anonymous refer-
ees for suggesting this as a possible explanation for the
systematically different results.
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legislation passed in California. AB541 was an
omnibus bill that raised the cost of driving under the
influence of alcohol in various ways and was Cali-
fornia's first major effort at reducing drinking-and-
driving crashes. The net effect on crashes was in the
desired direction, leading to an average of 2.9 fewer
crashes per county-year. On the other hand, APS,
which implemented a 0.08 administrative per se
law, has had no identifiable effect on total crashes. 

DUI enforcement, defined as per capita arrests
(Pc_dui), is significant but has an unexpected posi-
tive sign. There are three possible explanations for
this. First, per capita arrests are the product of the
probability of being stopped and the probability of
being arrested given that one is stopped. Thus, a
positive sign could result if an increase in arrests per

stopped driver (reflecting, for example, police tar-
geting DUI drivers) is associated with a contempo-
raneous decline in overall traffic enforcement
(which reduces the likelihood of being stopped).
Second, the effect on total crashes may reflect a net
distribution effect on the different types of crashes.
By inducing drinking drivers at the margin to
behave less recklessly (e.g., consume fewer drinks,
drive slower), more stringent enforcement, for
example, could result in fewer fatal crashes but an
increasing number of nonfatal crashes. Third, there
may be an endogeneity problem in that an increase
in crashes today leads to higher enforcement. Using
a Hausman specification test statistic to test for
endogeneity, the null hypothesis that Pc_dui was
exogenous could not be rejected.9 

The last two variables in table 4 column (a) iden-
tify the estimated effect of higher speed limits on
crashes involving older drivers. The 65 mph speed
limit (Slmt_65) had a positive but statistically insig-
nificant effect on total crashes, whereas the more
recent relaxation of speed limits (Slmt_70) produced
a strong effect, generating four additional older
driver crashes. 

Column (b) in table 4 reports the FGLS estima-
tion results for fatal crashes involving older drivers.
Although the results are similar, there are some
interesting differences. First, the state of the econ-
omy, whether it is measured by per capita income
(Rpcinc) or the unemployment rate (Uerate), has a
similar and somewhat stronger effect on fatal
crashes than total crashes. Moreover, the effects are
symmetric. Gains in per capita income and reduc-
tions in the unemployment rate both reduce fatal
crashes. In that increases in income allow drivers to

TABLE 7  FGLS Regression: Involved Drivers in 
Injury and PDO Crashes, < 601

Injury crashes PDO crashes
(a) (b)

Variable Coeff z-stat Coeff z-stat

Rpcinc –3.80E–03 –2.85 1.95E–02 5.07
Cpigas –0.829 –4.59 –4.0889 –8.27
Cpialc –0.537 –3.20 –4.643 –7.08

Uerate –8.545 –0.22 637.308 6.21
Vmtlt60 2.89E–08 1.59 6.16E–08 1.72
Popden 0.650 4.96 0.590 2.00

Pctge60 –303.521 –5.69 –954.108 –7.59
Alclic 0.126 29.37 0.160 19.09
AB541 –28.288 –5.75 –23.961 –3.59

APS 29.428 4.80 146.169 7.67
Slmt_65 11.545 2.57 42.969 5.92
Slmt_70 –2.853 –0.66 –23.468 –2.77

Pc_dui2 –204.864 –0.93 –19481.330 –6.02

Pcmcyc –61.949 –0.53 –1919.889 –4.55
Const 242.387 7.19 1131.578 7.90

ρ range: (–0.196,
0.968)

ρ range: (0.058,
0.947)

mean ρ: 0.552 mean ρ: 0.742

Wald χ2(37) =
23414.5

Wald χ2(37) =
9247.1

Prob > χ2(37) = 0.0 Prob > χ2(37) = 0.0
1 Not reported are estimates of the constant term and fixed effects for 
24 consolidated metropolitan statistical area counties—Alameda, 
Butte, Contra Costa, El Dorado, Kern, Los Angeles, Marin, Napa, 
Orange, Placer, Riverside, Sacramento, San Benito, San Bernardino, 
San Diego, San Francisco, San Luis Obispo, San Mateo, Santa Clara, 
Santa Cruz, Solano, Sonoma, Sutter, and Ventura.
2 Predicted Pc_dui was used in the total crashes equation.

9 For a discussion of the Hausman specification test, see
Pindyck and Rubinfeld (1991, p. 303–304). Instrumental
variables for per capita arrests included other explanatory
variables in the model. As noted by the editors, in the
present framework, endogeneity is a problem if an
increase in the incidence of alcohol-related crashes leads
to more enforcement, However, if the level of enforcement
is determined independently by the extent of drinking and
driving rather than crashes, then enforcement is an instru-
mental variable for drinking and driving and the positive
sign is consistent with expectations. It is likely that both
effects are operating to some degree, which is consistent
with the mixed results obtained from the Hausman speci-
fication test.
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spend more on safer vehicles, better tires, and so
forth to increase their level of safety (assuming that
safety is a normal good) but drive faster and hence
less safely (reflecting an increase in the value of
time), the negative sign on Rpcinc implies that the
safety effect dominates. And increases in gasoline
(Cpigas) and alcohol prices (Cpialc) lead to fewer
fatal crashes involving older drivers.

As expected, greater risk exposure produces
more fatal crashes, where the results indicate that an
increase of 10 billion vmt in total vmt produces an
additional 2.8 fatal crashes among older drivers.10

But in contrast to the results in table 4 column (a),
neither the share of older drivers nor the population
density has significant effects on fatal crashes. 

Turning to the regulatory variables, alcohol avail-
ability significantly increases the number of older
driver-involved fatal crashes, but neither AB541 nor
APS had an identifiable effect. At the same time, and
in contrast to the results in column (a), increases in
per capita DUI arrests reduce fatal crashes but the
result was not statistically significant.11 

Also in contrast to the results for total crashes,
the effect of higher speed limits has opposite impli-
cations for fatal crashes. Although the 1987 speed
limit relaxation had a marginal effect on total
crashes, its effect on fatal crashes involving older
drivers was stronger and significant, leading to a
0.71 additional fatal crash involving older drivers
per county-year (or 41 annual fatal crashes state-
wide). The 1997 law, however, which allowed states
to raise limits above 65 mph, although significantly
increasing total crashes involving older drivers, had
no effect on fatal crashes. 

Table 5 columns (a) and (b) summarize the esti-
mation results for nonfatal injury and PDO crashes.
The results reported in column (a) for nonfatal

injury crashes are similar to the results in table 4
column (a) for total crashes with a few exceptions.
First, per capita DUI arrests has no effect on non-
fatal injury crashes. Second, APS has a positive sign
and is statistically significant, indicating that pas-
sage of the 0.08 administrative per se law actually
increased nonfatal injury crashes involving older
drivers. Theoretically, APS is expected to reduce
crashes. The law mandates that police revoke the
license of a driver arrested for a DUI offence and
issue a 30-day temporary driving permit. Drivers
pay minor fees to get their licenses reinstated. Also,
other legislation passed in early 1990 reduced the
BAC level from 0.10 to 0.08 as per se evidence of
impaired driving and increased various sanctions for
a DUI offense. By raising the expected cost of a DUI
event, we would expect these laws to reduce the
incidence of crashes, all else being constant.
Although APS had little impact on total crashes, the
positive and significant effect identified in table 5
column (a) is inconsistent with higher expected costs
and may reflect the laws’ distribution effects in the
post-1990 driving environment. 

Finally, table 5 column (b) reports the results for
older driver PDO crashes. These crashes are most
sensitive to the price index for gasoline, population
density, the share of drivers 60 years of age or older,
and the number of alcohol licenses. In addition, the
best fit included total vmt, which found that a 100
million increase in vmt would lead to four addi-
tional PDO crashes involving older drivers. In this
case, both AB541 and APS reduced the number of
PDO crashes involving older drivers. Recall that
APS was not significant for total crashes but was
positive and significant for nonfatal injury crashes.
In contrast to this latter result, in table 5 column (b),
APS significantly reduces PDO crashes, which is
consistent with expectations.12 

Estimation Results for Younger Drivers

For purposes of comparison, FGLS models were
estimated for county crashes involving younger

10 In preliminary models, various vmt specifications were
employed, including total vmt, older driver vmt, younger
driver vmt, and logarithmic transformations. The results
reported represent the best model fits. In contrast to the
total crashes results reported in table 4 column (a) often
the inclusion of both younger and older driver vmt led to
robustness problems due to the high level of collinearity
between these exposure measures.
11 For the fatal crashes equation, the hypothesis that
Pc_dui was exogenous could be rejected at the 0.05 level.
In this case, Pc_dui was regressed on a set of explanatory
variables and the predicted value included in the fatal
crashes equation. 

12 As will be seen below for younger drivers, APS has
strong positive effects across all crash types, which is con-
sistent with the results for injury crashes among older
drivers but inconsistent with expectations. Further
research is needed to isolate the mechanisms through
which APS affects crash frequency and severity. 
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drivers. One difference in these models from those
for the older drivers is that including a full set of
fixed effects led to poorer model fits. In order to
control for major sources of cross-section hetero-
geneity without including a full set of fixed effects
parameters, the results in tables 6 and 7 include
fixed effects for those counties that are part of a
consolidated metropolitan statistical area (CMSA).
In total, the models include 24 fixed effects param-
eters in addition to autocorrelation and variance
parameters associated with each of the 58 coun-
ties.13 Similar to tables 4 and 5, the results in tables
6 and 7 reflect large variation in the average as
well as the range of estimated serial correlation
coefficients.

Table 6 columns (a) and (b) give the results for
total and fatal crashes involving younger drivers.
From a statistical perspective, the results are stron-
ger in that the z-statistics for the significant variables
reject the null hypothesis at higher levels of signifi-
cance. There are a number of differences in total
crash results between older and younger involved
drivers. Some differences are:

� Higher population densities are detrimental to
highway safety in that population density signifi-
cantly increased the number of nonfatal injury
and PDO crashes among younger involved
drivers (but high population density reduced fatal
accidents for younger drivers). For older involved
drivers, there was no effect on nonfatal injury
crashes and a negative effect on PDO crashes.

� A higher county share of older persons increased
total crashes among older involved drivers but
reduced total crashes among younger involved
drivers. 

� APS significantly increased the total number of
crashes involving younger drivers.

� For younger involved crashes, the 1987 relaxed
speed limit (Slmt_65) significantly increased total

crashes whereas the 1995 relaxation significantly
reduced total crashes.

� Per capita DUI arrests had a positive effect on
older involved crashes; for younger involved
crashes, this variable had a negative and signifi-
cant effect on total crashes but a positive effect
on fatal crashes. The total number of younger
driver-involved crashes decreased with the num-
ber of per capita motorcycles registrations in a
county.

A similar comparison of fatal crash determinants
in table 4 column (b) for older involved drivers with
that of younger involved drivers in table 6 column (b)
also reveals a number of differences. In particular:

� An increase in the unemployment rate reduced
fatal crashes among the younger driver-involved
crashes, whereas this variable had no significant
effect for the older drivers involved in crashes.

� Increases in population density and the share of
older drivers in the population had strong benefi-
cial effects on safety, whereas no effect was found
for fatal crashes involving older drivers.

� AB541 significantly reduced fatal crashes among
the younger group, while APS increased fatal
crashes, effects that were absent in the older
driver group.

� Neither of the two increases in speed limits
affected fatal crashes involving younger drivers.

� Per capita DUI arrests significantly increased
fatal crashes, as it did for total crashes, and per
capita motorcycles reduced fatal crashes involv-
ing younger drivers. 

In the fatal crash equation, the two results that were
unexpected but yet were robust to alternative speci-
fications were the positive sign on APS and the posi-
tive sign on per capita DUI arrests. As noted earlier,
the expectation was that APS would have a negative
effect. Yet for total and fatal crashes for younger
involved drivers, the sign and significance were
robust. 

For per capita DUI arrests, there is the possibility
of endogeneity problems. This was explored in
some detail for per capita arrests. Neither alterna-
tive variable specifications nor using “predicted per
capita arrests” (based on a panel regression of per
capita DUI arrests on the set of explanatory vari-

13 In preliminary runs of the model, a full set of fixed
effects for all but the normalized county led to conver-
gence problems. Because many differences among coun-
ties are expected to reflect factors related to urbanization,
a separate fixed effect was included for each CMSA
county in order to capture this heterogeneity. For the
reported models, the interpretation of the CMSA fixed
effect parameters is the impact on crashes relative to all
rural counties in California.
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ables in the model) altered the finding in table 6 col-
umn (b). Further, fatal crashes were not found to be
a significant determinant of per capita arrests in a
panel regression analysis of arrests. This suggests
that endogeneity is not a large problem. In contrast
to expectations that per capita arrests decrease the
most serious crashes at the cost of less serious
crashes, there is some evidence that the reverse may
have occurred. As seen in Table 7 column (b), per
capita arrests was negative and statistically signifi-
cant, which, when combined with the fatal crash
results, suggest a redistribution from less serious to
more serious crashes. A possible explanation is that
the police are targeting the wrong group in their
DUI enforcement efforts. 

Table 7 columns (a) and (b) summarize the esti-
mation results for nonfatal injury and PDO crashes
among younger drivers involved in crashes. For
each of these models, the results generally have sim-
ilar implications with respect to price, exposure,
population density, the share of older persons in the
population, alcohol availability, and regulatory vari-
ables. But there are qualitative differences regarding
the effects of real per capita income (reducing injury
but increasing PDO crashes) and the unemployment
rate (which has no effect on injury crashes).14

Elasticity Estimates

Tables 8 and 9 report sensitivity measures associ-
ated with model variables in the older and younger
driver groups, respectively. For crashes involving
older drivers, table 8 provides several interesting
insights. First, fatal crashes are an order of magni-
tude more sensitive to changes in gasoline and alco-
hol price indexes than are less serious crashes. A
10% increase in energy prices, for example, reduces
fatal crashes 1.3% in comparison with an approxi-
mate 0.2% decrease in injury and PDO crashes. Sec-
ond, older drivers are most likely to be involved in
PDO crashes and least likely to be involved in a

fatal crash as their risk exposure increases.15 Third,
and consistent with the higher alcohol price sensitiv-
ity, fatal crashes among older drivers are more than
twice as sensitive to alcohol availability in compari-

14 Similar to the total and fatal crash equations involving
younger drivers, the effect of motorcycle registrations was
consistently negative and significant in the PDO equa-
tions. Given the high fatality rate among motorcyclists
(e.g., the number of fatalities per vmt was 26 times higher
than passenger car occupants (USDOT 2002)), this result
was unexpected and may be capturing part of the smaller
total exposure among the motorcycle population in com-
parison with that of the motor vehicle population. 

TABLE 8  Sensitivity Measures:1 Involved Drivers, > 60

Variable Total Fatal Injury PDO

Rpcinc † –0.004 –0.130 –0.016 0.010
Cpigas –0.022 –0.130 –0.024 –0.019

Cpialc –0.013 –0.109 –0.047 † 0.003

Uerate † 0.001 † 0.019 † –0.002 † 0.001
Vmt_lt60 0.106 — 0.184 —
Vmt_ge60 0.167 — 0.184 —
Totvmt — 0.114 — 0.272

Popden –0.080 † –0.012 † –0.009 –0.162

Pctge60 0.021 † 0.080 0.022 0.019
Alclic 0.189 0.562 0.250 0.216

Pc_dui 0.001 † –0.027 † 0.000 0.001

Ab541* –2.901 † 0.033 † 0.369 –2.147
Sb1623* 0.022 –0.071 6.513 –3.329

Slmt_65* † 2.06 0.713 1.616 1.439

Slmt_70* 4.108 † 0.084 1.388 1.317
1 Elasticities for continuous variables; marginal effects for dummy 
variables (marked *).

Key: 
†

= coefficient estimate was not significant at < 0.20.

TABLE 9  Sensitivity Measures:1 Involved Drivers, < 60

Variable Total Fatal Injury PDO

Rpcinc 0.052 –0.232 –0.018 0.066
Cpigas –0.096 –0.117 –0.028 –0.099
Cpialc –0.144 –0.256 –0.024 –0.147

Uerate 0.013 –0.017 † 0.000 0.016
Vmt_lt60 0.073 — 0.037 0.057
Logvmtlt60 — 0.047 — —
Popden 0.067 –0.355 0.124 0.081
Pctge60 –0.045 –0.069 –0.017 –0.039
Alclic 0.562 0.966 0.614 0.564

Pc_dui –0.067 0.019 † 0.000 –0.063
Ab541* –52.420 –2.261 –28.290 –23.960
Sb1623* 250.070 1.965 29.430 146.17

Slmt_65* 72.420 † 0.627 11.540 42.970

Slmt_70* –48.310 † –0.444 † –2.853 –23.470

Pcmcyc –0.011 –0.065 † –0.002 –0.013
1 Elasticities for continuous variables; marginal effects for dummy 
variables (marked *).

Key: 
†

= coefficient estimate was not significant at < 0.20.

15 Since the best model fits for fatal and PDO crashes
include total rather than older driver vmt, this assumes
that older driver vmt increases in proportion to total vmt. 
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son with less serious crashes. A 4% increase in the
number of retail licenses to sell alcohol results in an
approximate 1% increase in injury and PDO
crashes but a 2% increase in fatal crashes among
older drivers. Fourth, the higher speed limits
enacted in 1987 were detrimental to older drivers in
that all types of crashes increased. However, the
1995 relaxation has had, to date, no impact on fatal
crashes involving older drivers. 

Table 9 reports the sensitivity measures for
younger drivers involved in crashes. In this table,
there are some interesting similarities and contrasts
to those reported in table 8. First, crashes among
younger drivers show sensitivities to gasoline and
alcohol that are similar to those observed in table 8.
Fatal crashes were most sensitive and an order of
magnitude more sensitive than less serious crashes. 

Second, although PDO crashes among younger
drivers were most sensitive to increased exposure,
there was a much smaller difference in fatal, nonfa-
tal injury, and PDO crash sensitivity than was seen
for older drivers.16 A further contrast with table 8 is
that, in table 9, vmt elasticity for each crash type is
almost an order of magnitude smaller. Crashes
involving younger drivers were much less sensitive
to risk exposure than those among older drivers.

Third, table 9 shows that an increased share of
older persons in the population reduced all crashes
and the largest effect is associated with fatal crashes.
Combined with the results in tables 4 and 5, an
increased share of older persons in the population
redistributed crashes away from younger involved
and toward older involved drivers.

Fourth, highway safety among younger drivers
was sensitive to the availability of alcohol, as in the
older driver group. For younger drivers, the pattern
was similar to that for older drivers in that fatal
crashes were most sensitive to alcohol availability.
The difference in the level of sensitivity for younger
involved drivers was approximately double that for
older involved drivers.

Fifth, and also in contrast to the older driver
results, AB541 was beneficial to younger driver
highway safety regardless of severity level. Last, nei-
ther the 1987 nor the 1995 higher speed limits
increased fatal crashes involving younger drivers,

although the 1987 relaxation did increase the inci-
dence of nonfatal injury crashes.

SUMMARY AND CONCLUSIONS 

The objective of this analysis was to obtain some
insights on economic and regulatory factors that are
important determinants of highway crashes involv-
ing older drivers. With the “graying of America,”
older drivers will make up a larger proportion of the
traveling population, and it is important to under-
stand the impact this is likely to have on highway
crashes, particularly those involving fatalities or
injuries. Further, the study analyzed younger drivers
in order to identify differential impacts that public
policy may have on older versus younger driver-
involved crashes. The major conclusions that are
evident from this study are as follows.

� The set of explanatory variables for crashes
involving older drivers differ from those variables
for crashes involving younger drivers.

� Among the subset of explanatory variables for
crashes among older and younger drivers, crash
sensitivity to these factors show large quantitative
differences and, in some cases, sign differences.

� Fatal crashes involving older drivers were sensi-
tive to risk exposure. This has serious implica-
tions for highway safety as the population ages
and risk exposure among this group of drivers
increases.

� Increases in gasoline and alcohol taxes, which
can be justified on economic grounds for a num-
ber of reasons, can provide safety benefits in
reducing fatal crashes involving older drivers. 

� Reducing the number of retail establishments
that sell alcohol will reduce the number of
crashes involving older drivers. 

� DUI enforcement, measured by per capita DUI
arrests and after correcting for endogeneity bias,
had little effect on fatal and noninjury crashes
involving older drivers. For crashes involving
younger drivers, a significant increase in crashes
was found, arguing for further research to better
understand the relationship between measures of
DUI enforcement and highway safety.

� For older drivers, raising speed limits to 65 mph
on Interstates increased fatal crashes in this group.

16 For fatal crashes, this implies that younger driver vmt
increases in proportion to total vmt.
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� The omnibus deterrent law passed in 1981
(AB541) had a significant effect on all crashes
involving younger drivers but no impact on fatal
and nonfatal injury crashes involving older driv-
ers. This identifies a differential policy effect for
the two groups. However, this result is tentative
because the absence of an effect for crashes involv-
ing older drivers may reflect the fact that there is
only one year of data for the pre-law period.

� The results for California's 1990 administrative
per se law produced mixed results, with increas-
ing nonfatal injury crashes but decreasing PDO
crashes involving older drivers. For crashes
involving younger drivers, and contrary to expec-
tations, the effect was consistently positive and
statistically significant, calling for more research
in order to understand the structural relationship
between APS and changes in highway safety. 

Two modeling implications flow from this analy-
sis. First, relative to fixed effects negative binomial
methods, FGLS was used to estimate the models
reported in this analysis. FGLS estimation comes at
the cost of not directly accounting for overdisper-
sion that is typical in crash data. For the models
reported, normality tests were conducted on the
errors and these tests uniformly rejected the null
hypothesis, which likely reflects remaining problems
with overdispersion.17 At the same time, negative
binomial models that do not adequately account for
heteroskedasticity and serial correlation are ineffi-
cient and will produce incorrect standard errors that
invalidate standard hypothesis tests. Additional
research needs to be done to better understand the
tradeoffs and empirical importance in using alterna-
tive panel data estimation techniques. 

Second, all of the models reported in this analy-
sis focused on the impact that alternative explana-
tory variables had on the number of highway
crashes. Alternatively, the focus could be on crash
rates rather than levels. Each of the models
reported in tables 4 through 7 were re-estimated
using crash rates rather than levels.18 Qualitatively,
the estimation results were broadly, but not uni-

formly, consistent with the results reported in these
tables. Alcohol and gasoline price indexes had sim-
ilar effects to that identified in this analysis. With
respect to the alcohol policy variables, AB541 was
uniformly negative in the rate equation, whereas
APS had similar effects on crash rates as it did on
levels, but these were not consistent. For crashes
involving older drivers, the effects of the 1987 and
1995 speed limit increases were generally consis-
tent with those for crash levels. This was not true
for the younger group.19 Further, the effect on
crash rates of an increase in the number of alcohol
retail licenses was uniformly negative and always
significant. 

Further study is needed to establish the relation-
ships between the effects that determining factors
have on crash levels vis-à-vis crash rates. For exam-
ple, consistent with expectations, increasing the num-
ber of alcohol licenses is expected to increase the
number of crashes (all else remaining constant),
because a larger number of licenses is expected to
reflect greater alcohol consumption. However, an
increase in the number of licenses could increase or
decrease crashes per vmt, because crash rates are not
controlling for vmt. In order to set appropriate high-
way safety policy for a growing older population, it is
important to understand the effects that policies have
on alternative measures of highway safety. 
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ABSTRACT

This paper proposes a spatial interaction modeling
framework and implements a maximum likelihood
estimation of highway freight weight and value
flows using the gravity model. The computation of
the standard error of the flow estimates provides the
basis for measuring the level of accuracy of the esti-
mates. The results provide evidence of the suitability
of gravity models for freight forecasting given the
excellent fit and the small variances.

INTRODUCTION

The measurement of freight movements requires
tracking freight flows across geographic and political
boundaries. This is a particularly challenging task
given the current capabilities for state and regional
data acquisition. Various mathematical approaches
have been implemented (Memmot 1983; USDOT
1996; Cambridge Systematics 1997) to circumvent
this problem, but none, to the best of this author’s
knowledge, proposes a measure to assess the accu-
racy of the computed flows.

This paper proposes to fill this gap using develop-
ments in spatial interaction modeling that have not
been demonstrated on a large scale to date. The
methodology computes maximum likelihood flow

KEYWORDS: freight origin-destination flow estimation,
covariance of estimates, gravity model.
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estimates and obtains their covariance matrices that,
in turn, may be used to obtain confidence intervals
and carry out certain tests of hypotheses. The
approach can accommodate the large number of
origins and destinations typically encountered in
freight (and passenger) travel forecasting.

The methodology was applied to highway freight
weight and value flows of international trade traffic
between seaports or border ports and destination
states (see Metaxatos (2002) for details). The vari-
ances of the flow estimates computed were remark-
ably small. The demand for freight transportation
flows can then be estimated within a desired confi-
dence level. Moreover, the empirical analysis under-
taken provides evidence that the theoretical
framework proposed in this paper is rich enough for
freight demand forecasting applications.

THEORETICAL FRAMEWORK

Commodity shipments in this paper are thought to
be realized patterns of spatial interactions that typi-
cally result from many independent decisions by
individual firms, each constituting a relevant sub-
system within the economy as a whole. Hence, if the
travel behavior of each firm is modeled as a very
small interaction process, the resultant interaction
process can be taken to be the superposition of all
these processes. It may be argued that for large col-
lections of small frequency processes, the resulting
superimposed process is approximately Poisson
and, therefore, completely characterized by its asso-
ciated mean interaction frequencies (Sen and Smith
1995).

In this light, assuming that the observations Nij

of shipment weight and value between origin sea-
ports/border ports of entry i and destination states j
can be described by the gravity model, then

(1)

In this paper, Tij’s (the stochastic term) are inter-
preted as the expected international trade traffic
flow (in terms of weight and value) carried by high-
way from external station i to state j. The Ai’s are
factors related to the origin zone i and the Bj’s are
destination-related factors. The Fij’s are factors that
reflect the separation between i and j. A common
form that is general enough for most applications is 

(2)

This form is called an exponential form and  are
different measures of separation, while ’s are
parameters to be estimated. Potential measures of
separation include travel time, distance, generalized
costs, etc.

In the gravity model, observable quantities
 and their expected

values Ti*, T*j, and Tij are described by means of an
underlying structure consisting of unobservable
quantities Ai, Bj, and Fij. Similar situations abound
in statistics. In moving average models, for example,
observations are described by means of unobserv-
able parameters. A like situation exists in analysis of
variance models.

Although the origin and destination factors are
unobservable, they do have physical interpretations.
For example, if for some origin i, there are two des-
tinations j and j ′ such that Fij = Fij ′, then Tij /Tij ′ =
Bj /Bj ′. Thus other factors being equal, Tij is propor-
tional to Bj (but, in general, not proportional to
T*j), and is called the attractiveness of j. Similarly,
the origin factor Ai may also be called the emissive-
ness of i.

Clearly, BjFij is the effect of the destination factor
Bj at i, or the accessibility of j as perceived from i.
This is a spatial analogy of the temporal concept of
present value in economics, where a dollar earned in
n years in the future is worth only (1 + )–n now,
where  is the interest rate. Similarly, AiFij is the
effect of the origin factor Ai at j. The sum

 may be called the total accessibility of
all destinations at i, and the sum  may
be called the total accessibility of all origins at j. If,
for example, Ti* is kept fixed as  increases, the
push Ai decreases. Thus, as the competition  from
the destinations increases, the push at i decreases.
From the point of view of someone at i,  mea-
sures accessibility; from the viewpoint at j, it mea-
sures competition. Similar statements can be made
about Bj.

Maximum Likelihood Estimation 

The model (1) will be estimated using maximum
likelihood (ML). Maximum likelihood estimates
have desirable asymptotic properties (consistency,

Nij Tij εij+=

Tij E Nij( ) AiBjFij i j,∀= =

Fij
θkc

k( )
i j
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σ

αi ΣjBjFij=

βj ΣiAiFij=
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efficiency, and asymptotic normality) and are robust
to distributional assumptions for realistic departures
from the Poisson assumption (note that the multino-
mial distribution leads to identical estimates with
the Poisson distribution). Furthermore, they are
essentially unbiased even for a very small sample of
flows (Sen and Smith 1995).

Under some mild conditions (Sen and Smith
1995), the ML estimate of  = (A(1),…,A(I),
B(1),…,B(J), 1,…, Q)′ exists and that of  is
unique. The estimates of A and B are not unique;
however, if one A(i) or B(j) is chosen to be an arbi-
trary positive number, the remaining A(i)’s and B(j)’s
are unique under the previous mild conditions. It
can be proved that the ML estimate of  results in
the solution to the following system of equations

(3)

(4)

(5)

where the operator * indicates summation with
respect to the subscript it replaces (e.g.,

). A number of standard
numerical methods or more specialized procedures
can be used to solve equations (3) through (5). The
three procedures adapted for the paper are the
Deming-Stefan-Furness (DSF) procedure, the linear-
ized DSF procedure, and the Modified Scoring pro-
cedure. An account of the development of the three
procedures is given in Sen and Smith (1995). For
completeness of the presentation, some of the details
for each procedure follow.

The DSF Procedure for Parameters Ai and Bj

The DSF procedure gives values of Tij for any choice
of ( ), and Ni*, N*j, with . Gener-
ally speaking, this procedure adjusts the rows (col-
umns) of a two-dimensional table in each even
(odd) iteration. After choosing an initial value for
the column balancing coefficient, , say, the
DSF procedure iterates as follows (the index r
denotes the iteration number):

(6)

(7)

where Oi = Ti*, Dj = T*j, and Fij is a function of the

separation measures . Upon convergence (see

Sen and Smith (1995) for a proof of convergence),

the values of Tij are given by 

. 
In this paper, we chose a fairly stringent criterion for
convergence as follows

(8)

where  = 10–12. The algorithm attained this crite-
rion in less than 100 iterations.

The DSF procedure essentially expresses Tij as a
function of . These values of Tij could then be
used in equation (5) to solve for an updated value of

. In general, however, as  changes, equations (3)
and (4) could be violated, unless these changes are
very small. This is achieved by using a linearized
version of the DSF procedure, called the LDSF pro-
cedure (Weber and Sen 1985), which is computa-
tionally very attractive.

The LDSF Procedure for Tij

Let us assume that we have run the DSF procedure
and obtained a good set of Tij that solves equations
(3) and (4) for any given . This means that Oi =
Ti* = Ni* and Dj = T*j = N*j. Define by

 and  to
be small changes in the values of 
and , respectively. Also, let Fij, be
a small change in . It can be proved
(Sen and Smith 1995) that the corresponding small
change, Tij, in each Tij, so that , and

 can be obtained by the LDSF proce-
dure, which iterates as follows

(9)

(10)

ζζζ
θ θ θθ

ζζζ

Ti* Ni* i I∈∀=

T* j N*j j J∈∀=

c
q( )

i j Tij

ij
∑ c

q( )
i j Nij q∀ Q∈

i j
∑=

Ti* ΣjTij T* j, ΣiTij= =

θθ ′ ΣiNi* ΣjN*j=

Bj
0 1=

A
2r 1–( )
i Oi / B

2r 2–( )
j

j j 1+=

J

∑ Fij i∀=

B
2r( )

j Dj / A
2r 1–( )
i

i 1=

I

∑ Fij j∀=

cij
q( )

Tij
2r( ) A i( ) 2r 1–( )B j( ) 2r( )Fij=

Oi Ti*    –
i 1=

I

∑ Dj T* j   – δ2r( ) 2r( ) <
j 1=

J

∑+

δ

θθ

θθ θθ

θ

∆O ∆O1,...,∆OI( )′= ∆D ∆D1,...,∆DJ( )′=

O O1,...,OI( )′=

D D1,...,DJ( )′= ∆
Fij exp θ c ij[ ]θ ′=

∆ ∆Ti* ∆Oi=

∆T*j Dj∆=

T
2r 1–( )
i j∆ T

2r 2–( )
i j∆= Tij/Oi( ) Oi∆ Ti*       ∆–( )2r 2–( )+

T
2r( )

i j∆ T
2r 1–( )

i j∆= Tij/Dj( ) Dj∆ T* j      ∆–( )2r 1–( )+



70 JOURNAL OF TRANSPORTATION AND STATISTICS V6, N2/3 2003

for ,  and r = 0, 1, 2,..., with initial Tij val-
ues given by

(11)

A proof for the convergence of the procedure is
given in Weber and Sen (1985).

Changes in Tij as a Function of a Change in 

For a small change  in  and a small change 0 so
that , it can be proved (Yun and Sen
1994) that an approximation for the corresponding
small change Tij for each Tij for all  and 
is given by equation 12.

(12)

The ’s are constants, and Oi = Ti*, Dj = T*j.
Therefore, if Tij’s are known, the only unknown in
equation (12) is the . The solution for the 
will be the topic of the next section.

Estimation of  Using the Modified 
Scoring (MS) Procedure

So far, for an initial value for , we obtained Tij( )
by using the DSF procedure to solve equations (3)
and (4). We then changed  and
computed, using the LDSF procedure, with

, the corresponding change,
 in Tij( ) as a function of .

We are ready now to insert the
’s into the left side of equation

(5) and solve the resultant equation for . Insert-
ing Tij + Tij in place of Tij in (5) and using (12),
equations (3) and (4) would remain approximately
satisfied, while obtaining the following system of Q
linear equations with Q unknowns (the ’s):

(13)

This system of equations can be solved by any stan-
dard solution method such as Gaussian elimination.

The current solution for  at iteration r is
updated next using the formula

(14)

If the corrections  have become negligible, the
values of  have been stabilized and the MS proce-
dure terminates. Otherwise, new Tij’s are obtained
from the DSF procedure and the MS procedure con-
tinues. There is no guarantee that the MS procedure
always converges (Sen and Smith 1995), although
our computational experience is positive.

Goodness of Fit

Under the previous assumption that observations
Nij are independently Poisson distributed, the (Pear-
son) X2 statistic,

(15)

where  is an estimate of Tij, is an appropriate
measure of the overall fit of a model. Moreover,
when  is obtained using maximum likelihood,
equation (15) has a X2 distribution with df = IJ – I –
J – K + 1 degrees of freedom (Bishop et al. 1975;
Rao 1973).

If , then X2 = Z2, where

(16)

Since E(Nij) = Tij and because Nij have the Poisson
distribution,

(17)

Therefore, E(Z2) = IJ, where I is the number of ori-
gin zones i, and J the number of destinations j.
Equivalently, E(Z2/IJ) = 1. Thus, the so-called “X2-
ratio,” X2/df, has an expectation that is asymptoti-
cally 1. It can be shown (Sen and Smith 1995) that
the variance of the X2-ratio is

(18)

Hence, if Tij’s are bounded away from zero (which
is the case in exponential gravity models with finite
parameters ), the variance of , as
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. It follows that when  and Tij’s are
bounded away from zero, the variance of

.
In practical applications, since the Poisson

assumption seldom holds perfectly (as is the case
here, where every pound or dollar value of shipment
does not travel independently of each other pound
or dollar value), an X2 ratio less than 2 is a good
indication that the gravity model fits the data well
(Sen and Smith 1995).

Covariance of Maximum Likelihood 
Estimates

Covariance of ‘s

Let small case letters stand for the logarithms of cor-
responding capital letters (e.g., tij = log[Tij], a(i) =
log[A(i)], b(j) = log[B(j)]. The model (1) may be
written as

(19)

Let M denote the coefficient matrix of the right side
of the system of equations (19). The matrix M is not
of full rank (Sen and Smith 1995). However, the
matrix M(2) obtained by deleting one of the first
I + J columns of M is of full rank and has dimension
I J � (I � J � Q – 1). Let diag( ) stand for a diago-
nal matrix, the diagonal elements of which are given
within the parentheses. Then compute the matrix

 from the equation

(20)

where

(21)

(22)

U3 = ((upq)) with ,

with ,  with

, , 

 and . Notice that the

subscript j in each of the matrices above goes only up to

J – 1.

Matrix , a square matrix of
dimension (I � J � Q – 1), is the covariance matrix
of . This is because the Nij’s have
independent Poisson distributions and the covariance
matrix Cov(N) of N is diag(T). It can be shown (Sen
and Smith 1995) that the covariance matrix of

 is

(23)

where

(24)

and

(25)

Notice that using equations (23) through (25),
another expression for the covariance matrix of

 can be
written by as follows

(26)

The bottom right Q � Q submatrix of matrix (26)
is the estimated covariance matrix of . The bot-
tom right Q � Q submatrix of the inverse of (20) is
(Rao 1973)

(27)

From equation (26), it follows that equation (27) is
the covariance matrix of .

Covariance of ’s

Having obtained Cov(A,B, ) from equation (23) or
using equation (26), and since B(J) is set equal to a
constant, and its variance and covariances involving
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it are zeros, it can readily be seen that the covariance
matrix of , denoted by the symbol Cov( ) , is

(28)

with

(29)

and M the coefficient matrix of the right side of the
system of equations (19).

Short-Term Forecasting

The shipment of goods is affected by a multitude of
factors (USDOT 1996, table 2.1). The weight and
value of commodities shipped, characteristics of
immediate concern in this study in particular, may
be affected by the economy as a whole, globaliza-
tion of business, international trade agreements,
just-in-time inventory practices (weight only), pack-
aging materials (weight only), economic regulation/
deregulation, publicly provided infrastructure
(weight only), user charges and other taxes, changes
in truck size and weight limits (weight only), and
technological advances. The discussion below is
based on the assumption that, in the short term
(e.g., three to five years) the compound effect of
these factors on the size of the weight and value
characteristics of commodity shipments is consistent
with Poisson randomness.

Let the random variable  be a future obser-
vation1 of the flow from i to j. In the short run,
under the assumption that the separation configura-
tion will not change during the forecast period, we
may conjecture that  and Nij will be highly
(serially) correlated. Thus, we may then argue that
the variance of the difference of future and present
observations will be smaller than the variance of
future observations alone. Hence, 

(30)

where var( ) stands for the “variance of” and
Cov( ) for the “covariance of,” will be small. In
such cases, especially if Nij’s are known, Sen and

Smith (1995, chapter 5) suggest that it would be
preferable to predict ’s and add the pre-
dictions to the Nij’s. A possible set of predictions for

’s are ( )’s. Thus, if the future is
not too far off,

(31)

may yield a better prediction than . The compu-
tation of  can be made easily using
the LDSF procedure described earlier.

Other Forecasts

Four separate cases are discussed here. The first case
assumes that  would be available exogenously,

 would be the estimate  from the base period
assumed to remain unchanged into the forecast
period, and the estimates Af(i) and Bf(j) could be
base period estimates assumed to remain unchanged
into the forecast period, or one or both of them
could be exogenous. Then, Tij for the forecast
period may be estimated by

(32)

The calculation of Cov( ) requires the computa-
tion of the covariance matrices of the Af(i)’s, Bf(j)’s,
and . For those estimates that remain unchanged
from the base period, the appropriate covariance
matrix is the one for the base period. For estimates
obtained exogenously, the covariance matrix needs
to be supplied exogenously. Covariances of esti-
mates obtained from different independent data are
usually assumed to be zeros. 

The second case assumes that  and  would
be available as before and the estimates Bf (j) and

 could be base period estimates assumed to
remain unchanged into the forecast period or could
be obtained exogenously. Then, Tij for the forecast
period may be estimated by

(33)

The second case assumes that  and 
would be available as before and the estimates Af(i)
and  could be base period estimates assumed to
remain unchanged into the forecast period or could

1 The superscript f denotes that the quantity is an estimate
for the forecast period.
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be obtained exogenously. Then, Tij for the forecast
period may be estimated by

(34)

The computation of the covariance matrices for the
second and third cases is similar to the first case once
the appropriate Jacobians with respect to Af(i)’s,
Bf(j)’s and  have been obtained. Recall that equa-
tion (29) is the respective Jacobian for the first case.

A fourth case, arising when , , , and
 are available, requires the use of the DSF proce-

dure to generate the Af(i) and Bf(j). Then, Tij for the
forecast period may be estimated by equation (32).
The computation of the covariance matrices for this
case is treated in detail by Sen and Smith (1995, p.
440).

It is interesting to observe at this point that
origin-destination travel times and/or costs (which
depend on routes chosen and traffic congestion on
the routes) usually become available only after the
gravity model has been applied to forecast flows.
This difficulty affects only the forecasting phase (not
the estimation phase, when we use base period data
for which travel times can be observed or computed
using available information) and can be alleviated
by combining the distribution and assignment
stages of the process into a single stage.

EMPIRICAL ANALYSIS

Data Issues

Freight Shipments

Oak Ridge National Laboratory (ORNL) provided
two sets of origin-destination flow data for freight
shipment weight and value between origin seaports/
border ports of entry i and destination states j from
the following sources: 

� The Transborder Surface Freight Database. This
database (http://www.bts.gov/transborder/prod.
html) is distributed by the Bureau of Transporta-
tion Statistics and contains freight flow data by
commodity type and surface mode of transporta-
tion (rail, truck, pipeline, or mail) for U.S. exports
to and imports from Canada and Mexico. 

� The Port Import Export Reporting Service
(PIERS) Database. This commercial database

(http://www.piers.com/about/default.asp), offered
by the Journal of Commerce, offers statistics on
global cargo movements transiting seaports in the
United States, Mexico, and South America to
companies around the globe.

Two matrices, Nij, were developed: one for ship-
ment weight and one for shipment value for each of
the two databases with dimensions 128 x 50 and
144 x 50 for the Transborder and PIERS databases,
respectively. 

The limitations of these two data sources are well
documented (Meyburg and Mbwana 2002). A
caveat for the Transborder Database is that it is a
customs, not a transportation, dataset, resulting in
inconsistencies between U.S. and Canadian data
and issues related to the accuracy of transshipment
data.2 One caveat for using PIERS is that reported
origins and destinations may be billing addresses
rather than shipment points.

Separation Measures

In identifying specific types of spatial separation
that tend to impede or enhance the likelihood of
interactions between points of entry and destination
sites, the most obvious type involves physical space,
as exemplified by travel distance and travel time,
which are quantifiable in terms of meaningful units
of measurement. ORNL provided two sets with sep-
arate impedance matrices, , k = 1, 2 from origin
point i to destination county c. 

The first dataset included impedances between
origin seaports and destination counties, the second
set between origin border ports and destination
counties. Both measures were computed from
ORNL’s National Highway Network (NHN). The
first of the two measures is the route (network) dis-
tance in miles; the second computes a function of
travel time for different functional classifications of
highway segments and adds these time penalties
together while tracing the previous network routes.
The previous impedance matrices presented two
problems: 1) more than 50% of the cells were
empty because not all seaports/border ports of entry
are connected to each county through the NHN;
and 2) occasionally, freight shipments moved

Tij
f Ti*

f Af i( )exp θ f( )′cij [ ]θ f

ΣjA
f i( )exp θ f( )′cij [ ]θθ f

-------------------------------------------------------------=

θθ f

cij
q( )f θθ f Ti*

f

T* j
f

2 See http://www.bts.gov/ntda/tbscd/desc.html, as of Janu-
ary 2004, for more information.

cic
k( )
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between origin-destination pairs with a missing con-
nection (separation measure).

In order to deal with both problems, we devised
and implemented the following stepwise procedure
for the distance matrix (the first separation measure,

).
1. Centroid coordinates were computed for all

counties nationwide.
2. Spherical distances in miles from each county

to every other county.
3. For every destination county with a missing

connection to an origin point (seaport/border
port of entry), the closest county with an exist-
ing connection to an origin point was esti-
mated based on the previous county-to-county
distances.

4. The missing connection from an origin point
to a destination county was finally computed
to be the distance between the same point of
origin and the closest destination county aug-
mented by 130% the (airline) distance
between the two destination counties (as a
proxy to the actual road distance). This simpli-
fication was made under the assumption that a
missing connection would imply that the desti-
nation county is off the NHN and thus would
require additional time to be accessed from its
closest county on the NHN.

The above procedure resulted in the construction of
a synthesized separation measure comprising both
route distance (the ORNL estimate) and multiples

of airline distance (our estimate). It is important to
take a closer look at those two components of the
(re-estimated) first separation measure  .

The airline distance between origin point i and
destination county c, even augmented by 30%, is
only an approximation of the actual miles traveled
and represents a surrogate for the complex set of
factors that express the difficulty of overcoming sep-
aration. On the other hand, the route distance for
the same origin-destination pair is the total over-the-
road distance on a realistic route. As a measure of
separation, the route distance provides better accu-
racy for the eastern half of the limited access high-
way system of the United States, which has a higher
level of complexity resulting in less circuitous routes
than in the western half.

Whereas the distance measure developed above is
a measure that depends more or less on the physical
characteristics of the road link, the impedance mea-
sure, a function of link travel time as estimated by
ORNL, depends on the special roadway type or cer-
tain conditions encountered on the link. ORNL’s
estimating procedure could not be replicated in this
paper for the missing impedances. A surrogate value
was computed based on the average speed obtained
by ORNL’s distance and time estimates, and the
synthesized distances.

The procedure classified ORNL’s distance and
time estimates into 10 deciles. The stratum average
speed was computed by the ratio of the average dis-
tance and time for that stratum (table 1). Each

cic
1( )

cic
1( )

TABLE 1  Average Distance, Time, and Speed by Decile

PIERS Database Transborder Database

Decile

Average 
distance 
(miles)

Average 
time 

(min.)

Estimated 
speed 
(mph)

Average 
distance 
(miles)

Average 
time 

(min.)

Estimated 
speed 
(mph)

1 230.69 241.56 57.30 381.11 400.32 57.12

2 468.65 465.70 60.38 708.18 711.44 59.73

3 642.53 625.89 61.59 929.82 920.37 60.61

4 797.46 769.51 62.17 1,121.06 1,093.26 61.52

5 954.44 915.38 62.56 1,291.37 1,251.02 61.93

6 1,127.45 1,077.43 62.78 1,457.91 1,405.62 62.23

7 1,324.50 1,261.04 63.01 1,632.94 1,569.44 62.42

8 1,596.70 1,512.70 63.33 1,850.64 1,771.00 62.69

9 2,109.35 1,979.77 63.92 2,166.76 2,048.56 63.46

10 2,958.11 2,963.42 59.89 2,757.87 2,641.23 62.65
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missing time impedance was then estimated by the
ratio of its corresponding distance estimate and the
average speed of the stratum to which the distance
estimate belongs.

Clearly, this procedure imposes some inconsis-
tency in the imputation of travel times, because the
average speed estimate is based on decile groupings
of the initial estimates. The consistency of the proce-
dure could be improved if in a second iteration the
decile groupings are based on all distances (initial
and imputed), but I did not attempt this for this
paper.

The previous steps resulted in two re-estimated
sets of separation measures: 1) a distance matrix
and a travel time matrix between origin seaports
and destination counties; and 2) a distance matrix
and a travel time matrix between origin points of
entry and destination counties. The final step in pre-
paring the separation measures for model estima-
tion was to estimate these measures between origin
points and destination states rather than counties.
This was made possible simply by computing for
each origin point i and all destination counties

 in state j the average distance and travel
time. That is, 

, ,
and

, 
where n is the cardinality of Cj. Note that had we
avoided the intermediate step of origin-to-destina-
tion county distance estimation, say, by computing
distances to state geographical centers, origin-desti-
nation pairs with both ends in the same state would
have been indistinguishable in terms of their
separation.

Other Relevant Variables

As mentioned earlier, the weight and value of com-
modities shipped may be affected by a nexus of
factors that are either origin-specific, destination-
specific, or solely dependent on separation between
an origin and a destination. Although study
resources did not permit the collection of pertinent
data on these factors, it could be interesting to
observe how such factors can be accommodated in
the proposed theoretical framework for future
reference.

For origin-specific and destination-specific fac-
tors, Sen and Smith (1995) propose the following

exploratory analysis: estimate Ai’s and Bj’s first
using the maximum likelihood procedure described
earlier, and then use these estimates as the depen-
dent variable values in a model fitting procedure.
Thus, the estimates of the Ai’s can be associated
with the origin-specific factors, while the estimates
of the Bj’s can be associated with the destination-
specific factors.

Factors that can be solely attributed to the sepa-
ration between an origin and destination can be
accommodated in a deterrence function, an example
of which is indeed the most general exponential
function in equation (2). Openshaw and Connolly
(1977) have compiled a list of possible functions
and empirically compared several of them.

Results

The only decision necessary to apply the procedures
described above (i.e., DSF, LDSF, and MS) is the
choice of the flow unit. In the case of passenger
transportation, a flow unit of 1 (consistent with a
Poisson or multinomial distribution assumption)
would be reasonable. In the case of freight ship-
ments of goods, a basic unit of flow would appear
to be a trainload (for shipments by rail) or a truck-
load (for shipments by truck). In the absence of
mode-specific information as well as information
related to the variation in modal size, we experi-
mented with different values and determined an
“optimal” (with regard to providing the best model
fit) basic unit of flow of 100,000 pounds or dollars.
This is not surprising given that the bulk of flows
are long-distance shipments usually performed by
large3 trucks or rail (on a limited scale for the partic-
ular data) with an average shipment value of $2.03
per pound for the Transborder data and $1.39 per
pound for the PIERS data. Interestingly, our results
appeared to be quite insensitive to the choice of the
flow unit, primarily because the flows were inordi-
nately large. This is in agreement with previous
work (Sen and Pruthi 1983).

The procedures described above were run to a
tight convergence. For each iteration of the MS
procedure, the DSF procedure attained a 10E–12
convergence as defined by equation (8) in less than
100 iterations. The MS procedure itself attained a

c Cj∈

i∀ I∈ cij
1( ) Σncicn

1( ) /n=

cij
2( ) Σncicn

2( ) /n= cn Cj∈

3 Currently, the gross weight limit for a 6-axle combina-
tion truck is 80,000 pounds.
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10E–06 convergence as defined by the right-hand
side of equation (13) in less than 20 iterations.

Parameter Estimates and Model Fit 
for PIERS Data

Separate gravity models were estimated for both
seaport-to-state (seaport data) and border port-to-
state (transborder) weight and value flows. In par-
ticular, for the seaport data, several model specifica-
tions were tested based on transformations of the
distance and time separation measures,  and

, respectively, after a careful examination of
residuals that showed the presence of outliers.

In the analysis of residuals, two difficulties were
addressed. The first difficulty is the unequal vari-
ances of residuals, a consequence of the Poisson dis-
tribution. This problem was handled by
considering, as Cochran suggests (Rao 1973, p.
393), instead of the plain residuals , the
components

(35)

The second difficulty stems from the very large
number of residuals (the number is I � J, the num-
ber of all origin-destination pairs). To tackle this
concern, we followed a procedure described in Sen
and Smith (1995, p. 456) consisting of drawing nor-
mal (rankit) plots of residuals. If the residuals are
normal, such a plot would lie approximately on a
straight line. Points that deviate sharply near the
ends were tagged as outliers. Unusual jumps in the
plots or other strongly nonlinear shapes could signal
the need for transformations of the ’s or for
additional ’s. There are clearly other ways of
examining residuals. It is important to note here
that the effort to conduct residual analysis in the
gravity model case should not be seen as less than
that for linear models where residual analysis is rou-
tinely carried out.

Indeed, the examination of residuals signaled the
need for transformation of the ’s. We found the
square root transformation provided adequate fit
for both weight flow and value flow estimates (table
2). The model provides an excellent fit for the data,
because the Chi-square statistic hovers around its
expected value of 1. In addition, the cell-to-cell
weight flow estimates correlate very well with the
data (Pearson correlation coefficient, r = 0.89, p

< 0.01. The cell-to-cell value flow estimates also
correlate very well with the data (r = 0.98, p < 0.01).
Moreover, the weight and value length distributions
in figure 1 (1% corresponds to 2,292,872,822
pounds) and figure 2 (1% corresponds to
$3,198,123,011), respectively, seem to corroborate
the previous results.

Of interest in table 2 is the appearance of  with
a positive value. This is due to collinearity between
the used impedances, distance and travel time, a
phenomenon that is known to adversely affect the
sign of parameter estimates. Dropping one of the
impedances would bias the parameter estimates left
in the model. Given the robustness of the maximum
likelihood procedure above in collinearity situa-
tions, all available impedance measures were
retained (Sen and Smith 1995, chapter 5). After all,
the sign of  would have changed to a negative
value had we reparameterized the model and con-
sidered instead of travel time as the first impedance
measure, the difference between distance and travel
time (in appropriate units).

 

cij
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cij
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Nij Tij
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TABLE 2  Parameter Estimates for PIERS Data

Weight flows Value flows

Parameter
Sample 
mean

Standard 
deviation

Sample 
mean

Standard
deviation

θ1 11.1227 1.1646 3.7854 0.3963

θ2 –16.7447 1.7533 –11.1437 1.1668

X 2 ratio 0.7253 0.0000 1.1760 0.0000

FIGURE 1  PIERS Data: Weight Length
Frequency Distribution
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In the end, the model specifications for the
weight and value flows, respectively, are

(36)

Parameter Estimates and Model Fit for 
Transborder Data

In the case of Transborder data, we conducted a
similar investigation of residuals (as above with the
PIERS data) and observed the presence of a few
remaining outliers, despite using transformed ’s.
These outliers were mainly states receiving an
unusually large share of shipments compared with
other states. The discovery was made after squaring
the residuals in equation (35) and adding them
together for all origin points of entry for each desti-
nation state. Destination states with a large share of
shipments had a much larger sum of squares of
residuals than other destinations. This was under-
standable, because these large destination states
attract more shipments from longer distances and
suggest the use of an additional impedance variable 

for the weight flows, and 

for the value flows, where  is 1 for destinations
with more than a 10% share in weight (4% in
value) and 0 otherwise. In effect, we sought a differ-

ent parameter estimate for the square root/log of
distance for destination states with large shares.

The previous use of the indicator (dummy) vari-
able  is typical in spatial analysis for the treatment
of residuals (Sen and Smith 1995) and introduces
the effects of spatial structure on flow patterns
(Gensler and Meade 1988; Fotheringham and
O'Kelly 1989; Lo 1991), which is not the primary
intent of this paper. More complex measures of rela-
tive location have been developed and tested empiri-
cally (Boots and Kanaroglou 1988; Lowe and Sen
1996). In the end, the model specifications for the
weight and value flows, respectively, are

(37)

The previous steps removed all remaining outli-
ers. Parameter estimates and goodness-of-fit statis-
tics are shown in table 3. The previous observation
regarding the sign of  applies. The model fits the
data very well, as the Chi-square ratios for both
weight and value remain under 2. In addition, the
cell-to-cell weight flow estimates correlate very well
with the data (Pearson correlation coefficient, r =
0.91, p < 0.01). The cell-to-cell value flow estimates
also correlate very well with the data (r = 0.94, p
< 0.01). Moreover, the weight and value length dis-
tributions in figure 3 (1% corresponds to
767,519,815 pounds) and figure 4 (1% corresponds
to $1,565,313,371), respectively, seem to corrobo-
rate the previous results.

Computation of Covariance of Estimates 
for PIERS Data

The previous point estimates of the  parameters
and the flows  were used in the methodology
described earlier to obtain the covariance of these
estimates. The procedure can accommodate any

FIGURE 2  PIERS Data: Value Length
Frequency Distribution
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TABLE 3  Parameter Estimates for Transborder Data

Weight flows Value flows

Parameter
Sample 
mean

Standard 
deviation

Sample 
mean

Standard 
deviation

θ1 14.8743 1.5575 11.1739 1.1700

θ2 –21.4296 2.2439 –13.6992 1.4344

θ3 –2.1181 0.2217 –0.5534 0.0579

X 2 ratio 1.9642 0.0000 1.9012 0.0000
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reasonable number of separation measures, ,
and the large number of origins and destinations
typically encountered in practice.

The computational requirements of the proce-
dure are no longer prohibitive. We were able to
obtain the covariance matrix of a 144 � 50 flow
matrix, a 7200 � 7200 matrix, in a little more than
an hour on a Pentium III, 800 MHz, 512MB RAM
laptop computer running a FORTRAN 77 com-
piler. Replacing Tij’s by their estimates in equation

(27), the covariance matrix of  for the weight
flows from the PIERS dataset was found to be

(38)

The correlation between  (the parameter esti-
mate for the distance measure) and  (the parame-
ter estimate for the travel time measure) is readily
apparent from equation (38). The negative sign of
the covariances should not be disconcerting. It
shows that, if for some small shift in the observa-
tions,  were to increase,  would decrease to
“compensate.”

Similarly, the covariance matrix of  for the
value flows from the PIERS dataset was found to be

(39)

The correlation between  and  is similarly
apparent from equation (39).

Computation of Covariance of Estimates 
for Transborder Data

The covariance matrices of  from the Transborder
dataset for the weight and value flows, respectively,
were found to be

(40)

and

(41)

These last two covariance matrices in equations
(40) and (41) show relatively high correlation
between  (the parameter estimate for the distance

FIGURE 3  Transborder Data: Weight Length
Frequency Distribution

FIGURE 4  Transborder Data: Value Length
Frequency Distribution
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measure) and  (the parameter estimate for the
travel time measure) and relatively low correlation
between  (the parameter estimate for the trans-
formed travel time measure) and  or . The inter-
pretation of the negative signs is the same as above.

For illustration purposes, an example of the use-
fulness of the computed covariance matrices for

’s in computing confidence intervals is shown in
table 4. The table shows a few Nij’s, ’s, percent-
age difference between Nij and , and 90% confi-
dence intervals constructed by adding and
subtracting 1.65 times the standard error available
from the variances.

CONCLUSIONS

The most characteristic and indeed more restrictive
feature of the Poisson distribution is the equality
between its mean and variance. Many types of spa-
tial interaction phenomena exhibit restricted (vari-
ance less than their means) or extra variation
(variance greater than their means). Yet, the frame-
work described above is very robust. Its robustness
stems from the many types of asymptotic results
that establish the Poisson distribution as the unique
limiting form for a wide range of interaction pro-
cesses when the population size increases and the
overall influence of each individual interaction
decreases.

More specifically, this research demonstrates that,
to the extent the behavior of each shipping firm can
be thought of as a very small interaction process, the
resultant interaction process (i.e., the realized pattern
of origin-destination commodity shipments) can be

thought of as the superposition of all these processes
and thus characterized by gravity models. The limited
empirical analysis in this paper confirmed this conjec-
ture and thus establishes an extremely rich frame-
work for future experimentation.

Future applications of the proposed framework
could conduct additional exploratory analyses to
determine which factors affecting the demand for
freight shipments are origin-based, destination-
based, or separation-based. Another important issue
needing more attention in the future is the require-
ment that, when the proposed modeling framework
is used for forecasting, the travel times and costs
used as impedance measures should be consistent
with those obtained during the traffic assignment.

In summary, this paper has provided evidence
that the movement of freight shipments can now be
estimated within a desired confidence level as a
result of maximum likelihood estimation of Poisson
gravity models. The freight transportation modeler
has two procedures available for computing reliable
information within a predetermined accuracy: one
for computing freight flow estimates and one for
computing covariance matrices. These procedures
can accommodate any reasonable number of sepa-
ration measures, , and the large number of ori-
gins and destinations typically encountered in
practice.
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TABLE 4  An Illustration of Nij,  and 90% Confidence Intervals

Nij (observed flows)
(pounds)

 (estimated flows)

(pounds)

Nij–

% difference

90% confidence interval of 

Lower Upper

4,850,905.00 4,764,382.12 1.78 4,764,179.19 4,764,585.05

87,454.00 88,012.62 0.63 87,934.47 88,090.77

39,922,216.00 38,847,527.51 2.69 38,845,275.15 38,849,779.87

16,002,283,960.00 15,556,162,969.96 2.78 15,555,972,990.43 15,556,352,949.49

216,787,500.00 211,385,682.81 2.49 211,374,117.32 211,397,248.30

4,174,427.00 4,266,148.17 2.19 4,266,017.84 4,266,278.50

3,076,999.00 3,100,768.36 0.77 3,100,346.82 3,101,189.90

2,029,122,669.00 2,108,940,894.95 3.93 2,108,896,284.86 2,108,985,505.04

693,089.00 664,724.67 4.09 664,638.45 664,810.89
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Estimation and Accuracy of Origin-Destination Highway 

Freight Weight and Value Flows

PAUL METAXATOS

University of Illinois at Chicago

ABSTRACT

This paper proposes a spatial interaction modeling
framework and implements a maximum likelihood
estimation of highway freight weight and value
flows using the gravity model. The computation of
the standard error of the flow estimates provides the
basis for measuring the level of accuracy of the esti-
mates. The results provide evidence of the suitability
of gravity models for freight forecasting given the
excellent fit and the small variances.

INTRODUCTION

The measurement of freight movements requires
tracking freight flows across geographic and political
boundaries. This is a particularly challenging task
given the current capabilities for state and regional
data acquisition. Various mathematical approaches
have been implemented (Memmot 1983; USDOT
1996; Cambridge Systematics 1997) to circumvent
this problem, but none, to the best of this author’s
knowledge, proposes a measure to assess the accu-
racy of the computed flows.

This paper proposes to fill this gap using develop-
ments in spatial interaction modeling that have not
been demonstrated on a large scale to date. The
methodology computes maximum likelihood flow

KEYWORDS: freight origin-destination flow estimation,
covariance of estimates, gravity model.



68 JOURNAL OF TRANSPORTATION AND STATISTICS V6, N2/3 2003

estimates and obtains their covariance matrices that,
in turn, may be used to obtain confidence intervals
and carry out certain tests of hypotheses. The
approach can accommodate the large number of
origins and destinations typically encountered in
freight (and passenger) travel forecasting.

The methodology was applied to highway freight
weight and value flows of international trade traffic
between seaports or border ports and destination
states (see Metaxatos (2002) for details). The vari-
ances of the flow estimates computed were remark-
ably small. The demand for freight transportation
flows can then be estimated within a desired confi-
dence level. Moreover, the empirical analysis under-
taken provides evidence that the theoretical
framework proposed in this paper is rich enough for
freight demand forecasting applications.

THEORETICAL FRAMEWORK

Commodity shipments in this paper are thought to
be realized patterns of spatial interactions that typi-
cally result from many independent decisions by
individual firms, each constituting a relevant sub-
system within the economy as a whole. Hence, if the
travel behavior of each firm is modeled as a very
small interaction process, the resultant interaction
process can be taken to be the superposition of all
these processes. It may be argued that for large col-
lections of small frequency processes, the resulting
superimposed process is approximately Poisson
and, therefore, completely characterized by its asso-
ciated mean interaction frequencies (Sen and Smith
1995).

In this light, assuming that the observations Nij

of shipment weight and value between origin sea-
ports/border ports of entry i and destination states j
can be described by the gravity model, then

(1)

In this paper, Tij’s (the stochastic term) are inter-
preted as the expected international trade traffic
flow (in terms of weight and value) carried by high-
way from external station i to state j. The Ai’s are
factors related to the origin zone i and the Bj’s are
destination-related factors. The Fij’s are factors that
reflect the separation between i and j. A common
form that is general enough for most applications is 

(2)

This form is called an exponential form and  are
different measures of separation, while ’s are
parameters to be estimated. Potential measures of
separation include travel time, distance, generalized
costs, etc.

In the gravity model, observable quantities
 and their expected

values Ti*, T*j, and Tij are described by means of an
underlying structure consisting of unobservable
quantities Ai, Bj, and Fij. Similar situations abound
in statistics. In moving average models, for example,
observations are described by means of unobserv-
able parameters. A like situation exists in analysis of
variance models.

Although the origin and destination factors are
unobservable, they do have physical interpretations.
For example, if for some origin i, there are two des-
tinations j and j ′ such that Fij = Fij ′, then Tij /Tij ′ =
Bj /Bj ′. Thus other factors being equal, Tij is propor-
tional to Bj (but, in general, not proportional to
T*j), and is called the attractiveness of j. Similarly,
the origin factor Ai may also be called the emissive-
ness of i.

Clearly, BjFij is the effect of the destination factor
Bj at i, or the accessibility of j as perceived from i.
This is a spatial analogy of the temporal concept of
present value in economics, where a dollar earned in
n years in the future is worth only (1 + )–n now,
where  is the interest rate. Similarly, AiFij is the
effect of the origin factor Ai at j. The sum

 may be called the total accessibility of
all destinations at i, and the sum  may
be called the total accessibility of all origins at j. If,
for example, Ti* is kept fixed as  increases, the
push Ai decreases. Thus, as the competition  from
the destinations increases, the push at i decreases.
From the point of view of someone at i,  mea-
sures accessibility; from the viewpoint at j, it mea-
sures competition. Similar statements can be made
about Bj.

Maximum Likelihood Estimation 

The model (1) will be estimated using maximum
likelihood (ML). Maximum likelihood estimates
have desirable asymptotic properties (consistency,

Nij Tij εij+=

Tij E Nij( ) AiBjFij i j,∀= =

Fij
θkc

k( )
i j

k
∑ i j,∀exp=

cij
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Ni* Σj Nij N*j, Σi Nij Nij,= =
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βj ΣiAiFij=
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efficiency, and asymptotic normality) and are robust
to distributional assumptions for realistic departures
from the Poisson assumption (note that the multino-
mial distribution leads to identical estimates with
the Poisson distribution). Furthermore, they are
essentially unbiased even for a very small sample of
flows (Sen and Smith 1995).

Under some mild conditions (Sen and Smith
1995), the ML estimate of  = (A(1),…,A(I),
B(1),…,B(J), 1,…, Q)′ exists and that of  is
unique. The estimates of A and B are not unique;
however, if one A(i) or B(j) is chosen to be an arbi-
trary positive number, the remaining A(i)’s and B(j)’s
are unique under the previous mild conditions. It
can be proved that the ML estimate of  results in
the solution to the following system of equations

(3)

(4)

(5)

where the operator * indicates summation with
respect to the subscript it replaces (e.g.,

). A number of standard
numerical methods or more specialized procedures
can be used to solve equations (3) through (5). The
three procedures adapted for the paper are the
Deming-Stefan-Furness (DSF) procedure, the linear-
ized DSF procedure, and the Modified Scoring pro-
cedure. An account of the development of the three
procedures is given in Sen and Smith (1995). For
completeness of the presentation, some of the details
for each procedure follow.

The DSF Procedure for Parameters Ai and Bj

The DSF procedure gives values of Tij for any choice
of ( ), and Ni*, N*j, with . Gener-
ally speaking, this procedure adjusts the rows (col-
umns) of a two-dimensional table in each even
(odd) iteration. After choosing an initial value for
the column balancing coefficient, , say, the
DSF procedure iterates as follows (the index r
denotes the iteration number):

(6)

(7)

where Oi = Ti*, Dj = T*j, and Fij is a function of the

separation measures . Upon convergence (see

Sen and Smith (1995) for a proof of convergence),

the values of Tij are given by 

. 
In this paper, we chose a fairly stringent criterion for
convergence as follows

(8)

where  = 10–12. The algorithm attained this crite-
rion in less than 100 iterations.

The DSF procedure essentially expresses Tij as a
function of . These values of Tij could then be
used in equation (5) to solve for an updated value of

. In general, however, as  changes, equations (3)
and (4) could be violated, unless these changes are
very small. This is achieved by using a linearized
version of the DSF procedure, called the LDSF pro-
cedure (Weber and Sen 1985), which is computa-
tionally very attractive.

The LDSF Procedure for Tij

Let us assume that we have run the DSF procedure
and obtained a good set of Tij that solves equations
(3) and (4) for any given . This means that Oi =
Ti* = Ni* and Dj = T*j = N*j. Define by

 and  to
be small changes in the values of 
and , respectively. Also, let Fij, be
a small change in . It can be proved
(Sen and Smith 1995) that the corresponding small
change, Tij, in each Tij, so that , and

 can be obtained by the LDSF proce-
dure, which iterates as follows

(9)

(10)
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for ,  and r = 0, 1, 2,..., with initial Tij val-
ues given by

(11)

A proof for the convergence of the procedure is
given in Weber and Sen (1985).

Changes in Tij as a Function of a Change in 

For a small change  in  and a small change 0 so
that , it can be proved (Yun and Sen
1994) that an approximation for the corresponding
small change Tij for each Tij for all  and 
is given by equation 12.

(12)

The ’s are constants, and Oi = Ti*, Dj = T*j.
Therefore, if Tij’s are known, the only unknown in
equation (12) is the . The solution for the 
will be the topic of the next section.

Estimation of  Using the Modified 
Scoring (MS) Procedure

So far, for an initial value for , we obtained Tij( )
by using the DSF procedure to solve equations (3)
and (4). We then changed  and
computed, using the LDSF procedure, with

, the corresponding change,
 in Tij( ) as a function of .

We are ready now to insert the
’s into the left side of equation

(5) and solve the resultant equation for . Insert-
ing Tij + Tij in place of Tij in (5) and using (12),
equations (3) and (4) would remain approximately
satisfied, while obtaining the following system of Q
linear equations with Q unknowns (the ’s):

(13)

This system of equations can be solved by any stan-
dard solution method such as Gaussian elimination.

The current solution for  at iteration r is
updated next using the formula

(14)

If the corrections  have become negligible, the
values of  have been stabilized and the MS proce-
dure terminates. Otherwise, new Tij’s are obtained
from the DSF procedure and the MS procedure con-
tinues. There is no guarantee that the MS procedure
always converges (Sen and Smith 1995), although
our computational experience is positive.

Goodness of Fit

Under the previous assumption that observations
Nij are independently Poisson distributed, the (Pear-
son) X2 statistic,

(15)

where  is an estimate of Tij, is an appropriate
measure of the overall fit of a model. Moreover,
when  is obtained using maximum likelihood,
equation (15) has a X2 distribution with df = IJ – I –
J – K + 1 degrees of freedom (Bishop et al. 1975;
Rao 1973).

If , then X2 = Z2, where

(16)

Since E(Nij) = Tij and because Nij have the Poisson
distribution,

(17)

Therefore, E(Z2) = IJ, where I is the number of ori-
gin zones i, and J the number of destinations j.
Equivalently, E(Z2/IJ) = 1. Thus, the so-called “X2-
ratio,” X2/df, has an expectation that is asymptoti-
cally 1. It can be shown (Sen and Smith 1995) that
the variance of the X2-ratio is

(18)

Hence, if Tij’s are bounded away from zero (which
is the case in exponential gravity models with finite
parameters ), the variance of , as
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. It follows that when  and Tij’s are
bounded away from zero, the variance of

.
In practical applications, since the Poisson

assumption seldom holds perfectly (as is the case
here, where every pound or dollar value of shipment
does not travel independently of each other pound
or dollar value), an X2 ratio less than 2 is a good
indication that the gravity model fits the data well
(Sen and Smith 1995).

Covariance of Maximum Likelihood 
Estimates

Covariance of ‘s

Let small case letters stand for the logarithms of cor-
responding capital letters (e.g., tij = log[Tij], a(i) =
log[A(i)], b(j) = log[B(j)]. The model (1) may be
written as

(19)

Let M denote the coefficient matrix of the right side
of the system of equations (19). The matrix M is not
of full rank (Sen and Smith 1995). However, the
matrix M(2) obtained by deleting one of the first
I + J columns of M is of full rank and has dimension
I J � (I � J � Q – 1). Let diag( ) stand for a diago-
nal matrix, the diagonal elements of which are given
within the parentheses. Then compute the matrix

 from the equation

(20)

where

(21)

(22)

U3 = ((upq)) with ,

with ,  with

, , 

 and . Notice that the

subscript j in each of the matrices above goes only up to

J – 1.

Matrix , a square matrix of
dimension (I � J � Q – 1), is the covariance matrix
of . This is because the Nij’s have
independent Poisson distributions and the covariance
matrix Cov(N) of N is diag(T). It can be shown (Sen
and Smith 1995) that the covariance matrix of

 is

(23)

where

(24)

and

(25)

Notice that using equations (23) through (25),
another expression for the covariance matrix of

 can be
written by as follows

(26)

The bottom right Q � Q submatrix of matrix (26)
is the estimated covariance matrix of . The bot-
tom right Q � Q submatrix of the inverse of (20) is
(Rao 1973)

(27)

From equation (26), it follows that equation (27) is
the covariance matrix of .

Covariance of ’s

Having obtained Cov(A,B, ) from equation (23) or
using equation (26), and since B(J) is set equal to a
constant, and its variance and covariances involving
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it are zeros, it can readily be seen that the covariance
matrix of , denoted by the symbol Cov( ) , is

(28)

with

(29)

and M the coefficient matrix of the right side of the
system of equations (19).

Short-Term Forecasting

The shipment of goods is affected by a multitude of
factors (USDOT 1996, table 2.1). The weight and
value of commodities shipped, characteristics of
immediate concern in this study in particular, may
be affected by the economy as a whole, globaliza-
tion of business, international trade agreements,
just-in-time inventory practices (weight only), pack-
aging materials (weight only), economic regulation/
deregulation, publicly provided infrastructure
(weight only), user charges and other taxes, changes
in truck size and weight limits (weight only), and
technological advances. The discussion below is
based on the assumption that, in the short term
(e.g., three to five years) the compound effect of
these factors on the size of the weight and value
characteristics of commodity shipments is consistent
with Poisson randomness.

Let the random variable  be a future obser-
vation1 of the flow from i to j. In the short run,
under the assumption that the separation configura-
tion will not change during the forecast period, we
may conjecture that  and Nij will be highly
(serially) correlated. Thus, we may then argue that
the variance of the difference of future and present
observations will be smaller than the variance of
future observations alone. Hence, 

(30)

where var( ) stands for the “variance of” and
Cov( ) for the “covariance of,” will be small. In
such cases, especially if Nij’s are known, Sen and

Smith (1995, chapter 5) suggest that it would be
preferable to predict ’s and add the pre-
dictions to the Nij’s. A possible set of predictions for

’s are ( )’s. Thus, if the future is
not too far off,

(31)

may yield a better prediction than . The compu-
tation of  can be made easily using
the LDSF procedure described earlier.

Other Forecasts

Four separate cases are discussed here. The first case
assumes that  would be available exogenously,

 would be the estimate  from the base period
assumed to remain unchanged into the forecast
period, and the estimates Af(i) and Bf(j) could be
base period estimates assumed to remain unchanged
into the forecast period, or one or both of them
could be exogenous. Then, Tij for the forecast
period may be estimated by

(32)

The calculation of Cov( ) requires the computa-
tion of the covariance matrices of the Af(i)’s, Bf(j)’s,
and . For those estimates that remain unchanged
from the base period, the appropriate covariance
matrix is the one for the base period. For estimates
obtained exogenously, the covariance matrix needs
to be supplied exogenously. Covariances of esti-
mates obtained from different independent data are
usually assumed to be zeros. 

The second case assumes that  and  would
be available as before and the estimates Bf (j) and

 could be base period estimates assumed to
remain unchanged into the forecast period or could
be obtained exogenously. Then, Tij for the forecast
period may be estimated by

(33)

The second case assumes that  and 
would be available as before and the estimates Af(i)
and  could be base period estimates assumed to
remain unchanged into the forecast period or could

1 The superscript f denotes that the quantity is an estimate
for the forecast period.
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be obtained exogenously. Then, Tij for the forecast
period may be estimated by

(34)

The computation of the covariance matrices for the
second and third cases is similar to the first case once
the appropriate Jacobians with respect to Af(i)’s,
Bf(j)’s and  have been obtained. Recall that equa-
tion (29) is the respective Jacobian for the first case.

A fourth case, arising when , , , and
 are available, requires the use of the DSF proce-

dure to generate the Af(i) and Bf(j). Then, Tij for the
forecast period may be estimated by equation (32).
The computation of the covariance matrices for this
case is treated in detail by Sen and Smith (1995, p.
440).

It is interesting to observe at this point that
origin-destination travel times and/or costs (which
depend on routes chosen and traffic congestion on
the routes) usually become available only after the
gravity model has been applied to forecast flows.
This difficulty affects only the forecasting phase (not
the estimation phase, when we use base period data
for which travel times can be observed or computed
using available information) and can be alleviated
by combining the distribution and assignment
stages of the process into a single stage.

EMPIRICAL ANALYSIS

Data Issues

Freight Shipments

Oak Ridge National Laboratory (ORNL) provided
two sets of origin-destination flow data for freight
shipment weight and value between origin seaports/
border ports of entry i and destination states j from
the following sources: 

� The Transborder Surface Freight Database. This
database (http://www.bts.gov/transborder/prod.
html) is distributed by the Bureau of Transporta-
tion Statistics and contains freight flow data by
commodity type and surface mode of transporta-
tion (rail, truck, pipeline, or mail) for U.S. exports
to and imports from Canada and Mexico. 

� The Port Import Export Reporting Service
(PIERS) Database. This commercial database

(http://www.piers.com/about/default.asp), offered
by the Journal of Commerce, offers statistics on
global cargo movements transiting seaports in the
United States, Mexico, and South America to
companies around the globe.

Two matrices, Nij, were developed: one for ship-
ment weight and one for shipment value for each of
the two databases with dimensions 128 x 50 and
144 x 50 for the Transborder and PIERS databases,
respectively. 

The limitations of these two data sources are well
documented (Meyburg and Mbwana 2002). A
caveat for the Transborder Database is that it is a
customs, not a transportation, dataset, resulting in
inconsistencies between U.S. and Canadian data
and issues related to the accuracy of transshipment
data.2 One caveat for using PIERS is that reported
origins and destinations may be billing addresses
rather than shipment points.

Separation Measures

In identifying specific types of spatial separation
that tend to impede or enhance the likelihood of
interactions between points of entry and destination
sites, the most obvious type involves physical space,
as exemplified by travel distance and travel time,
which are quantifiable in terms of meaningful units
of measurement. ORNL provided two sets with sep-
arate impedance matrices, , k = 1, 2 from origin
point i to destination county c. 

The first dataset included impedances between
origin seaports and destination counties, the second
set between origin border ports and destination
counties. Both measures were computed from
ORNL’s National Highway Network (NHN). The
first of the two measures is the route (network) dis-
tance in miles; the second computes a function of
travel time for different functional classifications of
highway segments and adds these time penalties
together while tracing the previous network routes.
The previous impedance matrices presented two
problems: 1) more than 50% of the cells were
empty because not all seaports/border ports of entry
are connected to each county through the NHN;
and 2) occasionally, freight shipments moved

Tij
f Ti*

f Af i( )exp θ f( )′cij [ ]θ f

ΣjA
f i( )exp θ f( )′cij [ ]θθ f

-------------------------------------------------------------=

θθ f

cij
q( )f θθ f Ti*

f

T* j
f

2 See http://www.bts.gov/ntda/tbscd/desc.html, as of Janu-
ary 2004, for more information.

cic
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between origin-destination pairs with a missing con-
nection (separation measure).

In order to deal with both problems, we devised
and implemented the following stepwise procedure
for the distance matrix (the first separation measure,

).
1. Centroid coordinates were computed for all

counties nationwide.
2. Spherical distances in miles from each county

to every other county.
3. For every destination county with a missing

connection to an origin point (seaport/border
port of entry), the closest county with an exist-
ing connection to an origin point was esti-
mated based on the previous county-to-county
distances.

4. The missing connection from an origin point
to a destination county was finally computed
to be the distance between the same point of
origin and the closest destination county aug-
mented by 130% the (airline) distance
between the two destination counties (as a
proxy to the actual road distance). This simpli-
fication was made under the assumption that a
missing connection would imply that the desti-
nation county is off the NHN and thus would
require additional time to be accessed from its
closest county on the NHN.

The above procedure resulted in the construction of
a synthesized separation measure comprising both
route distance (the ORNL estimate) and multiples

of airline distance (our estimate). It is important to
take a closer look at those two components of the
(re-estimated) first separation measure  .

The airline distance between origin point i and
destination county c, even augmented by 30%, is
only an approximation of the actual miles traveled
and represents a surrogate for the complex set of
factors that express the difficulty of overcoming sep-
aration. On the other hand, the route distance for
the same origin-destination pair is the total over-the-
road distance on a realistic route. As a measure of
separation, the route distance provides better accu-
racy for the eastern half of the limited access high-
way system of the United States, which has a higher
level of complexity resulting in less circuitous routes
than in the western half.

Whereas the distance measure developed above is
a measure that depends more or less on the physical
characteristics of the road link, the impedance mea-
sure, a function of link travel time as estimated by
ORNL, depends on the special roadway type or cer-
tain conditions encountered on the link. ORNL’s
estimating procedure could not be replicated in this
paper for the missing impedances. A surrogate value
was computed based on the average speed obtained
by ORNL’s distance and time estimates, and the
synthesized distances.

The procedure classified ORNL’s distance and
time estimates into 10 deciles. The stratum average
speed was computed by the ratio of the average dis-
tance and time for that stratum (table 1). Each

cic
1( )

cic
1( )

TABLE 1  Average Distance, Time, and Speed by Decile

PIERS Database Transborder Database

Decile

Average 
distance 
(miles)

Average 
time 

(min.)

Estimated 
speed 
(mph)

Average 
distance 
(miles)

Average 
time 

(min.)

Estimated 
speed 
(mph)

1 230.69 241.56 57.30 381.11 400.32 57.12

2 468.65 465.70 60.38 708.18 711.44 59.73

3 642.53 625.89 61.59 929.82 920.37 60.61

4 797.46 769.51 62.17 1,121.06 1,093.26 61.52

5 954.44 915.38 62.56 1,291.37 1,251.02 61.93

6 1,127.45 1,077.43 62.78 1,457.91 1,405.62 62.23

7 1,324.50 1,261.04 63.01 1,632.94 1,569.44 62.42

8 1,596.70 1,512.70 63.33 1,850.64 1,771.00 62.69

9 2,109.35 1,979.77 63.92 2,166.76 2,048.56 63.46

10 2,958.11 2,963.42 59.89 2,757.87 2,641.23 62.65
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missing time impedance was then estimated by the
ratio of its corresponding distance estimate and the
average speed of the stratum to which the distance
estimate belongs.

Clearly, this procedure imposes some inconsis-
tency in the imputation of travel times, because the
average speed estimate is based on decile groupings
of the initial estimates. The consistency of the proce-
dure could be improved if in a second iteration the
decile groupings are based on all distances (initial
and imputed), but I did not attempt this for this
paper.

The previous steps resulted in two re-estimated
sets of separation measures: 1) a distance matrix
and a travel time matrix between origin seaports
and destination counties; and 2) a distance matrix
and a travel time matrix between origin points of
entry and destination counties. The final step in pre-
paring the separation measures for model estima-
tion was to estimate these measures between origin
points and destination states rather than counties.
This was made possible simply by computing for
each origin point i and all destination counties

 in state j the average distance and travel
time. That is, 

, ,
and

, 
where n is the cardinality of Cj. Note that had we
avoided the intermediate step of origin-to-destina-
tion county distance estimation, say, by computing
distances to state geographical centers, origin-desti-
nation pairs with both ends in the same state would
have been indistinguishable in terms of their
separation.

Other Relevant Variables

As mentioned earlier, the weight and value of com-
modities shipped may be affected by a nexus of
factors that are either origin-specific, destination-
specific, or solely dependent on separation between
an origin and a destination. Although study
resources did not permit the collection of pertinent
data on these factors, it could be interesting to
observe how such factors can be accommodated in
the proposed theoretical framework for future
reference.

For origin-specific and destination-specific fac-
tors, Sen and Smith (1995) propose the following

exploratory analysis: estimate Ai’s and Bj’s first
using the maximum likelihood procedure described
earlier, and then use these estimates as the depen-
dent variable values in a model fitting procedure.
Thus, the estimates of the Ai’s can be associated
with the origin-specific factors, while the estimates
of the Bj’s can be associated with the destination-
specific factors.

Factors that can be solely attributed to the sepa-
ration between an origin and destination can be
accommodated in a deterrence function, an example
of which is indeed the most general exponential
function in equation (2). Openshaw and Connolly
(1977) have compiled a list of possible functions
and empirically compared several of them.

Results

The only decision necessary to apply the procedures
described above (i.e., DSF, LDSF, and MS) is the
choice of the flow unit. In the case of passenger
transportation, a flow unit of 1 (consistent with a
Poisson or multinomial distribution assumption)
would be reasonable. In the case of freight ship-
ments of goods, a basic unit of flow would appear
to be a trainload (for shipments by rail) or a truck-
load (for shipments by truck). In the absence of
mode-specific information as well as information
related to the variation in modal size, we experi-
mented with different values and determined an
“optimal” (with regard to providing the best model
fit) basic unit of flow of 100,000 pounds or dollars.
This is not surprising given that the bulk of flows
are long-distance shipments usually performed by
large3 trucks or rail (on a limited scale for the partic-
ular data) with an average shipment value of $2.03
per pound for the Transborder data and $1.39 per
pound for the PIERS data. Interestingly, our results
appeared to be quite insensitive to the choice of the
flow unit, primarily because the flows were inordi-
nately large. This is in agreement with previous
work (Sen and Pruthi 1983).

The procedures described above were run to a
tight convergence. For each iteration of the MS
procedure, the DSF procedure attained a 10E–12
convergence as defined by equation (8) in less than
100 iterations. The MS procedure itself attained a

c Cj∈

i∀ I∈ cij
1( ) Σncicn

1( ) /n=

cij
2( ) Σncicn

2( ) /n= cn Cj∈

3 Currently, the gross weight limit for a 6-axle combina-
tion truck is 80,000 pounds.
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10E–06 convergence as defined by the right-hand
side of equation (13) in less than 20 iterations.

Parameter Estimates and Model Fit 
for PIERS Data

Separate gravity models were estimated for both
seaport-to-state (seaport data) and border port-to-
state (transborder) weight and value flows. In par-
ticular, for the seaport data, several model specifica-
tions were tested based on transformations of the
distance and time separation measures,  and

, respectively, after a careful examination of
residuals that showed the presence of outliers.

In the analysis of residuals, two difficulties were
addressed. The first difficulty is the unequal vari-
ances of residuals, a consequence of the Poisson dis-
tribution. This problem was handled by
considering, as Cochran suggests (Rao 1973, p.
393), instead of the plain residuals , the
components

(35)

The second difficulty stems from the very large
number of residuals (the number is I � J, the num-
ber of all origin-destination pairs). To tackle this
concern, we followed a procedure described in Sen
and Smith (1995, p. 456) consisting of drawing nor-
mal (rankit) plots of residuals. If the residuals are
normal, such a plot would lie approximately on a
straight line. Points that deviate sharply near the
ends were tagged as outliers. Unusual jumps in the
plots or other strongly nonlinear shapes could signal
the need for transformations of the ’s or for
additional ’s. There are clearly other ways of
examining residuals. It is important to note here
that the effort to conduct residual analysis in the
gravity model case should not be seen as less than
that for linear models where residual analysis is rou-
tinely carried out.

Indeed, the examination of residuals signaled the
need for transformation of the ’s. We found the
square root transformation provided adequate fit
for both weight flow and value flow estimates (table
2). The model provides an excellent fit for the data,
because the Chi-square statistic hovers around its
expected value of 1. In addition, the cell-to-cell
weight flow estimates correlate very well with the
data (Pearson correlation coefficient, r = 0.89, p

< 0.01. The cell-to-cell value flow estimates also
correlate very well with the data (r = 0.98, p < 0.01).
Moreover, the weight and value length distributions
in figure 1 (1% corresponds to 2,292,872,822
pounds) and figure 2 (1% corresponds to
$3,198,123,011), respectively, seem to corroborate
the previous results.

Of interest in table 2 is the appearance of  with
a positive value. This is due to collinearity between
the used impedances, distance and travel time, a
phenomenon that is known to adversely affect the
sign of parameter estimates. Dropping one of the
impedances would bias the parameter estimates left
in the model. Given the robustness of the maximum
likelihood procedure above in collinearity situa-
tions, all available impedance measures were
retained (Sen and Smith 1995, chapter 5). After all,
the sign of  would have changed to a negative
value had we reparameterized the model and con-
sidered instead of travel time as the first impedance
measure, the difference between distance and travel
time (in appropriate units).

 

cij
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cij
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TABLE 2  Parameter Estimates for PIERS Data

Weight flows Value flows

Parameter
Sample 
mean

Standard 
deviation

Sample 
mean

Standard
deviation

θ1 11.1227 1.1646 3.7854 0.3963

θ2 –16.7447 1.7533 –11.1437 1.1668

X 2 ratio 0.7253 0.0000 1.1760 0.0000

FIGURE 1  PIERS Data: Weight Length
Frequency Distribution
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In the end, the model specifications for the
weight and value flows, respectively, are

(36)

Parameter Estimates and Model Fit for 
Transborder Data

In the case of Transborder data, we conducted a
similar investigation of residuals (as above with the
PIERS data) and observed the presence of a few
remaining outliers, despite using transformed ’s.
These outliers were mainly states receiving an
unusually large share of shipments compared with
other states. The discovery was made after squaring
the residuals in equation (35) and adding them
together for all origin points of entry for each desti-
nation state. Destination states with a large share of
shipments had a much larger sum of squares of
residuals than other destinations. This was under-
standable, because these large destination states
attract more shipments from longer distances and
suggest the use of an additional impedance variable 

for the weight flows, and 

for the value flows, where  is 1 for destinations
with more than a 10% share in weight (4% in
value) and 0 otherwise. In effect, we sought a differ-

ent parameter estimate for the square root/log of
distance for destination states with large shares.

The previous use of the indicator (dummy) vari-
able  is typical in spatial analysis for the treatment
of residuals (Sen and Smith 1995) and introduces
the effects of spatial structure on flow patterns
(Gensler and Meade 1988; Fotheringham and
O'Kelly 1989; Lo 1991), which is not the primary
intent of this paper. More complex measures of rela-
tive location have been developed and tested empiri-
cally (Boots and Kanaroglou 1988; Lowe and Sen
1996). In the end, the model specifications for the
weight and value flows, respectively, are

(37)

The previous steps removed all remaining outli-
ers. Parameter estimates and goodness-of-fit statis-
tics are shown in table 3. The previous observation
regarding the sign of  applies. The model fits the
data very well, as the Chi-square ratios for both
weight and value remain under 2. In addition, the
cell-to-cell weight flow estimates correlate very well
with the data (Pearson correlation coefficient, r =
0.91, p < 0.01). The cell-to-cell value flow estimates
also correlate very well with the data (r = 0.94, p
< 0.01). Moreover, the weight and value length dis-
tributions in figure 3 (1% corresponds to
767,519,815 pounds) and figure 4 (1% corresponds
to $1,565,313,371), respectively, seem to corrobo-
rate the previous results.

Computation of Covariance of Estimates 
for PIERS Data

The previous point estimates of the  parameters
and the flows  were used in the methodology
described earlier to obtain the covariance of these
estimates. The procedure can accommodate any

FIGURE 2  PIERS Data: Value Length
Frequency Distribution
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TABLE 3  Parameter Estimates for Transborder Data

Weight flows Value flows

Parameter
Sample 
mean

Standard 
deviation

Sample 
mean

Standard 
deviation

θ1 14.8743 1.5575 11.1739 1.1700

θ2 –21.4296 2.2439 –13.6992 1.4344

θ3 –2.1181 0.2217 –0.5534 0.0579

X 2 ratio 1.9642 0.0000 1.9012 0.0000

δ

Tij AiBjexp θ( 1 cij
1( ) θ2 cij

2( )+ θ3δ cij
2( ) )+=

Tij AiBjexp θ( 1cij
1( ) θ2cij

2( ) θ3δ log cij
2( )[ ] )+ +=

θ1
ˆ

θθ̂
T̂



78 JOURNAL OF TRANSPORTATION AND STATISTICS V6, N2/3 2003

reasonable number of separation measures, ,
and the large number of origins and destinations
typically encountered in practice.

The computational requirements of the proce-
dure are no longer prohibitive. We were able to
obtain the covariance matrix of a 144 � 50 flow
matrix, a 7200 � 7200 matrix, in a little more than
an hour on a Pentium III, 800 MHz, 512MB RAM
laptop computer running a FORTRAN 77 com-
piler. Replacing Tij’s by their estimates in equation

(27), the covariance matrix of  for the weight
flows from the PIERS dataset was found to be

(38)

The correlation between  (the parameter esti-
mate for the distance measure) and  (the parame-
ter estimate for the travel time measure) is readily
apparent from equation (38). The negative sign of
the covariances should not be disconcerting. It
shows that, if for some small shift in the observa-
tions,  were to increase,  would decrease to
“compensate.”

Similarly, the covariance matrix of  for the
value flows from the PIERS dataset was found to be

(39)

The correlation between  and  is similarly
apparent from equation (39).

Computation of Covariance of Estimates 
for Transborder Data

The covariance matrices of  from the Transborder
dataset for the weight and value flows, respectively,
were found to be

(40)

and

(41)

These last two covariance matrices in equations
(40) and (41) show relatively high correlation
between  (the parameter estimate for the distance

FIGURE 3  Transborder Data: Weight Length
Frequency Distribution

FIGURE 4  Transborder Data: Value Length
Frequency Distribution
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measure) and  (the parameter estimate for the
travel time measure) and relatively low correlation
between  (the parameter estimate for the trans-
formed travel time measure) and  or . The inter-
pretation of the negative signs is the same as above.

For illustration purposes, an example of the use-
fulness of the computed covariance matrices for

’s in computing confidence intervals is shown in
table 4. The table shows a few Nij’s, ’s, percent-
age difference between Nij and , and 90% confi-
dence intervals constructed by adding and
subtracting 1.65 times the standard error available
from the variances.

CONCLUSIONS

The most characteristic and indeed more restrictive
feature of the Poisson distribution is the equality
between its mean and variance. Many types of spa-
tial interaction phenomena exhibit restricted (vari-
ance less than their means) or extra variation
(variance greater than their means). Yet, the frame-
work described above is very robust. Its robustness
stems from the many types of asymptotic results
that establish the Poisson distribution as the unique
limiting form for a wide range of interaction pro-
cesses when the population size increases and the
overall influence of each individual interaction
decreases.

More specifically, this research demonstrates that,
to the extent the behavior of each shipping firm can
be thought of as a very small interaction process, the
resultant interaction process (i.e., the realized pattern
of origin-destination commodity shipments) can be

thought of as the superposition of all these processes
and thus characterized by gravity models. The limited
empirical analysis in this paper confirmed this conjec-
ture and thus establishes an extremely rich frame-
work for future experimentation.

Future applications of the proposed framework
could conduct additional exploratory analyses to
determine which factors affecting the demand for
freight shipments are origin-based, destination-
based, or separation-based. Another important issue
needing more attention in the future is the require-
ment that, when the proposed modeling framework
is used for forecasting, the travel times and costs
used as impedance measures should be consistent
with those obtained during the traffic assignment.

In summary, this paper has provided evidence
that the movement of freight shipments can now be
estimated within a desired confidence level as a
result of maximum likelihood estimation of Poisson
gravity models. The freight transportation modeler
has two procedures available for computing reliable
information within a predetermined accuracy: one
for computing freight flow estimates and one for
computing covariance matrices. These procedures
can accommodate any reasonable number of sepa-
ration measures, , and the large number of ori-
gins and destinations typically encountered in
practice.
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TABLE 4  An Illustration of Nij,  and 90% Confidence Intervals

Nij (observed flows)
(pounds)

 (estimated flows)

(pounds)

Nij–

% difference

90% confidence interval of 

Lower Upper

4,850,905.00 4,764,382.12 1.78 4,764,179.19 4,764,585.05

87,454.00 88,012.62 0.63 87,934.47 88,090.77

39,922,216.00 38,847,527.51 2.69 38,845,275.15 38,849,779.87

16,002,283,960.00 15,556,162,969.96 2.78 15,555,972,990.43 15,556,352,949.49

216,787,500.00 211,385,682.81 2.49 211,374,117.32 211,397,248.30

4,174,427.00 4,266,148.17 2.19 4,266,017.84 4,266,278.50

3,076,999.00 3,100,768.36 0.77 3,100,346.82 3,101,189.90

2,029,122,669.00 2,108,940,894.95 3.93 2,108,896,284.86 2,108,985,505.04

693,089.00 664,724.67 4.09 664,638.45 664,810.89
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ABSTRACT

This paper examines new highway construction
based on the status of the network, traffic demand,
project costs, and budget constraints. The data span
two decades and consist of descriptions of physical
attributes of the network, the construction and
expansion history, and average annual daily traffic
values on each of the links. An algorithm is devel-
oped to designate adjacent and parallel links in a
large network. A nonlinear cost model for new con-
struction and highway expansion is developed for
the Minneapolis-St. Paul metropolitan area. Results
show that new links providing greater potential
access are more likely to be constructed and that
more links will be constructed when the budget is
larger, which supports the underlying economic the-
ory. The models developed here have important
implications for planning and forecasting, allowing
us to predict how networks might be altered in the
future in response to changing conditions.

INTRODUCTION

The 240 km of paved road in the United States in
1900 increased to about 6.4 million km in 2000,
providing virtually 100% of the U.S. population
with almost immediate access to paved roadways

KEYWORDS: highway construction, cost model, trans-
portation forecasting, network growth, mixed logit.
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(USDOT 2002). The growth or decline of trans-
portation networks obviously affect a region’s social
and economic activities, yet the dynamics of how
such changes occur is one of the least understood
areas in transportation research and regional
science. This lack of understanding is often revealed
in the long-range planning efforts of metropolitan
planning organizations (MPOs), where transporta-
tion network change is treated exclusively as the
result of top-down decisionmaking. In fact, changes
to the transportation network are the result of
numerous small decisions (and some large ones) by
semi-autonomous entities (firms, developers, towns,
cities, counties, state department of transportation
districts, MPOs, and states) in response to market
conditions and policy initiatives. Understanding
how markets and policies translate into facilities on
the ground is essential for scientific understanding
and for improving forecasting, planning, policy-
making, and evaluation.

The study of network growth has been limited.
Taaffe et al. (1963) explored the economic, political,
and social forces behind infrastructure expansion
in underdeveloped countries and found that roads
are initially developed to connect regions of eco-
nomic activity and feeder roads later connect to
these initial investments. Garrison and Marble
(1965) observed that connections to the nearest
large neighbor explained the order of rail network
construction in Ireland. Grübler (1990) found that
the growth of infrastructure follows a logistic curve
and road infrastructure in developed countries has
reached saturation levels. Yamins et al. (2003) devel-
oped a simulation that grows urban roads using
simple connectivity rules proportional to the activity
at locations. Yerra and Levinson (2003) developed a
simulation model to capture the expansion of
existing links. The results also show that hierarchical
arrangements of roads (i.e., specific routes with
continuous attributes), are emergent properties
of transportation networks.1 Several studies have

examined specific networks, for example, the
London Underground (Barker and Robbins 1975),
but no general theoretical framework has been given
for incremental network growth at the microscopic
level.

Our study focuses on understanding the condi-
tions under which new links are constructed (as
opposed to existing links being improved) on a
highway network. The construction of new links
can be modeled in several ways, assuming we have
the location of possible and existing nodes. We
could assume that all (or a very large number of)
nodes are connected, but at some very slow speed,
and then use a network investment model to
improve selected links while allowing others to
whither, much as a neural network learns. In con-
trast to this process, we could assume that, for every
node, there is a set of possible nodes it can connect
with (neighbors within a certain radius to which it is
not already connected). The connections made
depend on underlying conditions. 

It is the second approach that we investigate in
this paper. Specifically, we want to understand the
effects of travel demand, cost of construction,
budget, and the surrounding conditions on the
generation of new links. A highway network is
thought to be expanded or constructed due to
congested traffic conditions or in anticipation of
regional economic development. Limited budgets
and existing land uses constrain the number of new
links constructed in a given period. The traffic level
on parallel links is expected to be a highly significant
factor in new construction. Also, the number of
potential trips on the new link is thought to be an
important factor in its initiation.

Theory and statistical techniques used for this
study are explained in the next section of this article.
The following section provides a description of the
data used and its assembly. In that section, adjacent
and parallel links are designated and the model used
to estimate the cost of construction is described. The
next section presents the model we used and poses
the specific hypotheses. Results are then presented,
followed by conclusions.

THEORY AND STATISTICAL MODELING

Construction of a new link may alleviate traffic con-
gestion or open a new area to development by

1 Specific routes with continuous attributes imply that
connecting links do not necessarily have the same
attributes. For instance, two four-lane links connecting at
an intersection with two two-lane links imply that the
four-lane links are part of a continuous route and the two-
lane links are part of a different route. Because these
routes are differentiated, some must be more important
than others, which produces a hierarchy of roads.
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increasing accessibility. Such a link could lead to the
availability of additional routes and cause traffic
patterns to change. Each of the variables considered
affect either the supply curve or the demand curve
and can shift the equilibrium.

A higher transportation budget (B) increases the
ability to expand or construct highways resulting in
an outward shift in the demand curve. Increasing the
cost of construction decreases its likelihood. Previous
studies empirically show that, in mature networks,
the capacity added to the system decreases over
time (Nakicenovic 1988; Grübler 1990). A marginal
increase in capacity decreases average travel demand
per lane (demand by consumers) as existing capacity
increases. 

Expanding a link means additional trips on that
link due to re-routing and rescheduling of trips
and also due to induced demand (Parthasarathi et
al. 2003; Levinson and Kanchi 2002; Fulton et al.
2000; Noland 2001). In light of induced demand,
the effect of roadway expansion in reducing traffic
congestion is not fully understood. Furthermore,
although consumers’ surplus increases after the
expansion, travelers are inconvenienced during its
expansion. 

Long links take more time to complete and
diverting traffic during that period is difficult. The
possibility of constructing a new link increases in
such scenarios and hence the condition of traffic in
the surrounding links is a crucial factor for new link
construction. Networks, because of land scarcity,
tend to grow more in the peripheries once they
reach saturation levels near downtown.

Statistical Theory

Due to the discrete nature of the dependent variable
(a new link is constructed or not), we considered
discrete choice modeling to be appropriate. Initial
modeling was done using a logit model, although
there are certain limitations (Haynes et al. 1988;
Haynes and Fotheringham 1991). The logit proba-
bilities are derived under the assumption that the
unobserved portion of the utility (combined with
the error term) is distributed in accordance with the
extreme value distribution. The probability of a
decisionmaker choosing alternative a is given by

Logit models assume that tastes are invariant
across the population and consequently estimate
fixed coefficients for the variables. In general, indi-
vidual tastes vary across the population and this
variation in tastes (random effects) should be
included in modeling. In mixed (random parameter)
logit models, the unobserved heterogeneity (individ-
ual-specific effects) is taken care of (McFadden and
Train 2000; Train and Brownstone 1999; Hensher
2001). The likelihood function is similar to logit
models, but the coefficient of some variables is not
fixed across the population. Because our models did
not suggest varying coefficients for variables, only
the constant taste variable is assumed to vary across
the population. In this model, the utility of an alter-
native a is given by

where
Ua = utility of alternative a,
X = vector of variables,

= random term with zero mean (any distribution),
 = random term with extreme value distribution.
Given the value of random term  from its distri-

bution, the choice probability is again logit. Because
we do not know the value of the random term, we
integrate the logit probability over all values of the
random term using its density function. The choice
probability of an alternative for an individual is then
given by

where s are the distributional parameters of the
random term in the likelihood function. This is
called mixed logit, because the terms are split into a
mixture of distributions. The integral above does not
have a closed form in general. To overcome this prob-
lem, for each individual we need to average over a
range of simulated values of likelihood. Taking this
value as the probability, the log-likelihood function
of multiplication of simulated probabilities of all
individuals is maximized to obtain the coefficients
of utility functions of each alternative. 
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The log-likelihood of the simulated probability is
a biased estimator of the true probability. This bias
decreases as the number of draws increases. In the
simulations, values from a uniform random genera-
tor are converted to the distribution of the random
variable. When using a random number generator,
it is sometimes possible that large sections of the
distribution are not generated. The uniform random
number generator does not guarantee uniform
coverage in a given simulation (even coverage is
guaranteed only on infinite draws). Halton draws2

have been suggested for their specific advantage of
even coverage. It has been found that 125 Halton
draws are as efficient as 2,000 random draws in
simulations of this kind (Bhat 2001). To reduce the
computational time and increase the efficiency,
Halton draws were used for this study.

DATA

The dataset for this study is built using data from
three different sources. The Metropolitan Council
of the Twin Cities of Minneapolis and St. Paul,
Minnesota, provided network data for 1995
with length and location of each link. Each link
is identified by its start and end nodes. Data on
average annual daily traffic were obtained from
the Transportation Information Systems Division
of the Minnesota Department of Transportation.
Data on construction of new links and expansion
of the existing links were obtained from the local
Transportation Improvement Program and the
Hennepin County Capital Budget for 1978 to 1998.
Data on new county highways are available only for
Hennepin County. Hennepin is the largest of the
seven counties and contains the city of Minneapolis.
Using the investment data, a network for each of
the years is built with 1995 used as the base net-
work. The remaining dataset was integrated using
ArcView geographic information systems software
and custom computer programs. 

While links to be expanded are chosen from the
existing network, when a new link is going to be
constructed, it is selected from a set of possible links
between nodes. In the case of the Twin Cities
network, creation of new nodes because of new
construction was not observed. The possible set of
new links is, therefore, based only on existing
nodes. Theoretically, a node can be connected to
any of the remaining nodes.3

The mean length of newly constructed links was
0.68 km and the maximum was 4.54 km. Because of
the large number of possible connections and high
redundancy levels within the radius of 4.54 km, a
shorter range of possible lengths was considered. In
the new scenario, only links between 200 meters and
3.2 km in length were considered. These lengths were
arrived at by removing new construction in the five
percentile regions on both ends of the dataset. We
observed that new nodes are seldom created by new
construction in the Twin Cities network. This indi-
cates that a possible set of new links should be such
that they do not cross any of the existing links that
are of higher-level hierarchy than the link being con-
structed, because doing so would create a new node.
However, new links can cross lower level roads with-
out technically intersecting them (via overpasses). 

With the above restrictions, each node was found
to have on average a set of 10 possible connections,
with 29,804 possible new links. We found, however,
that only 69 bi-directional new links (all highways)
were actually constructed in the past two decades.
There were, of course, many lower-level roads built
and other higher-level roads widened, but those are
not addressed here.

Adjacent and Parallel Links in a Network

We needed to compute the potential amount of
traffic a newly constructed link might serve based
on the traffic on the nodes it connects. The links that
would be connected, “adjacent links,” were divided
into two categories: supplier links and consumer

2 Halton draws are generated using a prime number, p, as
a seed. The interval (0,1) is divided into n equal intervals
and those form the first numbers of the sequence. Each of
the n intervals is again divided equally into n sub-intervals.
The new sets of numbers are arranged in a particular fash-
ion to continue the sequence. For a detailed discussion, see
Bhat (2001).

3 Freeway interchanges were treated as a single node for
this purpose. With the current network, this possible
connection can be made with any of the nodes at inter-
changes. To overcome this feature in the dataset, all the
nodes within 50 meters of each other were given the same
node number. A computer program was written to accom-
plish this task and the resulting node set was used to
investigate new construction.
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links. Supplier links would supply traffic to the new
link, while consumer links are the links the traffic
would move to after traversing the new link. A link
(ij) that is a supplier to another link (jk) may be a
consumer link in the other direction (ji receives
traffic from kj). A computer program was written to
enumerate adjacent links for each of the possible
links.

The parallel link can be thought of as the link
that would bear most of the diverted traffic if the
link in consideration were closed. This definition is
extended to new links by assuming the link is
constructed and then finding the parallel link in the
existing network. It is necessary to identify parallel
links, because they are the links currently serving the
traffic of that area. Because of the large number of
possible new links, parallel links were not identified
using traffic assignment. Rather, parallel links were
assigned to each of the possible links using fuzzy
theory (Zadeh 1992; Kosko 1993). Fuzzy theory
assumes a continuous truth-value rather than the
deterministic Boolean values used conventionally.
The sum composition method combined with appro-
priate weights was found suitable for our purposes. 

In general, a parallel link is in the proximity of
link L, approximately parallel to it in orientation
and of comparable length. Four attributes are
defined to satisfy the above requirements. The first
attribute is based on the angular difference between
the orientations of the two links, which should be as
small as possible. The second attribute is the per-
pendicular distance from mid-point of link L to the
other link divided by length of link L. The third
attribute is the sum of the distance between the start
and end nodes of the two links being compared.
The final attribute takes the ratio of lengths of the
two links into consideration. Mathematically, the
four attributes are defined as follows:

1. Para = 1 – (angular difference) / 45
2. Perp = 1 – a*(perpendicular distance) / length

of link L
3. Dist = 1 – b*(sum of node distances) / length

of link L
4. Comp = 1 – c*(lratio – 1)

where perpendicular distance is from the center of
link L to the other link, node distances are dis-
tances between the corresponding start and end

nodes, lratio is the ratio of length of the probable
parallel link to the length of link L or the inverse of
it, whichever is greater.4 

In sum composition, computing the truth-value
of each attribute and then summing these values
gives the fuzzy output. Here, we modified this
method by weighing the truth-values of the
attributes based on the importance of each attribute
in relation to others. The assumed parameters of a,
b, and c and the assumed weights of the attributes
are given in table 1. These values were calibrated to
match our expectations of what should be the most
parallel link using a few sample links. One parallel
link was selected for each link.

Cost Model

A cost function is needed to estimate the cost of
possible new construction. Investment data obtained
from the Metropolitan Council’s Transportation
Improvement Program and the Hennepin County
Capital Improvement Program were used to estimate
a modified Cobb-Douglas (log-log) model. This
model was used to account for the non-linear behav-
ior of some of the explanatory variables.

where
Eij = cost to construct or expand the link (in

nominal thousands of dollars),
 = lane kilometers of construction (Length

* Increase in number of lanes),

4 Dist and Perp differ in that Perp considers the perpen-
dicular (or shortest) distance between the links, while
Dist looks at the distances between the beginnings and
ends of the links, which may not be perpendicular. In a
perfect grid network, the two variables would measure
the same thing, but most networks are not perfect grids
(see Levinson and Karamalaputi 2003).

TABLE 1  Assumed Values of Weights and 
Parameters of Parallel Link Attributes

Attribute Weight Parameter

Para 0.5 —

Perp 0.5 a = 0.40

Dist 1.0 b = 0.25

Comp 0.5 c = 0.50

ln Eij( ) a b1 Lij∗ Cij∆( )ln+= b2N b3HI+ +

b4HS b5Y b6 P( ) b7X+ln+ + +

Lij∗∆Cij
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N = dummy variable 1 if new construction or
0 if expansion,

HI, HS = dummy variables for Interstate highways
(HI) and state highways (HS),
 (default = county highways)

Y = year of completion (1979),
P = period (duration) of construction (in

years),
X = distance of the link from the nearest

downtown (Minneapolis or St. Paul) (in
km).

The data consist of both expansions and new
construction projects totaling 76 observations (more
than 1 link can be expanded in a single project).
Results of the model are shown in table 2. The coef-
ficient of lane kilometers of construction 
is less than one, indicating economies of scale in
construction. As can be expected, the cost of a new
construction project (N) is higher than expanding an
existing link. The cost of construction increases with
the hierarchy of the road (H) (H = 0 represents a
county road). The year variable (Y) controls for
inflation and the improving quality of the road con-
struction. Longer duration projects (P) cost more
and construction becomes costlier over time. The
distance from the nearest downtown, entered as a

linear variable (X), shows that the project cost
decreases as it moves away from downtown areas.
Downtown areas have higher traffic flows and land
costs and hence restrict the construction flexibility,
generating the extra cost.

MODEL

Due to the few new links built over the last two
decades, construction was assumed to occur in five-
year intervals and the dataset was built accordingly.
The budget over these five years was summed to act
as a budget constraint. Nodes connecting only local
roads (below county highways) were not considered
in modeling, because we did not have data on new
construction of such roads. New construction in the
next time interval can be modeled as

where
Nijt + 1 = dummy for new construction of link ij in

period (t + 1),
Lij = length of link ij along the road,
Cp = capacity of the parallel link,
Lp = length of the parallel link,
Qp = flow on the parallel link,
Qp / Cp = congestion measure on the parallel link,
A = product of total supplier link flows and

total consumer link flows (access),
Eij = cost of constructing the new link,
B = transportation department’s budget con-

straint,
T = time period of construction,
X = distance from the nearest downtown,
D = number of nodes within the interval of

200 meters and 3.2 km.
Volumes on the links are directional.

Variable A can be considered an accessibility
measure of the new link. It represents the effect of
supplier link flows and consumer link flows on the
probability of new construction. The effect of sur-
rounding conditions was expected to be prominent
in the construction of a new link compared with a
link expansion. Based on that theory, the hypotheses
are as follows:

� High congestion on the parallel link (Qp/Cp)
favors construction of the link to relieve traffic
on the parallel link.

TABLE 2  Regression Coefficients for Cost Model

Description of 
the variable Variable Coef. P > | t |

Cost of construction (Eij) — —

Lane-kilometers of 
construction

0.50 0.00*

Dummy for new 
construction

N 0.39 0.04*

Dummy for interstate 
roads

HI 1.97 0.00*

Dummy for state 
roads

HS 0.56 0.02*

Log of (year–1979) 0.75 0.00*

Log of period of 
construction

0.16 0.06*

Distance from 
nearest downtown

X –0.03 0.04*

Constant 5.79 0.00*

Number of observations: 76

  Adj. R 2: 0.77
* Significant at 90% confidence interval.

Lij
∗∆Cij( )

ln L( i j∗∆Cij )

ln Y( )

ln P( )

Nijt 1+ f Lij Cp Lp Qp/Cp A Eij B T X D, , , , , , , , ,( )=
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� Higher capacity of the parallel link (Cp) decreases
the likelihood of new construction, as capacity is
already available. However, high capacity links
are less likely to be expanded.

� Longer links (Lij) are less likely to be expanded
because of the longer duration of construction.

� A longer length of a parallel link (Lp) favors new
construction, because longer links tend not to be
expanded as often due to the duration inherent in
such an expansion.

� High expected costs of construction (Eij) on the

new link decreases the probability that the link
will be built, while a higher transportation bud-
get (B) increases that probability. 

� A higher access score (A) for a link increases the
chances of construction.

� As was observed in the literature, road construc-
tion has declined over time and was expected to be
reflected in a negative sign on the year (T) variable.

� New links have a higher probability of being
constructed far from downtown (X), as land
acquisition is easier there.

� A large node density (D) in the surrounding area
results in fewer new links being constructed,
because the number of links is high in these areas.

Binomial logit and mixed logit modeling were used
to analyze the dataset. The results are shown in the
following section.

RESULTS

A binomial logit model was used to estimate the
construction of a new link between existing nodes.
Results of the regression models are given in table 3.
Variables Cp, Eij, and X are negative and significant
while the variables Lp, A, T, and B are positive and
significant. 

As has been noted earlier, the construction of a
new link depends heavily on its surrounding condi-
tions and alternate route conditions. The longer the
parallel link (Lp), the higher the probability of a new
link. This might be interpreted as reflecting the cost
involved in the expansion of the longer parallel link
and also as a result of the traffic diversion problems
on the parallel link if it were expanded. 

The capacity of the parallel link (Cp) is negative
and significant, supporting this hypothesis. High
capacity links already serve high volumes of traffic
in an area (generated in or passing through that
area) and hence reduce the need for a new link. 

A high access measure (A) between two nodes
tends to increase the probability of new construc-
tion connecting those nodes. Access is directly pro-
portional to the total time savings due to new
construction and hence it is logical that high
demand between two nodes has this effect.

A higher cost of constructing a new link (Eij)
reduces its probability of expansion, as expected.
Also, more new construction is possible when the
budget (B) is higher. 

Contrary to our hypothesis, distance to the
nearest downtown (X) variable is negative and sig-
nificant, indicating that new links are more likely to
be built nearer to downtown than in the suburbs.
This probably reflects the completion of the Inter-
state Highway System in the Twin Cities, which
saw the urban links finished last (in the past 20
years), while suburban links were completed as
long as 40 years ago.

More new links are being constructed with the
passage of time (T), refuting the hypothesis. Earlier
studies showed decreasing expansion rates for
existing links. This may reflect a policy shift from
expansion to new construction. Expanding a road
leads to traffic inconvenience during construction,
a problem that can be avoided by new construc-
tion, which may explain the reasoning behind more
new construction. 

A mixed logit model was estimated to allow for
the taste variances of individual links (i.e., of deci-
sionmakers). Table 3 gives the results of the model.
The log likelihood value was improved by 3%,
indicating a better model. As mentioned earlier,
changes in traffic demand were not considered due
to the low number of new links. Considering
changes in demand would require dropping one
period of observation. The random term was
assumed to have a triangular distribution and its
estimated standard deviation is given in the table.
Models with other possible distributions for the
random term did not improve significance. The sig-
nificant variance in the constant term reflects the
variance in the links due to the effects of these
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omitted variables and the inherent taste variance (of
decisionmakers). More data are needed to model
new construction with other influencing variables.

However, a mixed logit model can to some extent
encompass the effect of these variables. Omitted
variables in a model increase the standard error of
the estimated variables and thus cloud the signifi-
cance of some variables. For instance, the number of
nodes in the surrounding area (D) is significant in
the new model, supporting the hypothesis. The coef-
ficients of variables changed significantly when the
unobserved variance was accounted for. The z-values
of the mixed logit model are higher than those of the
logit model indicating increased reliability of the esti-
mated coefficients. In the case of the mixed logit
model, the congestion on the parallel link is negative
and significant, refuting our hypothesis (it was insig-
nificant in the logit model).

Out of a network of 29,804 possible new links,
there were 69 new links in the time period consid-
ered. Of the 69 most likely new construction links
as predicted by the models, the logit model identi-
fied 17 links that were actually built. The mixed
logit model performed better predicting the same 17
links and an additional 5 new links correctly. In
view of these results, mixed logit models perform
better than conventional discrete choice models. 

CONCLUSIONS

This paper developed a model to predict the loca-
tion of new highway construction based on the
surrounding conditions of the new link, the esti-
mated cost of construction, and a budget constraint.
A new process for identifying potential construction
projects is developed. The methodology used here
reduces the number of possible newly constructed
links drastically and paves the way for feasible
modeling. This paper provides a practical solution
to the problem of identifying adjacent and parallel
links in a large network. Using the investment data,
a model to estimate the cost of potential new con-
struction is developed here. 

Results indicate significant dependence on paral-
lel link attributes and potential access to traffic due
to the new link. A newly constructed link provides
an additional route; hence, its construction depends
on the attributes of the links that presently serve the
region. A high capacity route is sufficient to cater to
the traffic generated in or going through the region
and usually does not require a new construction
project. New construction projects are less likely to
be undertaken if they are costly and are limited by
the available budget. New links are unnecessary
when the region is well connected, as reflected by

TABLE 3  Estimated Models for New Construction

Logit Mixed logit

Variable Hypothesis Coefficient z Coefficient z

Length of the link (Lij) –S –5.91E-01 –1.35 1.84E–01 0.27

Capacity of the parallel link(Cp) –S –3.31E–01* –1.86 –4.87E–01* –1.67

Length of the parallel link(Lp) +S 4.93E–01* 1.58 1.42E+00* 1.97

Congestion on parallel link (Qp /Cp) +S –1.96E–05 –1.25 –5.23E–05* –1.87

Access (A) +S 4.24E–05* 4.70 1.92E–04* 2.71

Time period of construction (T) –S 7.31E–01* 2.24 3.00E+00* 3.27

Cost of construction (Eij) –S –2.82E–01* –2.48 –8.97E–01* –3.36

Budget (B ) +S 5.68E–06* 3.06 7.78E–06* 3.96

Distance from downtown (X) +S –1.21E–01* –5.69 –3.08E–01* –6.62

Node density (D) –S –6.32E–04 –0.18 –1.27E–02* –1.73

Constant –6.09E+00* –6.02 –1.24E+02* –2.92

Triangular deviation

Constant — — 4.72E+01* 2.36

Number of observations 89,031 89,031

Log likelihood –473.19 –459.68

* Significant at 90% confidence interval.
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the node density variable. Two different types of dis-
crete choice models were estimated to compare their
performances. It was found that mixed logit models
perform better than logit models and account for
unobserved taste variance.

Although politics factor into these decisions, it
should be noted that they are constrained by the
decisions made in the past and by the present condi-
tions of the network. The models suggest a number
of significant factors that lead to new highway con-
struction. The models estimated here also can be
used to monitor the growth of the network given
projected traffic demand for the existing links and
values of model variables at present conditions. This
would improve transportation planning by enabling
modelers to predict pressures for additional links.
Forecasting future demands on the transportation
network requires a forecast of the network structure
itself. Only with models of new link construction
and link expansion can these forecasts be made.
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ABSTRACT

This paper analyzes the elasticities of demand on
tolled motorways in Spain. We use a panel dataset
covering an 18-year period, where the cross-section
observations correspond to various Spanish tolled
motorway sections. A dynamic model is estimated,
which allows us to identify short-term and long-
term responses to changes in the independent vari-
ables. The results show that demand is elastic with
respect to the level of economic activity, whereas
average elasticity with respect to gasoline price is in
line with that estimated in previous studies. For the
main variable of interest, the results indicate that
demand is relatively sensitive to toll changes,
although a wide variation is observed across motor-
way sections. A statistical analysis reveals that the
main factors explaining such differences are related
to variables that reflect the quality of alternative and
free roads. 

INTRODUCTION

In recent years, there has been renewed interest in
using tolls to finance road investment, in order to
avoid public budget constraints and at the same time
to involve the private sector in the provision of infra-
structure. In this new context, it is vital to have accu-

KEYWORDS: demand elasticities, toll motorways, inter-
city road traffic.
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rate knowledge of demand behavior for forecasting
and evaluation purposes. More precisely, it is neces-
sary to know the elasticity of demand with respect to
price, quality, or income, in order to obtain traffic
and revenue forecasts or to evaluate potential nega-
tive effects such as the misallocation of traffic
between tolled roads and parallel untolled roads. 

Empirical evidence on demand elasticity on tolled
motorways is limited due to the relative scarcity of
tolled roads in the world.1 Furthermore, most of the
studies provide average elasticities for specific short
road sections, tunnels, or bridges, which are highly
dependent on site-specific factors such as the degree
of congestion or the availability of alternatives.
Because of this, it is difficult to transfer the results to
other contexts. 

This paper aims to provide new and robust evi-
dence on demand elasticity on tolled motorways
with respect to its main determinants, placing special
emphasis on toll elasticities. We address this issue by
estimating a dynamic demand function using a panel
dataset consisting of observations of the Spanish
tolled motorway network over the period 1981 to
1998. The results show that the sensitivity of
demand to price depends both on the characteristics
of the tolled motorways and on those of the alterna-
tive free road.

The next section provides a review of demand
elasticity with respect to tolls followed by a brief
summary of the toll policy in Spain. The model
specification and certain relevant econometric issues
are discussed next. In the following section, we
present the data we used, and then we turn to the
model estimation and results. We next carry out a
statistical analysis in order to identify the factors
that explain the differences in toll elasticities across
motorway sections. Finally, the main conclusions of
the paper are summarized. 

REVIEW OF THE LITERATURE

There is a general consensus that, on average, trans-
portation demand is fairly inelastic with respect to
price. The empirical evidence gathered on toll elas-

ticities (table 1) seems to confirm this. The most fre-
quent values fall around – 0.2 and – 0.3 with a range
of – 0.03 to – 0.50. These values correspond to aver-
age demand elasticities. Unfortunately, the potential
sources of variation are not taken into account in a
formal manner. Nevertheless, some authors do iden-
tify the characteristics that will have an impact on
the elasticity value. 

The lowest values of toll elasticities are usually
observed for bridges in highly congested metro-
politan areas in the United States. This result can be
explained by the low level of the toll fee compared
with other components of private car cost, such as
parking fees (Harvey 1994). Wuestefeld and Regan
(1981) found that response varies according to the
purpose of the trips, trip frequency, the existence
of a toll-free alternative, and journey length.
Hirschman et al. (1995) state that demand is more
sensitive in the case of those infrastructures with a
good alternative untolled road.

Finally, some authors argue that traffic is sensi-
tive to time-varying pricing schemes. Gifford and
Talkington (1996) found evidence that day-of-the-
week cross-elasticities are complementary; that is,
an increase in toll rates on one day results in a
reduction of traffic not only on that day but on
other days of the week as well. Burris et al. (2001)
showed that travelers responded to the off-peak toll
discount implemented on two county bridges in
Florida. They also showed that demand elasticities
calculated across different off-peak periods varied
considerably. These results suggest that the imple-
mentation of time-varying pricing schemes can
encourage a more efficient use of motorways com-
pared with a uniform toll throughout the day.

TOLL POLICY IN SPAIN

In the early 1970s, tolls were introduced on the
road network in Spain mainly to raise revenue to
finance construction, operation, and maintenance.2

According to this objective, each motorway had to
cover its own costs, and cross-subsidies between
different motorways were not allowed. Initial toll
rates were specific to each motorway concession
and subsequently increased according to a cost1 According to the World Bank (2004), most countries

have no toll roads and, where there are such roads, the
tolled network typically comprises less than 5% of the
entire road network. 

2 Appendix A provides a brief summary of the develop-
ment of toll roads in Spain.
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index based on the rate of inflation for the three
main factors of production: labor, fuel, and steel.
This resulted in a substantial variation in toll rates
across the country, with higher tolls per kilometer
on those motorways with larger construction costs
or lower traffic volume. 

However, for various reasons, the toll policy was
modified over time and toll rates were not
increased as planned. First, the severe economic cri-
sis that the Spanish economy suffered from 1974 to
1984 revealed that certain concessionaires could
not break even at initial toll rates. Three of the con-
cessionaires with financial difficulties were taken
over by the government, while others were merged
with stronger companies. In both cases, the terms
of the concession agreements were modified, lead-
ing to an increase in the initial toll rates in real

terms. Moreover, explicit financial support from
the government was allowed for a small share in
the motorway network and cross-subsidies
appeared among the merged concessionaires.3 Fur-
thermore, the formula approved for toll revisions
was not systematically applied to all the motor-
ways, and, as a consequence, toll rates for different
motorways varied over time. Thus, in the 1980s,
tolls increased in real terms on 8 of the 10 motor-
ways, although at varying rates, whereas a decrease
was observed in the other 2.

TABLE 1  Elasticity of Traffic Level with Respect to Tolls

Authors Results Context

Wuestefeld and Regan (1981) Roads between – 0.03 and – 0.31 
Bridges between – 0.15 and – 0.31 
Average value = – 0.21

16 tolled infrastructures in the 
U.S. (roads, bridges, and 
tunnels)

White (1984), quoted in Oum et 
al. (1992)

Peak-hours between – 0.21 and – 0.36
Off-peak hours between – 0.14 and 
– 0.29

Bridge in Southampton, UK

Goodwin (1988), quoted in May 
(1992)

Average value = – 0.45 Literature review of a number 
of previous studies

Ribas, Raymond, and Matas 
(1988)

Between – 0.15 and – 0.48 Three intercity motorways in 
Spain

Jones and Hervik (1992) Oslo – 0.22
Alesund – 0.45 

Toll ring schemes in Norway

Harvey (1994) Bridges between – 0.05 and – 0.15
Roads – 0.10

Golden Gate Bridge, San 
Francisco Bay Bridge, and 
Everett Turnpike in New 
Hampshire (U.S.).

Hirschman, McNight, Paaswell, 
Pucher, and Berechman (1995)

Between – 0.09 and – 0.50
Average value – 0.25 (only significant 
values quoted)

Six bridges and two tunnels in 
the New York City area, U.S.

Mauchan and Bonsall (1995) Whole motorway network – 0.40
Intercity motorways – 0.25

Simulation model of motorway 
charging in West Yorkshire, UK

Gifford and Talkington (1996) Own-elasticity of Friday–Saturday 
traffic – 0.18
Cross-elasticity of Monday–Thursday 
traffic with respect to Friday toll – 0.09

Golden Gate Bridge, San 
Francisco, U.S.

INRETS (1997), quoted in 
TRACE (1998)

Between – 0.22 and – 0.35 French motorways for trips 
longer than 100 kilometers

Lawley Publications (2000) – 0.20 New Jersey Turnpike, U.S.

Burris, Cain, and Pendyala  
(2001)

Off-peak period elasticity with respect 
to off-peak toll discount between 
– 0.03 and – 0.36

Lee County, Florida, U.S.

3 It is important to note that the Spanish government
assumed a very high level of risk as a consequence of the
foreign rate assurance and the loan guarantees offered.
The exchange rate losses over the period 1976–1996 were
up to 65% of the total investment (Bel 1999).
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In 1990, when most of the motorways had
already been constructed, the toll revision formula
was changed. Since then the new formula has been
linked to the consumer price index (CPI) and allows
for toll increases equal to 95% of annual CPI
growth. This new approach to price regulation
should have resulted in a slight decrease in toll rates
in real terms over time for all the motorways. How-
ever, in practice, this formula was only systematically
applied for a short period of time (1990 to 1996)
and even then not to all motorways. The reasons
again are manifold. 

First, in the 1990s, there was renewed interest in
the construction of tolled motorways from both
central and some regional governments. In the first
case, some concession agreements were renegotiated
and existing toll rates reduced (even halved) to com-
pensate for the introduction of tolls on upgraded
toll-free motorways. Second, toll rates on regional
motorways increased well above the average.
Finally, the growing political pressure against tolls
resulted in a renegotiation of most of the agree-
ments with a reduction of toll rates in exchange for
compensating the concessionaires with an extension
of the concession period. 

Since 1997, those motorways with higher tolls
per kilometer have progressively reduced their rates;
in some cases, the tolls decreased as much as 40%
nominally in one year. Additionally, the rate of
value-added tax was lowered from 16% to 7% on
all the motorways.

The criterion used to set initial toll rates and
changes in the toll policy during the 1990s have
resulted in a wide range of variation of rates across
the country and over time, which greatly facilitates
the econometric estimation of toll elasticities. 

MODEL SPECIFICATION

The Demand Equation

The methodology used to estimate the demand
function was the panel data approach, where the
cross-section observations correspond to motorway
sections. This approach has two types of advan-
tages. First, the temporal dimension allows the
modeling of the dynamic adjustment of demand
resulting from changes in transportation policy and
the socioeconomic environment over time. More-

over, the cross-section observations provide more
variation in the data, because toll rates vary more
between motorway sections than they do over time.
It thus solves the problem of insufficient variation in
tolls per kilometer that appears in pure time series
studies.4 As a result, the estimated elasticity value
captures the rich variation of prices across the dif-
ferent sections, as well as its temporal variation in a
given section. Furthermore, by using a panel
dataset, the number of observations is increased,
which improves the precision of the estimated
parameters.

We assumed that the volume of traffic on a
motorway section is a function of the monetary and
time costs of using the motorway, the monetary and
time costs of using the alternative parallel free road
or modes, the level of economic activity, and the
generation and attraction factors at the origins and
destinations. Monetary cost is defined as the sum of
three components: toll, gasoline cost, and other
vehicle operating costs. All the monetary variables
were deflated by the CPI. The level of economic
activity was measured as real gross domestic product
(GDP); given that trips on motorways are under-
taken for both leisure and business purposes, we
used real GDP rather than disposable income in
order to better capture the level of economic activity.
Finally, the amount of traffic on a motorway section
depends on the size of the potential market for each
of them, which was determined by generation
capacity and attraction of the origins and destina-
tions, such as population and employment.   

The model can therefore be expressed as follows:

(1)

where
m =  motorway, 
o = alternative (other) routes or modes,
Yit = traffic volume on motorway section i in 

period t, 

4 When using a panel dataset, the total variability of a
measure has two components: the within component
(variability of the sample through time within each
section) and the between component (variability of the
sample across motorway sections). The panel dataset
takes advantage of both sources of variability.
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GDPt = real national GDP in period t,
GPt = gasoline price in period t deflated by the

CPI,
= motorway toll on section i in period t

deflated by the CPI,
= other vehicle operating costs (i.e., other

than tolls and gasoline), j = m, o, 
= time costs on section i in period t, j = m, o,

Oi = generation factors on section i,
Di = attraction factors on section i,
uit = error term, normally distributed with

mean 0 and variance . 
However, this is an ideal model. The empirical

specification we finally estimated was limited by
some data issues. Unfortunately, no data were avail-
able on other vehicle operating costs or time costs
for the whole sample period. An analysis of the
transportation costs in Spain allowed us to assume
that vehicle operating costs and time costs have
remained approximately constant over time on most
of the motorway sections although this hypothesis
did not hold for some of them. This was the case for
seven sections, located around urban areas where
both an increase in congestion and changes in the
road network have affected the quality of service.
These observations were excluded from the sample.
The rest of the sections corresponded to interurban
motorways where congestion was not a problem on
most days. Hence, it can be assumed that time costs
have remained relatively constant over time. 

In order to take into account the most significant
changes in the road network, a set of dummy vari-
ables was introduced. For example, the improve-
ment of a parallel free road was captured by a
dummy variable that takes the unit value since the
opening year. Finally, the generation and attraction
factors showed that the difference in traffic volume
across motorway sections related mainly to popula-
tion and the level of economic activity. Given that
the dependent variable was observed for very short
sections of the motorway and given also the diffi-
culty in identifying how these factors should be
measured, we assumed that these factors were cap-
tured by the specific fixed effects.5 

Hence, under the assumption that  = 
and =  for j = m and o, the equation can
be rewritten as 

(2)

where Zit is the vector of dummy variables
accounting for major changes in the network.
These variables are defined in table 2.

One of the advantages of using a panel dataset is
that this methodology allows us to explain the differ-
ences between cross-section observations not cap-
tured by the variables included in the model through
the individual fixed effects, . These individual
fixed effects are represented by specific intercepts for
each motorway section in the sample, and they cap-
ture the effect of factors not included in the equation
that can be considered fixed over time but vary
among motorway sections. 

Thus, the demand equation can be rewritten as

(3)

where  captures the variables in parentheses in
equation (2). 

From a statistical point of view we have validated
the assumed hypothesis that certain factors remain
relatively constant over time by the application of
recursive least squares.6 This methodology allows us
to prove the constancy of the estimated coefficients
over time, so the null hypothesis of the structural
constancy of the model is not rejected by the data.

Given the low number of temporal observations
available for some of the motorway sections, the
demand elasticities with respect to GDP and gaso-
line price are assumed to be the same across all
motorway sections. According to the statistical test

5 See Voith (1991) for a similar assumption.
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applied, these constraints were not rejected by the
data.7 The advantage of estimating a constrained
model is that it allows efficiency gains in the estima-
tion of the main parameter of interest, which in our
case is toll elasticity. The coefficients of the toll
variable, and hence the toll elasticities, are specific
for each motorway section. We will, therefore, esti-
mate different toll coefficients for each cross-section
unit, which will depend on the characteristics of the
motorway and the alternative routes. 

To sum up, the traffic volume on motorway
section i in period t depends on the individual fixed
effects, the level of economic activity, the price of
gasoline, and the level of toll. The individual fixed
effects capture the effects of factors not included in
the equation that remain relatively constant over
time but vary among the different motorway
sections. As previously mentioned, even for this
more parsimonious version of the model, the use of
recursive estimation techniques does not reject the
temporal stability of the coefficients.

Some Econometric Issues

The next step in the model specification process is to
decide on the functional form for the demand equa-
tion. The first issue we considered is whether the
series are stationary or integrated8 and, in the case
of integrated series, whether they are cointegrated
or not. The available econometric literature does
not offer a clear guide on how to deal with this issue
when panel data are used. 

In this study, in spite of the short time span for the
series (a maximum of 18 years), the traditional unit
root tests (Augmented Dickey Fuller and Phillips
Perron) were used to test whether the variables were
stationary or integrated. The tests were applied to
each motorway section. The null hypothesis of unit
root was always nonrejected at the usual significance
levels of the tests. However, the same tests showed
the stationarity of the variables in first differences. 

TABLE 2  Definition of the Dummy Variables Included in the Estimated Demand Equation

Dummy variables Period Comment
Expected 

sign

Z1–Z4 1994 – 1998 They reflect the negative impact on traffic on the 4 A(2) 
motorway sections, derived from capacity and quality 
improvements on the alternative free road. 

–

Z5–Z7 1992 They account for the positive impact on the 3 A(4) motorway 
sections, derived from the Seville World Exhibition in 1992. +

Z8–Z11 1995 – 1998 They reflect the negative impact on traffic on 4 A(7) motorway 
sections as a consequence of the extension of an alternative 
tollway. 

–

Z12, Z14, and Z16 1993 – 1998 They reflect the negative impact on traffic on 3 A(7) motorway 
sections, derived from the opening of an alternative free 
motorway.

–

Z13, Z15, and Z17–
Z24

1990 – 1998 They account for the positive impact on traffic on 10 A(7) 
motorway sections, due to the extension of this motorway. +

Z25 1996 – 1998 It reflects improvements in the free alternative motorway 
network for the first of the A(19) motorway sections. –

Z26, Z27, and Z28 1994 – 1998 They account for the positive impact on traffic on the 3 A(66) 
sections as a consequence of the improvement and extension 
of the motorway. 

+

Notes: In Spain, the motorways (autopistas) are identified by the letter “A” followed by a number in parentheses. 
These variables take the value 1 in the reported period; otherwise they are 0.

7 The calculated F statistic for the hypothesis of equal
elasticity with respect to gasoline price in all the sections
of the motorway included in the sample is 0.944; for the
hypothesis of equal elasticity with respect to GDP it is
1.082, while the critical value at a significance level of 5%
is 1.22.

8 Using integrated series (unit root series) is not a problem
if the considered variables are cointegrated, given that in
this case the cointegration property guarantees that the
estimates are both consistent and efficient. However, if the
variables are not cointegrated, this may give rise to the
spurious regression problem. For a standard reference to
unit root and cointegration tests, see Hamilton (1994). All
results from the applied test are available on request.
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The following step is an analysis of the series’
cointegration. We carried this out using the Engle-
Granger and the Cointegration Equation Durbin-
Watson tests.9 In this case, in almost all regressions
estimated in levels, the null hypothesis of no
cointegration was also nonrejected. Based on this
evidence, and following standard econometric
practice, all the estimations were carried out using
first differences of the variables.

Second, in order to allow for dynamic effects, the
starting specification included lags of the dependent
and explanatory variables. The search for the final
specification followed a general-to-specific process.
After simplifying the model with restrictions that
were not rejected by the data, a partial adjustment
equation was selected. Therefore, both exogenous
and lagged dependent variables appear as explana-
tory variables in the final model.

Finally, given that there are no theoretical argu-
ments that can contribute to the choice of the
functional form for the demand equation, we
proceeded to select the most appropriate one on the
basis of the goodness of fit of the models. We
considered three alternatives—the linear model, the
semi-log model, and the log-linear model—which
are three of the most widely used in estimating
aggregate demand models. The criterion used to
select among these alternative specifications is
based on the comparison of the values of the log of
the likelihood function from the three competing
models.10 According to this criterion the log-linear

specification was preferred as it showed the highest
value for the log of the likelihood function.11

According to the three issues previously dis-
cussed, the equation to be estimated corresponds to
a partial adjustment model where the variables are
in first differences of the logarithms. The equation
can be written as follows:12

(4)

It must be stressed that in equation (4) using first
differences of the variables eliminates the fixed
effects from the estimated equation. In other words,
the section-specific intercepts appearing in the
model expressed in levels vanish from the finally
estimated equation.

The presence of the lagged dependent variable as
a regressor implies a dynamic structure for the
response of the dependent variable to changes in
the explanatory variable. That is, individuals do
not adjust their behavior in one period, but with a
delay. The underlying hypothesis for this specifica-
tion is that present behavior is also determined by
the values of the explanatory variables in the past.
Therefore, the estimation of a dynamic model
makes it possible to distinguish between short-term
and long term effects. In our study, short term
refers to the effect on demand occurring within one
year of a change in the relevant variable, whereas
long-term measures the total response to a change
in the independent variable over time. 

According to equation (4), the coefficients of the
independent variables  should be interpreted as
short-term elasticities. The long-term elasticities are

9 The Johansen test was not applied to test cointegration,
because this test assumes the existence of feedback
between all the variables. In our case, variables such as
gasoline price, toll, and GDP must be considered as
weakly exogenous in a model trying to explain motorway
traffic volume.
10 The log of the likelihood functions for the linear, semi-
log, and log-linear specifications are, respectively:

 

where the constant C is the same for each specification,
SSR is the residual sum of squares, Y is the dependent
variable and T is the sample size (see Davidson and
MacKinnon 1993). The calculated values for these func-
tions are, respectively, –9,768.5, –9,201.8, and –9,183.6
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11 The log-linear functional form is one of the most widely
used functional forms in aggregate demand models. In
spite of its simplicity, the log-linear specification offers an
adequate approximation to the demand curve, at least in
the neighborhood of the actual data. This is the usual pro-
cedure for selecting among alternative functional forms
when estimating aggregate transportation demand equa-
tions. For an application of similar procedures see, for
example, Oum (1989) and Dargay and Hanley (2002).
12 This is a standard specification for aggregate demand
functions. See, for instance, Dargay and Goodwin (1995),
Dargay and Hanley (2002).
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, where  is the adjustment factor measur-
ing the speed of adjustment. The greater the value of

 the slower the speed of adjustment and the greater
the difference between short-term and long-term
elasticities. 

The concept of mean lag is useful to characterize
the dynamic structure of the model. The mean lag is
defined as a weighted average of the lag structure of
the model, where the weighting coefficient for
period j is the ratio between the coefficient with lag j
and the long-term coefficient. The mean lag can be
calculated as . 

THE DATA 

The data cover all Spanish tolled motorways sections
for 18 observation years between 1981 and 1998 (see
Ministerio de Fomento Annual). The cross-section
observations correspond to the shortest motorway
section allowed by data-collection processes, with an
average length of 14.7 kilometers. The use of these
short sections guarantees that the observed traffic
mix is homogeneous. 

We eliminated 11 sections: those that experi-
enced significant changes in congestion (either on
the motorway or on the alternative routes), those
that partially admit toll-free traffic, and those that
have open tolls. Not all the motorways sections
were observed for all the years in the sample. Only
sections for which data were available for at least
eight periods were used. Furthermore, those sec-
tions belonging to motorways not completely con-
structed during the observation period were also
eliminated to avoid changes in traffic volume that
may be due to the progressive extension of the
motorway. The final sample was a panel dataset of
72 road sections for 1981 through 1998, although
this temporal span was not available for all cross-
section units. The total number of observations
was 1,135.13 

The dependent variable is the annual average
daily traffic volume in each section, defined as the
number of vehicle-kilometers run per year, divided

by section length and number of days.14 The
explanatory variables are real GDP, gasoline price,
and toll per kilometer, the last two deflated by the
CPI. Working with short sections of the motorway
made it possible to calculate in a fairly precise way
the toll paid per kilometer. GDP and gasoline prices
are defined at the national level and take the same
value for all sections in the sample, but, as we are
working with a panel dataset, these have different
values for each year of the sample. Finally, a set of
28 dummy variables captures the most important
changes in the road network. These variables,
defined in table 2 (page 6), take the value 1 in the
reported period and 0 otherwise. The main descrip-
tive statistics for the explanatory variables are
defined in table 3. 

Before estimating the demand equation, we
present two of the main features of the relevant vari-
ables in the study: traffic volume and toll paid per
kilometer. First, as figure 1 shows, there seems to be
a clear relationship between the level of economic
activity—measured as GDP—and traffic volume
over time. Using aggregate data for all the motorway
sections for 1981 through 1998, figure 1 shows the
synchronism between the rates of growth of GDP
and traffic volume with a correlation coefficient
equal to 0.796.15 This preliminary result is in line
with previous studies showing that automobile use is
elastic with respect to income.16 It is also interesting
to compare the cycles of GDP and traffic volume.17

As can be seen in figure 2, the traffic cycle clearly
overreacts to the GDP cycle. Therefore, in periods
of economic expansion, the cyclical components of

13 Given that the equation is estimated in first differences
of the logarithms and includes the lagged dependent vari-
able, the final number of observations is reduced to 990.

β
1 ϕ–
------------ 1 ϕ–

ϕ

ϕ
1 ϕ–
------------

14 It should be noted that the dependent variable is an
aggregate of different types of traffic, of different length
and purpose. Therefore, estimated elasticity for each sec-
tion must be understood as an average value.
15 The t statistic is equal to 5.27 and for 18 observations
the null hypothesis of independence will be rejected at a P-
value of 0.0001. This confirms the narrow relationship
that exists between both variables.
16 For a recent review on this subject, see Graham and
Glaister (2002). 
17 Cycles for both variables were obtained through the
application of the Hodrick-Prescott filter to the log of the
series and by calculating the difference between the
observed and trend values. This filter is a standard tech-
nique that allowed us to smooth the series in order to
obtain an adaptive long-term trend for the variable. It is
usual to consider that the difference between the observed
series and smoothed series approximates the cycle.
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traffic volume exceed the corresponding components
of GDP, while the opposite occurs during recession. 

Second, at the cross-section level, a substantial
difference is observed in traffic volume among the
different motorways as well as among sections of
the same motorway. The daily average traffic vol-
ume ranges from 1,689 automobiles per day in the
section and year having the lowest volume to
63,741 automobiles per day in the section and year
with the highest. Finally, as we explained earlier, we
found an extensive price range for initial toll rates.
For the whole period, at 1992 prices, the lowest
price paid per kilometer was about 0.037 euros,
whereas the highest was about 0.22 euros.

RESULTS

The results of the estimated model—equation (4)—
show that all the estimated coefficients have the
expected signs and most of these were estimated
with a high degree of precision, as measured by the

standard error of the coefficients (see appendix B).
Given that heteroscedasticity was observed in the
variance of the random term between sections, the
model was estimated using weighted least squares
(WLS). Comparing ordinary least squares with
WLS, the latter procedure results in similar esti-
mates while the standard errors decrease. In relation
to the toll coefficients, a significant variation across
motorway sections was observed. 

A Chi-square test allowed us to clearly reject the
null hypothesis of equality of toll coefficients across
all sections.18 On the other hand, the differences in
the value of the toll coefficient (which, given the
model specification, correspond to short-term elas-
ticity) could be explained by certain motorway
characteristics. First, adjacent sections in the same
motorway present very similar elasticities. Second,

TABLE 3  Descriptive Statistics

Variables Mean Median Maximum Minimum Std. dev. Observations

Daily traffic volume 11,490 9,460 63,741 1,689 8,821 1,135

Toll (euros per km)1 0.091 0.086 0.224 0.037 0.035 1,135

Gasoline price (euros per liter)1 0.619 0.533 0.867 0.486 0.139 18

GDP (millions of euros)1 219,311 230,277 275,869 174,149 33,619 18

Section length (kms) 14.7 13.9 43.0 2.0 8.2 72
1 The base year for variables expressed in monetary units is 1992.

FIGURE 1   Rate of Growth of GDP and Traffic Volume
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FIGURE 2   Traffic Cycle and GDP Cycle

18 The calculated Chi-square statistic was 113.12, while
the critical value for 71 degrees of freedom (d.f.) at a sig-
nificance level of 5% is 52.0.
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the more inelastic sections are located on corri-
dors with a high volume of traffic—mainly the
motorways along the Mediterranean coast. Third,
demand is seen to be more elastic where a good
alternative free road exists. 

The observed results suggest the possibility of re-
estimating the model introducing the hypothesis of
equality of toll elasticities across those motorway
sections that showed similar coefficients in the
initial general model. The introduction of equality
constraints among coefficients, not rejected by the
data (see below), makes it possible to obtain more
precise estimates of the coefficients by reducing
both the number of coefficients to be estimated and
the multicollinearity. In fact, we followed standard
econometric methodology that recommends going
from the general to more parsimonious model.
These constraints were introduced by classifying
the motorway sections into the following groups
according to the toll coefficient estimated in the
general model: 

1. Low short-term elasticity: sections with toll
coefficients between 0 and – 0.3.

2. Middle-low short-term elasticity: sections with
toll coefficients between – 0.3 and – 0.4.

3. Middle-high short-term elasticity: sections with
toll coefficients between – 0.4 and – 0.6.

4. High short-term elasticity: sections with toll
coefficients larger than – 0.6 in absolute value.

Thus, four different coefficients for toll elastici-
ties are now estimated. Detailed results of this final
model are reported in table 4 and correspond to the
WLS estimation. The application of a Chi-square
test did not reject the hypothesis of classifying the
motorway sections into four groups according to
their estimated toll elasticity.19 The model fits the
data well and all estimated coefficients are highly
significant. The level of economic activity has a pos-
itive effect on traffic volume, whereas gasoline price
and the toll have a negative influence. With respect
to toll coefficients, significant differences among
them can be observed, according to the grouping by
sections mentioned above. All dummy variables
take the expected signs described earlier in table 2. It

should be noted that the inclusion of these variables
increased the statistical significance of toll variable
estimates without modifying their value in any
noticeable way. 

The short-term and long-term elasticities are
summarized in table 5. As can be seen from the
t-statistics, all the estimated coefficients are signifi-
cant at P-values clearly lower than the conventional
0.05 or 0.01 levels. A lag parameter equal to 0.366
implies a long-term effect of about 1.58 times the
short-term effect. This result reflects a wider range
of opportunities and available options open to indi-
viduals over a longer time span. However, the
period of adjustment is relatively short, with 87%
of total adjustment taking place within the first two
years. 

Traffic on tolled motorways is shown to be
elastic in relation to GDP, with elasticity values
equal to 0.89 and 1.41 for the short- and long-
term, respectively. This result confirms what is intu-
itively obvious in figures 1 and 2. Elasticity with
respect to gasoline price equals –0.34 in the short
term and –0.53 in the long term. Our results are
consistent with those reported in the literature,20

although they are closer to the maximum reported
values. In the context of this paper, relatively high
value for gasoline price elasticity can be expected,
compared with other estimates carried out for
freeways, given that when the gasoline price is
increased tolled motorway users can shift to a par-
allel free road. 

The estimated coefficients on the toll variables
provide evidence that demand is sensitive to toll
variations. This conclusion is supported by the high
precision, measured by the standard error, with
which the elasticities have been estimated. Nonethe-
less, significant differences were observed among
groups of motorways. For the first group, demand
is shown to be rather inelastic. Short-term and long-
term elasticities are equal to –0.21 and –0.33,
respectively. However, for the remaining groups,
demand becomes more price elastic. For those

19 The calculated Chi-square statistic was 13.27, while the
critical value for 68 d.f. at a significance level of 5% was
49.0.

20 For a literature review of such findings, see Goodwin
(1992), Oum et al. (1992), Johansson and Schipper
(1997), Espey (1998), and de Jong and Gunn (2001). Gra-
ham and Glaister (2002) provide an extensive interna-
tional review of demand elasticity with respect to fuel
price.
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TABLE 4  Estimated Demand Equation
Dependent variable: D(LTRAFFIC)
Estimation method: weighted least squares
Total system (unbalanced) observations: 990

Variable Coefficient Std. error t-statistic P-value

D(LGDP) 0.8901 0.0409 21.7605 0.0000

D(LPGAS) –0.3367 0.0153 –22.0050 0.0000

D(LTRAFFIC(–1)) 0.3659 0.0158 23.1470 0.0000

D(LTOLL1) –0.2092 0.0177 –11.813 0.0000

D(LTOLL2) –0.3707 0.0147 –25.248 0.0000

D(LTOLL3) –0.4449 0.0225 –19.801 0.0000

D(LTOLL4) –0.8286 0.0844 –9.8179 0.0000

D(Z1) –0.0517 0.0260 –1.9919 0.0467

D(Z2) –0.0689 0.0239 –2.8782 0.0041

D(Z3) –0.0718 0.0246 –2.9179 0.0036

D(Z4) –0.0519 0.0263 –1.9745 0.0486

D(Z5) 0.1549 0.0396 3.9136 0.0001

D(Z6) 0.1690 0.0364 4.6466 0.0000

D(Z7) 0.1196 0.0583 2.0507 0.0406

D(Z8) –0.0679 0.0219 –3.1035 0.0020

D(Z9) –0.0623 0.0201 –3.1029 0.0020

D(Z10) –0.0656 0.0286 –2.2911 0.0222

D(Z11) –0.0425 0.0227 –1.8689 0.0619

D(Z12) –0.0550 0.0250 –2.2015 0.0279

D(Z13) 0.0746 0.0251 2.9698 0.0031

D(Z14) –0.0337 0.0201 –1.6798 0.0933

D(Z15) 0.0626 0.0202 3.0952 0.0020

D(Z16) –0.0360 0.0188 –1.9175 0.0555

D(Z17) 0.0498 0.0188 2.6367 0.0085

D(Z18) 0.0445 0.0192 2.3154 0.0208

D(Z19) 0.0404 0.0153 2.6397 0.0084

D(Z20) 0.0529 0.0134 3.9563 0.0001

D(Z21) 0.1698 0.0433 3.9163 0.0001

D(Z22) 0.0812 0.0163 4.9712 0.0000

D(Z23) 0.0822 0.0207 3.9686 0.0001

D(Z24) 0.1379 0.0187 7.3903 0.0000

D(Z25) –0.1366 0.0488 –2.7992 0.0052

D(Z26) 0.0864 0.0177 4.8746 0.0000

D(Z27) 0.0751 0.0175 4.2902 0.0000

D(Z28) 0.0451 0.0206 2.1897 0.0288

R2  (average for the 
motorway sections)

0.74

First order 
autocorrelation 
coefficient (pooling 
estimation for the 
motorway sections)

0.019

Note: All variables are defined in first differences (D) of the logarithm (L). GDP = gross domestic product; PGAS = 
gasoline price; TRAFFIC = average daily traffic volume; TOLL1 = low toll elasticity group; TOLL2 = low-medium toll 
elasticity group, TOLL3 = medium-high toll elasticity group; TOLL4 = high toll elasticity group; D(Z1) to D(Z28) = first 
differences of the dummy variables to account for changes in the road network.
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motorway sections classified in group 4, elasticities
are over –0.8 in the short term and well above unity
in the long term. These differences prove that the
demand response to toll variations depends on the
particular characteristics of the motorway and alter-
native routes. In the next section, we provide some
evidence of these characteristics.

VARIATION OF TOLL ELASTICITIES 
ACROSS MOTORWAYS

Once it has been proved that toll elasticities vary
across motorway sections, it is interesting to con-
sider which are the main variables that explain such
differences. With this purpose in mind, we estimated
an ordered probit model21 where the dependent
variable is the category in which the tolled section
falls, ranging from 1 to 4 (low, middle-low, middle-
high, and high categories of toll elasticities). 

The set of explanatory variables is limited by
data availability. First, we were able to gather infor-
mation on average speed and the percentage of
heavy vehicles with respect to total traffic on the
parallel free road; these variables reflect the quality
of the alternative road. Second, two characteristics
of the motorway have been included: section length
and a dummy for sections in tourist areas. There are
a priori reasons to expect that traffic in tourist areas
will be less sensitive to price. It might well be that
foreign visitors, due to a lack of information given
that they are occasional users, have more inelastic
demands than frequent motorway users. Moreover,
congestion in these areas on the free alternative
roads is rather high during summer months due to

their low capacity and the high volume of short-
distance traffic for which tolled motorways are not
a feasible option. This increased congestion can fur-
ther reduce demand elasticity. 

The number of observations in this model falls
from 72 to 52, as we could not gather all the
required information for all sections. Table 6 shows
the results of the estimated equation. Because the
interpretation of the coefficients of the model was
not straightforward, we calculated the change in the
estimated frequencies (probabilities) after a change
in the explanatory variable. Baseline frequencies
were calculated for the mean value of the variables
in the sample, and the tourism dummy takes value
1. In order to simulate the change in probabilities a
10% increase in each variable was assumed. Results
are presented in table 7. 

The estimated frequencies show that demand is
more sensitive to price when the alternative free
road is of better quality. That is, the higher the
speed on the alternative road the more elastic
demand is with respect to tolls. On the contrary,
when the percentage of heavy vehicles on the alter-
native road increases, the roadway segment shifts
into a more inelastic demand category. Addition-
ally, demand is slightly more elastic on longer
motorway sections. This can be explained by the
fact that demand is more sensitive to price when
the total amount to be paid is larger. Finally, as
could be expected, motorway demand in tourist
areas is more inelastic.  

CONCLUSIONS

The estimation of a dynamic demand function on
tolled motorways has made it possible to identify
the behavioral responses of users to changes in the

TABLE 5  Estimated Short-Term and Long-Term Elasticities1

Variable
Short-term 
elasticity t-statistic

Long-term 
elasticity t-statistic

GDP elasticity 0.890 21.76 1.405 27.85

Gasoline price elasticity –0.337 –22.01 –0.531 –18.50

Toll elasticity group 1 –0.209 –11.81 –0.330 –11.42

Toll elasticity group 2 –0.371 –25.25 –0.585 –21.71

Toll elasticity group 3 –0.445 –19.80 –0.702 –17.66

Toll elasticity group 4 –0.828 –9.82 –1.307 –9.81
1 Group 1 includes 21 sections; group 2, 25 sections; group 3, 21 sections; and group 4, 
5 sections.

21 Alternatively, a logit ordered model was estimated with
very similar results. 
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explanatory variables. First, traffic on the tolled
motorways is shown to be strongly correlated with
the level of economic activity in such a way that,
during periods of growth, traffic increases clearly
exceed GDP growth, with the opposite occurring
during recessions. 

Travel demand is shown to be less sensitive to
gasoline prices and tolls than it is to GDP. Elasticity
with respect to gasoline price is about – 0.3,
whereas a wide range of variation appears in toll
elasticities across motorway sections. The model
results prove that an average aggregate toll elastic-
ity cannot be used for forecasting or evaluation
purposes. According to individual estimates, the
sections were classified into four categories for
which short-term elasticity ranged from – 0.21 in

the most inelastic sections to – 0.83 in the most
elastic. This range of variation can be explained by
those variables related to the quality of the alterna-
tive roads, the length of the motorway section, and
the location of the motorway in a tourist area. The
more congested the alternative roads are, the higher
the time benefits of using the tolled motorway will
be, with demand consequently being more inelastic.

The finding that the sensitivity of demand to tolls
can be higher than the average values found in the
literature confirms that tolling motorways can have
a significant impact on traffic. Setting a toll on a
motorway can result in a misallocation of traffic
between the tolled motorway and the parallel free
road. There are several examples in Spain of under-
used motorway sections while the alternative road is

TABLE 6  Estimation Results of the Ordered Probit Model
Dependent variable: category of toll elasticity (from 1 to 4)
Robust t-statistics

Variable Coefficient Std. error t-statistic P-value

Speed on the alternative road 0.032 0.010 3.298 0.001

Percentage of heavy vehicles on the alternative road –0.053 0.017 –4.233 0.000

Motorway section length 0.024 0.010 4.268 0.000

Tourist dummy –1.227 0.358 –3.340 0.001

Limit_1 0.919 0.862 1.214 0.226

Limit_2 2.393 0.920 3.014 0.003

Limit_3 3.666 0.962 3.814 0.000

Observations 52

Likelihood ratio-statistic 25.60 (critical value at 5% = 9.49)

Notes: The limit points are the estimates of the threshold coefficients of the distribution function. That is, if F( ) is the distribution 

function of the unobserved continuous latent variable, the ordered probit model implies that:

If F( ) ≤ Limit_1, then the dependent variable falls into category 1 (low elasticity).

If Limit_1< F( ) ≤ Limit_2, then the dependent variable falls into category 2 (middle-low elasticity).

If Limit_2 < F( ) ≤ Limit_3, then the dependent variable falls into category 3 (middle-high elasticity).

If F( ) > Limit_3, then the dependent variable falls into category 4 (high elasticity).

TABLE 7  Estimated Probabilities

Motorway 
group 
elasticity Baseline

10% increase 
in speed on 
alternative 

road

10% increase 
in heavy 

vehicles on 
alternative 

road

10% increase 
in section 

length
Tourism 

dummy = 0

Low 0.522 0.410 0.574 0.500 0.121

Middle-low 0.415 0.484 0.377 0.430 0.498

Middle-high 0.060 0.100 0.047 0.067 0.323

High 0.003 0.006 0.002 0.003 0.058
Note: The baseline values taken by the explanatory variables are: speed = 88.9 km/hr; percentage of heavy vehicles = 
24.9%; section length = 23.4 km; and tourism dummy = 1.

X′β

X′β

X′β

X′β

X′β



104 JOURNAL OF TRANSPORTATION AND STATISTICS V6, N2/3 2003

severely congested, with a consequent increase in
maintenance and environmental costs. In such
cases, decreasing the toll may improve traffic alloca-
tion and, hence, reduce the total costs of using the
infrastructure. Moreover, it should be noted that
investment in alternative roads or transportation
modes would imply a more elastic demand for
motorway users, because they can take advantage
of a wider range of choices in traveling to their
destinations. Thus, decisions about toll levels on
the motorways are not independent of investment
policy for transportation infrastructure. 
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APPENDIX A

In Spain, the tolled motorway construction policy of
the 1960s granted concessions to private companies
both for their construction and operation. As a
result of this policy, 1,800 kilometers of tolled
motorways, called autopistas, were completed by
the end of the 1970s, serving demand along two
main traffic corridors. 

Once the main traffic corridors had been conces-
sioned and, simultaneously, with the Spanish econ-
omy suffering the effects of the energy crisis, private
capital was no longer interested in the construction
of autopistas. In the mid-1970s, the concession of
planned motorways was increasingly difficult, and
some were postponed. By the end of that decade,
the policy was abandoned. 

In the 1980s, the need for significant expansion of
the road network was evident, and the government
decided to finance this with national tax revenue.
Approximately 5,500 kilometers of untolled motor-
ways were constructed by 1998, covering most of the
national network. The main exceptions were the
concessions granted by the regional government
of Catalonia to construct and operate some tolled
motorways. By 1998, the Spanish national highway
network consisted of 9,637 kilometers, of which
2,072 kilometers were tolled motorways, 6,185
kilometers were untolled motorways, and 1,380
kilometers were two-lane freeways. 

More recently, and due to severe public budget
constraints, a new program of private tolled motor-
ways was initiated. Nevertheless, the scope of pri-
vate tolled roads in Spain is currently limited. For a
review of the development of Spain’s motorways,
see Gómez-Ibañez and Meyer (1993), and for an
analysis of the present situation, see Ministerio de
Fomento (2003).
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APPENDIX B

TABLE B1   Estimated General Model 
Dependent variable: D(LTRAFFIC)
Estimation method: weighted least squares
Total system (unbalanced) observations: 990

Coefficient Std. error t-statistic P-value

D(LGDP) 0.8942 0.0410 21.8117 0.0000

D(LPGAS) –0.3369 0.0157 –21.4261 0.0000

D(LTRAFFIC(–1)) 0.3642 0.0160 22.6942 0.0000

D(LTOLL1) –0.0371 0.2279 –0.1626 0.8709

D(LTOLL2) –0.2754 0.2630 –1.0471 0.2954

D(LTOLL3) –0.2338 0.2631 –0.8886 0.3745

D(LTOLL4) –0.3237 0.2548 –1.2704 0.2043

D(LTOLL5) –0.1799 0.2101 –0.8565 0.3920

D(LTOLL6) –0.4766 0.1451 –3.2853 0.0011

D(LTOLL7) –0.4758 0.1274 –3.7354 0.0002

D(LTOLL8) –0.4630 0.1362 –3.3982 0.0007

D(LTOLL9) –0.2811 0.1296 –2.1689 0.0304

D(LTOLL10) –0.4903 0.1258 –3.8977 0.0001

D(LTOLL11) –0.4512 0.1157 –3.9003 0.0001

D(LTOLL12) –0.5876 0.1893 –3.1042 0.0020

D(LTOLL13) –0.3588 0.1705 –2.1048 0.0356

D(LTOLL14) –0.3555 0.2371 –1.4994 0.1341

D(LTOLL15) –0.1118 0.1281 –0.8725 0.3832

D(LTOLL16) –0.3144 0.1504 –2.0901 0.0369

D(LTOLL17) –0.0580 0.1998 –0.2902 0.7717

D(LTOLL18) –0.1894 0.1477 –1.2828 0.1999

D(LTOLL19) –0.3475 0.2299 –1.5118 0.1309

D(LTOLL20) –0.3417 0.1964 –1.7398 0.0822

D(LTOLL21) –0.4309 0.2585 –1.6672 0.0958

D(LTOLL22) –0.3609 0.4125 –0.8748 0.3819

D(LTOLL23) –0.1517 0.0422 –3.5972 0.0003

D(LTOLL24) –0.1716 0.0390 –4.4061 0.0000

D(LTOLL25) –0.1815 0.0456 –3.9764 0.0001

D(LTOLL26) –0.2204 0.0629 –3.5052 0.0005

D(LTOLL27) –0.2831 0.0827 –3.4209 0.0007

D(LTOLL28) –0.2653 0.0608 –4.3657 0.0000

D(LTOLL29) –0.3136 0.0413 –7.5963 0.0000

D(LTOLL30) –0.4182 0.0646 –6.4717 0.0000

D(LTOLL31) –0.4387 0.0534 –8.2101 0.0000

D(LTOLL32) –0.4062 0.0465 –8.7398 0.0000

D(LTOLL33) –0.3620 0.0537 –6.7361 0.0000

D(LTOLL34) –0.3915 0.0414 –9.4648 0.0000

D(LTOLL35) –0.3447 0.0342 –10.0812 0.0000

D(LTOLL36) –0.3582 0.1184 –3.0254 0.0026
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Coefficient Std. error t-statistic P-value

D(LTOLL37) –0.3701 0.0445 –8.3134 0.0000

D(LTOLL38) –0.3904 0.0512 –7.6203 0.0000

D(LTOLL39) –0.3992 0.0489 –8.1651 0.0000

D(LTOLL40) –0.5231 0.2504 –2.0892 0.0370

D(LTOLL41) –0.4556 0.2466 –1.8476 0.0650

D(LTOLL42) –0.4489 0.1657 –2.7082 0.0069

D(LTOLL43) –0.4662 0.2451 –1.9018 0.0575

D(LTOLL44) –0.3729 0.1515 –2.4614 0.0140

D(LTOLL45) –0.4115 0.1619 –2.5420 0.0112

D(LTOLL46) –0.4045 0.2312 –1.7495 0.0806

D(LTOLL47) –0.5029 0.1554 –3.2366 0.0013

D(LTOLL48) –0.0931 0.2265 –0.4108 0.6813

D(LTOLL49) –0.2227 0.1657 –1.3439 0.1793

D(LTOLL50) –0.1935 0.0913 –2.1199 0.0343

D(LTOLL51) –0.3617 0.0650 –5.5628 0.0000

D(LTOLL52) –0.4411 0.0647 –6.8186 0.0000

D(LTOLL53) –0.8415 0.1494 –5.6340 0.0000

D(LTOLL54) –0.8140 0.1435 –5.6730 0.0000

D(LTOLL55) –0.8301 0.1714 –4.8438 0.0000

D(LTOLL56) –0.3729 0.1065 –3.5004 0.0005

D(LTOLL57) –0.3294 0.0839 –3.9255 0.0001

D(LTOLL58) –0.3569 0.1728 –2.0648 0.0392

D(LTOLL59) –0.3863 0.0936 –4.1281 0.0000

D(LTOLL60) –0.5015 0.0830 –6.0381 0.0000

D(LTOLL61) –0.5248 0.1946 –2.6970 0.0071

D(LTOLL62) –0.4816 0.1138 –4.2314 0.0000

D(LTOLL63) –0.3233 0.1335 –2.4213 0.0157

D(LTOLL64) –0.3922 0.0990 –3.9625 0.0001

D(LTOLL65) –0.4431 0.1168 –3.7933 0.0002

D(LTOLL66) –0.3706 0.1427 –2.5963 0.0096

D(LTOLL67) –0.3451 0.0534 –6.4635 0.0000

D(LTOLL68) –0.3692 0.0562 –6.5701 0.0000

D(LTOLL69) –0.4417 0.1117 –3.9532 0.0001

D(LTOLL70) –0.8108 0.2983 –2.7182 0.0067

D(LTOLL71) –0.8798 0.3854 –2.2825 0.0227

D(LTOLL72) –0.2516 0.3066 –0.8208 0.4120

D(Z1) –0.0517 0.0259 –1.9918 0.0467

D(Z2) –0.0688 0.0240 –2.8680 0.0042

D(Z3) –0.0720 0.0246 –2.9222 0.0036

D(Z4) –0.0518 0.0259 –1.9971 0.0461

(continues on next page)

TABLE B1   Estimated General Model  (continued)
Dependent variable: D(LTRAFFIC)
Estimation method: weighted least squares
Total system (unbalanced) observations: 990



108 JOURNAL OF TRANSPORTATION AND STATISTICS V6, N2/3 2003

Coefficient Std. error t-statistic P-value

D(Z5) 0.1548 0.0395 3.9192 0.0001

D(Z6) 0.1689 0.0363 4.6490 0.0000

D(Z7) 0.1197 0.0577 2.0755 0.0382

D(Z8) –0.0687 0.0214 –3.2092 0.0014

D(Z9) –0.0621 0.0198 –3.1309 0.0018

D(Z10) –0.0689 0.0283 –2.4343 0.0151

D(Z11) –0.0428 0.0228 –1.8769 0.0609

D(Z12) –0.0554 0.0242 –2.2876 0.0224

D(Z13) 0.0726 0.0248 2.9326 0.0034

D(Z14) –0.0337 0.0198 –1.7058 0.0884

D(Z15) 0.0622 0.0202 3.0823 0.0021

D(Z16) –0.0365 0.0172 –2.1197 0.0343

D(Z17) 0.0474 0.0175 2.7040 0.0070

D(Z18) 0.0439 0.0194 2.2611 0.0240

D(Z19) 0.0419 0.0155 2.7086 0.0069

D(Z20) 0.0515 0.0130 3.9495 0.0001

D(Z21) 0.1690 0.0440 3.8452 0.0001

D(Z22) 0.0812 0.0168 4.8386 0.0000

D(Z23) 0.0836 0.0209 4.0077 0.0001

D(Z24) 0.1399 0.0187 7.4758 0.0000

D(Z25) –0.1377 0.0492 –2.7967 0.0053

D(Z26) 0.0863 0.0178 4.8569 0.0000

D(Z27) 0.0749 0.0175 4.2714 0.0000

D(Z28) 0.0449 0.0206 2.1811 0.0294
Notes: All the variables are defined in first differences (D) of the logarithm (L). GDP = gross domestic product; 
PGAS = gasoline price; TRAFFIC = average daily traffic volume; TOLL = toll paid per km for the 72 motorway 
sections; D(Z1)–D(Z28) = the first differences of dummy variables to account for changes in the road network.

TABLE B1   Estimated General Model  (continued)
Dependent variable: D(LTRAFFIC)
Estimation method: weighted least squares
Total system (unbalanced) observations: 990
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