Bay Area Air Quality Management District Risk Screening Assessment, A# 5776 Pleasanton Surgical Center, P# 14649 February 27, 2003

This document describes the basis for the health risk screening assessment prepared for Pleasanton Surgical Center located at 1393 Santa Rita Road in Pleasanton, California. Pleasanton Surgical Center installed this diesel generator in June 2002. The BAAQMD, as a routine part of the evaluation of a permit application, prepared this screening risk assessment.

Particulates from diesel engine exhaust, a toxic air contaminant (TAC) and a carcinogen, will be emitted during the operation of the engine. BAAQMD staff evaluated the possible impact of the diesel exhaust particulate emissions that will occur during routine operation of the diesel engine. The diesel exhaust particulate impact is expressed in terms of the increased risk of contracting cancer by individuals who live or work near the proposed engine.

The estimated increase in diesel exhaust particulate emissions that can be expected from this source is 2.29 pounds per year. Ambient air concentrations of diesel exhaust particulate were predicted using the ISCST3 air dispersion computer model. This model uses information about the facility and the emission rate of diesel exhaust particulates to estimate concentrations of TACs expected in the air at various locations around the site. The estimated concentrations of diesel exhaust particulate are used to calculate the possible cancer risks that might be expected to arise from this exposure.

These potential cancer risks were calculated using standard risk assessment methodology. For residents, it was assumed that exposure would be continuous for 24 hours per day, 7 days per week for 70-years. For students, exposure was assumed to occur 36 weeks per year over a 9-year period. Students were also assumed to have a higher breathing rate than residents. The cancer risks are based in part on the "best estimates" of plausible cancer potencies as determined by the California Office of Environmental Health Hazard Assessment (OEHHA). The actual cancer risk, which cannot be determined, may approach zero. This type of analysis is considered to be health-protective.

The potential for noncancer health effects is evaluated by comparing the long-term exposure level to a Reference Exposure Level (REL). A REL is a concentration level at or below which no adverse health effects are anticipated. RELs are designed to protect sensitive individuals within the population. Comparisons to RELs are made by determining the hazard index, which is the ratio of the estimated exposure level to the REL.

The proposed operation of the diesel engine would result in an increased maximum cancer risk of 1.32 chances in a million, and a hazard index of 0.0009 for residences near the facility. For students who attend Amador Valley High School, the increased maximum cancer risk is 0.10 chances in a million, and the hazard index is 0.0004. These health risk values, presented in the table below, meet the criteria for acceptable levels established in the BAAQMD's Risk Management Policy.

Health Risk Results		
Receptor	Increased Maximum Cancer Risk	Hazard Index
Residents	1.32 chances in a million	0.0009
Students at Amador Valley High School	0.10 chances in a million	0.0004

School address: Amador Valley High School

1155 Santa Rita Road Pleasanton, CA 94566