Los Alamos National 
LaboratoryGo to 
the Lab's 
home pageSearch for people 
in the 
Lab's directorySearch the Laboratory's Web site
 News and Public Affairs  News Releases
Site MapNewsJobsMapsLibrarySearch
   News Releases
 

by Subject
by Organization
by Year

  Publications
  Press Kit
  Other News Sources
  Contacts
     

Exploring the noisy nature of atoms

Contact: Todd Hanson, tahanson@lanl.gov, (505) 665-2085 (04-074)


    

Recent News

* Los Alamos scientist named Asian American Engineer of the Year

* Los Alamos scientist featured in NASA science update

* Los Alamos muon detector could thwart nuclear smugglers

* Wojciech H. Zurek named Phi Beta Kappa visiting scholar

* Four Los Alamos physicists honored by American Physical Society

* Los Alamos National Laboratory organizations earn seven out of 13 NNSA Pollution Prevention awards

* Carter Hydrick returns to the Bradbury Science Museum Feb. 15

* Laboratory supports summer science program

* New NASA IBEX mission to carry Los Alamos instrument

* Beason takes top threat reduction post at Los Alamos

LOS ALAMOS, N.M., Sept. 2, 2004 -- University of California scientists working at Los Alamos National Laboratory have demonstrated a way to use the random fluctuations that exist naturally in all magnetic systems to perform magnetic resonance studies without disturbing the system's natural state.

Conventional magnetic resonance techniques, such as those used in magnetic resonance imaging (MRI) machines, require the excitation and absorption of specific radio-frequency waves by atoms in a magnetic field. These absorption patterns can be used to reveal molecular and magnetic structure. The find could pave the way for perturbation-free magnetic resonance imaging techniques that are useful in fields like nanotechnology and quantum information science where systems containing only a few atoms are becoming commonplace and their associated magnetic fluctuations play an increasingly dominant role.

In research reported in today's issue of the scientific journal Nature , Los Alamos scientists Scott Crooker, Dwight Rickel, Alexander Balatsky and Darryl Smith explain how seemingly random fluctuations in an ensemble of magnetic spins -- called spin noise -- can actually be exploited to perform detailed magnetic resonance, without disturbing the spins from a state of thermal equilibrium. Using a laser technique known as Faraday rotation, the scientists measured the spectrum of spin noise in vapors of magnetic rubidium and potassium atoms. The noise spectrum alone revealed the complete magnetic structure of the atoms.

According to Greg Boebinger, director of the National High Magnetic Field Laboratory (NHMFL), "this work is especially important because a s devices shrink in size to the nanoscale regime, fewer atoms and spins dominate the device behavior and noise processes become more prominent. By drawing on the fluctuation-dissipation theorem, the work at Los Alamos firmly establishes the idea that one scienti st's noise is another scientist' s signal."

This work, performed at the National High Magnetic Field Laboratory facility at Los Alamos, provides a demonstration of the physical relationship known as the "fluctuation-dissipation theorem," which proposes that it is possible to "listen" very carefully to the tiny, intrinsic thermal or quantum-mechanical fluctuations of a physical system. Those fluctuations reveal a number of the properties of that system without having to disturb it from its natural resting state. Typically, in devices like MRI systems, an electromagnetic source must be used to "perturb" the spins of atoms so that they resonate in synchrony at radio frequencies, which are then recorded to create MRI scans.

Alex Lacerda, director of the NHMFL Pulsed Field Facility, said, "this work represents the vital importance of Los Alamos' scientific environment. The collaboration between the NHMFL and the Theoretical Division's Condensed Matter and Statistical Physics group takes full advantage of our scientific talents across the Laboratory."

Los Alamos National Laboratory is one of three campuses of the NHMFL, with the other two at Florida State University, Tallahassee (which sponsors research in continuous magnetic fields and serves as the NHMFL's general headquarters) and the University of Florida, Gainesville (which focuses on ultra-low temperatures at high magnetic fields). The NHMFL is sponsored primarily by the National Science Foundation, Division of Materials Research, with additional support from the state of Florida and the U.S. Department of Energy.

The Los Alamos Laboratory-Directed Research and Development (LDRD) program was a primary sponsor for the spin noise research. LDRD funds basic and applied research and development focusing on employee-initiated creative proposals selected at the discretion of the Laboratory director.

Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy and works in partnership with NNSA's Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos enhances global security by ensuring the safety and reliability of the U.S. nuclear deterrent, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to defense, energy, environment, infrastructure, health and national security concerns.


Additional news releases related to Materials Science

Additional news releases from the Materials Science and Technology (MST) Division

       
       
 Los Alamos National Laboratory
Operated by the Los Alamos National Security, LLC for the U.S. Department of Energy's
NNSA   
Inside
| © Copyright 2007-8 Los Alamos National Security, LLC All rights reserved | Disclaimer/Privacy

Last Modified: Monday, 28-Feb-2005 12:39:02 MST
www-news@lanl.gov