The ToxGuide TM is developed to be used as a pocket guide. Tear off at perforation and fold along lines.				
Sources of Exposure	Toxicokinetics and Normal Human Levels	Biomarkers/Environmental Levels	$ToxGuide^{TM}$	
 General Populations Exposure to 1,3-DCP may occur by inhalation of contaminated air, ingestion of contaminated water, or by touching contaminated soil. These levels may be higher near hazardous waste sites. 1,1-, 1,2-, 2,3-, and 3,3-DCP are not commonly detected in air, surface water, ground water, drinking water, soil, or food. People who live near facilities that produce or use 2,3-DCP may be exposed to higher levels of this chemical. 	 Toxicokinetics 1,3-DCP vapors are readily absorbed through the lungs in humans. Over 70% absorption was estimated in volunteers. 1,3-DCP vapor is absorbed through the skin (2–5% of inhalation). There are no data about oral absorption on any isomer. There are no data on tissue distribution of DCP isomers in humans. In humans, 1,3- and 2,3-DCP are conjugated with glutathione and excreted in urine as N-acetyl-cysteine conjugates. 	 Biomarkers The N-acetyl cysteine conjugate of 1,3-DCP in urine correlated well with exposure levels in workers. For single exposures, test must be conducted within 2 days of exposure because the metabolite is eliminated quickly. Environmental Levels 1,1-, 1,2-, 2,3-, and 3.3-DCP are not commonly found at measurable concentrations in air water, or soil samples. <i>Air</i> 	for Dichloropropenes $C_3H_4Cl_2$ CAS# 26952-23-8 September 2006	
 Occupational Populations Workers involved in the production or use of 1,3-DCP as a pesticide. Workers involved in the manufacture or use of 2,3-DCP to make other chemicals. Workers involved in the manufacture of 1,1-, 1,2-, or 3,3-DCP, although only very small amounts of these chemicals are produced. 	 Depletion of glutathione may result in formation of toxic metabolites. There are no <i>in vivo</i> data on the metabolism or elimination of 1,1-, 1,2, or 3,3-DCP in humans or animals. DCPs do not accumulate in the body. Normal Human Levels No data were located. 	 1,3-DCP was detected in <5% of urban air samples. The mean concentration in urban and rural air samples was 0.088 to 0.33 ppb. Sediment and Soil 1,3-DCP is not commonly found at measurable quantities in soil or sediment samples. Water 1,3-DCP levels only exceed the quantitation limit in 6% of water sample; the mean concentration was 0.5 ppb. Reference Agency for Toxic Substances and Disease Registry (ATSDR). 2006. Toxicological Profile for Dichloropropenes (Draft for Public Comment). Atlanta, GA: U.S. Department of Health and Human Services, Public Health Services. 	U.S. Department of Health and Human Services Public Health Service Agency for Toxic Substances and Disease Registry. www.atsdr.cdc.gov Contact Information: Division of Toxicology and Environmental Medicine Applied Toxicology Branch 1600 Clifton Road NE, F-32 Atlanta, GA 30333 1-800-CDC-INFO 1-800-232-4636 www.atsdr.cdc.gov/toxpro2.html	

Chemical and Physical Information	Routes of Exposure	Relevance to Public Health (Health Effects)	
 Dichloropropenes are liquids Dichloropropenes (DCP) are synthetic chemicals. There are five DCP isomers based on the position of the chlorine atoms in the three-carbon chain: 1,1-DCP, 1,2-DCP, 1,3-DCP, 2,3-DCP, and 3,3-DCP. 1 3-DCP is a colorless liquid with a sweet 	 Inhalation – Predominant route of exposure to 1,3-DCP for the general population. Also, important route of exposure for workers who manufacture 1,3-DCP or 2,3-DCP, or use 1,3-DCP for farming. Oral – Potential route of exposure at or near waste sites via ingestion of contaminated media. 	Health effects are determined by the dose (how much), the duration (how long), and the route of exposure. Minimal Risk Levels (MRLs) Inhalation	 No acute-, intermediate-, or chronic- duration oral MRLs were derived for 1,1-, 1,2-, 2,3-, or 3,3-DCP. Health Effects High concentration of 1,3-DCP in the air cause respiratory irritation, chest pain, and cough.
 smell. It dissolves in water and evaporates easily. 1,2- and 2,3-DCP dissolve in water and all isomers dissolve in organic solvents. 	 Dermal – Skin contact may occur during manufacture or use of these substances or by touching contaminated media near waste sites. 	 No acute-duration inhalation MRL was derived for 1,3-DCP. An MRL of 0.008 ppm has been derived for intermediate-duration inhalation exposure (15–364 days) to 1,3-DCP. 	 Ingestion of high concentrations of 1,3-DCP causes severe stomach damage. Skin contact with pesticides containing 1,3-DCP has produced contact dermatitis and blisters in workers, and an allergic reaction on the skin. Dogs that ingested 1,3-DCP developed microcytic anemia. Based on inadequate data in humans and sufficient evidence in animals, the EPA considers that 1,3-DCP is a probable human carcinogen. Other isomers have not been classified. DHHS has determined that 1,3-DCP may reasonably be anticipated to be a carcinogen. Children's Health It is not known whether children are more susceptible to DCPs poisoning than adults. Children exposed to DCPs would
 1,3-DCP is used mainly in farming as soil fumigant for parasitic nematodes. 2,3-DCP is used as a chemical intermediate. No uses were found for 1,1-, 1,2-, or 3,3-DCP. 	Dichloropropenes in the Environment 1 ,3-DCP in soil and water may undergo	 An MRL of 0.007 ppm has been derived for chronic-duration inhalation exposure (≥1 year) to 1,3-DCP. An MRL of 0.002 ppm has been derived 	
	 hydrolysis and be broken down by microorganisms. 1,3-DCP that volatizes to the atmosphere is degraded by photooxidation or by reaction with ozone. 	 for acute-duration inhalation exposure (≤14 days) to 2,3-DCP. No intermediate- or chronic-duration inhalation MRLs were derived for 2,3-DCP. 	
	 The half-life of 1,3-DCP in air ranges between 7 and 50 hours. Some 1,3-DCP in air may be washed down onto the ground lakes or streams 	 No inhalation MRLs were derived for 1,1-, 1,2-, or 3,3-DCP for any exposure duration. Oral 	
	 by rain. Some 1,3-DCP in soil may travel through the soil and reach groundwater. Other DCP isomers are expected to 	 No acute-duration oral MRL was derived for 1,3-DCP. An MRL of 0.04 mg/kg/day has been derived for intermediate-duration oral 	

behave similarly to 1,3-DCP in the

available.

environment, but specific data are not

exposure (\leq 14 days) to 1,3-DCP.

 An MRL of 0.03 mg/kg/day has been derived for chronic-duration oral exposure (≥1 year) to 1,3-DCP. Children exposed to DCPs would probably experience the same effects as adults.