Los Alamos National 
LaboratoryGo to 
the Lab's 
home pageSearch for people 
in the 
Lab's directorySearch the Laboratory's Web site
 News and Public Affairs  News Releases
Site MapNewsJobsMapsLibrarySearch
   News Releases
 

by Subject
by Organization
by Year

  Publications
  Press Kit
  Other News Sources
  Contacts
     

Mapping the evolution of a virus

Contact: Todd Hanson, tahanson@lanl.gov, (505) 665-2085 (04-069)


    

Recent News

* Los Alamos scientist named Asian American Engineer of the Year

* Los Alamos scientist featured in NASA science update

* Los Alamos muon detector could thwart nuclear smugglers

* Wojciech H. Zurek named Phi Beta Kappa visiting scholar

* Four Los Alamos physicists honored by American Physical Society

* Los Alamos National Laboratory organizations earn seven out of 13 NNSA Pollution Prevention awards

* Carter Hydrick returns to the Bradbury Science Museum Feb. 15

* Laboratory supports summer science program

* New NASA IBEX mission to carry Los Alamos instrument

* Beason takes top threat reduction post at Los Alamos

LOS ALAMOS, N.M., July 16, 2004 -- A University of California scientist working at Los Alamos National Laboratory with collaborators from the University of Cambridge (England) and the World Health Organization National Influenza Center at Erasmus Medical Center, (Rotterdam, Netherlands) have developed a computer modeling method for mapping the evolution of the influenza virus. The method could soon help medical researchers worldwide develop a better understanding of certain mutations in influenza and other viruses that allow diseases to dodge the human immune system.

In a paper published in today's edition of the journal Science, the team of scientists from the United States and Europe describe their work quantifying and visualizing the antigenic and genetic evolution of the influenza A (H3N2) virus from its initial introduction into humans in 1968 up to 2003. The study resulted in a map that shows the virus evolved as a series of 11 closely related virus clusters as it has sought to elude human immunity over the decades.

The mapping method will allow researchers involved in vaccine development and viral surveillance programs for influenza, and potentially for other pathogens such as Hepatitis C and HIV as well, to quantify and visualize the evolution of these viruses. It can assist in monitoring antigenic differences among vaccine and circulating viral strains, and can help in quantifying the effects of vaccination. The approach also offers a route for predicting the relative infection success of emerging virus strains.

According to Los Alamos computational biologist Alan Lapedes, "This collaboration was particularly exciting because it involved close interaction between experts in computation and virology and medicine. Once we had created the map, we tested its reliability by making hundreds of predictions of how well certain strains might match up and then conducting laboratory tests to check the predictions. It's very gratifying that this basic research also has practical application to an important human pathogen, influenza."

Experts estimate that influenza epidemics cause an estimated 500,000 human deaths worldwide each year. Although antibodies provide protective immunity to influenza virus infection, the antigenic structure of proteins that stimulate immune responses changes significantly over time, a process known as antigenic drift, so in most years the influenza vaccine has to be updated to ensure sufficient efficacy against newly emerging variants.

In addition to Lapedes, the team members included Derek Smith from the University of Cambridge, and Ron Fouchi and his colleagues Jan de Jong, Theo Bestebroer, Guus Rimmelzwaan and Albert Osterhaus from National Influenza Center at Erasmus Medical Center.

Funding for the Los Alamos portion of the research was provided by the Los Alamos Laboratory-Directed Research and Development (LDRD) program. LDRD funds basic and applied research and development focusing on employee-initiated creative proposals selected at the discretion of the Laboratory director.

Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy and works in partnership with NNSA's Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos enhances global security by ensuring the safety and reliability of the U.S. nuclear deterrent, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to defense, energy, environment, infrastructure, health and national security concerns.


Additional news releases related to Computing/Information Science

Additional news releases from the Theoretical (T) Division

       
       
 Los Alamos National Laboratory
Operated by the Los Alamos National Security, LLC for the U.S. Department of Energy's
NNSA   
Inside
| © Copyright 2007-8 Los Alamos National Security, LLC All rights reserved | Disclaimer/Privacy

Last Modified: Monday, 28-Feb-2005 12:39:02 MST
www-news@lanl.gov