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Abstract

We consider a quantum corrected inflation scenario driven by a generic
GUT or Standard Model type particle model whose scalar field playing
the role of an inflaton has a strong non-minimal coupling to gravity. We
show that currently widely accepted bounds on the Higgs mass falsify
the suggestion of the paper arXiv:0710.3755 (where the role of radiative
corrections was underestimated) that the Standard Model Higgs boson
can serve as the inflaton. However, if the Higgs mass could be raised
to ∼ 230 GeV, then the Standard Model could generate an inflationary
scenario with the spectral index of the primordial perturbation spectrum
ns ≃ 0.935 (barely matching present observational data) and the very low
tensor-to-scalar perturbation ratio r ≃ 0.0006.

1 Introduction

This is a challenging task to understand the nature of a fundamental particle
physics model that underlies the inflationary scenario of the early Universe
[1, 2, 3, 4, 5, 6] leading to generation of scalar [7, 8, 9, 10, 11] and tensor [12]
perturbations, the former leading to the formation of observable structure of the
Universe. Early attempts to model inflation in terms of a self-interaction Higgs-
like scalar field ϕ minimally coupled to gravity faced the necessity to assume
an extremely small coupling constant λ ∼ 10−13 of its quartic self-interaction
λϕ4/4 – a natural candidate for the inflaton potential motivated by particle
phenomenology [6]. Initially this situation was considered very unfavorable from
the viewpoint of post-inflationary reheating, whereas now this simple model is
actually ruled out by the present observational data, see e.g. [13].

It was also observed long ago that the problem of small λ can be circum-
vented by adding to the Einstein term in the action the non-minimal coupling
term ξϕ2R/2 with a very large coupling constant ξ, because in this case the CMB
anisotropy ∆T/T ∼ 10−5 is given by the ratio

√
λ/ξ [14, 15, 16, 17]. Therefore,

such smallness of ∆T/T can be obtained even for λ close to unity (but still
small enough to justify perturbative expansion in λ) if ξ is taken very large.

∗To the memory of John Archibald Wheeler.
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This model was considered from the viewpoint of quantum cosmology with the
tunneling cosmological wave function in [18, 19, 20], where it was shown that
quantum effects of matter fields are crucial both for the formation of the initial
conditions for inflation [18] and its dynamics [19]. Since inflation may well be
related to the GUT scale of particle physics, in [18, 19] the matter content of
the model was taken to be of a generic GUT type with the inflaton belonging
to the scalar multiplet of the GUT theory.

Recently it was advocated that in fact this non-minimally coupled inflaton
can be the Higgs boson of the Standard Model (SM), and no new particles be-
sides already present in the electroweak theory are required to produce inflation
with cosmological perturbations in accordance with the CMB data [21]. This
conclusion was achieved within a tree-level approximation of this theory, be-
cause its radiative corrections were claimed to be strongly suppressed by a large
value of the non-minimal coupling constant ξ.

The purpose of this paper is to show that this conclusion of [21] is erroneous
– radiative corrections are actually enhanced by a large ξ. They strongly affect
the inflationary dynamics of the Universe in a controllable way, and therefore
can be probed by current and future CMB observations and LHC experiments
testing SM. In particular, we will show that with a widely accepted upper bound
on the Higgs mass, mH ≃ 180 GeV [23], the model of [21] is falsified, but with
mH ≥ 230 GeV the SM Higgs can drive inflation scenario with a low spectral
index ns ≥ 0.935 and a very low tensor-to-scalar perturbation ratio r ≃ 0.0006.

We consider the cosmological model with the classical Lagrangian density

L(gµν , ϕ, χ,Aµ, ψ) =

(

m2
P

16π
+

1

2
ξϕ2

)

R− 1

2
(∇ϕ)2 − λ

4
(ϕ2 − ν2)2

−1

2

∑

χ

(∇χ)2 − 1

4

∑

A

F 2
µν(A) −

∑

ψ

ψ̄∇̂ψ

+Lint(ϕ, χ,Aµ, ψ) (1)

containing the graviton-inflaton sector with a big non-minimal coupling con-
stant1 ξ ≫ 1, and a generic GUT or SM sector of Higgs χ, vector gauge Aµ and
spinor fields ψ coupled to the inflaton ϕ via the interaction term

Lint = −
∑

χ

λχ
2
χ2ϕ2 −

∑

A

1

2
g2
AA

2
µϕ

2 −
∑

ψ

fψϕψ̄ψ + derivative coupling, (2)

whose structure is dictated by the local gauge invariance. In (1) the inflaton ϕ
can be regarded generically as a component of one of the scalar multiplets, which
has a non-vanishing expectation value in the cosmological quantum state. After
inflation it settles in the minimum of its potential at the symmetry breaking
scale ϕ = ν. This scale is small enough, ν2 ≪ M2

P /ξ, so that at present
the gravitational interaction is mediated by the effective Planck mass squared
M2

eff(ν) = M2
P + ξν2 ≃ M2

P , MP ≡ mP /
√

8π = 2.4 × 1018 GeV, and large
enough to generate the mass of the ϕ-particle, m2

ϕ = 2λν2, which renders its
interaction short-ranged and not violating stringent bounds from Solar system
tests of gravity.

1For our choice of signs, the case of the conformally invariant massless scalar field corre-
sponds to the coupling ξ = −1/6.
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The paper is organized as follows. In Sec. 2 we present the quantum effective
action for the model (1- 2), previously obtained in [19], and show that the
contribution from its radiative corrections was underestimated in [21]. In Sec.
3 we investigate how the inflation dynamics of the model is modified by these
radiative corrections. In Sec. 4 power spectra of primordial scalar and tensor
perturbations are presented and compared with the recent WMAP bounds.
It follows that the present observational data put strong constraints on the
parameters of the model. In Sec. 5 we show that the Standard Model within the
accepted range of the Higgs mass does not satisfy these constraints, but it can fit
the CMB data for mH ≥ 230 GeV. We finish in Sec. 6 with a general conclusion
that the fate of the model may be resolved by LHC tests of electroweak theory,
and if nevertheless proved to be viable, this model predicts a very small ratio
of tensor to scalar primordial perturbation 0.0006 < r < 0.001.

2 Effective action

The quantum effective action for the model (1) was calculated in [19]. For
a large and slowly varying mean scalar field ϕ and a large ξ, this calculation
is facilitated by the number of properties. Firstly, the non-minimal coupling
efficiently implies the replacement of the original Planck mass parameter by
M2

eff(ϕ) = M2
P + ξϕ2 ≫M2

P . This means that the contribution of the graviton
and inflaton quantum loops is essentially suppressed by powers of 1/M2

eff ∼
1/ξϕ2 [24, 19], and the main contribution comes from quantum loops of matter
sector of the model (1) – scalar fields χ, vector bosons Aµ and spinor fields ψ.

Secondly, due to the Higgs mechanism on the background of ϕ, all these
fields acquire large masses, m(ϕ) ∼ ϕ, following from the non-derivative part of
the interaction Lagrangian (2):

m2
χ = λχ ϕ

2, m2
A = g2

A ϕ
2, m2

ψ = f2
ψ ϕ

2. (3)

The scale of these masses are much larger than the characteristic scale of the
spacetime curvature R ∼ λ(ϕ2 − ν2)2/12M2

eff ∼ λϕ2/ξ ≪ ϕ2, and therefore the
quantum effective action can be found as a local 1/m2-expansion in powers of
the curvature, its gradients and the gradients of the background scalar field ∇ϕ.
In the approximation linear in R(gµν) and (∇ϕ)2, the answer reads [19]

S[gµν , ϕ] =

∫

d4x g1/2

(

−V (ϕ) + U(ϕ)R(gµν) −
1

2
G(ϕ) (∇ϕ)2

)

, (4)

where the coefficient functions V (ϕ), U(ϕ) andG(ϕ) together with their classical
parts contain one-loop radiative corrections of the form

V (ϕ) =
λ

4
(ϕ2 − ν2)2 +

λϕ4

128π2

(

A ln
ϕ2

µ2
+ B

)

, (5)

U(ϕ) =
1

2
(M2

P + ξϕ2) +
ϕ2

384π2

(

C ln
ϕ2

µ2
+ D

)

, (6)

G(ϕ) = 1 +
1

192π2

(

F ln
ϕ2

µ2
+ E

)

. (7)
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Here A is the following combination of Higgs, vector gauge boson and
Yukawa coupling constants of the GUT-inflaton interaction Lagrangian (2)

A =
2

λ





∑

χ

λ2
χ + 3

∑

A

g4
A − 4

∑

ψ

f4
ψ



 . (8)

B, C, D, E and F are other five combinations of the powers of these constants
and their logarithms [22, 9, 19], whose specific form will be inessential in what
follows2, and µ2 is a normalization point. On the contrary, the constant (8) is
very important because, as we will see, its effect is enhanced due to multiplica-
tion by ξ ≫ 1. This constant determines the anomalous scaling behavior of the
theory, or its local conformal anomaly. In fact it arises as a coefficient of ϕ4 in
the sum of quartic powers of particle masses

1

64π2
tr
∑

particles

(±1)m4(ϕ) =
λϕ4

128π2
A, (9)

where summation takes into account boson/fermion statistics and the trace is
taken over spin-tensor indices.3 For ξ ≫ 1 this quantity gives a dominant
contribution to the spacetime integrand of the one-loop ζ-function of the theory
(subdominant contributions are suppressed by powers of the curvature to mass
squared ratio ∼ 1/ξ) and also determines the coefficient of the logarithmic
Coleman-Weinberg potential in (5)

tr
∑

particles

(±1)
m4(ϕ)

64π2
ln
m2(ϕ)

µ2
=

λA

128π2
ϕ4 ln

ϕ2

µ2
+ ... . (10)

Note that in the leading order of ξ ≫ 1 the coefficient A does not have a
contribution from the graviton-inflaton sector, which as was mentioned above
is suppressed by powers of 1/ξϕ2. In particular, the expression (8) does not
contain in parentheses a typical contribution λ2 of the Higgs field itself.

Quantum corrections are obviously small for A/32π2 ≪ 1, but the authors
of [19] claimed an additional mechanism of their strong suppression by a large ξ,
based on calculations in the Einstein frame of the classical model (1). This frame
can be obtained by the conformal transformation, gµν → ĝµν , ĝµν = Ω2(ϕ)gµν ,
Ω2(ϕ) = 1 + ξϕ2/M2

P , and a relevant reparametrization of the inflaton field,
ϕ → ϕ̂, rendering ϕ̂ a canonical normalization of its kinetic term. Under this
transformation all the particle masses m(ϕ) in the Einstein frame get rescaled
as m̂(ϕ) = m(ϕ)/Ω(ϕ) ∼ 1/

√
ξ and for Ω ≫ 1 become very small and actually

independent of ϕ. This makes according to [21] their Coleman-Weinberg poten-
tial small and very flat, so that quantum corrections are not significant for the
inflationary dynamics.

However, one should bear in mind that the contribution of this potential to
the effective action enters with the factor ĝ1/2 = Ω4(ϕ) g1/2 which cancels the

2In slightly different notations, these combinations were obtained in [19] including the non-
logarithmic part of (7). Logarithmic parts of the coefficients A, C and F induced by one-loop
radiative corrections from vector fields were earlier presented in [9] (see also [22]).

3With the masses (3) this yields the expression (8) in which the coefficients 1, 3 and 4
imply respectively one, three and four degrees of freedom of a real scalar field, massive vector
field and charged (Dirac) spinor field.
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dominant effect of the decrease in mass,

ĝ1/2 m̂4(ϕ) ln
m̂2(ϕ)

µ2
= g1/2m4(ϕ) ln

m̂2(ϕ)

Ω2(ϕ)µ2
≃ const g1/2m4(ϕ). (11)

Therefore, for large ϕ quantum corrections calculated in the Einstein frame dif-
fer from those of the Jordan frame (10) by replacing the log factors with some
constants. This is not unusual that the covariant renormalization in different
conformally related frames leads to different results, because the theory has a
conformal anomaly, and this anomaly yields a weak logarithmic frame depen-
dence. This means that the mechanism of suppression for radiative corrections
advocated in [21] should be much weaker – instead of suppression by a power
of the conformal factor Ω2 ∼ ξϕ2/M2

P the radiative corrections in the Einstein
frame are suppressed only by its logarithm.

Below we will see that the dominant contribution of quantum corrections to
the inflaton rolling force originates from differentiating namely the log factor in
the effective potential (5). Therefore the disappearance of these factors in the
Einstein frame raises the question of which frame is appropriate for calculating
the quantum effects. The original Jordan frame is the right one, because it de-
termines the physical distances in terms of the original metric gµν . In particular,
physical (atomic) clocks measure the proper time of just this frame. Covariant
renormalization which introduces the logarithmic factors and the normalization
scale µ should be performed in terms of this physical metric. This justifies the
original Jordan frame and the expressions (5) and (6) containing the correct
logarithmic terms.

3 Inflation

We apply the effective action (4)-(7) with ξ ≫ 1 to study inflationary dynamics
in the range of the inflaton field much beyond its current value at the minimum
of the classical potential, ϕ2 ≫ M2

P /ξ ≫ ν2. Thus we assume smallness of the
following two parameters

M2
P

ξ ϕ2
≪ 1,

A

32π2
≪ 1. (12)

It is also natural to assume that other combinations of coupling constants are
of the same order of magnitude as A, so that the second of bounds above also
holds for all of them (1/32π2)(B,C,D,E,F ) ≪ 1.

In fact (12) guarantees the regime of the slow roll approximation for the
system (4). In the leading order corresponding to the omission of ϕ̇2 terms the
equations of motion read [19, 25]

ϕ̈+ 3Hϕ̇− F = 0, (13)

H2 =
V

6U
− U ′F

3U
. (14)

Here H = ȧ/a is the Hubble parameter, U ′ ≡ dU/dϕ, and the rolling force
F = F (ϕ) in this approximation depends only on ϕ and reads4

F (ϕ) =
2V U ′ − V ′U

GU + 3U ′2
. (15)

4Strictly speaking, in the leading order of the slow roll approximation ϕ̈ in (13) should
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If the inequalities (12) are satisfied, it reduces to:

F = −λM
2
P

6 ξ2
ϕ

(

1 +
A

64π2

ξϕ2

M2
P

)

≡ −λM
2
P

6 ξ2
ϕ

(

1 +
ϕ2

ϕ2
I

)

, (16)

where

ϕ2
I =

64π2M2
P

ξA
. (17)

This expression for the rolling force was suggested in Eq.(6.7) of [19] along with
the scale of inflation field ϕI which was derived from the principles of quantum
cosmology — the probability distribution maximum at ϕI of the quantum cor-
rected tunneling state of the Universe [18]. Note that while the second term in
the right-hand side of (14) is small as compared with the first one, the second
term in the denominator in the right-hand side of (15), just the opposite, dom-
inates the first one. Thus, during inflation the effective Brans-Dicke parameter
ωBD ≡ U/2U ′2 is very small in this model.

For large ϕ the strongest (cubic in ϕ) classical term of the rolling force (15)
identically cancels out and F gets dominated by the second term of (16). The
latter is cubic in ϕ, too, but it is essentially quantum, and it originates from the
cross term −V ′U in the numerator of (15) dominated by the product of ξϕ2/2
in U and the derivative of the logarithmic factor in V ′. It is important that the
resulting ratio in the parenthesis of (16),

ϕ2

ϕ2
I

=
A/64π2

M2
P /ξ ϕ

2
, (18)

is in fact the ratio of two smallness parameters (12). This ratio is a priori not
small even despite naively small quantum corrections – the result of multiplica-
tion of a small A/32π2 by a very large ξ.

The meaning of restrictions (12) becomes transparent in the Einstein frame
of fields ĝµν , ϕ̂ related to the Jordan frame of (4) by the equations

ĝµν =
2U(ϕ)

M2
P

gµν , (19)

(

dϕ̂

dϕ

)2

=
M2
P

2

GU + 3U ′2

U2
. (20)

The action (4) in the Jordan frame, Ŝ[ĝµν , ϕ̂] = S[gµν , ϕ], has a minimal cou-

pling, Û = M2
P /2, canonically normalized inflaton field, Ĝ = 1, and the new

inflaton potential

V̂ (ϕ̂) =

(

M2
P

2

)2
V (ϕ)

U2(ϕ)

∣

∣

∣

∣

∣

ϕ=ϕ(ϕ̂)

. (21)

be discarded on equal footing with ϕ̇2, and it was retained only to emphasize a second order
derivative structure of the equation of motion. In particular, the second term of (14), which
originates from the ȧU̇ = aHϕ̇U ′ term of the Friedmann equation in this model, results from
expressing ϕ̇ via Eq.(13) as ϕ̇ = F/3H.
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This potential is very flat5 and monotonically growing at least below the expo-
nentially big value of the inflaton, ϕ < ϕ∗ ≃ µ2 exp(192π2ξ/C). This provides
us with a very big domain of the slow roll inflation. The corresponding slow roll
parameters for moderate (not exponentially large) values of ϕ read6

ε̂ ≡ M2
P

2

(

1

V̂

dV̂

dϕ̂

)2

=
4M4

P

3ξ2ϕ4

(

1 +
ϕ2

ϕ2
I

)2

=
4

3

(

M2
P

ξ ϕ2
+

A

64π2

)2

, (22)

η̂ ≡ M2
P

V̂

d2V̂

dϕ̂2
= −4M2

P

3ξϕ2
. (23)

For ϕ below ϕI and for larger ϕ the smallness of these parameters reduces re-
spectively to the first and the second of restrictions (12). Thus, these restrictions
are nothing but the conditions of sub-Planckian slow roll inflation.

As it follows from (13) and (15) the e-folding number of the inflation stage
beginning with ϕ and ending at ϕend equals

N =

∫ ϕend

ϕ

dϕ′
3H2(ϕ′)

F (ϕ′)
=

48π2

A
ln

1 + ϕ2/ϕ2
I

1 + ϕ2
end/ϕ

2
I

. (24)

This equation was used in [19] (Eq. (6.8)) with the initial inflaton field
ϕ = ϕI , the quantum scale of inflation derived from the tunneling state of the
Universe, and ϕend ≃ 0. When the both fields are small, ϕ2, ϕ2

end ≪ ϕ2
I , all the

dependence on A cancels out and N reduces to Eq.(11) of [21]

N ≃ 48π2

A

ϕ2 − ϕ2
end

ϕ2
I

=
3

4

ξ

M2
P

(ϕ2 − ϕ2
end) . (25)

However, only ϕ2
end a priori satisfies this bound, because it follows from ε̂ ≃ 1 it

that ϕ2
end ≃M2

P /ξ, and ϕ2
end/ϕ

2
I ≃ A/64π2 ≪ 1 according to (12). Therefore,

N ≃ 48π2

A
ln

(

1 +
ϕ2

ϕ2
I

)

, (26)

and

ϕ2

ϕ2
I

= ex − 1, (27)

where we introduced a new parameter

x ≡ NA

48π2
. (28)

This parameter relates the initial value of the inflaton to the quantum cosmo-
logical scale ϕ2

I . In quantum cosmology the normalizability of the cosmological

5Flatness of this potential explains the cancellation of strongest classical terms in the rolling
force (15) mentioned above. Note that the numerator of (15) is proportional to the gradient
of the Einstein frame potential (21) which in the classical approximation tends to a constant
for ϕ → ∞.

6Exponentially big values of ϕ near ϕ∗ and beyond can also generate inflation which in
particular becomes interminable at the negative slope of V̂ (ϕ̂) for ϕ > ϕ∗. But in this domain
the one-loop approximation for radiative corrections (5) - (7) breaks down definitely, not to
say about unobservable range of the relevant e-folding numbers. Therefore we disregard this
domain in what follows.
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quantum state requires A to be positive [18, 19], so that ϕ2
I > 0, and ϕ = ϕI

corresponds to x = ln 2. Here we adopt an alternative approach and deduce the
value of x from angular properties of CMB. In particular, we relax the require-
ment of positivity for A and admit also its negative values when the parameter
x is negative and ϕ2 < |ϕ2

I | (x→ −∞ for ϕ2 → |ϕ2
I |).

In the limit of large ϕ (ϕ2 ≫ ϕ2
I > 0), N ∝ ln(|ϕ|/ϕI). Such dependence

arises purely due to one-loop quantum corrections to the potential V . Thus, in
this case one can indeed try to relate evolution of the Universe during inflation
to the renormalization group flow, in contrast to usual inflation in the Einstein
gravity where it is not possible [26].

4 Primordial perturbation spectra and observa-

tional bounds

Initial conditions for perturbations are chosen deep in the WKB-regime be-
fore the first Hubble radius crossing during inflation, where the perturbations
themselves, as well as their energy density, are conformally invariant approxi-
mately. On the other hand, at the post-inflationary epoch the Einstein frame
nearly coincides with the Jordan one because the Higgs-inflaton settles at the
minimum of the classical potential ϕ = ν and ν2 ≪ M2

P /ξ. Therefore, observ-
able cosmological perturbations can be directly derived in the Einstein frame
by standard formulae based on the slow roll parameters (22)-(23) and the Ein-
stein frame potential (21). In particular, the amplitude of perturbations reads
ζ2(k) ≡ k3ζ2

k
= V̂ /24π2M4

P ε̂, where the right-hand side is taken at the moment
t = t(k) of the first Hubble radius crossing k = aH that relates the comov-
ing perturbation wavelength k−1 to the e-folding number N from the end of
inflation.

This expression can be also re-written in the form following from the general
δN formalism [9, 27, 28] (see also [29, 30] for its recent developments):

ζ2 =

(

dN

dϕ

)2

(δϕ)2 , δϕ =
H

2π

1
√

1 + 3U ′2

U

. (29)

Here δϕ ≡ (k3δϕ2
k
)1/2 is the rms fluctuation of a free minimally coupled scalar

field in the de Sitter background with the curvature H – the multiplier (1 +
3U ′2/U)−1/2 is due to a non-standard kinetic term in the Einstein frame arising
from the non-minimal coupling U(ϕ) in the physical (Jordan) frame, and we
put G = 1. 7

With (5) and (22) (or (24) as well) in the range (12), this gives the relation

ζ2 =
λ

96π2ξ2ε̂
=

N2

72π2

λ

ξ2

(

ex − 1

x ex

)2

. (30)

In view of the WMAP+BAO+SN normalization ζ2 ≃ 2.5 × 10−9 at the pivot
point k0 = 0.002 Mpc−1 [32] which we choose to correspond to N ≃ 60, this

7This result is valid in both the Jordan and Einstein frames. The difference between
the number of e-folds in both frames is an effect of a higher order in the slow-roll and loop
expansions. In this connection, see also a more detailed discussion of this topic in the recent
paper [31] which appeared when the present paper was prepared for submission.
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yields the following estimate on the ratio of coupling constants

λ

ξ2
≃ 0.5 × 10−9

(

x ex

ex − 1

)2

. (31)

Thus, the estimate λ/ξ2 ∼ 10−10 known from [14, 15, 16, 17, 18, 19, 21] is
modified here by the factor (x ex/(ex − 1))2 of entirely quantum origin. This
factor approaches unity for x ≪ 1 but grows ∝ x2 for x ≫ 1. In quantum
cosmology of the tunneling state [18, 19] with the initial value ϕ = ϕI , it is
equal to (2 ln 2)2 ≃ 1.92. As we will see now, observational constraints lead to
a much wider admissible range of x corresponding to the observed window of
scales.

The spectral index ns of the power spectrum of primordial scalar (adiabatic)
perturbations

ns ≡ 1 +
d ln ζ2(k)

d ln k
≈ 1 − d ln ζ2(N)

dN
(32)

= 1 − 2

ex − 1

A

48π2
= 1 − 2

N

x

ex − 1
.

Note that ns = 1− 2/N for x≪ 1, as in the m2ϕ2 or R+R2/6M2 inflationary
models (the latter model is the simplified variant of the one introduced in [1]).

The power spectrum of primordial tensor perturbations (gravitational waves)
is

h2
g(k) ≡

∑

polarizations

k3 < hµν(k)hµν(k) >=
16GeffH

2

π
≈ V

6π2U2
≈ λ

6π2ξ2
, (33)

where Geff is the effective large-scale Newton gravitational constant in the phys-
ical frame. As a result, the tensor-to-scalar ratio r is given by the slow roll
parameter ε̂ [33]:

r ≡
h2
g

ζ2
= 16ε̂ =

12

N2

(

xex

ex − 1

)2

. (34)

Due to the N−2 dependence, it is much smaller than in m2ϕ2/2 and λϕ4/4
models of inflation, but it exactly coincides with the value of r in the f(R) =
M2
P (R + R2/6M2)/2 model [1, 34] for x ≪ 1. The fact that, in the limit

ϕ≪ |ϕI | when radiative corrections are small, the model (4) - (7) produces the
same predictions for ns and r as this f(R) model is a consequence of the latter
model being equivalent to the former one with λ = ξ = M2

P /3M
2 (so that the

effective coupling constant λ/ξ2 remains small) and G(ϕ) = ν = A = B =
C = D = E = F = 0. Note also that the consistency condition r = 8nt is
satisfied in the model (4- 7), too, in spite of its non-Einsteinian (in fact, scalar-
tensor gravity) nature. To obtain it, the quantum one-loop contribution to the
potential V should be taken into account.

Let us now compare the spectral index ns (33) to the present observational
data. Using the WMAP+BAO+SN constraint from [32] at the 2σ confidence
level, we get

0.934 < ns(k0) < 0.988 . (35)

Note that these bounds were obtained assuming r = 0 (otherwise, they have
to be shifted up by about 0.01). However, since in our model r appears to

9



be much smaller than the upper 95% confidence level upper bound r < 0.2
following from the same data, the estimate (35) is just suitable for our purpose.
For N(k0) = 60, it leads to 0.36 < x/(ex − 1) < 1.98 or −1.57 < x < 1.79. So,
A = 48π2x/N and r belong to the following ranges:

− 12.4 < A < 14.1 , (36)

0.0006 < r < 0.015 . (37)

Therefore, there is no ”tensor desert” [35] in this model.
The corresponding spectral scalar index running

α = −dns
dN

= − 2

N2

x2ex

(ex − 1)2
= −e

x(ns − 1)2

2
(38)

is negative but negligible, and lies in the range −5.6 < α × 104 < −4.3 (the
most negative value is reached for A = 0). This is significantly lower than
the present observational upper bound on |α| (though the negative sign of α is
slightly favoured by data).

Thus, cosmic data leaves a rather wide window for possible values of the
quantity A and the tensor-to-scalar ratio r with the latter one varying by more
than an order of magnitude. This window includes also the case of inflation scale
generated by the tunneling state in quantum cosmology, ϕ = ϕI , corresponding
to x ≃ 0.693, A = 5.47, ns = 0.977 and r = 0.0064. This window can be
compared to constraints coming from the concrete particle model – the Standard
Model with the Higgs field playing the role of the inflaton.

5 Standard Model bounds

Since the particle masses induced by the Higgs effect scale as m(ϕ) ∼ ϕ, we can
reduce the calculation of A, given by (9), to the present moment when the Higgs
field is in the vacuum state with ϕ = ν. Then the masses m(ν) comprise a well
known set of the presently observable Z boson,W± boson and top quark masses,
mZ = 91 GeV, mW = 80 GeV andmt = 171 GeV, accompanied by much lighter
masses of other quarks and leptons giving a negligible contribution. Taking into
account three polarizations for massive vector bosons and four polarizations
times three colors for quarks, we finally have

A =
2

λν4
tr

∑

particles

(±1)m4(ν) ≃ 6

λν4

(

m4
Z + 2m4

W − 4m4
t

)

. (39)

The scale of the present symmetry breaking is known from the measurement
of the Fermi constant, ν = 247 GeV, while λ can be expressed in terms of the
Higgs mass, m2

H = 2λν2, which is currently believed to be in the range 115
GeV≤ mH ≤ 180 GeV [23]. Therefore, the total anomalous scaling constant

A ≃ 12

m2
Hν

2

(

m4
Z + 2m4

W − 4m4
t

)

(40)

turns out to belong to the following range

− 48 < A < −20. (41)
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Unfortunately, it does not overlap with the range (36) suggested by the CMB
data. If the theory and future LHC experiments on Standard Model could push
the value of the Higgs mass up to ∼ 230 GeV, then SM generated inflation could
yield an observationally viable scenario with parameters at the lower limit of
the ranges in (35) and (37), i.e. with a low ns and a very low tensor-to-scalar
ratio r ≃ 0.0006. 8

6 Conclusions

Thus, in principle the Standard Model Higgs can be the source of inflation. How-
ever, the mechanism of this phenomenon is very different from the suggestion of
[21], because it is dominated by the quantum rather than by the tree-level part
of the effective action. In particular, the relation between the e-folding number
and the initial value of the inflaton (27) is determined by the parameter of the
quantum anomalous scaling A. Therefore CMB data necessarily probe not only
the graviton-inflaton sector of SM or GUT type theory (1), but also all its heavy
massive particles coupled to the inflaton. The deviation of the CMB spectral
index

ns(N) = 1 − 2a

eNa − 1
(42)

from unity is determined by the quantum conformal anomaly a ≡ A/48π2.
Currently, however, this model of SM Higgs driven inflation seems falsified.

In particular, it strongly contradicts predictions of quantum cosmology with
the tunneling state, whose normalizability at ϕ → ∞ requires positive A [18,
19, 24], though this conclusion might be revised in view of the recent model of
cosmological initial conditions in the form of the microcanonical density matrix
[36, 37].

More important is that the cosmological range (36) of A does not overlap
with the SM range (41) within the widely accepted rather strong upper bound
on the Higgs mass mH ≤ 180 GeV. This bound follows from the arguments of
[23] justifying, in particular, the electroweak perturbation theory with a small
λ ≤ 0.26. Precision tests of this theory [38] give at 95% confidence level a much
weaker bound of 285 GeV which already provides a big overlap with the cosmic
range (36), −12.4 < A < −8.0. Within this overlap

0.934 < ns < 0.95, (43)

0.0006 < r < 0.001. (44)

Thus, it is up to the anticipated Higgs particle discovery at LHC, which will
or will not finally falsify the SM driven inflation. It is important that in the
latter case a possible tensor-to-scalar ratio (44) is very small. This opens a big
reserve in future experiments for possible smallness of not yet observed tensor
perturbations.

Also, it should be noted that this inflationary model is a representative
of a broad class of models with a red tilted spectrum and a small value of r

8In this range of mH the inflaton self-coupling becomes large, λ ∼ O(1), so that the running
of coupling constants can slightly shift the above numerical bounds – the authors are grateful
to F. Bezrukov for this observation. The RG improved analysis of radiative corrections in this
range goes beyond the scope of this paper and is currently under study.
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which belong neither to ”small-field”, nor to ”large-field” models, and are, in
some respects, intermediate between them. Namely, in the Einstein frame these
models have a practically constant potential in the inflationary range, like small-
field models, which however extends over a large, or even semi-infinite, range of
inflaton field values, like in large-field models. The R+R2/6M2 model, as well
as the induced gravity model considered recently in [39] fall into this class, too.
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