DRAFT

Aleutian Islands golden king crab (Lithodes aequispinus) stock assessment
M.S.M. Siddeek ${ }^{1}$, Leslie J. Watson ${ }^{2}$, David R. Barnard ${ }^{2}$, and Robert K. Gish ${ }^{2}$

Alaska Department of Fish and Game

1. Division of Commercial Fisheries
P.O. Box 115526

Juneau, Alaska 99811
2. Division of Commercial Fisheries

211 Mission Road
Kodiak, Alaska 99615

Executive Summary

This document describes an assessment of the Aleutian Islands golden king crab (Lithodes aequispinus) stocks in the east and the west of $174^{\circ} \mathrm{W}$ longitude based on an integrated model.

The Aleutian Islands golden king crab stocks contribute to a commercially important male-only fishery. The commercial fishery developed in the early 1980s, the harvest peaked in 1986/87 (5.9 and 8.8 million pounds for east and west of $174^{\circ} \mathrm{W}$ longitude, respectively), and became steady since 1996/97 because of implementation of fixed guideline harvest levels (total allowable catch, TAC) of 3 and 2.7 million pounds for east and west of $174^{\circ} \mathrm{W}$ longitude, respectively. The TACs were increased to 3.15 and 2.835 million pounds for the two respective regions for the 2008/09 fishery following the Alaska Board of Fisheries decision, which were below the limit TACs determined under Tier 5 criteria (considering 1991-1995 mean catch as the limit catch) under the new crab management plan.

Despite its economic importance, the stock has not been surveyed annually, biological data are limited, and assessment models are lacking. An integrated analysis method was developed, which combined commercial catch, triennial pot survey catch-per-unit-effort (CPUE), observer CPUE, and tagging data. The data series used in the current assessment for the area east of $174^{\circ} \mathrm{W}$ longitude ranges from 1990 to 2007 for catch and catch length frequency, 1990 to 2007 for observer CPUE and length frequency, and 1997-2006 for triennial pot survey CPUE and tag release-recaptures. Data series considered for the area west of $174^{\circ} \mathrm{W}$ longitude ranges from 1989 to 2007 for catch, catch length frequency, and observer CPUE and length frequency. A maximum likelihood method was used to estimate stock assessment parameters and the time series of abundance of male recruits $(\geq 101 \mathrm{~mm}$ carapace length, CL) as well as biomasses of legal males ($\geq 136 \mathrm{~mm} \mathrm{CL}$), and mature males $((\geq 121 \mathrm{~mm} \mathrm{CL})$.

Assessment of the eastern stock indicated that male recruit abundance to the fishery peaked in 1996, declined to the lowest level in 2005, and slightly increased thereafter. The trends in legal and mature male biomasses were high during 1990-1998 and declined thereafter. The estimated retained harvest rate has systematically increased since 1996.

Assessment of the western stock showed that male recruit abundance to the fishery peaked in 2003 and slightly declined thereafter. The trends in legal and mature male biomasses were high during 1990-1998 and declined thereafter. The estimated retained harvest rate has systematically increased since 1998.

The integrated model procedure was used to determine the limit harvest level for both the eastern and western stocks under Tier 4, assuming an M value of 0.18 (a default value for all king crab stocks, NPFMC 2007). Two options for limit harvest levels are provided below:

East of $174^{\circ} \mathrm{W}$ longitude stock:

Mean Mature Biomass Calculation Period	Retained Limit Catch (t)	Discard Limit Catch (t)	Total Limit Catch (t)	Total Limit Catch (million pounds)
$1990-2007$	1996.0	111.9	2107.9	4.65
$1996-2007$	2434.5	136.5	2571.0	5.67

West of $174^{\circ} \mathrm{W}$ longitude stock:

Mean Mature Biomass Calculation Period	Retained Limit	Discard Limit	Total Limit	Total Limit Catch (million pounds)
$1990-2007$	1733.7	Catch (t)	Catch (t)	(13.0
$1996-2007$	2347.8	153.0	2500.8	5.51

Because the 2008/09 fishery is in progress, the selected limit harvest level from the above two options can be provisionally considered for the 2009/10 fishing season with the intention of updating the values in May 2009 once the 2008/09 fishery is completed.

Limited data are available on the groundfish bycatch of golden king crab. The 2007/2008 groundfish bycatch from the region was 122.2 t (0.269 million pounds).

Lack of reliable estimates of important life history parameters, such as M, annual biomass, and changes in fishing practices introduce greater uncertainty to biomass estimates and hence the yields. The poor quality of data also restricts investigation of different model scenarios. The model development is ongoing. Following are some research recommendations:
(a) Continue tagging to estimate mortality, growth, movement, and determination of proportion of biomass available for the commercial fishery.
(b) Continue the triennial pot survey to increase the fishery independent data series.
(c) Increase the observer coverage frequency to get estimates of CPUE and biological characteristics based on larger samples.
(d) Investigate appropriate methods to standardize CPUE considering space and time of the fishery.
(e) Investigate the handling mortality.
(f) Investigate the selectivity pattern in the fishery.

Some of the above investigation may be under taken in collaboration with the fishing industry.

Introduction

The golden king crab (Lithodes aequispinus) stocks in the Aleutian Islands have produced steady catches and steadily increasing catch-per-unit-effort (CPUE, defined as number of crabs per pot lift) in recent years (Figures 1 and 2). They are not surveyed by trawl gear because of the deep water and rocky habitats they occupy. Therefore, annual
stock-abundance estimates are not provided for this species from National Marine Fisheries Service (NMFS) surveys.

Data limitations combined with life history characteristics of golden king crab pose problems to development of appropriate stock assessment models. Golden king crab larvae are lecithotrophic and not known to rise to the upper water layer to feed, suggesting that the spring bloom is an unlikely cue for spawning and the spawning period is protracted (Shirley and Zhou 1997, Otto and Cummiskey 1985). Limited stock information and lack of annual survey data prevent developing the standard length-based assessment model as used in snow crab (Chionoecetes opilio) and red king crab (Paralithodes camtschaticus) stock assessments (Turnock and Rugolo 2007, Zheng 2007). To overcome these problems, we developed an integrated analysis method, which combines commercial catch, triennial pot survey CPUE (restricted to east of $174^{\circ} \mathrm{W}$ longitude stock), observer CPUE, and tagging data (restricted to east of $174^{\circ} \mathrm{W}$ longitude stock). The 1990-2007 data series from the area east of $174^{\circ} \mathrm{W}$ longitude and the 1989-2007 data series from the area west of $174^{\circ} \mathrm{W}$ longitude were used in the analysis. The model estimates of historical stock and recruit male abundances, harvest rate, and a number of stock assessment parameters are provided in this report.

Fishery

The Aleutian Islands golden king crab fishery developed in early 1980s and became a lucrative fishery after the collapse of a number of commercial crab stocks in the Bering Sea and Aleutian Islands (BSAI). Because of deep water habitat, the fishery is conducted
using sets of pots in a long-line fashion. Since 1996, the Alaska Department of Fish and Game (ADF\&G) has divided the Aleutian Islands golden king crab fishery into eastern and western districts at $174^{\circ} \mathrm{W}$ longitude (ADF\&G 2002). Hereafter the east of $174^{\circ} \mathrm{W}$ longitude stock segment is referred to as ES and the west of $174^{\circ} \mathrm{W}$ longitude stock segment is referred to as WS. The stocks in the two areas are managed with a constant annual guideline harvest level or total allowable catch (3.0 million pounds for the ES and 2.7 million pounds for the WS). In 2008, however, the total allowable catch was increased to 3.15 and 2.835 million pounds for ES and WS, respectively, following the Alaska Board of Fisheries decision. Because of a lack of information on total removal of crabs, the total allowable catch was determined to be the retained catch. Additional management measures include a male-only fishery and a minimum legal size limit (152.4-mm carapace width or approximately 136 mm CL), which is at least one annual molt increment larger than the 50% maturity length of 120.8 mm CL for males (Otto and Cummiskey 1985). Daily catch and CPUE are determined for in-season monitoring of fishery performance. Beginning in 2000, and with the introduction of crab rationalization in 2005, the CPUE increased. This is likely due to gear modification (crab fishers, personal communication, July 1, 2008), increased soak time, and decreased competition from the reduction in the number of vessels fishing. Decreased competition allows crab vessels to target only the most productive areas.

Data

A time series of male CPUE by length, commercial retained and discarded catch by length, triennial pot survey CPUE by length (restricted to the ES), tagged male release-
recaptures associated with the four surveys (1997, 2000, 2003, and 2006), and the mean annual growth increment per molt (Watson et al. 2002) are the primary input data and parameter values for the integrated model. The annual CPUE, retained, and discard catch are listed in Tablel for the ES and in Table 6 for the WS; and the tag release-recapture data are provided in Table 2.

The Aleutian Islands golden king crab fishery observer coverage declined from 100% of vessels and 100% of their catch prior to the $2004 / 05$ season to 100% of vessels and $65-$ 70% of their catch during the 2005/06 to 2007/08 seasons. Observers randomly selected a pre-determined number of pots daily and examined the entire pot contents for catch composition, including measuring carapace lengths and scoring shell conditions. The number of pots sampled accounts for $4-8 \%$ of the total pot lifts (Moore et al. 2000, Barnard et al. 2001, Neufeld and Barnard 2003, Barnard and Burt 2004). Observer data have been collected since 1988, but initial years' data from the collection are not comprehensive, so shorter time series of data for the period 1990-2007 for the ES and for the period 1989-2007 for the WS were selected for analysis along with other data sets.

Length-specific CPUE data collected by at-sea observers provide information on a wider size range of the stock than does the commercial catch length frequency data obtained from dockside samples. Monthly mean length frequency data were constructed from observer samples. The mean CPUE for retained and discarded male crabs were estimated for each month. The size range was restricted to 101 mm CL to 185 mm CL to allow use of an externally estimated mean growth increment as input when fitting the population
dynamics model. The total male CPUE for each month was estimated by adding each male CPUE category (retained legal, discarded legal, and sublegal). The observer sample monthly length frequency was used to split the total CPUE into monthly length-specific CPUE. If the fishing season exceeded one month, a weighted average (weighted by the effort) of the monthly length-specific CPUE was determined for the season. The annual length-specific CPUEs were summed by length to obtain the total CPUE to use in the maximum likelihood function. The annual length specific discard CPUE was estimated similarly, but using only the sum of discarded legal and sublegal CPUE categories.

The monthly commercial catch and length frequency data were estimated from ADF\&G landing records (fish tickets) and dockside length measurements. The monthly length frequency data were used to distribute the monthly total catch into different size intervals and summed by month to obtain the annual retained catch by size. The annual discard (dead) catch by size was estimated using the annual observer discard CPUE by size data multiplied by the annual effort (pot lifts) and a 20% handling mortality.

The pot survey CPUE by length was estimated with the same method used for the observer data, except that the entire set of pot catches were measured and CPUE was estimated as the catch divided by the effort (pot lifts) (Watson 2007). The pot survey catches also cover a wider size range than the commercial size frequency. Furthermore, the four sets $(1997,2000,2003$, and 2006) of CPUE data came from a standard survey grid in a restricted area (between $52^{\circ} 15$ ' and $53^{\circ} 00^{\prime} \mathrm{N}$ latitude and $170^{\circ} 00^{\prime}$ and $171^{\circ} 30^{\prime} \mathrm{W}$ longitude), using a standard pot configuration, which may reflect the actual in situ
population abundance. The majority of the ES commercial fishery takes place in this area; however, the soak time between the commercial and research pots may vary.

Four mark-recapture experiments conducted during the surveys in the ES were considered in the analysis to determine a constant natural mortality, M, value. Only male release-recapture data were considered (Table 2). The total recovery rate ranged from 11.8% to 22% except for recoveries from the 2006 release, which was 6.4% and for which additional recoveries are expected in the next several years.

The model input parameters also include elapsed time from a biological start year to the mid-fishing period. The biological start of the year was arbitrarily set to July 1 (midsurvey time). The elapsed time from July 1 to the mid-date of fishing season y_{t} (as a fraction of a year) was estimated for each year (Table 3 for east the ES and Table 7 for the WS fisheries).

Analytical Approach

Model Structure

The underlying population dynamics models are length-based. Overall negative likelihood is the sum of the negative log likelihoods of multinomial length composition, lognormal CPUE, multinomial tag-recaptures (for the ES), lognormal catch biomass, log normal recruit deviation, and a normal natural mortality penalty (see Appendix A for detailed model structure). AD Model Builder, ver. 8.0.2 (Otter Research Ltd. 2007), was
used to estimate the model parameters and to derive statistics, such as biomass and limit yield.

Parameters estimated independently

The analysis of tagging data indicated that the linear relationship between annual growth increment and pre-molt length was not significant ($\mathrm{p}>0.05$). Thus, a mean annual growth increment 14.4 mm CL was computed from the original tagging data to be applicable to the entire length range considered in the analysis (Watson et al. 2002, Siddeek et al. 2005).

Scant information is available on the level of handling mortality as a result of capture and release of unmarketable crabs although a large number of sublegal males and females are captured and released in the fishery (Neufeld and Barnard 2003, Blau et al. 1996). Lacking such information for golden king crab, we used an arbitrary 20% handling mortality rate on discarded males, which was obtained from the red king crab literature (Siddeek 2002, Kruse et al. 2000).

A length-weight model $\left(W=a 1^{*} C L^{b 1}\right)$ for males was determined using 276 measurements taken during April - July 1997. The estimated parameters were: al = $2.988 * 10^{-4}$ and $\mathrm{b} 1=3.135\left(R_{a d j}^{2}=0.93\right)$.

Parameters estimated conditionally

The following stock parameters were estimated by minimizing the optimizing function:
a and b : for the molt probability model;
v, c_{l} and d_{l} : for the total and pot survey selectivity model;
c_{2} and d_{2} : for the retention selectivity model for the period 1990-1998;
c_{3} and d_{3} : for the retention selectivity model for the period 1999-2004;
c_{4} and d_{4} : for the retention selectivity model for the period 2005 onward;
α_{r} and β_{r} : for the recruitment distribution model;
R_{90} to R_{08} : total number of male recruits for each year, except the first year;
q_{1} : pot survey catchability;
q_{2} : pot fishery catchability for the period 1990-1998;
q_{3} : pot fishery catchability for the period 1999-2004;
q_{4} : pot fishery catchability for the period 2005 onward;
F_{89} to F_{07} : full selection fishing mortality for 1989 to 2007;
$F^{*}{ }_{97}, F^{*}{ }_{2000}, F^{*}{ }_{2003}, F^{*}{ }_{2006}$: tagged crab release year additional fishing mortality (to offset non mixing effect);
β : shape parameter of the gamma growth function;
M: natural mortality;
ϕ : tagged population initial survival and a constant reporting rate product;
N_{89}, N_{90} : available initial total number of new-shell crabs; and
O_{89}, O_{90} : available initial total number of old-shell crabs.

Different fishery retention selectivities and catchabilities were considered for the time period before 1998, between 1999 and 2004, and 2005 onwards. In 1985, the size limit was lowered from 6.5 to 6.0 inches and long-lined pots began to be used at this time as
well (Forrest Bowers, personal communication). In 1999-2000, the industry changed the pot webbing to large mesh size (9.5") (Jeff Davis, Crab fisher, personal communication, July 1, 2008). Since 2005, crab rationalization was in place, which has led to long soak time and hence more self-sorting on the bottom.

Model evaluation

Predicted vs. observed value plots were the major criteria for model evaluation.
The weights attached to negative log likelihood components for the base optimization were:

- For ES: retained CPUE $\left(\lambda_{r}=20\right)$, discard CPUE $\left(\lambda_{d}=4\right)$, pot survey CPUE ($\lambda_{s}=1$), catch biomass $\left(\lambda_{B}=1\right)$, recruit deviation $\left(\lambda_{R}=3\right)$, and natural mortality penalty ($\lambda_{M}=8$).
- For WS: retained CPUE $\left(\lambda_{r}=6\right)$, discard CPUE $\left(\lambda_{d}=1\right)$, catch biomass $\left(\lambda_{B}=1\right)$, recruit deviation ($\lambda_{R}=4$), and natural mortality penalty ($\lambda_{M}=8$).

The weights were chosen arbitrarily to obtain better fits to observed data. However, values of these weights were reduced by 50% and increased by 50% for sensitivity analysis.

Time varying effective sample sizes $\left(K_{t}\right)$ were used for multinomial length composition \log likelihoods (Fournier and Archibold 1980, Pribac and Punt 2005). They were estimated using the formula $K_{t}=\frac{400 \times n_{t}}{\max n_{t}}$ where n_{t} is the number of length
measurements in year t and 400 is the maximum cap placed on effective sample size (Fournier and Archibold 1980). They were calculated separately for retained and discarded catch (Table 10).

Results

Model evaluation

ES:
The time series of predicted versus observed retained, discard, and pot survey CPUEs showed reasonably good fits for the ES (Figure 3a-c). The predicted versus observed tag recaptures also depicted a reasonable fit (Figure 4a). Estimated full selection fishing mortality (F) based on only tagging and natural mortality penalty negative log likelihoods, the complete negative log likelihood, and the complete negative log likelihood without the tagging component, showed reasonable agreement for the years during which tagged populations were at large (Figure 4b). The time series of predicted vs. observed retained catch relative length frequency (Figure 5) and discard catch relative length frequency (Figure 6) depicted reasonably good fits for the ES. The profile likelihood of model estimated constant M indicated a peak near the 0.144 value (Figure 7).

Negative log likelihood components

M penalty
Retained length composition
Discard length composition
Retained CPUE
Discard CPUE
Pot survey CPUE
Tagging
2.52988
283.862
404.172
75.745
27.9289
0.128852
4586.25

Retained catch biomass
Recruitment deviation
Total
5471.211

WS:
The time series of predicted versus observed retained and discard CPUEs showed reasonably good fits for the WS (Figure 12a-b). The time series of predicted vs. observed retained catch relative length frequency (Figure 13) and discard catch relative length frequency (Figure 14) depicted reasonably good fits for the WS. The profile likelihood of model estimated constant M indicated a peak near the 0.14 value (Figure 15).

Negative log likelihood components

M penalty	2.30274
Retained length composition	249.54
Discard length composition	159.123
Retained CPUE	51.8478
Discard CPUE	7.1678
Retained catch biomass	94.4822
Recruitment deviation	0.16573
Total	564.62927

Parameters estimated conditionally
ES:
Table 4 lists the parameter values estimated from the base model fit.
The molting probability systematically decreased as the crab size increased with the 50% probability near 83.1 mm CL (Figure 8 a). The fishery retention selectivity curves for the three periods (1990-1998, 1999-2004, and 2005-) systematically increased and 50\%
selectivity were achieved at 136.2, 141.7, and 96.6 mm CL, respectively (Figure 8b). The catchability in the survey pot gear and the fishery pot gear for the three periods ranged from $4.26^{*} 10^{-7}$ to $2.26^{*} 10^{-6}$. Fishery catchability has dramatically increased during the latter two periods, perhaps due to increases in fishing efficiency.

Estimated time series of number of recruits to the size group considered in the model (101-185 mm CL), legal male biomass ($\geq 136 \mathrm{~mm} \mathrm{CL}$) and mature male biomass (≥ 121 mm CL) are provided in Table 5. The estimated male recruit abundance to the model peaked in 1996, declined to the lowest level in 2005, and slightly increased thereafter. The recruits entered the model population in the length range 101-110 mm CL (Figure 9a-b). The trends in legal and mature biomasses were high during 1990-1998 and systematically declined thereafter (Figure 10a-b). The estimated retained harvest rate has systematically increased since 1996 (Figure 11).

WS:
Table 8 lists the parameter values estimated from the base model fit.
The molting probability systematically decreased as the crab size increased with the 50% probability near 79.5 mm CL (Figure 16a). The fishery retention selectivity curves for the three periods (1990-1998, 1999-2004, and 2005-) systematically increased and 50% selectivity were achieved at $135.5,140.8$, and 137.2 mm CL, respectively (Figure 16b). The catchability ranged from $3.15^{*} 10^{-7}$ to $2.08 * 10^{-6}$ for the fishery pot gear for different periods. Different fishery catchabilities were considered for the time period before 1998,
between 1999 and 2004, and 2005 onwards. Fishery catchability has increased during the latter two periods, perhaps due to increases in fishing efficiency.

Estimated time series of number of recruits to the size group considered in the model (101-185 mm CL), legal male biomass ($\geq 136 \mathrm{~mm} \mathrm{CL}$) and mature male biomass (≥ 121 mm CL) are provided in Table 9. The estimated male recruit abundance to the model did not show high variation, peaked in 2003, and declined thereafter (Figure 17a). The recruits entered the model population in the length range 121-171 mm CL (Figure 17b). The trends in legal and mature biomasses were high during 1990-1998 and systematically declined thereafter (Figure 18). The estimated retained harvest rate has systematically increased since 1998 (Figure 19).

Harvest alternatives

ES:
The limit harvest level for the ES under Tier 4, assuming an M value of 0.18 (a default value for all king crab stocks, NPFMC 2007), which is equivalent to a γ value of 1.25 with the model estimated M, were estimated by an iterative procedure because the mature biomass, which was used in determining the F level, had to be estimated after the fishery was completed. Two options for limit harvest level are provided below:

Mean Mature Biomass	Retained Limit	Discard Limit	Total Limit	Total Limit Catch
Calculation Period	Catch (t)	Catch (t)	Catch (t)	(million pounds)
$1990-2007$	1996.0	111.9	2107.9	4.65
$1996-2007$	2434.5	136.5	2571.0	5.67

WS:
The limit harvest level for the WS under Tier 4, assuming an M value of 0.18 , which is equivalent to a γ value of 1.23 with the model estimated M, were estimated. Two options for limit harvest level are provided below:

Mean Mature Biomass	Retained Limit	Discard Limit	Total Limit	Total Limit Catch
Calculation Period	Catch (t)	Catch (t)	Catch (t)	(million pounds)
$1990-2007$	1733.7	113.0	1846.7	4.07
$1996-2007$	2347.8	153.0	2500.8	5.51

Because the 2008/09 fishery is in progress, the above limit total harvest levels can be provisionally considered for the 2009/10 fishing season with the intention of updating the values in May 2009 once the 2008/09 fishery is completed.

Data gaps and research priorities

The recruit abundances were estimated from commercial catch sampling data. The implicit assumption in the analysis was that the estimated recruits came from the same exploited stock through growth and mortality. However, there is a possibility that additional recruitment can occur as a result of immigration from neighboring areas and possibly separate sub-stocks; however, the current analysis did not consider this possibility. Extensive tagging experiments are needed to investigate stock distributions.

Tag-recapture data in ES indicated the possibility of misclassification of shell condition by onboard observers (Doug Pengilly and Leslie Watson, personal communication,

ADF\&G, Kodiak). The effect of the possible misclassification of shell condition on the rest of the parameter estimates was minimized by considering the total CPUE (old- and new-shell CPUEs lumped together) from the pot survey and observer samples in the likelihood function.

We used the simple weighted average (weighted by effort) of nominal monthly CPUE (catch in observer samples / number of pot hauls in observer samples) to obtain the annual CPUE. The CPUE can be further standardized for area and time effect to reflect the true stock abundance variation (Starr, 2007).

We formulated the tag-recapture multinomial model incorporating an initial survival parameter to account for initial loss of tagged crabs and a constant under-reporting parameter due to less observer coverage in recent years. These two parameters cannot be separated unless independent experiments are conducted to estimate one of the two or both. Thus, our optimization estimated the product of the two parameters.

The natural mortality was estimated by the model fit, which appears to be slightly low (~ $0.145)$. An independent estimate of M is needed for this stock. Tagging is one possibility. An extensive tagging study will also provide independent estimates of molting probability and growth increment.

We used an arbitrary 20% handling mortality rate on discarded males, which was obtained from the red king crab literature (Siddeek 2002, Kruse et al. 2000). An
experiment based independent estimate of handling mortality is needed for golden king crab.

Summary

Aleutian Islands golden king crab stocks were assessed in an attempt to upgrade them from Tier 5 to Tier 4 level as defined in the proposed new crab fishery management plan (NPFMC 2007). The following table provides the essential parameters and derived statistics obtained from the ES and WS stocks analysis for Tier 4 upgrade:

Parameters/Tier	Parameter values/Tier level	
	ES	WS
M	0.1442	0.1459
γ	1.25	1.23
Mature male biomass on 15 Feb 2008	23018 t	22848 t
a. Proxy MSY mature male biomass	38018 t	42848 t
(1990-2007 mean)		
b. Proxy MSY mature male biomass	32203 t	33384 t
(1996-2007 mean)		$4(\mathrm{~b})$
Tier allocation	$4(\mathrm{~b})$	0.08
Proxy FofL (1990-2007 option)	0.09	0.11
Proxy FofL (1996-2007 option)	0.11	4.07 million pounds
Limit total catch (1990-2007 option)	4.65 million pounds	
Limit total catch (1996-2007 option)	5.67 million pounds	5.51 million pounds

Limited data are available on the groundfish bycatch of golden king crab. The 2007/2008 groundfish bycatch from the region was 122.2 t (0.269 million pounds) (Gretchen Harrington, NMFS, personal communication).

Acknowledgments

We thank Jim Ianelli and Jack Turnock of Alaska Fisheries Science Center, Seattle, and Mark Maunder of Inter-American Tropical Tuna Commission, La Jolla, for introducing various features of the AD Model Builder software, Andre Punt for review of the model structure, and Doug Woodby of the ADFG, Juneau for review of this and earlier version of the draft report. This study is funded by the FMP Extended Jurisdiction program from the National Oceanic and Atmospheric Administration (NOAA). The views expressed herein are those of the authors and do not necessarily reflect the views of NOAA, any of its sub-agencies, or any of the reviewers.

References

ADF\&G (Alaska Department of Fish and Game). 2002. Annual management report for the shellfish fisheries of the westward region, 2001. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 4K02-54, Kodiak, Alaska.

ADF\&G (Alaska Department of Fish and Game). 2008. Annual management report for the commercial and subsistence shellfish fisheries of the Aleutian Islands, Bering Sea, and the Westward region's shellfish observer program, 2006/07. Alaska Department
of Fish and Game, Divisions of Sport Fish and Commercial Fisheries, Fishery Management Report No. 08-02, Anchorage, Alaska.

Barnard, D.R., R. Burt, and H. Moore. 2001. Summary of the 2000 mandatory shellfish observer program database for the open access fisheries. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 4K01-39, Kodiak, Alaska.

Barnard, D.R. and R. Burt. 2004. Summary of the 2002 mandatory shellfish observer program database for the general and CDQ fisheries. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 4K04-27, Kodiak, Alaska.

Blau, S.F., D. Pengilly, and D.A. Tracy. 1996. Distribution of golden king crabs by sex, size, and depth zones in the eastern Aleutian Islands, Alaska. Pages 167-185 In: High latitude crabs biology, management, and economics. Alaska Sea Grant College Program, AK-SG-96-02, Fairbanks, Alaska.

Braumann, C.A. 2001. Constant effort and constant quota fishing policies with cut-offs in a random environment. Natural Resource Modeling, 14(2): 199-232.

Fournier, D. and C. P. Archibald. 1980. A general theory for analyzing catch at age data. Can. J. Fish. Aquat. Sci. 39: 1195-1207.

Kruse, G.H., L.C. Byrne, F.C. Funk, S.C. Matulich, and J. Zheng. 2000. Analysis of minimum size limit for the red king crab fishery in Bristol Bay, Alaska. N. Am. J. Fish. Manage. 20:307-319.

Moore, H., L.C. Byrne, and M.C. Schwenzfeier. 2000. Summary of the 1999 mandatory shellfish observer program database for the open access fisheries. Alaska Department
of Fish and Game, Division of Commercial Fisheries, Regional Information Report 4K00-50, Kodiak, Alaska.

Neufeld, G., and D.R. Barnard. 2003. Summary of the 2001 mandatory shellfish observer program database for the general and CDQ fisheries. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 4K03-2, Kodiak, Alaska.

NPFMC (North Pacific Fishery Management Council) 1999. Amendment 7 to the Fishery Management Plan for the Commercial King and Tanner Crab Fisheries in the Bering Sea/Aleutian Islands to: 1. Revise Definitions of overfishing, MSY, and OY. 2. Update the BSAI Crab FMP. North Pacific Fishery Management Council, Anchorage, Alaska.

NPFMC (North Pacific Fishery Management Council) 2007. Amendment 24 to the fishery management plan for Bering Sea and Aleutian Islands king and Tanner crabs to revise overfishing definitions. North Pacific Fishery Management Council, Anchorage, Alaska.

Otter Research Ltd. 2007. An introduction to AD Model Builder (ver. 8.0.2) for use in nonlinear modeling and statistics. Otter Research Ltd., Box 2040, Sidney B.C., V8L 3S3, Canada.

Otto, R.S., and P.A. Cummiskey. 1985. Observations on the reproductive biology of golden king crab (Lithodes aequispina) in the Bering Sea and Aleutian Islands. Pages 123-135 In: Proceedings of the International King Crab Symposium. Alaska Sea Grant College Program, AK-SG-85-12, Fairbanks, Alaska.

Pribac, F. and A. E. Punt. 2005. Using length, age and tagging data in a stock assessment of a length selective fishery for gummy shark (Mustelus antarcticus). E-Journal of Northwest Atlantic Fishery Science, 35: art. 39.

Shirley, T.C., and S. Zhou. 1997. Lecithotrophic development of the golden king crab Lithodes aequispinus (Anomura: Lithodidae). J. Crust. Biol., 17(2):207-216.

Siddeek, M.S.M. 2002. Review of biological reference points used in Bering Sea and Aleutian Islands (king and Tanner) crab management. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 5J02-06, Juneau, Alaska.

Siddeek, M.S.M., D.R. Barnard, L.J. Watson, and R.K. Gish. 2005. A modified catchlength analysis model for golden king crab (Lithodes aequispinus) stock assessment in the eastern Aleutian Islands. Pages 783-805 In: Fisheries assessment and management in data limited situations, Alaska Sea Grant College Program, AK-SG-05-02, Fairbanks, Alaska.

Starr, P. J. 2007. Rock lobster catch and effort data: summaries and standardisations, 1979-80 to 2005-06. New Zealand Fisheries Assessment Report 2007/31. 69pp.

Turnock, B.J. and L.J. Rugolo. 2007 Stock Assessment of Eastern Bering Sea Snow Crab. Appendix A. In: Stock Assessment and Fishery Evaluation Report for the Bering Sea Aleutian Island King and Tanner Crab Fisheries. Compiled by the BSAI Crab Plan Team. North Pacific Fishery Management Council, Anchorage, Alaska.

Watson, L.J., D. Pengilly, and S.F. Blau. 2002. Growth and molting of golden king crabs (Lithodes aequispinus) in the eastern Aleutian Islands, Alaska. Pages 169-187 In: Crabs in cold water regions: biology, management, and economics, Alaska Sea Grant

College Program, AK-SG-02-01, Fairbanks, Alaska.
Watson, L.J. 2007. The 2006 triennial Aleutian Islands golden king crab survey. Fishery Management Report No. 07-07, Alaska Department of Fish and Game, Division of Sport Fish, Research and Technical Services, 333 Raspberry Road, Anchorage, Alaska. 71pp.

Zheng, J. 2007. Bristol Bay red king crab stock assessment in 2007. Appendix B. In: Stock Assessment and Fishery Evaluation Report for the Bering Sea Aleutian Island King and Tanner Crab Fisheries. Compiled by the BSAI Crab Plan Team. North Pacific Fishery Management Council, Anchorage, Alaska.

Table 1. Time series of annual retained catch (number of crabs), discarded and dead catch (assuming a handling mortality of 20\%), observer retained catch-per-unit-effort (CPUE, number of crabs per pot lift), observer discard CPUE, and pot survey CPUE for the ES golden king crab stock. The data are for the size range $101-185 \mathrm{~mm}$ CL. $\mathrm{NO}=$ no sampling information, and $+=$ low value not considered in the fit.

Year	Retained Catch	$\begin{aligned} & \text { Discarded } \\ & \text { and Dead } \\ & \text { Catch } \end{aligned}$	Observer Retained CPUE	Observer Discard CPUE	Pot Survey CPUE
1990	950,008	458,060	6.5071	21.3435	
1991	1,093,983	289,390	5.3043	10.8444	
1992	1,118,955	572,451	11.3052	21.4618	
1993	832,194	149,178	NO	NO	
1994	1,128,013	536,467	NO	NO	
1995	1,046,780	248,104	5.2710	6.9781	
1996	731,909	167,578	5.6212	7.3849	
1997	780,610	201,238	7.1164	9.4564	24.3435
1998	740,011	250,371	8.7964	15.0142	
1999	709,332	170,431	9.0003	10.7692	
2000	704,702	205,392	9.8166	14.3528	19.0676
2001	730,030	625	10.9693	0.0499+	
2002	643,886	107,952	11.8289	10.3717	
2003	643,074	97,249	10.9252	8.2578	7.9807
2004	637,536	74,610	18.7475	10.7051	
2005	623,971	42,997	26.7399	8.7502	
2006	650,587	45,746	24.0939	8.7319	8.4636
2007	633,253	43,963	29.7912	9.7037	

Table 2. Tagged male golden king crab releases (sublegal and legal crabs $\geq 85 \mathrm{~mm} \mathrm{CL}$) and recaptures east of $174^{\circ} \mathrm{W}$ longitude.

	Number	Percent											
Release	of Crabs	Total	Number Recaptured										
Year	Released	Recovery	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
1997	7,660	22.0	834	495	243	88	17	2	1	0	1		
2000	7,779	14.9				727	227	128	52	19	4	2	
2003	6,174	11.8							318	210	100	82	19
2006	5,235	6.4										228	107

Table 3. Elapsed time (in years) between July 1 (an arbitrarily set mid-survey time) and mid-date of the golden king crab fishery, y_{t}, in the ES, 1990-2007. Data are from ADF\&G (2008).

Fishing Season	y_{t}
$1990 / 01$	0.2630
$1991 / 02$	0.2712
$1992 / 03$	0.2740
$1993 / 04$	0.4603
$1994 / 05$	0.2479
$1995 / 06$	0.2219
$1996 / 07$	0.3274
$1997 / 08$	0.2849
$1998 / 09$	0.2630
$1999 / 00$	0.2452
$2000 / 01$	0.1781
$2001 / 02$	0.1589
$2002 / 03$	0.1548
$2003 / 04$	0.1562
$2004 / 05$	0.1425
$2005 / 06$	0.4973
$2006 / 07$	0.4973
$2007 / 08$	0.4973

Table 4. Estimates of parameters by the base model for the golden king crab data from the ES, 1990-2007.

Parameter	Estimate
a	0.0437
b	83.1442
v	0.0135
c_{1}	0.3988
d_{l}	58.0439
c_{2}	0.3732
d_{2}	136.2326
c_{3}	0.0690
d_{3}	141.7292
c_{4}	0.0210
d_{4}	96.6480
α_{r}	2.8334
β_{r}	0.2496
R_{91} to $R_{08,}($ million crabs $)$	$6.32,6.54,6.94,7.59,8.66,10.89,9.92,7.54,6.93,6.39,6.08,5.74$,
	$5.52,5.44,5.34,5.49,5.62,6.08$
q_{1}	$4.29 * 10^{-7}$
q_{2}	$4.26 * 10^{-7}$
q_{3}	$9.84 * 10^{-7}$
q_{4}	$2.26^{*} 10^{-6}$
F_{90} to F_{07}	$0.75,0.68,0.15,0.15,0.15,0.75,0.75,0.48,0.55,0.75,0.64,0.26$,
$F^{*}{ }_{97}, F^{*}{ }_{2000}, F^{*}{ }_{2003}, F^{*}{ }_{2006}$	$0.20,0.15,0.17,0.15,0.15,0.15$
β	$0.08,-0.15,0.09,0.05$
M	0.4741
ϕ	0.1442
$N_{90}($ million crabs)	0.2568
$O_{90}($ million crabs $)$	16.2841

Table 5. Annual abundance estimates of recruits to the model (millions of crabs), available legal male biomass (t), and available mature biomass (t) for golden king crab in the ES. Legal male biomass was estimated at the survey time and mature male biomass for year y was estimated on February 15, year $y+1$ after the year y fishery total catch removal. NA = not available.

Year	Recruits to the model $(\geq 101 \mathrm{~mm} \mathrm{CL})$	Mature male Biomass $(\geq 121 \mathrm{~mm} \mathrm{CL})$	Legal male Biomass $(\geq 136 \mathrm{~mm} \mathrm{CL})$
1990	NA	48,117	49,062
1991	6.3236	49,449	50,539
1992	6.5389	50,297	51,599
1993	6.9415	50,552	52,092
1994	7.5857	50,184	51,993
1995	8.6627	49,292	51,312
1996	10.8879	47,953	50,162
1997	9.9167	46,264	48,625
1998	7.5359	44,324	46,794
1999	6.9326	33,233	32,639
2000	6.3861	31,456	31,340
2001	6.0795	29,723	29,987
2002	5.7374	28,059	28,618
2003	5.5214	26,481	27,265
2004	5.4383	25,000	25,948
2005	5.3417	26,338	26,270
2006	5.4857	24,587	24,794
2007	5.6226	23,018	23,428
2008	6.0783	NA	22,174

Table 6. Time series of annual retained catch (number of crabs), discarded and dead catch (assuming a handling mortality of 20\%), observer retained catch-per-unit-effort (CPUE, number of crabs per pot lift), observer discard CPUE, and pot survey CPUE for the WS golden king crab stock. The data are for the size range 101-185 mm CL.
\(\left.$$
\begin{array}{lllll}\hline \text { Year } & \begin{array}{l}\text { Retained } \\
\text { Catch }\end{array} & \begin{array}{l}\text { Discarded } \\
\text { and } \\
\text { Catch }\end{array} & \begin{array}{l}\text { Dead }\end{array} & \begin{array}{l}\text { Observer } \\
\text { Retained } \\
\text { CPUE }\end{array}\end{array}
$$ \begin{array}{l}Observer

Discard

CPUE\end{array}\right]\)| 1989 | $1,585,080$ | 465,045 | 8.8093 | 11.4803 |
| :--- | :--- | :--- | :--- | :--- |
| 1990 | 757,610 | 212,733 | 4.9755 | 9.8241 |
| 1991 | 753,415 | 190,614 | 7.6125 | 9.3964 |
| 1992 | 409,373 | 137,176 | 5.6989 | 9.8769 |
| 1993 | 565,336 | 255,809 | 6.7760 | 10.0110 |
| 1994 | 796,258 | 399,059 | 6.3274 | 10.2250 |
| 1995 | 535,553 | 200,387 | 4.7003 | 8.6937 |
| 1996 | 605,137 | 160,413 | 5.7014 | 8.0557 |
| 1997 | 569,550 | 127,647 | 6.5811 | 7.3520 |
| 1998 | 409,531 | 107,749 | 10.9770 | 14.9985 |
| 1999 | 676,558 | 165,544 | 6.0588 | 7.7328 |
| 2000 | 705,613 | 190,119 | 6.6000 | 9.3896 |
| 2001 | 686,738 | 172,061 | 6.3609 | 8.1536 |
| 2002 | 665,045 | 176,065 | 7.7090 | 9.2056 |
| 2003 | 676,633 | 112,150 | 9.2891 | 8.4659 |
| 2004 | 685,465 | 127,386 | 10.8300 | 11.2045 |
| 2005 | 639,368 | 73,526 | 21.0381 | 12.2071 |
| 2006 | 523,701 | 52,351 | 21.1843 | 9.8073 |
| 2007 | 600,604 | 68,473 | 20.3124 | 11.4312 |

Table 7. Elapsed time (in years) between July 1 (an arbitrarily set mid-survey time) and mid-date of the golden king crab fishery, y_{t}, in the WS, 1989-2007. Data are from ADF\&G (2008).

Fishing Season	y_{t}
$1989 / 90$	
$1990 / 01$	0.7315
$1991 / 02$	0.7315
$1992 / 03$	0.7329
$1993 / 04$	0.7315
$1994 / 05$	0.7315
$1995 / 06$	0.7315
$1996 / 07$	0.7329
$1997 / 08$	0.6699
$1998 / 09$	0.6699
$1999 / 00$	0.6699
$2000 / 01$	0.6466
$2001 / 02$	0.5151
$2002 / 03$	0.4342
$2003 / 04$	0.4041
$2004 / 05$	0.3630
$2005 / 06$	0.3164
$2006 / 07$	0.4973
$2007 / 08$	0.4973

Table 8. Estimates of parameters by the base model for the golden king crab data from the WS, 1989-2007.

Parameter	Estimate
A	0.0475
B	79.5397
v	0.0143
c_{1}	0.4173
d_{l}	58.0033
c_{2}	0.5000
d_{2}	135.5080
c_{3}	0.1006
d_{3}	140.7948
c_{4}	0.0695
d_{4}	137.1664
α_{r}	40.0979
β_{r}	1.2092
R_{90} to $R_{08,}($ million crabs $)$	$6.96,6.98,6.97,7.05,7.10,7.23,7.44,7.64,7.79,7.62,7.69,7.81$,
	$7.84,7.95,7.72,7.43,7.30,7.16,6.87$
q_{2}	$3.15 * 10^{-7}$
q_{3}	$6.89 * 10^{-7}$
q_{4}	$2.08^{*} 10^{-6}$
F_{89} to F_{07}	$0.72,0.44,0.15,0.15,0.15,0.15,0.66,0.37,0.15,0.15,0.75,0.64$,
$F^{*}{ }_{97}, F^{*}{ }_{2000}, F^{*}{ }_{2003}, F^{*}{ }_{2006}$	$0.62,0.15,0.15,0.15,0.15,0.15,0.15$
β	$0.07,-0.15,0.09,0.05$
M	0.9744
$N_{89}($ million crabs $)$	0.1459
$O_{89}($ million crabs $)$	18.3239

Table 9. Annual abundance estimates of recruits to the model (millions of crabs), available legal male biomass (t), and available mature biomass (t) for golden king crab in the WS. Legal male biomass was estimated at the survey time and mature male biomass for year y was estimated on February 15, year $y+1$ after the year y fishery total catch removal. NA = not available.

Year	Recruits to the model $(\geq 101 \mathrm{~mm} \mathrm{CL})$	Mature male Biomass $(\geq 121 \mathrm{~mm} \mathrm{CL})$	Legal male Biomass $(\geq 136 \mathrm{~mm}$ CL $)$
1989	NA	64,198	67,033
1990	6.9611	62,797	65,485
1991	6.9837	61,266	63,904
1992	6.9673	59,518	62,144
1993	7.0454	57,520	60,177
1994	7.1027	55,297	57,994
1995	7.2262	52,913	55,634
1996	7.4379	50,417	53,159
1997	7.6444	47,868	50,616
1998	7.7854	45,324	48,057
1999	7.6233	35,378	35,457
2000	7.6934	33,368	33,765
2001	7.8125	31,481	32,133
2002	7.8446	29,722	30,578
2003	7.9473	28,094	29,108
2004	7.7174	26,591	27,726
2005	7.4281	25,443	26,100
2006	7.2957	24,079	24,879
2007	7.1592	22,848	23,760
2008	6.8698	NA	22,735

Table 10. Effective sample sizes, K_{t}, for fitting relative retained and discarded catch compositions of golden king crab east and west of $174^{\circ} \mathrm{W}$ longitude. $\mathrm{NC}=$ not considered.

Year	East of $174^{\circ} \mathrm{W}$ longitude		West of $174^{\circ} \mathrm{W}$ longitude	
	Retained Catch	Discard Catch	Retained Catch	Discard Catch
1989	NC	NC	400	74
1990	300	14	109	16
1991	400	16	133	35
1992	328	24	72	21
1993	28	152^{*}	30	12
1994	49	152^{*}	47	56
1995	105	150	6	400
1996	87	400	78	175
1997	119	357	83	118
1998	128	391	57	77
1999	98	339	68	138
2000	71	132	48	159
2001	73	162	55	139
2002	70	110	49	91
2003	33	101	37	83
2004	51	86	36	75
2005	33	54	34	51
2006	26	41	35	57
2007	46	54	82	57

* = Mean for the entire time series of discarded catch K_{t} values was substituted for missing observer samples for discarded crab.

Figure 1. Historical commercial harvest (in pounds) of golden king crab east of $174^{\circ} \mathrm{W}$ longitude (ES, Eastern Segment) and west of 174° W longitude (WS, Western Segment), 1981-2007.

Figure 2. Historical catch-per-unit-effort CPUE (number of crabs per pot lift) in the commercial fishery for golden king crab in the ES and the WS, 1981-2007.

Figure 3. Predicted (line) versus observed (filled circle) (a) retained catch-per-unit-effort (CPUE), (b) discard CPUE, and (c) pot survey CPUE for golden king crab in the ES.

Figure 4. (a) Predicted (line) versus observed (filled circle) annual recaptures of tagged male golden king crab in the ES for the four triennial pot survey releases, 1997-2006. (b) Estimated full selection fishing mortality considering the complete negative log likelihood (line), only natural mortality and tag negative log likelihoods (dotted line), and the full negative log likelihood without tag negative log likelihood (broken line) for the same period.

	2007
$\begin{gathered} 103143183 \\ C L(\mathrm{~mm}) \end{gathered}$	

Figure 5. Predicted (line) vs. observed (filled circle) retained catch relative length frequency distributions of golden king crab in the ES, 1990 to 2007.

Figure 6. Predicted (line) vs. observed (filled circle) discarded catch relative length frequency distributions of golden king crab in the ES, 1990 to 2007.

Figure 7. Profile likelihood of estimated natural mortality (M) based on 1990-2007 data for ES golden king crab.

Figure 8. Estimated (a) molt probability and (b) retained selectivities for ES golden king crab. Ret. Selectivity 1 (solid line): retained selectivity curve for the 1990-1998 period; Ret. Selectivity 2 (broken line): retained selectivity curve for the 1999-2004 period; and; Ret. Selectivity 3 (dotted line): retained selectivity curve since 2005.

Figure 9. (a) Estimated number of male recruits (millions of crabs $\geq 101 \mathrm{~mm} \mathrm{CL}$) to the golden king crab fishery east of $174^{\circ} \mathrm{W}$ longitude, 1991-2008; and (b) recruit distribution to different length intervals.

Figure 10. (a) Trends in available golden king crab legal male biomass (t) in the ES, 1990-2008 for different combinations of weights applied to the negative log likelihood components. Trend for the base weights is in solid line; trend for the 50% of the base weights is in broken line; and trend for the 150% of the base weights is in dotted line. (b) Trend in available golden king crab mature male biomass (t) in the ES, 1991-2008 for the
base weights applied to the negative log likelihood components. Legal male crabs are \geq 136 mm CL and mature male crabs are $\geq 121 \mathrm{~mm}$ CL.

Figure 11. Trend in retained harvest rate of golden king crab in the ES, 1990-2007.

Figure 12. Predicted (line) versus observed (filled circle) (a) retained catch-per-unit-effort (CPUE) and (b) discard CPUE for golden king crab in the WS.

Figure 13. Predicted (line) vs. observed (filled circle) retained catch relative length frequency distributions of golden king crab in the WS,1989 to 2007.

Figure 14. Predicted (line) vs. observed (filled circle) discarded catch relative length frequency distributions of golden king crab in the WS,1989 to 2007.

Figure 15. Profile likelihood of estimated natural mortality (M) based on 1989-2007 data for WS golden king crab.

Figure 16. Estimated (a) molt probability and (b) retained selectivities for WS golden king crab. Ret. Selectivity 1 (solid line): retained selectivity curve for the 1990-1998 period; Ret. Selectivity 2 (broken line): retained selectivity curve for the 1999-2004 period; and; Ret. Selectivity 3 (dotted line): retained selectivity curve since 2005.

Figure 17. (a) Estimated number of male recruits (millions of crabs $\geq 101 \mathrm{~mm} \mathrm{CL}$) to the golden king crab fishery west of $174^{\circ} \mathrm{W}$ longitude, 1990-2008; and (b) recruit distribution to different length intervals.

Figure 18. (a) Trends in available golden king crab legal male biomass (t) in the WS, 1989-2008 for different combinations of weights applied to the negative log likelihood components. Trend for the base weights is in solid line; trend for the 50% of the base weights is in broken line; and trend for the 150% of the base weights is in dotted line. (b) Trend in available golden king crab mature male biomass (t) in the WS, 1990-2008 for the base weights applied to the negative log likelihood components. Legal male crabs are $\geq 136 \mathrm{~mm}$ CL and mature male crabs are $\geq 121 \mathrm{~mm}$ CL.

Figure 19. Trend in retained harvest rate of golden king crab in the WS, 1989-2007.

Appendix A: Integrated model
The molting probability $\left(m_{i}\right)$ for a length class i is
$m_{i}=1-\frac{1}{1+e^{-a(i-b)}}$
where a and b are parameters.
A gamma distribution was selected to describe the variation in growth increment per molt:

$$
\begin{equation*}
\operatorname{gamma}\left(x / \alpha_{i}, \beta\right)=\frac{x^{\alpha_{i}-1} e^{-\frac{x}{\beta}}}{\beta^{\alpha_{i}} \Gamma\left(\alpha_{i}\right)} \tag{2}
\end{equation*}
$$

where x is the growth increment, α_{i} and β are parameters, and $\alpha_{i}=$ mean growth increment $/ \beta$.

The expected proportion of molting crabs $\left(P_{i, j}\right)$ growing from length class i to length class j during a year was estimated by

$$
\begin{equation*}
P_{i_{i}, j}=\frac{\int_{j_{i}-\tau_{i}-\tau_{i}}^{j_{2}-\tau_{i}} \operatorname{gamma}\left(x / \alpha_{i}, \beta\right) d x}{\sum_{j=1}^{j_{i}} \int_{j_{1}-\tau_{i}}^{i_{i}} \operatorname{gamma}\left(x / \alpha_{i}, \beta\right) d x} \tag{3}
\end{equation*}
$$

where j_{1} and j_{2} are lower and upper limits of the receiving length interval j, τ_{i} is the midpoint of the contributing length interval i, and n is the total number of receiving length intervals. The summation in the denominator is a normalizing factor for the discrete gamma function.

The total number of annual recruits (parameter R_{t}) to the size range $101-185 \mathrm{~mm}$ CL was distributed to different length intervals (i) by a fixed proportion $\left(P^{\prime \prime}\right)$:

$$
\begin{equation*}
R_{i, t}=R_{t} P^{\prime \prime}{ }_{i} \tag{4}
\end{equation*}
$$

where,
$P_{i}^{\prime \prime}=\frac{\int_{i_{1}}^{i_{2}} \operatorname{gamma}\left(x / \alpha_{r}, \beta_{r}\right) d x}{\sum_{i=1}^{n} \int_{i_{1}}^{i_{2}} \operatorname{gamma}\left(x / \alpha_{r}, \beta_{r}\right) d x}$
where x is the length, α_{r} and β_{r} are parameters, i_{1} and i_{2} are lower and upper limits of the receiving length interval i, and n is the total number of receiving length intervals.

Because only a portion of the stock is available for exploitation, the total fishery and survey selectivity (s_{i}^{T}) were modeled by a logistic function with an additional availability parameter, v:

$$
\begin{equation*}
s_{i}^{T}=\frac{v}{1+e^{-c_{k}\left(i-d_{k}\right)}} \tag{6}
\end{equation*}
$$

where c_{k} and d_{k} are parameters with $k=1$ and i is the crab size.

Pot fishery retention selectivity $\left(s_{i}^{r}\right)$ was also modeled as a logistic function:
$s_{i}^{r}=\frac{1}{1+e^{-c_{k}\left(i-d_{k}\right)}}$
where c_{k} and d_{k} are parameters and i is the crab size. Three selectivity with three catchability $\left(q_{k}\right)$ parameters $(k=2,3,4)$ were used to describe the fishery removal during 1990-1998, 1999-2004, and 2005-2006 periods. A separate $q_{k}(\mathrm{k}=1)$ was considered for the standard pot gear used in the survey.

Initial year (1989 for WS and 1990 for ES) stock abundance was modeled as

$$
\begin{gather*}
N_{i, 1}=N_{1} p_{i}^{N} \tag{8}\\
O_{i, 1}=O_{1} p_{i}^{o} \tag{9}
\end{gather*}
$$

where N_{l} and O_{l} are respective total new-shell and old-shell initial abundance parameters and p_{i}^{N} and O_{i}^{O} are respective relative size frequencies in size class i. The annual abundances by size and shell condition for other years were modeled considering growth, mortality, and recruitment:

$$
\begin{align*}
& N_{j, t+1}=\sum_{i}^{j}\left[\left(N_{i, t}+O_{i, t}\right) e^{-M}-\left(C_{i, t}+D_{i, t}\right) e^{\left(y_{t}-1\right) M}\right] m_{i} P_{i, j}+R_{j, t+1} \tag{10}\\
& O_{j, t+1}=\left[\left(N_{j, t}+O_{j, t}\right) e^{-M}-\left(C_{j, t}+D_{j, t}\right) e^{\left(y_{t}-1\right) M}\right]\left(1-m_{j}\right) \tag{11}
\end{align*}
$$

where $N_{j, t}$ and $O_{j, t}$ are respective abundances of new-shell and old-shell crabs in length class j on 1 July (start of biological year coincided with mid survey time) in year t; $C_{j, t}$ and $D_{j, t}$ are fishery retained and discard dead total catches (20% discard death rate was used) in length class j and year $t ; y_{t}$ is elapsed time period from 1 July to the mid point of fishing period in year t; and M is instantaneous natural mortality.

Total catch-per-unit-effort in year t was estimated as

$$
\begin{equation*}
C \hat{P} U E_{t}^{T}=q_{k}\left[\sum_{j}^{n}\left\{s_{j}^{T}\left(N_{j, t}+O_{j, t}\right) e^{-y_{t} M}-0.5\left(\hat{C}_{j, t}+\hat{D}_{j, t}\right)\right\}\right] \tag{12}
\end{equation*}
$$

where n is the number of length classes and the ${ }^{\wedge}$ sign refers to predicted value.
The predicted retained and discarded dead catches were estimated as

$$
\begin{gather*}
\hat{C}_{j, t}=\left(N_{j, t}+O_{j, t}\right) e^{-y_{t} M}\left(1-e^{-F_{t} s_{j}^{T} s_{j}^{T}}\right) \tag{13}\\
\hat{D}_{j, t}=0.2\left(N_{j, t}+O_{j, t}\right) e^{-y_{t} M}\left(1-e^{-F_{s} s_{j}^{T}\left(1-s_{j}^{t}\right)}\right) \tag{14}
\end{gather*}
$$

Retained catch-per-unit-effort in year t was estimated as
$C \hat{P} U E_{t}^{r}=q_{k}\left[\sum_{j}^{n}\left\{s_{j}^{T} s_{j}^{r}\left(N_{j, t}+O_{j, t}\right) e^{-y, M}-0.5\left(\hat{C}_{j, t}+\hat{D}_{j, t}\right)\right\}\right]$

Assuming that $C P U E_{t}^{r}$ have log normally distributed measurement errors, the weighted negative log likelihood for the retained catch-per-unit-effort data is
$L L_{r}=\lambda_{r} \times 0.5 \frac{\sum_{t}\left\{\log \left(C \hat{P} U E_{t}^{r}+c\right)-\log \left(C P U E_{t}^{r}+c\right)\right\}^{2}}{\sigma_{r}^{2}}$
where λ_{r} is the weight, c is a small constant (0.001), σ_{r}^{2} is the variance of retained catch-per-unit-effort.

Discard catch-per-unit-effort, $C P U E_{t}^{d}$, in year t was the difference between the total and retained catch-per-unit effort. The weighted negative log likelihood for discard catch-per-unit-effort data, $L L_{d}$, is similar to equation (16) with discard weight $\left(\lambda_{d}\right)$, catch-per-uniteffort, and variance replacing the corresponding retained values.

Pot survey $C P U E_{t}^{s}$ in year t was estimated as

$$
\begin{equation*}
C \hat{P} U E_{t}^{s}=q_{k} \sum_{j}^{n} s_{j}^{T}\left(N_{j, t}+O_{j, t}\right) \tag{17}
\end{equation*}
$$

The weighted negative log likelihood for pot survey catch-per-unit-effort data, $L L_{s}$, is similar to equation (16) with survey weight $\left(\lambda_{s}\right)$, catch-per-unit-effort, and variance replacing the corresponding retained values.

Retained catch length composition $L_{j, t}^{r}$ in year t was computed as
$\hat{L}_{j, t}^{r}=\frac{s_{j}^{T} s_{j}^{r}\left(N_{j, t}+O_{j, t}\right)}{\sum_{j}^{n} s_{j}^{T} s_{j}^{r}\left(N_{j, t}+O_{j, t}\right)}$
Retained length composition is assumed to be multinomial and the negative log likelihood is
$L L_{r L}=-\sum_{t} \sum_{j=1}^{n} K_{t} L_{j, t}^{r}\left\{\log \left(\hat{L}_{j, t}^{r}+c\right)-\log \left(L_{j, t}^{r}+c\right)\right\}$
where K_{t} is the effective sample size.
Discard catch length composition $L_{j, t}^{d}$ in year t was computed as
$\hat{L}_{j, t}^{d}=\frac{s_{j}^{T}\left(1-s_{j}^{r}\right)\left(N_{j, t}+O_{j, t}\right)}{\sum_{j}^{n} s_{j}^{T}\left(1-s_{j}^{r}\right)\left(N_{j, t}+O_{j, t}\right)}$
Negative \log likelihood, $L L_{d L}$, for discard length composition is similar to equation (19) with discard effective sample size and length composition replacing the corresponding retained values.

Catch biomass in year t was estimated assuming pulse fishery
$\hat{Y}_{t}=\sum_{j}^{n}\left(N_{j, t}+O_{j, t}\right) e^{-y_{t} M}\left(1-e^{-F F_{j}^{T} s_{j}^{r}}\right) w_{j}$
where w_{j} is the mean weight for class j crabs.
Assuming that Y_{t} have log normally distributed measurement errors, the weighted negative log likelihood for the catch biomass data is

$$
\begin{equation*}
L L_{B}=\lambda_{B} \sum_{t}\left\{\log \left(\hat{Y}_{t}+c\right)-\log \left(Y_{t}+c\right)\right\}^{2} \tag{22}
\end{equation*}
$$

where λ_{B} is the weight.
Number of tag returns $T R_{t}^{k}$ in year t from release k was predicted as

$$
\begin{equation*}
T \hat{R}_{t}^{k}=\phi N_{k} e^{-\sum_{t}^{t-1} z_{u}-T_{k} M}\left(1-e^{-F_{t, \bar{s} t}}\right) \tag{23}
\end{equation*}
$$

where ϕ is the tagged population initial reduction parameter (initial survival*a constant reporting rate), N_{k} is the number of tagged crabs released in k th experiment, $Z_{t t}=F_{t t}+M$ in year $t t, F_{t}$ is instantaneous fishing mortality in year t, and \bar{s}_{t} is mean
selectivity in year t. An additional fishing mortality $\left(F_{t}^{*}\right)$ is included for the year of release to account for non-mixing of tagged crabs with untagged crabs. Mean selectivity was estimated as

$$
\begin{equation*}
\bar{s}_{t}=\frac{\sum_{j=1}^{n} s_{j}^{T} s_{j}^{r}\left(N_{j, t}+O_{j, t}\right)}{\sum_{j=\text { legal } s i z e}^{n} s_{j}^{T}\left(N_{j, t}+O_{j, t}\right)} \tag{24}
\end{equation*}
$$

Assuming multinomial recapture probability, the negative log likelihood function for tag recaptures is

$$
\begin{equation*}
L L_{T R}=-\log \left[\prod_{k} \frac{\left(\phi N_{k}\right)!}{\left(\prod_{t=1}^{T} T R_{t}^{k}!\right)\left(\phi N_{k}-\sum_{t=1}^{T} T R_{t}^{k}\right)!}\left(1-\frac{\sum_{t=1}^{T} T \hat{R}_{t}^{k}}{\phi N_{k}}\right)^{\left(\phi N_{k}-\sum_{t=1}^{T} T R_{t}^{k}\right)} \prod_{t=1}^{T}\left(\frac{T \hat{R}_{t}^{k}}{\phi N_{k}}\right)^{T R_{t}^{k}}\right] \tag{25}
\end{equation*}
$$

where T is the last tag returns year.
Assuming lognormal distribution of annual recruitment, the weighted negative log likelihood is
$L L_{R}=\lambda_{R} \sum_{t}\left\{\log \left(R_{t}\right)-\log (\bar{R})\right\}^{2}$
where \bar{R} is the mean recruitment parameter and λ_{R} is the recruitment weight.
A penalty function for M was added to the overall likelihood. Assuming a normal
distribution with a 25% coefficient of variation about a mean (\bar{M}), assumed to be 0.18
(NPFMC 2007), the weighted negative log likelihood is
$L L_{M}=\lambda_{M} \times 0.5 \frac{(M-\bar{M})^{2}}{\sigma_{M}^{2}}$
where $\sigma_{M}^{2}=\bar{M}^{2} C V^{2}$.
Thus, the total negative log likelihood for minimization is
$f=L L_{r}+L L_{d}+L L_{s}+L L_{r L}+L L_{d L}+L L_{B}+L L_{T R}+L L_{R}+L L_{M}$.

Following quantities were computed from the estimated parameters:
Vulnerable legal male biomass at the survey time in year t is
$L M_{t}=\sum_{j=\operatorname{legal} \text { size }}^{n} s_{j}^{T} s_{j}^{r}\left(N_{j, t}+O_{j, t}\right) w_{j}$
Mature male biomass on 15 February spawning time (NPFMC 2007) in the following year is
$M M_{t}=\sum_{j=\text { mature size }}^{n} s_{j}^{T} s_{j}^{r}\left\{\left(N_{j, t}+O_{j, t}\right) e^{-y^{\prime} M}-\left(C_{j, t}+D_{j, t}\right) e^{-\left(y_{t}-y^{\prime}\right) M}\right\} w_{j}$
where y^{\prime} is the elapsed time from 1 July to 15 February in the following year.
For estimating next year limit harvest level from current year stock abundance, a limit F^{\prime} value is needed. Current crab management plan specifies five different Tier formulas for different stocks depending on the strength of information available for a stock, for computing F^{\prime} (NPFMC 2007). For the golden king crab, the following Tier 4 formula was applied to compute F^{\prime} :
(a) If $M M_{t} \geq M \bar{M}, \quad F^{\prime}=\gamma M$
(b) If $M M_{t}<M \bar{M}$ and $M M_{t}>0.25 M \bar{M}$,

$$
\begin{equation*}
F^{\prime}=\gamma M \frac{\left(\frac{M M_{t}}{M \bar{M}}-\alpha\right)}{(1-\alpha)} \tag{31}
\end{equation*}
$$

(c) If $M M_{t} \leq 0.25 M \bar{M}, F^{\prime}=0$
where γ is a constant multiplier of M, α is a parameter, and $M \bar{M}$ is the mean mature biomass for a selected time period, which is a proxy for maximum sustainable yield (MSY) producing mature biomass under Tier 4.

Because projected $M M_{t}$ is depended on the intervening retained and discard catch (i.e., $M M_{t}$ is estimated after the fishery), an iterative procedure was used using equations (30) and (31) with retained and discard catch predicted from equations (13) and (14). The next year limit harvest catch was estimated using equations (13) and (14) with the estimated F^{\prime} value.

