

REDUCING NO_X AND LOI AT THE ST. JOHNS RIVER POWER PARK

Richard Conn Joel Vatsky Advanced Burner Technologies Corporation

Robert L. Branning St. Johns River Power Park

2003 Conference on Unburned Carbon on Utility Fly Ash, October 28, 2003 Marriott City Center Hotel Pittsburgh, PA

1

2003 UBC 10/28/03

Introduction

- Description of ABT Opti-Flow[™] Fuel Injector
- CFD Modeling
- Post-Retrofit Results
- Summary

St. Johns 1 and 2: 670 MW Opposed-Fired

Hard to burn 20% petcoke/ Fuel: 80% Colombian coal blend **Requirements:** NO_x guarantee: $0.40 \text{ lb}/10^6 \text{ Btu}$ (Current limit is 0.5) **>>** <200 ppm CO: **>>** » LOI: <Baseline » Flame stability: Improved turndown Unit 2 – 8 Mark I low NO, fuel injectors* **Combustion Modifications:** Unit 1 – 28 Mark II low NO_x fuel injectors^{*} * Existing dual registers re-used with modifications Windbox/SA duct modifications Unit 2 – March 2002 Installation Completed: Unit 1 – March 2003

Fuel Blend Analyses

	Coke	Coal	20/80 Blend
Proximate Analysis (wt%, ar)			
Fixed Carbon	83.92	47.60	54.87
Volatile Matter	8.50	33.40	28.42 1.93 FC/VM
Ash	0.52	7.40	6.02
Moisture	7.06	11.60	10.69
Ultimate Analysis (wt%, ar)	in the second		
Carbon	82.22	66.54	69.67
Hydrogen	3.35	4.50	4.28
Oxygen	0.00	7.99	6.40
Nitrogen	1.71	1.32	1.40 1.14 lb/10 ⁶
Sulfur	5.14	0.65	1.54
HHV, Btu/lb	14,200	11,800	12,280

TGA Burning Profiles of Fuels

St Johns Firing Configuration

St. Johns Pre-Retrofit Conditions:

Normal Operation with D-Mill Out of Service

	<u>Unit 1</u>	<u>Unit 2</u>	
NO _x , Ib/10 ⁶ Btu	0.46	0.46	
CO, ppm	250 - 300	>500	
LOI, %	25 – 30	30 - 40	

- SA maldistribution: Very high air flow to D-Mill row
- Turndown: Limited to 30% with one mill out of service
- Sidewall corrosion: Localized reducing conditions
- Slagging: Upper furnace slag falls damaged hopper

- 1. Minimize burner-to-burner stoichiometry imbalance by:
 - » Minimizing imbalances between coal pipes
 - » Equalizing secondary air distribution to burners
- 2. Maintain good coal fineness for the specific fuel blend
- 3. Prevent coal roping leaving the burner nozzle
- 4. Burner must attain a stable, bright flame commencing in the throat.

OPTI-FLOW™ FUEL INJECTOR

- 1. Burner Stoichiometry Control:
 - » Coal pipes not balanced (Evaluate results and balance coal pipes if needed)
 - » Secondary air balance via windbox/SA duct modifications
- 2. Guarantees based on as-found coal fineness
- 3. Fuel injector coal ropes eliminated with ABT de-spin assembly in scroll
- Opti-Flow[™] fuel injector develops stable flame in all burner throats

Combustion System Scope of Supply

• Low NO_x Fuel Injectors

- » Unit 2: 8 Mark I fuel injectors (front bottom row/rear top row)
- » Unit 1: 28 Mark II fuel injectors (complete retrofit)
- Windbox Modifications (Units 1 and 2)
 - » Secondary air duct turning vanes
 - » Windbox perforated plates and splitter vanes
- Anti-Corrosion Ports (Unit 1)
- System Models
 - » SA duct/burner windbox (subcontracted to Airflow Sciences)

11

» Furnace (subcontracted to ASC)

- "Plug-in" assembly with *existing register used*
- New secondary air flow dividers
- Existing coal feed scrolls modified to include ABT's despin assembly
- New inner secondary air zone damper for Mark II fuel injector (Unit 1)
- Fixed vane swirler for the inner air zone of Mark II fuel injector
- Fixed inner barrel with cast tip for Mark II fuel injector

ADVANCED BURNER TECHNOLOGIES ABT Mark II Fuel Injector for St. Johns

St. Johns Unit 1 Burner Front

St. Johns 1 Fuel Injector Tip

- Circular ports with baffles placed at top burner elevations next to sidewalls within existing windboxes.
- Ports provide a blanket of oxygen along the sidewalls to minimize corrosion from high sulfur fuels.
- Air flow to ACP's controlled by individual sleeve dampers

CFD MODELING RESULTS

• Burner Secondary Air Flow: Correct maldistribution

- » Secondary air ducts
- » Front and rear windboxes

• Furnace Model: ACP location and LFA modifications

- » CO distribution
- » O₂ distribution
- » H₂S distribution
- » Temperature

St. Johns Existing Windboxes Schematic

CFD Model of St. Johns Front Windbox

Baseline Air Velocity Distribution

Air Velocity Distribution with Design Modifications

CFD Model of St. Johns Rear Windbox

Furnace Model of Sidewall in Corrosion Region:

O₂ Concentration

Sidewall without ABT Anti-Corrosion System

Sidewall with ABT Anti-Corrosion System

POST-RETROFIT RESULTS

- Moderate NO_x reduction of approximately 10% for normal operation with only two rows of new ABT fuel injectors
- Significant reduction in CO emissions to less than 100 ppm.
- Reduction in fly ash LOI of approximately 50%
- Improved SA flow distribution allows lower excess air operation (2.5 vs. 3.0%)
- Efficiency improvement of approximately 1% results in annual fuel savings of \$600,000

St. Johns Unit 2 NO_x Emissions: Post vs. Pre-Retrofit

Mill Out of Service

St. Johns Unit 2 CO Emissions:

Post vs. Pre-Retrofit

2003 UBC 10/28/03

St. Johns Unit 2 NO_x and CO: Post-Retrofit Colombian vs. Domestic Blend

St. Johns Unit 2 Fly Ash LOI: Post vs. Pre-Retrofit with D-Mill Out of Service

- Average NO_x reduction > 20% achieved for all mill configurations. Guarantee of 0.4 lb/10⁶ Btu met.
- Significant reduction in CO emissions to less than 10 ppm for normal operation with D-Mill out of service
- Fly ash LOI reduced from 30 to 40% range to 15 to 20% range. Lower reduction achieved compared to Unit 2 due to poor mill performance
- Improved flame stability and burner turndown

St. Johns Unit 1 NO_x Emissions: Post vs. Pre-Retrofit

St. Johns Unit 1 CO Emissions: Post vs. Pre-Retrofit

St. Johns Unit 1 Fly Ash LOI: Post vs. Pre-Retrofit

- Only 30% turndown to 475 MW could be achieved with the existing OEM burners and one mill out of service
- Turndown to 380 MW has been achieved with the ABT fuel injectors with only one mill out of service
- Improved turndown requires fewer mills taken out of service when dropping load – reducing oil consumption if these mills had to be put back online for unit ramp up.

OEM Fuel Injector: Unit 2 660 MW

- For St. Johns Unit 1, a complete retrofit of ABT's fuel injectors has achieved the NO_x guarantee of 0.40 lb/10⁶ Btu *while reducing CO and LOI*. Almost all mill configurations can now be used to achieve the NO_x limit of 0.5 lb/10⁶ instead of D-Mill only out of service.
- St. Johns Unit 2 has been partially retrofitted with ABT fuel injectors. In the Spring of 2004 a complete fuel injector retrofit and OFA system will be installed.
- CO emissions have been reduced to less than 100 ppm for both units.

- LOI has been reduced by 50% for Unit 2 and 35% for Unit 1
- For Unit 1, improved flame stability has resulted in better turndown with a complete retrofit of ABT fuel injectors
- For Unit 1 furnace ACP's have been effective in greatly reducing sidewall CO concentrations as shown by gas measurements (<500 ppm).
- ABT has been the first to demonstrate co-firing petroleum coke in an advanced low NO_x burner to minimize NO_x, CO and LOI and attain a 2:1 turndown.