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ABSTRACT

Physical environmental data from Auke Bay, Alaska, collected by staff of the
National Marine Fisheries Service’s Auke Bay Laboratory (ABL) during 1959-2004 near
Auke Bay, Alaska, are summarized in tabular and graphic formats. Data for the 1959-
1993 period were summarized in 1998 by ABL scientists Bruce L. Wing and Jerome J.
Pella. This report updates the records and analyses through December 2004. Data
include air temperatures, precipitation (rainfall and melted snowfall), water temperature
for Auke Creek, annual dates of freeze-up and ice-out for Auke Lake, and Auke Bay sea
surface temperature. Statistical time series methods, including spectral analysis for the
underlying cycles and univariate modeling for temporal dependence, were used to
describe the monthly records for precipitation, snowfall, average daily high, low, and

midrange air temperatures, and sea surface temperature.

Significant trends observed were an increase of average daily high, daily low and
daily mid-range air temperatures, a decrease in annual snowfall, an increase of average
daily sea surface temperature, and an increase in Auke Creek stream temperature. The
observed trends of an increase in total precipitation and decrease in duration of ice cover

on Auke Lake associated with earlier dates of ice-out on Auke Lake were not significant.
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FIGURES

Auke Bay, Alaska, and vicinity.

Monthly averages of daily high temperature (MADHTSs) at Auke Bay
Laboratory, February 1963 through December 2004.

Monthly averages of daily low temperature (MADLTs) at Auke Bay
Laboratory, February 1963 through December 2004.

Monthly averages of daily midrange temperature (MADMTs) at Auke Bay
Laboratory, February 1963 through December 2004.

Statistics of annual temperature cycle at the Auke Bay Laboratory (1963-2004)
including daily extremes (lowest low and highest high [¢]) and monthly
extrema (high [O], low [®] and series averages [#]) for monthly average daily
high (MADHT), low (MADLT), and midrange (MADMT) air temperature
series.

Annual average of monthly average high (MADHTs[®]), midrange
(MADMTs[ #]), and low (MADLTSs[ ®]) daily air temperatures at Auke Bay
Laboratory, 1963-2004. Missing monthly values were estimated by cubic
spline interpolation. Solid horizontal lines are the overall annual means.
Dashed lines are the trends.

Sample autocorrelation function (SACF) of interannual month differences in
logarithm-transformed monthly average daily high air temperatures
(MADHTS) at Auke Bay. The interval covering two standard errors is
indicated.

Sample partial autocorrelation function (SPACF) of interannual month
differences in logarithm-transformed monthly average daily high air
temperatures (MADHTs) at Auke Bay. The interval covering two standard
errors is indicated.

Sample autocorrelation function (SACF) of interannual month differences in
logarithm-transformed monthly average daily low air temperatures (MADLTSs)
at Auke Bay. The interval covering two standard errors is indicated.

Sample partial autocorrelation function (SPACF) of interannual month
differences in logarithm-transformed monthly average of daily low air
temperatures (MADLTSs) at Auke Bay. The interval covering two standard
errors is indicated.

Sample autocorrelation function (SACF) of interannual month differences in
logarithm-transformed monthly average daily midrange air temperatures
(MADMTs) at Auke Bay. The interval covering two standard errors is
indicated.

Sample partial autocorrelation function (SPACF) of interannual month
differences in logarithm-transformed monthly average daily midrange air
temperatures (MADMTs) at Auke Bay. The interval covering two standard
errors is indicated.

Total monthly precipitation at the Auke Bay Laboratory, February 1963
through December 2004.
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Figure 11b.-- Monthly snowfall at the Auke Bay Laboratory, February 1963 through
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December 2004.

Statistics of annual precipitation cycle at Auke Bay Laboratory (1963-2004)
from monthly precipitation (cm) (maximum|[©], mean [4], and minimum [®])
for total precipitation, calendar-year snowfall (January-December), and
seasonal snowfall (July-June).

Annual total precipitation (cm) at Auke Bay, 1964-2004. Missing monthly
values were estimated by cubic spline interpolation. Slope of the trend line was
not significant (P = 0.20). Solid horizontal line is the overall mean, and the
dashed line is the trend.

Sample autocorrelation function (SACF) of interannual month differences in
logarithm-transformed precipitation at Auke Bay. The interval covering two
standard errors is indicated.

Sample partial autocorrelation function (SPACF) of interannual month
differences in logarithm-transformed precipitation at Auke Bay. The interval
covering two standard errors is indicated.

Annual total snowfall (cm) at Auke Bay, 1964-2004. Missing monthly values
were estimated by cubic spline interpolation. Solid line is the overall annual
mean, and the dashed line is the trend.

Sample autocorrelation function (SACF) of interannual month differences in
logarithm-transformed snowfall at Auke Bay. The interval covering two
standard errors is indicated.

Sample partial autocorrelation function (SPACF) of interannual month
differences in logarithm-transformed snowfall at Auke Bay. The interval
covering two standard errors is indicated.

Monthly averages of daily sea surface temperatures (MADSSTs) at Auke Bay
Laboratory, February 1975 through December 2004.

Annual average of monthly average daily sea surface temperatures
(MADSSTs) at Auke Bay, Alaska, 1976-2004. The solid line is the overall
annual mean, and the dashed line is the trend.

Sample autocorrelation function (SACF) of interannual month differences in
logarithm-transformed monthly average daily sea surface temperatures
(MADSSTs) at Auke Bay. The interval covering two standard errors is
indicated.

Sample partial autocorrelation function (SPACF) of interannual month
differences in logarithm-transformed monthly average daily sea surface
temperatures (MADSSTs) at Auke Bay. The interval covering two standard
errors is indicated.

Average of daily Auke Creek stream temperatures (°C), 1962-2005 (Taylor
2006).

Average annual temperature of Auke Creek and the trend line over all years.
Winter ice cover duration for Auke Lake and the trend line for 1992-2005.
Ice breakup dates of Auke Lake and the trend line for 1960-2005.



INTRODUCTION

Auke Bay is a small (11 km?) embayment in the fjord system of southeastern Alaska,
located approximately 130 km inland from the open ocean, 16 km northwest of Juneau, Alaska,
and 5 km west of the Juneau International Airport (Fig. 1). Meteorological data for the latter two
locales extend back to the 1880s and 1940, respectively (Lomire 1979). Auke Bay is subject to a
northern maritime climate, having moderate temperatures, high precipitation, and predominantly
southeasterly winds. Average monthly insolation varies greatly with day length and cloud cover
density, ranging from 20 g cal cm”day” in midwinter to 340 g cal cm™ day”' in midsummer
(Bruce et al. 1977). The diel photoperiod ranges from 6.4 hours at the winter solstice to
18.3 hours at the summer solstice. The mountainous terrain of southeastern Alaska causes
considerable local weather variation over short distances, as is evident in comparing Auke Bay
weather records to those of nearby Juneau, Mendenhall Glacier, and the Juneau International
Airport. Auke Bay is protected by surrounding hills from the prevailing southeasterly winds
year-round and in the winter from severe north winds associated with periods of strong
atmospheric high pressure in the interior of northwestern Canada.

Auke Bay and vicinity have been the locale of biological research since the 1950s. The
National Marine Fisheries Service and the University of Alaska both have research laboratories
at Auke Bay. The U.S. Fish and Wildlife Service, U.S. Forest Service, U.S. Geological Survey,
and the Alaska Department of Fish and Game have used the area for experimental and
observational studies. Additionally, the U.S. Environmental Protection Agency, U.S. Army
Corps of Engineers, and the Alaska Department of Environmental Conservation have studied the
area for environmental impact assessments for the Alaska Marine Highway System ferry
terminal, small boat harbor breakwater, fish processing plant, sewage outfall, and related
shoreline developments.

This report presents tabular and graphic summaries and time series analyses of the
physical data gathered by scientists from the National Marine Fisheries Service’s Auke Bay
Laboratory (ABL) since 1959. These summaries supplement and update previously published
data from Auke Bay by Bruce et al. (1977), Coyle and Shirley (1990), and Wing and Pella
(1998). In this report, we present new data for air temperatures and precipitation, Auke Creek
stream temperature, and dates of Auke Lake freeze-up and ice-out, and Auke Bay sea surface
temperature (SST).

METHODS

Meteorological Records

Weather observations have been taken daily since February 1963 at ABL (lat.
58°22.88'N, long. 134°38.67'W), as part of the National Weather Service Cooperative Observer
Program. Daily air temperatures and precipitation were recorded at approximately 1630 hours
local time according to procedures in the Weather Bureau Observing Handbook (ESSA 1970).
Although daily climate records have been obtained, the series began before general availability



of computers and only the monthly summaries have been transcribed to computer-readable
media. Extreme daily high and low temperatures were also recorded.

Air Temperatures

Maximum, minimum, and current air temperatures were measured by liquid-in-glass
thermometers from February 1963 through July 1988. Beginning in August 1988, air temperature
observations were taken with an electronic maximum/minimum system. The liquid-in-glass
thermometers serve as backup during electric power outages. From October 1979 through June
1998, a battery-powered hygrothermograph served as a secondary backup to the standard system
for periods when an observer was not available. For purposes of this report the monthly average
temperatures have been converted to the Celsius scale.

Precipitation

Daily precipitation (rainfall) observations from a standard 8-inch (20.3 cm) nonrecording
gauge are recorded to the nearest 0.01 inch. Precipitation includes the water equivalent of any
snowfall or ice pellets. Snowfall and snow on the ground are measured with standard 12-inch and
36-inch rulers. Snowfall is recorded to the nearest 0.1 inch and snow on the ground to the nearest
whole inch. For this report, average precipitation records were converted to centimeters. Rainfall
and snowfall are reported as the monthly accumulation. Snow-on-the-ground data have not been
analyzed for this report.

Auke Bay Seawater Temperatures
Auke Bay Laboratory

Daily sea surface temperatures (SSTs) for the Auke Bay Laboratory from January 1959
through April 1963 were taken on the beach at a private residence adjacent to the laboratory.
These temperatures were normally taken between 0700 and 0800 hours with a mercury-in-glass
thermometer at the water’s edge. From May 1963 through 1969, the temperatures were taken off
the laboratory float (10-20 m beyond the zero tide line) and on a less regular schedule according
to specific project needs. In 1975, daily SST observations were reinstituted at the ABL float. To
ensure continuity of the data, SSTs are taken at the end of the normal work day (1630 hours) and
included as part of the daily weather observations. Sea surface temperatures were taken with a
mercury thermometer until 2003 when it was replaced with an electronic YSI Model 30 Salinity,
Conductivity, and Temperature System. A Vemco Minilog-T is used as a backup when an
observer is not available. The temperature and salinity observations are taken at a standard
12 inch (30 cm) depth.

The large gaps in data records in the 1960s and 1970s resulted from changing priorities,
personnel, and programs.



Auke Bay Monitor Station

The Auke Bay Monitor (ABM) oceanographic station (lat. 58°21.97'N, long.
134°40.00'W) has been a reference for research projects in Auke Bay since 1960. Located near
the middle of Auke Bay, it is considered representative of much of the bay (Bruce et al. 1977,
Coyle and Shirley 1990). Oceanographic data are collected there on varying and irregular
schedules according to the needs of specific projects.

Auke Lake Watershed Temperatures

Auke Bay receives most of its freshwater input from the Mendenhall River and three
small watersheds drained by Auke Creek, Auke Nu Creek, and Waydelich Creek (Fig. 1).
Several small permanent streams and intermittent streams contribute to the runoff into Auke Bay.

Auke Creek

Auke Creek, the outflow from Auke Lake to Auke Bay, has a 10 km” (4.0 mi®)
watershed. Surface water from Auke Lake to Auke Creek passes through a shallow lagoon. The
narrow entrance to the lagoon is often less than 50 cm deep during extended low runoff periods.
The exit from the lagoon passes through a narrow channel over a bedrock sill. Water depth at the
sill is often less than 20 cm. The stream is short (0.65 km) and has a steep gradient (average
26 m km™). The upper portion of the stream was modified in 1963 to increase salmon spawning
area, but pink salmon do not consistently spawn in the modified area.

Auke Creek temperatures and stream flow were recorded continuously by a stream gauge
at the upper end of the creek from October 1962 through September 1975; thereafter, the stream
temperatures were recorded at the Auke Creek Hatchery weir at the lower end of the stream.
Stream temperatures at the weir were monitored each morning with liquid-in-glass
thermometers. Since 2000 the stream temperatures have been recorded every 4 hours by a
Vemco Minilog-T.

Auke Creek Hatchery

Until 1990, temperatures of inflow water to the Auke Creek Hatchery were recorded each
morning by liquid-in-glass thermometers at the hatchery trough. The water was drawn from 6 m
(20 ft) depth in the lake and flowed through an insulated 35-cm diameter pipe to the hatchery.
Flow rate into the hatchery was approximately 0.06 m’s™ (0.5 cfs). Although some heat
exchange occurred during the flow through the pipe, it was considered minimal. Auke Creek
Hatchery temperatures were probably representative of Auke Lake temperatures at 6 m depth
through the spring of 1990, when the ABL ceased using water from the same pipe for domestic
and experimental use. The Auke Creek Hatchery continues to use water drawn from the lake, but
temperatures in the hatchery are now monitored with liquid-in-glass thermometers once a day,
depending on individual project requirements.



Auke Lake Freeze-up and Ice-Out

Specific records of freeze-up or ice-over (date of first complete ice cover) were not
routinely maintained until 1992. Several individuals kept private records of the last day of the
year that float planes could land and take off from Auke Lake.'

Ice-out (last day of ice on the lake) was followed more closely than freeze-up because it
is associated with the emigration of fish from Auke Lake. The dates of ice-out from 1960
through 2005 were taken from field notes of ABL fishery biologists.

Time Series Analysis

Weather variables with the longest periods of observations from the Auke Bay climate
data were examined by statistical time series methods using the SAS SPECTRA (spectral
decomposition), AUTOREG (autoregressive error models), and ARIMA (autoregressive
integrated moving-average models) procedures (SAS Institute, Inc. 1993). Those variables
available and analyzed were monthly consolidations of daily records—averages or totals
(depending on the variable)—for air temperatures, precipitation (rainfall and melted snowfall),
and snowfall from February 1963 to December 2004 inclusive (42 years of nearly continuous
monthly records for each variable with no series missing more than 5 of the 504 months), and
SST from February 1975 to December 2004 inclusive (30 years of continuous monthly records).
Over the span of observation (say T months), the monthly values for any variable or its transform
will be denoted as z;; fitted values from ARIMA modeling, by 7,; and the residual from the fit,

byd, =z, -2,,t=1,2,...,T. The forecast value for I month beyond the span T will be denoted

~

as Z.

SPECTRA was used to decompose the total variation in a time series into cyclical
components of time (months). That proportion of the total variation due to the annual cycle was
extracted and tested for statistical significance using an F-test for a known period (Fuller 1976).
Missing values (except at the beginning of the series) were estimated by cubic spline
interpolation using the SAS EXPAND procedure before analysis of untransformed variables by
SPECTRA.

AUTOREG was used to fit and test statistical significance of linear trend models to
annual totals (precipitation and snowfall) or averages (temperatures). The procedure allowed for
estimating autocorrelation structure in residuals about the line. The Durbin-Watson statistic was
used to test for serial correlation of residuals. These regression analyses omitted the beginning
year of each series (1963 for precipitation, snowfall, and air temperatures; 1975 for SST) because
the January observation was missing.

Standard Box-Jenkins methods of time series modeling (Box and Jenkins 1976; Pankratz
1983) were used to further describe the time series using the SAS ARIMA Procedure (SAS
Institute, Inc. 1993): 1) examination of the sample autocorrelation function (SACF) and sample
partial autocorrelation function (SPACF) to identify candidate ARIMA models; 2) estimation of
parameters of the model(s) chosen; and 3) checking for adequacy of the model(s) by testing

Lief Lie, National Weather Service, NOAA, Juneau, Alaska. Pers. Comm. 3 Dec. 1992.



whether the time series of residuals were distinguishable from white noise using the SACF and
SPACEF of residuals and the Ljung-Box (1978) statistic. The conditional least-squares method
was used for parameter estimation. When residual analyses indicated a proposed model was
inadequate, the model was revised, parameters re-estimated, and adequacy rechecked.

Statistics were computed up to a maximum lag of 120 months for precipitation and
temperature series, up to a maximum lag of 70 months for snowfall (5 months, May through
September, with no or very low snowfall were omitted from the series), and up to a maximum
lag of 84 months for SST, thereby meeting the usual recommendation not to exceed a lag equal
to one-fourth of the total observations.

In a preliminary examination, the SACF and SPACF for monthly time series of each
weather variable were computed using interannual month differences (W, = z, —z,_,, ), intra-

annual month differences (W, = z, — z, ,), or the combined differences
(W'=z,-2,,-2,, +12,,,) for untransformed and logarithm-transformed observations. So that

the logarithm transformation (which can be applied only to positive values) could be used,
monthly snowfall measurements (cm) were increased by 1 cm and monthly temperature
measurements (°C) except for SST were increased by 20°C. Interannual month differences of
logarithm-transformed observations were chosen for analyzing all the time series because
reasonably simple SACFs and SPACFs that were helpful for modeling (Box and Jenkins 1976)
generally resulted.

After the models were chosen by standard Box-Jenkins methods, their forecast accuracy
was compared with that from simpler models in which one or more of the coefficients of the
chosen models were omitted. Forecast performance for each weather variable during the last
5 years was the basis of the comparison. For each test year and weather variable, the chosen
models, as well as the simpler models, were fitted by conditional least squares to data available
at the beginning of the test year. The parameter estimates and the weather variable values
preceding the test year were used to forecast the weather variable for each of the 12 months of
the test year. These forecasts were compared with the actual values of the weather variable; the
mean square of forecast errors (average squared errors) was used as a summary statistic.

The autocorrelation coefficients of the SACF are denoted as {r,,k=1,2,..., K }, and the

partial autocorrelation coefficients of the SPACF are denoted as {ékk ,k=1,2,..., K}.Precision

of autocorrelation coefficients was determined from the approximation for standard error (SE)
Bartlett (1946),

K-l 1/2
SE(rk):(HZerJ n™'2. (1)
j=1
Precision of partial autocorrelation coefficients was approximated by (Box and Jenkins 1976)

SE ( )=n""". @)



In Equations 1 and 2, n is the number of values in the time series, reduced for missing values and
losses during differencing.

Forecast equations for weather variables were derived using the difference equations
approach (Box and Jenkins 1976). The 1-month-ahead forecast equations were included to
clarify important temporal relationships within time series. Although these equations could be
used in forecasting 1-month ahead and could be modified easily to forecast an arbitrary number
of months ahead (see Chapter 10 of Pankratz 1983), the time elapsed after the final information
included requires updating with the most recent observations available from the U.S. National
Weather Service, Western Regional Climate Center. Also, the logarithm transformation requires

special methods to translate forecasts to original measurement scales (see Section 10.3 of
Pankratz 1983).

RESULTS AND DISCUSSION

Meteorological Records

Daily meteorological records were nearly complete from February 1963 through
December 2004. The accompanying tables and figures summarize the monthly means, maxima,
and minima.

Air Temperatures

The monthly averages of daily high temperature (MADHTS) (Figs. 2a, 3; Table 1), daily
low temperature (MADLTSs) (Figs. 2b, 3; Table 2), and daily midrange temperature (MADMTs);
that is, the temperature midway between the daily high and low for the 24 hours preceding the
observation (Figs. 2c, 3; Table 3), exhibited less variation when superimposed on annual cycling.
The annual cycles were discerned easily (P < 0.001) and accounted for more than 85% of the
total variation in each temperature series (Table 4). January was the coldest month (-3.41°C) and
July was the warmest month (14.30°C) by average MADMT (Table 3). Annual variation was
evident from 1-month shifts of monthly extremes such that in exceptionally cold winters,
December or February was colder than January; in exceptionally warm summers, August was
warmer than July. Daily extremes showed that frost occurred in all months except August, and
that temperatures occasionally approached or fell below -20°C from December through March
(Table 2). Above freezing temperatures occurred in all months. Maximum daily air temperatures
approaching or exceeding 30°C were recorded in June, July, and August (Table 1).

Annual averages of the three temperature series (MADHT, MADLT, and MADMT)
between 1964 and 2004 (missing values were estimated by cubic spline interpolation) contained
an irregular upward trend (Table 4; Fig. 4). Annual average MADHT ranged from a low of
7.43°C in 1972 to a high of 11.01°C in 1993 (Table 4; Fig. 4) with a series average of 9.11°C
(SD =0.79°C). Annual average MADLT ranged from a low of 0.33°C in 1972 to a high of
4.11°C in 2004 (Table 4; Fig. 4) with a series average of 2.34°C (SD = 0.98°C). Annual average



MADMT temperatures ranged from a low of 3.88°C in 1972 to a high of 7.57°C in 2004 (Table
4; Fig. 4) with a series average of 5.76°C (SD = 0.86°C). Slopes of the trend lines (Table 4; Fig.
4) for MADHT, MADLT, and MADMT showed that temperatures increased over the 41 years
fitted (1964—2004) at rates of 0.037 °C yr™' (SE = 0.009, P < 0.001), 0.058 °C yr'' (SE = 0.009,
P <0.001), and 0.049°C yr'' (SE = 0.009, P < 0.001), respectively. The Durbin-Watson statistics
equaled 1.977, 1.728, and 1.917 for the three series, respectively, and provided no evidence of
lag-1 autocorrelation in residuals from the fitted lines.

Interannual month differences in the logarithm-transformed high, low, and midrange
temperature series produced SACFs and SPACFs indicating presence of an annual component
composed of pure or mixed moving-average and autoregressive processes. For the MADHTS, the
SACF (Fig. 5) had a large negative spike (r,,=-0.511, SE = 0.049) at a lag of 12 months and no
further significant values at lag multiples of 12 months. The SPACF (Fig. 6) had a slowly
decaying (more slowly than exponential decay) series of spikes at lag multiples of 12 months.
For the MADLTs, the SACF (Fig. 7) had an apparent oscillating series of spikes with significant
spikes at lags of 12, 36, and 96 months: r,,=-0.474, SE = 0.049; r;,= 0.125, SE = 0.060; rys=
-0.044, SE = 0.064. The SPACF (Fig. 8) for the MADLTSs had a slowly decaying (more slowly
than exponential decay) series of spikes at lag multiples of 12 months. For MADMTs, the SACF
(Fig. 9) had a large negative spike at lag of 12 months (r,,=-0.495, SE = 0.049) and no further
significant spikes at lag multiples of 12 months. The SPACF (Fig. 10) had slowly decaying
spikes at multiples of 12 months.

Intra-annual variation for the high, low, and midrange temperature series included a first-
order autoregressive process. The SACFs had a significant coefficient at lag of 1 month, and the
SPACFs had significant coefficients at lag of 1 month, followed by a cutoff at higher lags.

An initial model consisting of a first-order moving-average process for interannual
variation and a first-order autoregressive process for intra-annual variation was fitted to each
temperature series and tested for adequacy. Generally, the SACF and SPACEF of the residuals
indicated the initial models that provided for interannual and intra-annual variation were
adequate.

Statistics of the model fitted to the transformed high temperature series (MADHTs)
(Table 5) showed all coefficients (excluding the constant) were significant and weakly
correlated. The 1-month ahead forecast for transformed high temperature (MADHT) in January
2005 (Table 5) included linear terms of the transformed MADHT for the previous January
(2004), the difference in transformed December MADHTS of the two previous years (2003 and
2004), and the residual for the previous January (2004). A general forecast equation for any
month would show that events 1, 12, and 13 months previous to that month were of value for
predicting MADHTSs. Little or no additional information occurred in the residuals as evidenced
by their SACF and SPACF (not shown). Two autocorrelation coefficients (at lags of 47 and
95 months) for residuals from this final high temperature model were statistically significant (six
were expected by chance); and five partial autocorrelation coefficients (at lags of 26, 47, 95, 114,
and 120 months) for the residuals were significant (six were expected by chance). The Ljung-
Box test supported the conclusion that the residuals were indistinguishable from white noise for
lags up to 120 months (Table 5).

For MADLTSs, an interannual autoregressive term at a lag of 36 months was added to the
initial model. Statistics of the fit (Table 6) showed all coefficients (excluding the constant) were
significant and all but one pair were weakly correlated. The 1-month ahead forecast for
transformed low temperature (MADLT) in January 2005 (Table 6) included linear terms of the



transformed MADLT for the previous January (2004), the difference in transformed December
MADLTs of the two previous years (2003 and 2004), the difference in transformed January
MADLTs of 3 and 4 years previous (2001 and 2002), and the residual for the previous January
(2004). A general forecast equation for any month would show events 1, 12, 13, 36, and

48 months earlier than that month were of value in predicting MADLTs. Little or no additional
information occurred in the residuals as evidenced by their SACF and SPACF (not shown). One
autocorrelation coefficient (at lag of 95 months) for residuals from this final low temperatures
model was statistically significant (six were expected by chance), and four partial autocorrelation
coefficients (at lags of 60, 85, 95, and 120 months) for the residuals were significant (six were
expected by chance). The Ljung-Box test supported the conclusion that the residuals were
indistinguishable from white noise for lags up to 120 months (Table 6).

Statistics of the model fit to the transformed midrange temperature series (MADMTs)
(Table 7) showed all coefficients (excluding the constant) were significant and all were weakly
correlated. Just as was the case for the high temperature series (MADHTSs), the 1-month ahead
forecast for the transformed midrange temperature (MADMT) in January 2005 (Table 7)
included linear terms of the transformed MADMT for the previous January (2004), the
difference in transformed December MADMTs of the two previous years (2003 and 2004), and
the residual for the previous January (2004). A general forecast equation for any month would
show that events 1, 12, and 13 months prior to that month were of value to predicting MADMTs.
Little or no additional information occurred in the residuals as evidenced by their SACF and
SPACF (not shown). One autocorrelation coefficient (at lag of 95 months) for residuals from this
final midrange temperature model was statistically significant (six were expected by chance),
and six partial autocorrelation coefficients (at lags of 10, 26, 60, 85, 95, and
120 months) for the residuals were significant (six were expected by chance). The Ljung-Box
test supported the conclusion that the residuals were indistinguishable from white noise for lags
up to 120 months (Table 7).

The SACFs and SPACFs for residuals of the final models for the three temperature series
indicated possible need of additional terms with high lags. The SACFs for MADHTs, MADLTs,
and MADMTs contained significant coefficients at lags of 47 and 95 months, 95 months, and
95 months, respectively. Also, the corresponding SPACFs contained significant coefficients at
the following lags: 26, 47, 95, 114, and 120 months; 60, 85, 95, and 120 months; and 10, 26, 60,
85, 95, and 120 months. All functions shared a significant coefficient at lag of 95 months
(7 years and 11 months). When the final models were augmented by an autoregressive term with
lag of 95 months, this fitted coefficient was statistically significant (P <0.01) for all three series.

The final models for the three temperature series shared first-order moving-average terms
for interannual variation and first-order autoregressive terms for intra-annual variation. In
addition, the low temperature series had an autoregressive coefficient at lag of 36 months.

Test-year forecasts from the final models and simpler models supported certain of the
simpler models. For MADHTSs, mean square of forecast errors by the final model (parameterized
by u, 61, and @,) was smallest in two test years as well as overall (5 years combined), and that of
the simpler model (parameterized by u and 6,,) was smallest in three test years. For MADLTs,
the mean square of forecast errors by the final model (parameterized by u, 6,,, ¢, and ¢;) was
smallest in two test years; that of the next simpler model (parameterized by , 6,,, and ¢,) was
smallest in two test years as well as overall (5 years combined); and that of the simplest model
(parameterized by 1 and 6,,) was smallest in one test year. For MADMTs, the mean square of
forecast errors by the final model (parameterized by u, 6,,, and ¢,) was smallest in three test



years as well as overall (5 years combined), and that of the simpler model (parameterized by u
and 6,,) was smallest in two test years. For high and midrange daily temperatures, the final
model surpassed the simpler models in overall (5 years combined) forecast accuracy and was
matched in certain years for best forecast accuracy by one of the simpler models. For low daily
temperature, the final model was surpassed in overall (5 years combined) forecast accuracy and
matched in certain years for best forecast accuracy by one of the simpler models.

Precipitation and Snowfall

Precipitation was recorded as the monthly sum of amounts of liquid water collected daily
(rainfall and melted snowfall). Precipitation (Fig. 11a; Table 8) and snowfall (Fig. 11b; Table 9)
were computed for each month of the calendar year (January through December). In addition,
snowfall was computed for the snow year of July through June (Table 10). Although this snow
year differs from the U. S. Geological Survey hydrological year of October through September,
it placed the rare September snowfalls at the beginning of the oncoming winter rather than at the
end of the passing summer. Mean monthly precipitation ranged from 7.33 cm in April to
22.44 cm in September (Fig. 12). The mean monthly extremes were 0.18 cm in February 1989
and 41.81 cm in September 1991 (Table 8). The annual cycle was discerned easily (P < 0.001)
but accounted for only about 36% of the total variation (Table 4). Snowfall occurred from
September through May (Fig. 12), although May, September, and October normally received
only trace amounts; trace amounts of snowfall were treated as zeroes in analyses. Mean monthly
snowfall for November through April was 37 cm. January had the highest average snowfall
(mean of 68 cm with a range of 5 cm in 1987 to 180 cm in 1982) (Table 9). The annual cycle
was evident (P < 0.001) but accounted for only about 42% of total variation.

Annual precipitation between 1964 and 2004 (Table 8) ranged from a low of 116.69 cm
in 1995 to a high 0f 215.39 cm in 1991. Average annual precipitation was 159.19 ¢cm (SD =
20.08 cm). The annual series contained an irregular upward trend, interrupted about the time of
the 1982-1983 El Nifo and in 1995 (Fig. 13). Slope of the trend line (Table 4) showed that
precipitation increased over the 41 years (1964-2004) fitted but not at a significant rate
(0.341 cm yr'!, SE = 0.264, P = 0.20). The Durbin-Watson statistic was 1.957 and provided no
evidence of lag-1 autocorrelation in residuals from the fitted line.

Interannual month differences in logarithm-transformed precipitation values produced
simple SACF and SPACF (Figs. 14, 15). An annual component of the transformed precipitation
series was included as a first-order moving-average process: the SACF had a highly significant
spike (r,,=-0.453, SE = 0.046) at lag equal to 12 months (and no further significant
autocorrelation coefficients at higher lag multiples of 12 months), and the SPACF generally
decayed toward zero at lag multiples of 12 months. The simple first-order annual moving-
average model was fitted to the series of interannual month differences in annual precipitation.
The SACF and SPACEF of the residuals (not shown) indicated an autoregressive coefficient of lag
equal to 48 months was needed: both functions contained significant coefficients at that lag.

A revised model with a moving-average parameter of lag equal to 12 months and an
autoregressive parameter of lag equal to 48 months was fitted. Both the annual moving-average
parameter, 6,, (P <0.001), and autoregressive parameter, @,5 (P = 0.002), were detected
(Table 11), but the estimate for ¢ did not differ significantly from zero. The parameter estimates
were weakly correlated. The one-month ahead forecast for transformed precipitation in January
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2005 (Table 11) included linear terms of the transformed precipitation during the previous
January (2004), the difference in transformed January precipitation 4 and 5 years earlier (2000
and 2001), and the residual for the previous January (2004). A general forecast equation for any
month would show events 12, 48, and 60 months in advance of the current month were of value
to predicting precipitation. Contrary to the temperature series, precipitation of the previous
month was not useful in prediction. Apparently little or no additional information occurred in the
residuals as evidenced by their SACF and SPACF (not shown). Two autocorrelation coefficients
(at lags of 90 and 96 months) for residuals from this final precipitation model were statistically
significant (six were expected by chance), and four partial autocorrelation coefficients (at lags of
8,90, 101, and 119) for the residuals were significant (six were expected by chance). The Ljung-
Box test supported the conclusion that the residuals were indistinguishable from white noise for
lags up to 120 months (Table 11).

Test-year forecasts from the final model (parameterized by u, 6,,, and ¢.5) and a simpler
model (parameterized by u and 6,,) supported the final model: the mean square of forecast errors
of the final model was smaller in three of the five test years, and the overall (5 years combined)
mean square of forecast errors of the final model was smaller as well.

Annual snowfall (calendar year) between 1964 and 2004 (Table 9) ranged from a low of
36.59 cm (2000) to a high of 442.47 cm (1994), with an average of 219.24 cm (SD = 103.69 cm).
The series contained an irregular downward trend until the late 1980s, whereafter snowfall rose
above the long-term mean in 1989, 1990, 1991, and 1994 (Fig. 16). The series fell below the
long-term mean for 2 years preceding 1994 and thereafter, except in 1999 when the snowfall was
slightly above the long-term mean (Fig. 16). Slope of the trend line (Table 4; Fig. 16) indicated
that snowfall decreased over the 41 years fitted (1964-2004) at a rate of 3.582 cm yr”' (SE =
1.263, P <0.01). The Durbin-Watson statistic was 1.726 and provided no evidence of lag-1
autocorrelation in residuals from the fitted line. Differences in annual snowfall in successive
years reached more than 250 cm three times (1970-71, 1993-94, and 1994-95) and more than
100 cm fifteen times (Table 9). Snowfall during the snow year (July through June, but essentially
late September through early May) ranged from a low of 51.57 cm (2000-01) to a high of
421.64 cm (1975-76), with an average of 222.05 cm (SD = 95.00 cm) (Table 10).

No snow fell during June, July, and August, and average snowfall for May and
September was less than 0.1 cm. Therefore, these 5 months were omitted from the time series for
ARIMA modeling, and snowfall for the remaining 7 months was analyzed. Interannual
(7 months) differences in logarithm-transformed snowfall produced simple SACF (Fig. 17) and
SPACEF (Fig. 18). The functions provided clear indication of an interannual moving-average
process of order 1: the SACF had a highly significant spike at lag of 7 months (r,=-0.494, SE =
0.062), and the SPACF decayed regularly at lag multiples of 7 months. Intra-annual variation for
the snowfall series included a first-order autoregressive process. The SACF and SPACF spikes at

lag of 2 months (r,=0.182, SE = 0.060; ézz =0.180, SE =0.059) exceeded three standard errors,

and were further remarkable for absence of adjoining significant values. Statistics of the fit of an
annual, first-order, moving average process and an intra-annual autoregressive process with a lag
of 2 months (Table 12) indicated the annual moving-average parameter, 6;, was highly
significant (P < 0.001) and its estimate was only weakly correlated with that of the other
parameters; that is, the constant, x, and the autoregressive coefficient at lag of 2 months, ¢,. The
estimates of the intra-annual autoregressive parameter, ¢,, (P = 0.03) and the constant, g,

(P <0.05) were also significant. A general forecast equation for any month (Table 12) would
show that snowfall 2, 7 (= 1 year), and 9 (= 1 year and 2 months) months in advance of that
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month was of value to predicting snowfall. Little or no additional information occurred in the
residuals as evidenced by their SACF and SPACF (not shown). None of the residual
autocorrelations to lag of 70 months (10 years) was significant at & = 0.05. The Ljung-Box test
confirmed that the residuals were indistinguishable from white noise for lags up to 66 months
(> 9 years) (Table 12).

Test-year forecasts from the final model (parameterized by u, 6;, and ¢,) and a simpler
model (parameterized by  and 6;) were inconclusive: the mean square of forecast errors for the
simpler model was smallest in 3 of the 5 test years and overall (5 years combined) and that of the
final model was smallest in 2 test years. The SACF of the simpler model’s residuals, however,
had a significant spike (r,=0.127, SE = 0.060) at lag equal to 2 months, and the SPACF had a

nearly significant spike (¢?22 =0.117, SE = 0.060) at the same lag. The final model that included

an autoregressive parameter, ¢,, showed no additional information in the residuals as evidenced
by their SACF and SPACF (not shown).

Auke Bay Saltwater Temperatures
Auke Bay Monitor Station

Although the records for SST extend back to 1959, the observations were not taken on a
regular schedule nor were the methods of observation constant (Wing and Pella 1998; Table 16).
The irregular nature of the data did not permit clear interpretation of interannual variation;
therefore, only the means and extremes for the annual surface temperature cycle at Auke Bay
Monitor Station were presented. This irregular schedule of observations has continued and
currently monthly observations are made only from May through August.

Auke Bay Laboratory

Sea surface temperatures in Auke Bay are affected by several factors, most important of
which are daily solar heating, the annual cycle of cooling and heating, exchange of water with
adjacent channels, exposure to wind mixing, proximity to streams and surface freshwater
sources, and rain and snowfall conditions. Because the ABL is located in the northeastern corner
of Auke Bay and is well protected from the prevailing southeasterly winds, surface waters at the
ABL float are poorly mixed by the winds, strongly influenced by the outflow of Auke Creek, and
subject to accumulation of a freshwater lens during heavy rains and snowfall. Surface
temperatures at ABL tend to be lower in the winter and higher in the summer than those in either
the middle of Auke Bay (see Auke Bay Monitor Station above) or the more exposed waters of
Lynn Canal and Stephens Passage (Williamson 1965, Jones 1978). Sea surface temperatures for
1959-69 were taken in the morning, whereas temperatures were recorded in the afternoon from
1975 to present. Sea surface temperatures for 1959-69 are reported in Wing and Pella (1998) and
are not mentioned further here.

According to Hagen?, oscillations in the daily recorded Auke Bay SSTs and in a 4-day
running average of these values did not appear to be related to tidal cycles. The oscillations of

? Hagen, P.T. 1988. Time series analysis of sea surface temperatures in Auke Bay, Alaska. Juneau Center for
Fisheries and Ocean Sciences, University of Alaska-Fairbanks. 29 p., unpublished.
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the averaged data could be artifacts of smoothing called the Slutzky-Yule effect (Kendall and
Stuart 1966).

Monthly averages of daily sea surface temperatures (MADSSTs) fluctuated very
regularly (Fig. 19), with 92.5% of the variation explained by the annual cycle (P <0.001, Table
4). MADSST ranged from a minimum of 2°C in February to a maximum of 16°C in August
(Table 13). Annual average of MADSSTs between 1976 and 2004 ranged from a low of 7.0°C in
1976 to a high of 8.9°C in 1993 (Fig. 20). Average annual MADSSTs was 8.2°C (SD = 0.43°C).
The annual series began with lowest annual temperature in 1976 and thereafter fluctuated with
increasing variation (Fig. 20). The slope of the trend line suggested SST increased over the
29 years fitted at a rate of 0.024°C year” (SE = 0.009, P =0.01). The Durbin-Watson statistic
was 1.754 and provided no evidence of lag-1 autocorrelation in residuals from the fitted line.

Interannual month differences in logarithm-transformed MADSST produced simple
SACF and SPACEF (Figs. 21, 22). The annual component of the transformed MADSST series
was a first-order moving-average process: the SACF had a highly significant spike (r,, = -0.386,
SE =0.077) at lag equal to 12 months (and no further significant autocorrelation coefficients at
higher lag multiples of 12 months), and the SPACF decayed toward zero at lags of 12, 24, and
35 months. The intra-annual component was a first-order autoregressive process; the SACF
appeared to decay exponentially from lags of 1 through 5 months (those for lags of 1 and

2 months were highly significant), and the SPACF had a spike at lag of 1 month [(/3ll =0.584,

SE = 0.055]. In addition, the SACF had two additional significant coefficients at lags equal to 11
and 13 months, and the SPACF had seven additional significant coefficients at lags of 11, 13, 23,
25, 37, 49, and 52 months; roughly four significant coefficients were expected from sampling
variation for either case if all remaining actual coefficients were zero. The simple model with
first-order annual moving-average and first-order intra-annual autoregressive terms was fit to the
series of interannual month differences in MADSST. Statistics of the estimation (Table 14)
indicated that all coefficients excluding the constant were highly significant (P < 0.001). All
parameter estimates were weakly correlated. The 1-month-ahead forecast for transformed SST in
January 2005 (Table 14) included linear terms of transformed SST during the previous January
(2004), the difference in transformed December SST of the two previous years (2003 and 2004),
and the residual for the previous January (2004). A general forecast equation for any month
would show that events 1, 12, and 13 months prior were of value in predicting SST. Apparently,
little or no additional information occurred in the residuals, as evidenced by their SACF and
SPACF (not shown). Two autocorrelation coefficients (at lags of 10 and 39 months) for residuals
from this final model were statistically significant (four were expected by chance), and two
partial autocorrelation coefficients for residuals at the same lags were significant. The Ljung-Box
test (Table 14) supported the conclusion that the residuals were indistinguishable from white
noise for lags up to 84 months.

Mean square of forecast errors for the final model (parameterized by u, 8,,, and ¢,) was
smallest in three of the five test years as well as overall (5 years combined), and that of the
simpler model (parameterized by ¢ and 6#,,) was smallest in two test years.

The trend of increase in SST at Auke Bay (+0.024°C yr’') is comparable to the
+0.03°C yr' increase observed for the integrated 0-100 m by Royer and Grosch (in press) at
GAK-1 in the northern Gulf of Alaska but lower than the +0.04°C yr'' observed by Nixon et al.
(2004) for Woods Hole, MA. Auke Bay is 130 km inland from the open ocean and influenced by
local terrestrial climate conditions. The GAK-1 station is exposed to the open ocean circulation
of the Gulf of Alaska with less terrestrial effect than Auke Bay. Woods Hole, although in a well
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protected harbor, is close to the open coast and influenced by both terrestrial climate and oceanic
conditions. Although each of the three studies uses different methods, the close similarity of
results suggest the warming trends have been hemispheric for the last 40 years and are not
localized phenomena.

Auke Lake Watershed Temperatures
Auke Creek Temperatures

Auke Creek stream temperatures are strongly influenced by seasonal snow melt and
runoff. Observed stream temperatures have ranged from a minimum -0.2°C (multiple records) to
a maximum 21.8°C (21 August 1977). Temperatures are at the annual minimums from late
December through March when stream flows are low and Auke Lake is typically ice covered
(Table 15; Fig. 23). Annual average Auke Creek stream temperatures between 1971 and 2005,
including 1968 (intervening years with missing monthly temperatures were excluded), contained
an upward trend (Fig. 24, Table 4) due to the increasing trend of summer temperatures (Taylor
2006). Annual average stream temperatures ranged from a low of 7.3°C in 1972 to a high of
8.9°C in 1998 (Table 4). The slope of the trend line (Table 4) showed that stream temperatures
increased over the 36 years fitted (1968, 1971-2005) at a rate of 0.055°C yr’' (SE = 0.009,

P <0.001). The Durbin-Watson statistic equaled 1.713 and provided no evidence of lag-1
autocorrelation in residuals for the fitted line. Maximum stream temperatures occur from June
through August during periods of low runoff and when the surface waters of Auke Lake are
warmed by incident sunlight. During exceptionally low runoff conditions, surface flows from
Auke Lake may cease and a minimum flow is maintained in the creek by groundwater seepage
from the surrounding hill side. Under these conditions the stream temperatures at the weir near
the mouth of the creek are lower than the surface temperatures of Auke Lake.

Auke Lake Freeze-Up and Ice-Out

Dates of freeze-up and ice-out are indicators of heat loss and accumulation in Auke Lake
and of autumnal and vernal turnover. Freeze-up (complete ice cover) does not occur until after
turnover in November when surface waters cool to 0°C. Frequently, ice forms intermittently
around the lake margins for several days to 2 weeks before the lake ices over completely.
November 25 was the average last day of float plane operation in Auke Lake and was usually
2 weeks before the lake froze over completely.1 Freeze-up appears to have occurred earlier in the
past decades than in the 1990s and 2000s.

The duration of Auke Lake ice cover between the 1992-1993 winter and the 2004-2005
winter contained a downward trend (Fig. 25). The slope of the trend line (Table 4) showed that
the duration of ice cover declined over the 13 winters but not at a significant rate
(-3.615 days yr', SE = 1.947, P = 0.09). The Durbin-Watson statistic was 2.481 and provided no
evidence of lag-1 autocorrelation in residuals from the fitted line.

The ice-out-date between 1967 and 2005, including 1960 and 1963, contained a trend
toward earlier dates (Fig. 26). The slope of the trend line (Table 4) showed that the ice-out date
was earlier over the 41 years but not at a significant rate (-0.385 days yr', SE = 0.242, P = 0.12).
The Durbin-Watson statistic was 2.326 and provided no evidence of lag-1 autocorrelation in
residuals from the fitted line.
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Freeze-up occurred as early as 15 November in 1963 to as late as 4 January in 2005
(Table 17). Several years the freeze-up has not happened in the fall but was delayed until early
winter shortly after the winter solstice (Table 17), resulting in shorter duration of the ice cover
(Fig. 25).

Ice-out is associated with the vernal turnover and often is quite rapid. Auke Lake may go
from less than 10% open water to over 95% open water within 3 or 4 days. For our purposes, we
have determined ice-out as the day the lake surface was 90% open water. Ice-out (Table 16) on
Auke Lake normally occurred in late April or early May: 18 April was the average date of ice out
for the years of available data. Earliest date of ice-out was 1 February 1977 and latest ice-out
date was 20 May 1972. On several occasions the ice cover on Auke Lake disappeared in early
January or February and then re-froze over again until April.

SUMMARY

Time series analyses of the physical environmental records available for Auke Bay reveal
six significant trends. Air temperatures (daily high, midrange and low temperatures), SSTs, and
annual stream temperatures have increased, and snowfall has decreased. These significant trends
are all related to the rise of mean air temperatures. The non-significant trends for increased total
precipitation, decreased duration of ice cover on Auke Lake, and earlier date of ice-out on Auke
Lake may or may not be related to the rising air temperatures.
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Table 5.-- Conditional least-squares estimates of the moving-average and autoregressive
parameters necessary to describe interannual month differences in average daily high
air temperature series (MADHTS), and statistics of the fit.

1_ BlZ
Model: (1-B")z = ﬂ+Ll a,, where z, = In(MADHT, +20°C), t =1, 2, ..., 492.
1-¢B
Parameter Estimate SE t statistic ~ Probability Lag
u 0.0015387 0.0010763 1.43 0.15 0
6, 0.78760 0.02848 27.65 <0.001 12
é, 0.12777 0.04557 2.80 <0.01 1

Correlations of Estimates

Parameter u 6, s
H 1 -0.021 -0.002
0, -0.021 1 -0.080
&, -0.002  -0.080 1

Ljung-Box autocorrelation check of residuals

To Lag  Chi Square Degrees of Freedom Probability

6 4.83 4 0.305
12 9.68 10 0.469
18 13.87 16 0.609
24 16.21 22 0.805
30 22.43 28 0.761
36 26.89 34 0.802
42 31.67 40 0.824
48 41.46 46 0.663
54 43.58 52 0.791
60 47.23 58 0.843
66 48.91 64 0.919
72 50.28 70 0.964
78 54.00 76 0.974
84 56.24 82 0.987
90 59.60 88 0.991
96 70.88 94 0.964

102 72.29 100 0.983
108 73.45 106 0.993
114 76.06 112 0.996
120 80.50 118 0.997

One-month-ahead forecast equation for transformed temperature of January 2005 from
December 2004 (T =492):
7 =0.001342+ 2z, ,, +0.12777(z; —z,_,,)—0.787604; _,,.
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Table 6.-- Conditional least-squares estimates of the moving-average and autoregressive
parameters necessary to describe interannual month differences in average daily low
air temperature series (MADLTSs), and statistics of the fit.

Model: (1-B")z, = u+ 1_1012812 _a,, wherez, =In(MADLT, +20°C),t=1,2, ..., 492,
1- ¢1 B - ¢36 B

Parameter Estimate SE t statistic ~ Probability Lag

M 0.0031713 0.0023058 1.38 0.17 0

6, 0.77006 0.03211 23.98 <0.001 12

) 0.10420 0.04574 2.28 0.02 1

Py 0.14894 0.05019 2.97 <0.01 36

Correlations of Estimates

Parameter Y4 6, ) Py
M 1 -0.018 -0.003 -0.002
0, -0.018 1 -0.070 0.407

s -0.003 -0.070 1 -0.064
Pre -0.002 0.407 -0.064 1

Ljung-Box autocorrelation check of residuals

ToLag  Chi Square Degrees of Freedom Probability

6 1.84 3 0.606
12 6.62 9 0.677
18 11.12 15 0.744
24 15.46 21 0.799
30 19.53 27 0.850
36 22.74 33 0.910
42 26.82 39 0.930
48 3241 45 0.920
54 33.77 51 0.970
60 40.12 57 0.956
66 41.46 63 0.984
72 43.10 69 0.994
78 48.14 75 0.993
84 52.48 81 0.994
90 58.40 87 0.992
96 70.36 93 0.962

102 72.00 99 0.981
108 73.99 105 0.991
114 75.50 111 0.996
120 82.90 117 0.993

One-month-ahead forecast equation for transformed temperature of January 2005 from
December 2004 (T =492):
7 =0.002369 + z,_,, +0.10420(z; —z;_,,)+0.14894(z; ,, — 2;_,,) —0.770064; _,,.
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Table 7.-- Conditional least-squares estimates of the moving-average and autoregressive
parameters necessary to describe interannual month differences in average daily
midrange air temperature series (MADMTs), and statistics of the fit.

1-6,B"
Model: (1-B?)z, =u+-——2"_a, wherez, = In(MADMT, +20°C),t=1,2, ..., 492.
1-¢B
Parameter Estimate SE t statistic ~ Probability Lag
u 0.0023811 0.0015702 1.52 0.13 0
6, 0.75144 0.03035 24.76 <0.001 12
é, 0.12007 0.04557 2.63 <0.01 1

Correlations of Estimates

Parameter u 6, s
H 1 -0.024 -0.002
0, -0.024 1 -0.069
&, -0.002  -0.069 1

Ljung-Box autocorrelation check of residuals

To Lag  Chi Square Degrees of Freedom Probability

6 3.16 4 0.531
12 10.97 10 0.360
18 14.17 16 0.586
24 16.85 22 0.772
30 22.38 28 0.763
36 29.03 34 0.710
42 33.47 40 0.758
48 41.85 46 0.647
54 42.74 52 0.817
60 49.07 58 0.792
66 50.07 64 0.899
72 50.81 70 0.959
78 53.65 76 0.976
84 55.76 82 0.988
90 61.47 88 0.986
96 74.21 94 0.935

102 76.22 100 0.963
108 78.07 106 0.981
114 79.46 112 0.991
120 84.28 118 0.992

One-month-ahead forecast equation for transformed temperature of January 2005 from
December 2004 (T =492):
7 =0.002095 + z,_,, +0.12007 (z; —z;_,,)—0.751444, ,,.
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Table 11.-- Conditional least-squares estimates of the moving-average and autoregressive
parameters necessary to describe the interannual month differences in
precipitation series, and statistics of the fit.

_ 12
Model : (1 -B"” ) Z, = U+ % a,, where z, = In(precipitation, ), t=1,2,...,492.
48
Parameter Estimate SE t statistic ~ Probability Lag
M -0.0010378 0.0034992 -0.30 0.77 0
6, 0.84543 0.02590 32.64 <0.001 12
Dus -0.15140 0.04968 -3.05 0.002 48

Correlations of Estimates

Parameter MU 6, Pus

yz 1 -0.032 -0.007
0, -0.032 1 0.292

Dug -0.007 0.292 1

Ljung-Box autocorrelation check of residuals

To Lag  Chi Square Degrees of Freedom Probability

6 5.18 4 0.270
12 10.54 10 0.394
18 14.98 16 0.526
24 20.61 22 0.545
30 22.70 28 0.748
36 27.89 34 0.761
42 29.86 40 0.879
48 32.35 46 0.936
54 34.89 52 0.967
60 35.63 58 0.991
66 36.89 64 0.997
72 42.26 70 0.997
78 44.42 76 0.999
84 59.22 82 0.973
90 67.80 88 0.946
96 75.90 94 0.914

102 89.42 100 0.767
108 92.52 106 0.822
114 97.69 112 0.830
120 106.63 118 0.765

One-month-ahead forecast equation for transformed precipitation of January 2005 from
December 2004 (T =492):
7 =-0.001195+2,_,, —0.15140(z,_,, — z;_5,)— 0.845434, .
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Table 12.--Conditional least-squares estimates of the moving-average and autoregressive
parameters necessary to describe the interannual month differences in snowfall series,
and statistics of the fit.'

1-6,B’

Model : (1 - B’ ) Z, =u+ O, - a,, wherez, = ln(snowfallt +1 cm),t =12,...,287.
1-¢,B

Parameter Estimate SE t statistic ~ Probability Lag

M -0.01804 0.0090068 -2.00 <0.05 0

0, 0.90300 0.02664 33.89 <0.001 7

@, 0.13033 0.06000 2.17 0.03 2

Correlations of Estimates

Parameter MU 0, @,

yz 1 -0.018 0.014

0, -0.018 1 -0.082
@, 0.014 -0.082 1

Ljung-Box autocorrelation check of residuals

To Lag  Chi Square Degrees of Freedom Probability

6 3.23 4 0.520
12 7.88 10 0.641
18 12.33 16 0.721
24 16.77 22 0.776
30 18.93 28 0.900
36 27.22 34 0.789
42 36.18 40 0.643
48 38.35 46 0.781
54 41.38 52 0.854
60 48.08 58 0.820
66 56.27 64 0.743

One-month-ahead forecast equation for transformed snowfall of January 2005 from December
2004 (T =287):

7 =-0.015689+ 2z, , +0.13033(z,_, — z; ,)—0.903004;, .

'Time variable t values and calendar months: 1= October, 2 = November, 3 = December, 4 = January, 5 =
February, 6 = March, and 7 = April.
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Table 14.--Conditional least-squares estimates of the moving-average and autoregressive parameters necessary
to describe interannual month differences in monthly average daily sea surface temperature series
(MADSSTs), and statistics of the fit.

1 _ BIZ
Model: (1-B"?)z, =u +‘9#1 a,, where z, = In(MADSST,), t=1,2, ..., 348.
1-¢,B
Parameter Estimate SE t statistic ~ Probability Lag
M 0.0076577 0.0044221 1.73 0.08 0
6, 0.74448 0.03722 20.00 <0.001 12
) 0.61631 0.04319 14.27 <0.001 1

Correlations of Estimates

Parameter MU 6, )
yz 1 0.050 0.024
6, 0.050 1 0.031
?, 0.024 0.031 1

Ljung-Box autocorrelation check of residuals

ToLag  Chi Square Degrees of Freedom Probability

6 3.07 4 0.546
12 8.58 10 0.573
18 10.41 16 0.844
24 12.52 22 0.946
30 16.07 28 0.965
36 17.91 34 0.989
42 27.03 40 0.942
48 31.17 46 0.954
54 37.87 52 0.929
60 40.89 58 0.957
66 52.11 64 0.856
72 57.11 70 0.866
78 60.60 76 0.902
84 67.13 82 0.882

One-month-ahead forecast equation for transformed temperature of January 2005 from December 2004
(T =348):

7 =0.002938+ 2, ,, +0.61631(z, —z;_,,)—0.744484, ,,.
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Table 17.--Duration of Auke Lake ice cover, 1992-2006.

Winter Ice over Ice out Duration
(days)

1992-1993 18 Dec 23 Apr 127
1993-1994 02 Jan 11 Apr 99
1994-1995 23 Nov 25 Apr 154
1995-1996 20 Nov 21 Apr 153
1996-1997 20 Nov 25 Apr 156
1997-1998 01 Jan 31 Mar 89
1998-1999 17 Dec 05 May 157
1999-2000 17 Dec 06 Jan 13
1999-2000 08 Jan 03 Apr 85
2000-2001 14 Dec 23 Jan 40
2000-2001 15 Feb 06 Apr 50
2001-2002 27 Nov 20 Apr 113
2002-2003 29 Dec 06 Jan 8

2002-2003 10 Jan 13 Apr 70
2003-2004 26 Dec 06 Apr 102
2004-2005 27 Dec 10 Apr 106
2005-2006 04 Jan 14 Apr 101

Note: An early January breakup was followed by refreezing in 2000, 2001 and 2003.
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Figure 1. -- Auke Bay, Alaska, and vicinity.
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Figure 2a.-- Monthly averages of daily high temperature (MADHTSs) at Auke Bay Laboratory,
February 1963 through December 2004.
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February 1963 through December 2004.
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Figure 2c.-- Monthly averages of daily midrange temperature (MADMTs) at Auke Bay
Laboratory, February 1963 through December 2004.
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Figure 3.-- Statistics of annual temperature cycle at the Auke Bay Laboratory (1963-2004)
including daily extremes (lowest low and highest high [0]) and monthly extrema
(high [©], low [e] and series averages [#]) for monthly average daily high
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Figure 4.-- Annual average of monthly average high (MADHTs[m]), midrange (MADMTs[¢]),
and low (MADLTs[e]) daily air temperatures at Auke Bay Laboratory, 1963-2004.
Missing monthly values were estimated by cubic spline interpolation. Solid horizontal
lines are the overall annual means. Dashed lines are the trends.
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Figure 5.-- Sample autocorrelation function (SACF) of interannual month differences in

logarithm-transformed monthly average daily high air temperatures (MADHTSs) at
Auke Bay. The interval covering two standard errors is indicated.
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Figure 6.-- Sample partial autocorrelation function (SPACF) of interannual month differences
in logarithm-transformed monthly average daily high air temperatures (MADHTSs)
at Auke Bay. The interval covering two standard errors is indicated.
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Figure 7.-- Sample autocorrelation function (SACF) of interannual month differences in
logarithm-transformed monthly average daily low air temperatures (MADLTSs) at
Auke Bay. The interval covering two standard errors is indicated.
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Figure 8.-- Sample partial autocorrelation function (SPACF) of interannual month differences in
logarithm-transformed monthly average of daily low air temperatures (MADLTSs) at
Auke Bay. The interval covering two standard errors is indicated.
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Figure 9.-- Sample autocorrelation function (SACF) of interannual month differences in

logarithm-transformed monthly average daily midrange air temperatures (MADMTs)
at Auke Bay. The interval covering two standard errors is indicated.
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Figure 10.-- Sample partial autocorrelation function (SPACF) of interannual month differences

in logarithm-transformed monthly average daily midrange air temperatures
(MADMTs) at Auke Bay. The interval covering two standard errors is indicated.
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Figure 11a.--Total monthly precipitation at the Auke Bay Laboratory, February 1963 through
December 2004.
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Figure 11b.--Monthly snowfall at the Auke Bay Laboratory, February 1963 through December
2004.
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Figure 12.-- Statistics of annual precipitation cycle at Auke Bay Laboratory (1963-2004) from
monthly precipitation (cm) (maximum|[ o], mean [4], and minimum [e]) for total
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Figure 13.-- Annual total precipitation (cm) at Auke Bay, 1964-2004. Missing monthly values
were estimated by cubic spline interpolation. Slope of the trend line was not

significant (P = 0.20). Solid horizontal line is the overall mean, and the dashed line
is the trend.
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Figure 14.-- Sample autocorrelation function (SACF) of interannual month differences in

logarithm-transformed precipitation at Auke Bay. The interval covering two
standard errors is indicated.
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Figure 15.-- Sample partial autocorrelation function (SPACF) of interannual month differences

in logarithm-transformed precipitation at Auke Bay. The interval covering two
standard errors is indicated.
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Figure 16.-- Annual total snowfall (cm) at Auke Bay, 1964-2004. Missing monthly values were
estimated by cubic spline interpolation. Solid line is the overall annual mean, and
the dashed line is the trend.
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errors is indicated.
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Figure 18.-- Sample partial autocorrelation function (SPACF) of interannual month differences
in logarithm-transformed snowfall at Auke Bay. The interval covering two standard
errors is indicated.
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Figure 19.-- Monthly averages of daily sea surface temperatures (MADSSTs) at Auke Bay
Laboratory, February 1975 through December 2004.
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Figure 20.-- Annual average of monthly average daily sea surface temperatures (MADSSTs) at

Auke Bay, Alaska, 1976-2004. The solid line is the overall annual mean, and the
dashed line is the trend.
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Figure 21.-- Sample autocorrelation function (SACF) of interannual month differences in
logarithm-transformed monthly average daily sea surface temperatures (MADSSTs)
at Auke Bay. The interval covering two standard errors is indicated.
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Figure 22.-- Sample partial autocorrelation function (SPACF) of interannual month differences

in logarithm-transformed monthly average daily sea surface temperatures
(MADSSTs) at Auke Bay. The interval covering two standard errors is indicated.
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Figure 23.--Average of daily Auke Creek stream temperatures (°C), 1962-2005 (Taylor 2006).
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Figure 24.--Average annual temperature of Auke Creek and the trend line over all years.
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Figure 25.-- Winter ice cover duration for Auke Lake and the trend line for 1992-2005.
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Figure 26.-- Ice breakup dates of Auke Lake and the trend line for 1960-2005.
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