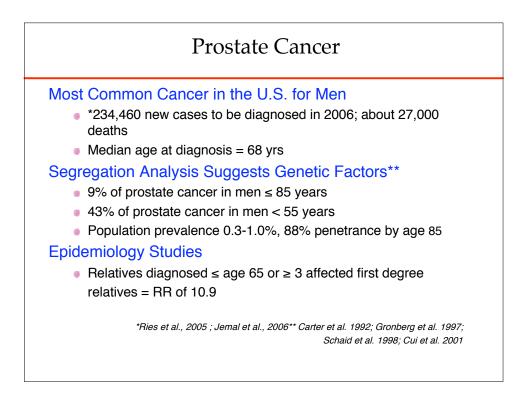
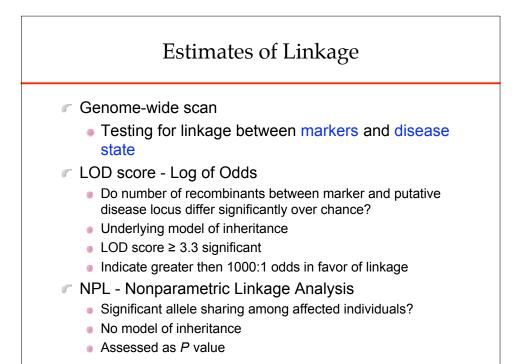
Identification of Cancer Susceptibility Genes

Elaine A. Ostrander, Ph.D.


Chief, Cancer Genetics Branch Head, Section of Comparative Genetics National Human Genome Research Institute National Institutes of Health

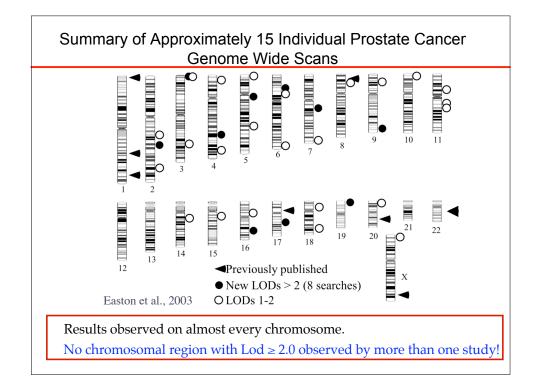

Linkage-Based Approaches to Finding Susceptibility Genes

- Linkage Analysis Using High Risk Families
- Analysis of Families with Shared Phenotypic Features
- C Linkage Studies of Multi-Cancer Families
- Genetic Analysis of Isolated Populations

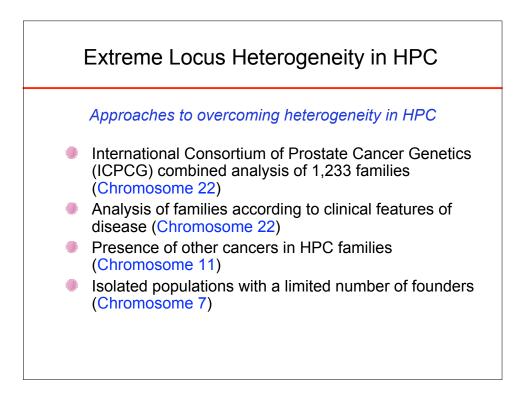
Linkage-Based Approaches to Finding Susceptibility Genes

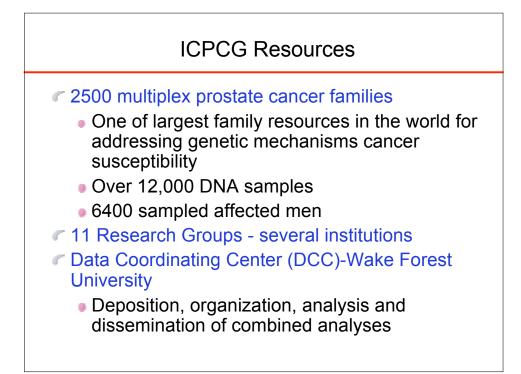
- Linkage Analysis Using High Risk Families
- Analysis of Families with Shared Phenotypic Features
- Linkage Studies of Multi-Cancer Families
- Genetic Analysis of Isolated Populations

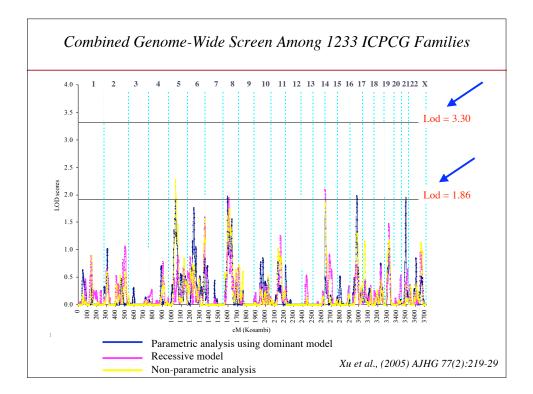
255 *PROGRESS* Hereditary Prostate Cancer (HPC) Families

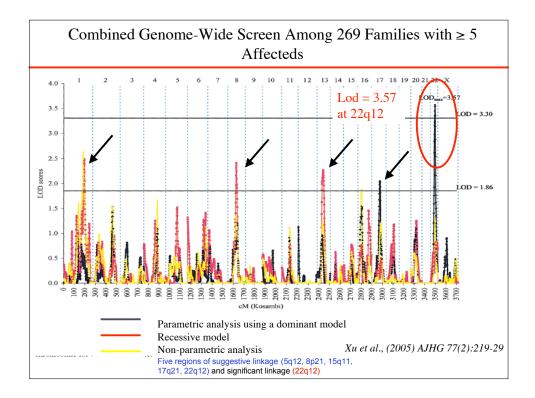

- 1,998 blood samples collected
 - 847 affected men, 613 unaffected men, 538 women
- Average of:
 - 7.8 sampled relatives per family
 - 3.3 sampled affected men per family
- Mean age of diagnosis 65.6
- Genome-wide scan
 - 441 microsatellite markers
 - 8.1 cM average spacing

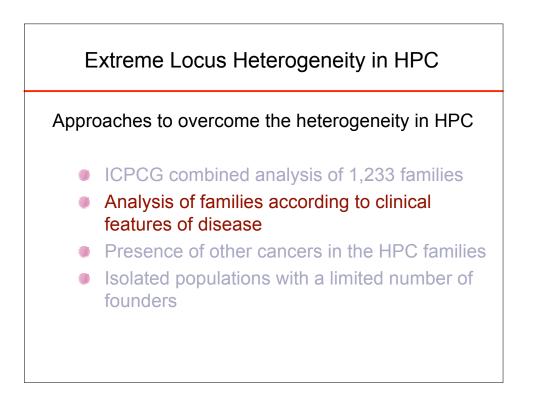
Janer et al., (2003) Prostate 57:309-319


Summary of Linkage Results in 254 PROGRESS Families (LOD≥1.9)


Strata (# of families)	Marker	Model	LOD	HLOD
	D6S1281	Dominant affected only	2.36	2.51
All familias (2E4)		Dominant	1.70	1.93
All families (254)	D7S2212	1.55	2.25	
	D6S1281	Dominant affected only	3.42	3.43
Median age of PC onset 56-		Dominant	2.52	2.62
72 years (214)	D7S2212	Recessive	1.68	2.41
	D2S1391	Dominant	2.63	2.63
. E a seconda di affa ata di (OC)	D8S1119 Recessive		2.01	2.01
>5 sampled affected (26)	D10S1432	Dominant	1.93	2.06
	D13S285	Recessive	2.21	2.21
			_	
Over 80	0 000	otypes completed	1	


Janer et al., (2003) Prostate 57:309-319





Mapping Prostate Cancer Aggressiveness Loci

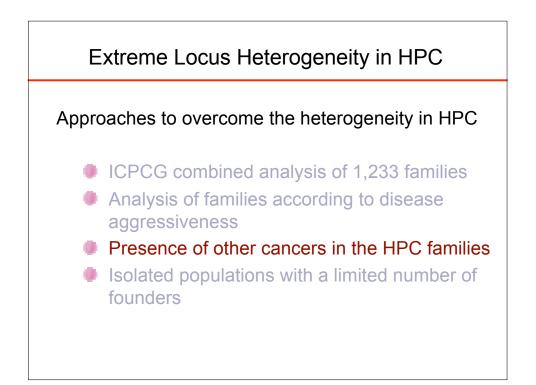
Family Ascertainment

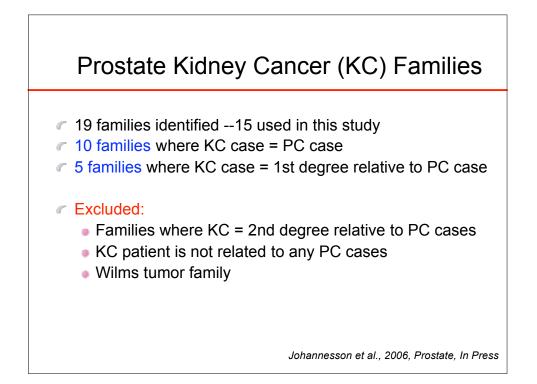
"aggressive families" with \geq 3 men with aggressive disease (≥2 genotyped) PROGESS--123 families met criteria

Definition of Aggressive PC

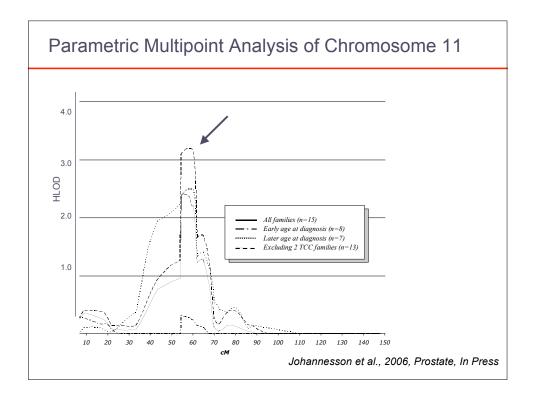
At least one of the following clinical characteristics:

- 1) Regional or distant stage pathology, or clinical stage, T3, T4, N1, M1
- 2) Gleason grade \geq 7 or poorly differentiated grade
- 3) Prostate specific antigen at diagnosis ≥ 20 ng/ml
- 4) Death from metastatic prostate cancer <65 years

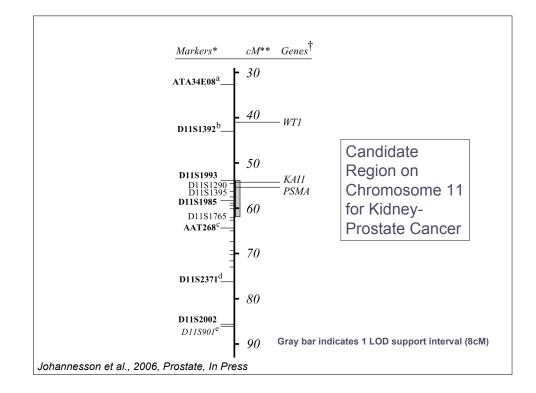

PROGRESS Linkage Study for Aggressive Disease

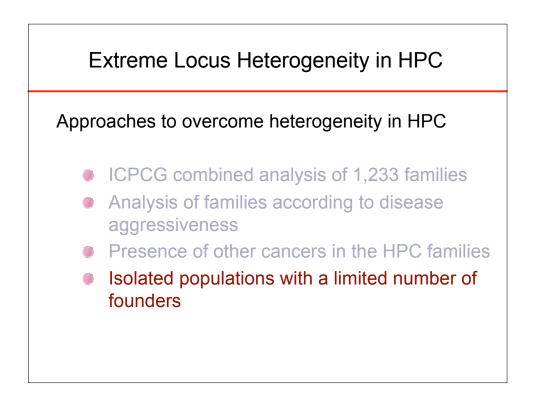

TABLE IV. Summary of Linkage Results Having LOD Scores >2.0 in Subsets of I23 Families WithTwo or More Men With an Aggressive Prostate Cancer Phenotype

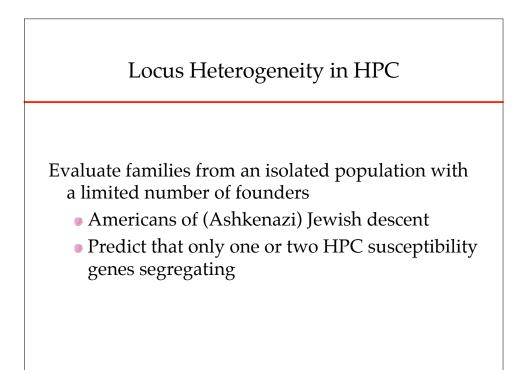
		Position of				Flanking markers (cM)		
Chromosome	Subset	max, cM	Dom-HLOD	Rec-HLOD	KC-LOD ^b	Marker (cM)	Marker (cM)	
2	No. aff. ≥ 5	167.9	0.41	1.87	2.10	D2S1353 (162.4)	D2S1776 (170.9)	
5	HPC = No	69.2	1.51	1.47	2.06	D5S2500 (68.2)	GATA138B05 (75.9)	
6	Dx age \leq 58	124.8	1.75	2.16	1.42	D6S474 (117.6)	D6S1040 (127.7)	
	HPC = no	61.4	1.18	2.04	1.20	D6S1019 (53.4)	D6S1017 (62.8)	
7	No. aff. ≥ 5	7.4	3.16	0.97	1.80	D7S3056 (7.4)	D7S513 (17.6)	
12	Dx age < 65	46.2	0.63	1.47	2.25	D12S373 (35.7)	D12S1042 (48.0)	
13	No. aff. ≥ 5	103.6	2.07	0.65	0.96	D13S895 (97.9)	D13S285 (109.5)	
20	M to $M = no^a$	26.5	2.61	0.66	1.30	ATTC013 (26.4)	D20S604 (32.7)	
22	Dx age < 65	41.9	0.78	2.77	2.06 (45.8)	D22S683 (35.7)	D22S445 (45.2)	
	Dx age (59–70)	15.8	2.32	1.02	1.33	ATTT019 (15.6)	D22S689 (28.1)	
	M to $M = ves$	15.8	2.75	1.79	2.02 (11.1)	ATTT019 (15.6)	D22S689 (28.0)	

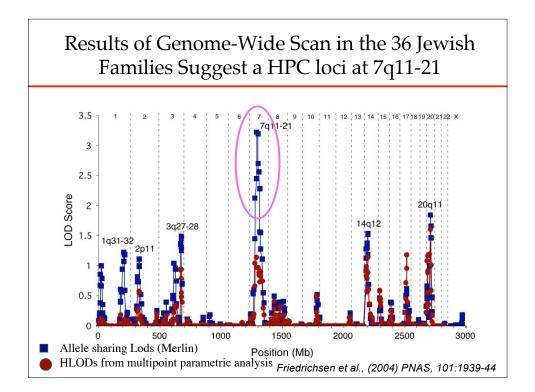

^aSuggestive of X-linkage. ^bPositions (cM) in parentheses refer to the position of the maximum LOD score for a specific model when its position differs from the global maximum LOD score over all three analyses.

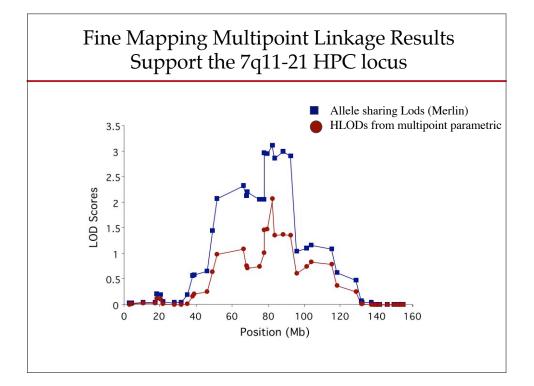
Stanford et al., 2006 Prostate, 15:317-25




Location	cM*	Marker	K&C p-value**	HLOD [†]	α^{\ddagger}	
1p36.21	29.93	D1S1597	0.02	-	-	
4q21.23	93.48	D4S2361	-	2.099	0.97	11D
7p21.3	17.74	D7S513	0.04	1.905	0.39	AfD
7p14.3	51.79	D7S817	0.03	-	-	
7q34	149.9	D7S1824	0.02	-	-	
8q11.23	67.27	D8S1110	0.04	-	-	
10q26.2	156.27	D10S1223	0.02	-	_	
11q12.1	58.4	D11S1985	0.006	2.591	0.98	11D
12q15	78.06	D12S1294	-	1.742	1.00	
12q23.1	104.13	D12S1300	-	1.920	0.80	11D
15q26.1	90.02	D15S652	-	1.593	1.00	11D
16p12.3	29.97	D16S764	0.02	-	-	
18q22.3	106.81	D18S541	0.02	-	-	




band	Marker	Mbp*	cM**	HLOI	$D^\dagger \ \alpha^{\dagger\dagger}$	K&C <i>p</i> -value [‡]
1112	D11S1392#	34.60	43.16	0.93	0.76	0.04
11p13	D11S1993	43.57	54.09	1.26	0.72	0.03
11p11.2	D11S1290	44.98	54.50 [§]	3.10	1.00	0.004
11p11.2 11p11.12	D11S1395	51.23	56.33 [§]	3.17	1.00	0.005
Centromere	D11S1313	55.99	57.74 [§]	3.20	1.00	0.006
1q12.1	D11S4202	58.11	58.36 [§]	3.19	1.00	0.006
11q12.1	D11S1985	58.25	58.40	3.19	1.00	0.006
1q12.1	D11S4075	59.26	59.09 [§]	3.19	1.00	0.006
1q12.1	D11S1335	59.29	59.11 [§]	3.19	1.00	0.006
1q12.1	D11S2006	59.47	59.24	3.19	1.00	0.007
1q12.2	D11S4191	59.76	60.09	3.14	1.00	0.008
1q12.2	D11S1765	60.53	61.78	1.64	0.74	0.01
1q12.3	D11S4076	61.11	62.62	1.68	0.74	0.01
1q13.1	AAT268	62.82	64.60 [§]	1.70	0.73	0.02
1q13.2	D11S1883	63.12	64.97	1.63	0.73	0.02
1q13.2	D11S913	65.68	67.40	1.24	0.73	0.06
1q13.2	D11S1889	67.06	69.28	0.36	0.43	0.14
1q13.2	D11S987	67.65	69.94	0.23	0.32	0.14
1q13.4	D11S4136	69.31	71.52	0.16	0.26	0.20
	D11S4162	70.64	72.75	0.19	0.30	0.20
1q13.4	D11S2371	73.18	76.13	0.39	0.40	0.20

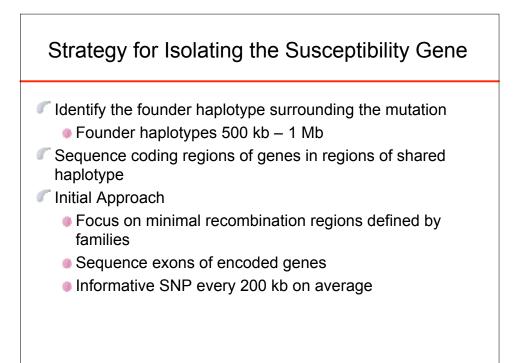

Γ

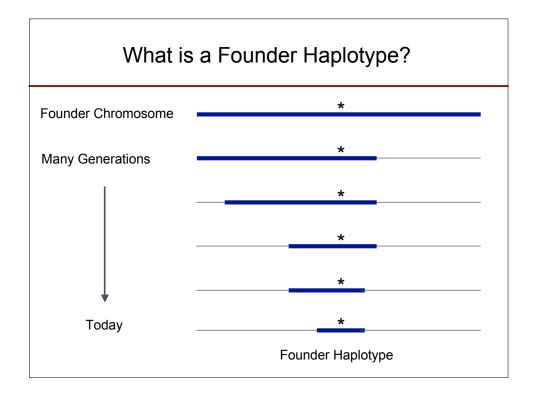
Marker	Position (Mb)	Gap (Mb) ^b	Nonparam NPL	etric Analysis <i>P</i>	Parametric Analysis ^a HLOD
D7S510	38.90	1.06	1.15	0.12	0.26
D7S519	45.82	3.28	2.03	0.02	0.65
D7S1818	49.10	2.36	2.48	0.007	0.99
D7S1830	51.46	15.00	2.62	0.004	1.09
D7S502*	66.46	1.49	2.75	0.003	0.76
D7S3046*	67.95	0.51	2.78	0.003	0.71
D7S2435*	68.46	6.52	2.75	0.003	0.74
D7S2518*	74.98	2.49	2.74	0.003	1.01
D7S669*	77.47	0.26	3.07	0.0011	1.46
D7S2204*	77.73	1.72	3.08	0.001	1.48
D7S634*	79.45	2.95	3.35	0.0004	2.06
D7S2212*	82.40	0.99	3.26	0.0006	1.36
D7S820*	83.39	4.65	3.35	0.0004	1.36
D7S630*	88.04	4.36	3.30	0.0005	1.36
D7S657*	92.40	3.26	2.02	0.02	0.61
D7S821	95.66	5.59	1.93	0.03	0.75

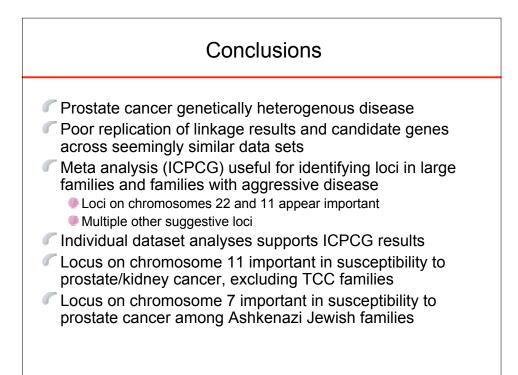
^b Distance from previous marker.

* Markers with genotypes available from both FHCRC and JHU families.

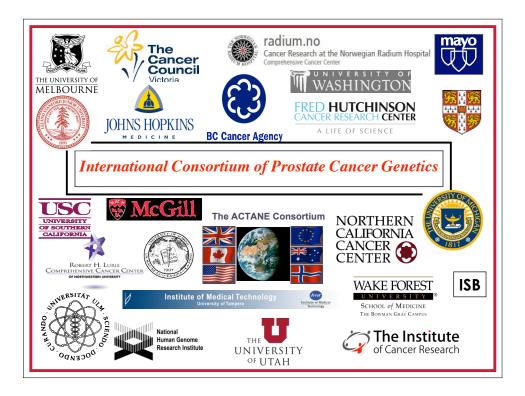
Both Younger and Older Age at Diagnosis Families Contribute to the Result at 7q11-21


Friedrichsen et al., In Prep


	Mean Age at Dx	No. Families	Nonparame NPL	etric Analysis <i>P</i>	Median No. Affected Men	Median No. Genotyped Affected Men
Younger	< 65	18	2.30	0.011	4.0	2.0
Older	≥ 65	18	3.27	0.0005	4.0	3.0
Total	64.8	36	3.35	0.0004	4.0	3.0


How Much do Jewish Families Account for Original PROGRESS Result?

•254 PROGRESS families demonstrate HLOD of 2.25 and NPL of 1.70 (P= 0.038) •Analysis of 237 non-Jewish Families yield an NPL of 1.11 (P = 0.134)


Majority of PROGRESS results contributed by Jewish families

Acknowledgements
 PROGRESS Studies Ostrander Lab- NHGRI-Danielle Friedrichsen, Bo Johannesson, Rick Wells, Hau Hung, Erika Kwon; Seattle-Hawkins DeFrance, Mark Gibbs, Mette Peters, Mariela Langlois Public Health Sciences-Janet Stanford, Suzanne Kolb University of Washington- Gail Javik, Mike Badzioch Institute for Systems Biology -Lee Hood, Marta Janer, Kerry Deutsch Aggressiveness Studies Mayo Clinic-Daniel J. Schaid, Shannon K. McDonnell, Erin E. Carlson
<i>Jewish Studies-Wake Forest</i> -Jianfeng Xu, S. Lily Zheng, Bao-li Chang, <i>Johns Hopkins</i> - Bill Isaacs, Sarah Isaacs, Katherine Wiley, Pat Walsh

