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ABSTRACT

We provide computationally convenient expressions for all marginal distributions of the polarization
CMB power spectrum distribution P (Cℓ|σℓ), where Cℓ = {CTT

ℓ , CTE
ℓ , CEE

ℓ , CBB
ℓ } denotes the set of

ensemble averaged polarization CMB power spectra, and σℓ = {σTT
ℓ , σTE

ℓ , σEE
ℓ , σBB

ℓ } the set of the
realization specific polarization CMB power spectra. This distribution describes the CMB power
spectrum posterior for cosmic variance limited data. The expressions derived here are general, and may
be useful in a wide range of applications. Two specific applications are described in this paper. First,
we employ the derived distributions within the CMB Gibbs sampling framework, and demonstrate a
new conditional CMB power spectrum sampling algorithm that allows for different binning schemes
for each power spectrum. This is useful because most CMB experiments have very different signal-to-
noise ratios for temperature and polarization. Second, we provide new Blackwell-Rao estimators for
each of the marginal polarization distributions, which are relevant to power spectrum and likelihood
estimation. Because these estimators represent marginals, they are not affected by the exponential
behaviour of the corresponding joint expression, but converge quickly.
Subject headings: cosmic microwave background — cosmology: observations — methods: numerical

1. INTRODUCTION

During the last few decades cosmology has evolved
from a data starved branch of astrophysics, into a data
driven high-precision science in which theories may be
subjected to stringent observational tests. This revolu-
tion has to a large extent been driven by steadily improv-
ing observations of the cosmic microwave background
(CMB), allowing cosmologists to have a close-up look
at the very young universe. Two leading experiments
were the COBE-DMR (Smoot et al. 1992) and WMAP
(Bennett et al. 2003) satellite missions, while the third
generation experiment, Planck, will be launched late this
year.

As observations continue to improve, increasingly de-
manding requirements are imposed on the data analy-
sis. While rather crude approximations may be accept-
able when interpreting low signal-to-noise data, the situ-
ation is very different in the mid and high signal-to-noise
regime. Here, even “small” effects become clearly visible,
and may potentially compromise any cosmological con-
clusion. Using accurate methods in this regime is criti-
cal. Some real-world issues relevant to the CMB problem
are non-cosmological foregrounds, improper noise and/or
beam characterization, and sub-optimal likelihood ap-
proximations.

In 2004, a new approach to CMB analysis was proposed
and implemented by Jewell et al. (2004), Wandelt et al.
(2004) and Eriksen et al. (2004). Rather than taking
the traditional approximate Monte Carlo approach (e.g.,
Hivon et al. 2002), this new method employs the Gibbs
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sampling algorithm to facilitate exact (in the maximum-
likelihood sense), global and efficient analysis of even
high-resolution data sets. Equally important, the Gibbs
sampling framework has unique capabilities for error
propagation, as it allows for easy marginalization over
virtually any auxiliary stochastic field. One important
example is that of non-cosmological foregrounds.

Since then, the method has been generalized to han-
dle polarized CMB data (Larson et al. 2007) and joint
foreground and CMB analysis (Eriksen et al. 2008a), and
has been applied most successfully to the WMAP data
(O’Dwyer et al. 2004; Eriksen et al. 2007a,b, 2008b).
Some useful examples of issues correctly identified by the
Gibbs sampler, but missed by other techniques, are 1) the
first-year WMAP likelihood bias at ℓ . 30 (Eriksen et al.
2007a; Hinshaw et al. 2007), 2) foreground residuals in
the 3-year WMAP polarization sky maps (Eriksen et al.
2007b), and 3) residual monopole and dipole compo-
nents in the 3-year temperature sky maps (Eriksen et al.
2008b; Hinshaw et al. 2008). Following up on these
methodological advances, the WMAP team adopted the
Gibbs sampler as a central component in their analysis
of the 5-year data, and, in fact, their default low-ℓ tem-
perature likelihood module is precisely the Gibbs-based
Blackwell-Rao code written and published by Chu et al.
(2005).

While WMAP has done an excellent job on character-
izing the large-scale CMB temperature fluctuations, the
current frontier in CMB science is polarization. In just
a few years, full-sky high-sensitivity data will be avail-
able from Planck. And then, very likely, the situation
will be quite analogous to the one WMAP experienced
in the temperature case: Having robust, exact methods
that allows for proper characterization and propagation
of systematics will be essential in the mid to high signal-
to-noise regime. The Gibbs sampler is among the leading
candidates to serve such a purpose.

Unfortunately, the Gibbs sampler, as currently de-
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scribed in the literature, has two major limitations that
needs to be resolved before this promise can be fulfilled.
First, the direct Gibbs sampler is inherently inefficient in
the low signal-to-noise regime, because the step size be-
tween two consecutive samples is determined by cosmic
variance alone, whereas the full posterior width is deter-
mined by noise. Second, it is non-trivial to establish a
full likelihood approximation from the samples produced
by the Gibbs sampler, because of the dimensionality of
the underlying space. Both of these issues are currently
under development, and reports are expected in the near
future (Jewell et al. 2008; Rudjord et al. and Eriksen et
al., in preparation).

In the present paper, we take a small but important
first step towards resolving these issues, by considering
the marginal and conditional densities of the probabil-
ity distribution P (Cℓ|σℓ), where Cℓ is the ensemble aver-
aged CMB power spectrum, and σℓ is the observed power
spectrum of one given CMB realization. This distribu-
tion plays a crucial role within the CMB Gibbs sampling
framework. On the one hand, it forms one of the two con-
ditionals in the main sampling scheme. On the other, it
is the kernel of the Blackwell-Rao estimator. Being able
to describe this analytically in different forms is therefore
very useful. Two specific applications are demonstrated
in this paper, namely 1) a Cℓ sampling algorithm that
allows for different binning schemes in each of the po-
larization components, and 2) Blackwell-Rao estimators
for each of P (CTT

ℓ |CTE
ℓ , CEE

ℓ ,d), P (CTE
ℓ |CEE

ℓ ,d), and
P (CEE

ℓ |d). Further applications will be demonstrated in
the papers mentioned above.

We also note that these expressions are completely gen-
eral, and may prove useful for any other method that
considers both Cℓ and the CMB sky signal s as free vari-
ables. One such example is the CMB Hamiltonian sam-
pler recently developed by Taylor et al. (2007).

2. NOTATION AND DATA MODEL

We now introduce a statistical model for the CMB ob-
servations, and define our notation. First, we assume
that the data may be modelled by a signal and a noise
term,

d(n̂) = s(n̂) + n(n̂). (1)

Here, d is a 3-component (T, Q, U) Stokes’ parameter
vector observed in direction n̂. s and n denote similar
vectors, describing the CMB field and instrumental noise,
respectively. Both the signal and the noise are assumed
to be Gaussian distributed with zero mean and covari-
ances C and N, respectively. (Note that we, for nota-
tional simplicity, neglect real-world complications such as
instrumental beams, frequency dependent observations
or foreground components in this expression; the topic
of this paper is the probability distribution P (Cℓ, s), and
for this, all such issues are irrelevant.)

Next, we additionally assume the CMB field to be sta-
tistically isotropic. It is therefore useful to decompose
the (T, Q, U) field into spin-weighted spherical harmon-
ics (see, e.g., Zaldarriaga and Seljak 1997 for full details),
with coefficients (aT

ℓm, aE
ℓm, aB

ℓm).
Because the spherical harmonics are orthogonal on the

full sky, and B has opposite parity of T and E, the har-

monic space CMB covariance matrix is given by

Cℓm,ℓ′m′ =





〈

aT
ℓmaT∗

ℓ′m′

〉 〈

aT
ℓmaE∗

ℓ′m′

〉 〈

aT
ℓmaB∗

ℓ′m′

〉

〈

aE
ℓmaT∗

ℓ′m′

〉 〈

aE
ℓmaE∗

ℓ′m′

〉 〈

aE
ℓmaB∗

ℓ′m′

〉

〈

aB
ℓmaT∗

ℓ′m′

〉 〈

aB
ℓmaE∗

ℓ′m′

〉 〈

aB
ℓmaB∗

ℓ′m′

〉



 δℓℓ′δmm′

=





CTT
ℓ CTE

ℓ 0
CTE

ℓ CEE
ℓ 0

0 0 CBB
ℓ



 δℓℓ′δmm′ (2)

= Cℓ δℓℓ′δmm′ .

In this expression, brackets denote ensemble averages,
and the power spectrum Cℓ therefore corresponds to
a theory spectrum, similar to that produced by a
Boltzmann code such as CMBFast (Seljak & Zaldarriaga
1996). Note that Cℓ denotes the matrix of all power spec-
tra, while a single component is indicated by subscripts
(e.g., CTT

ℓ ).
One can also define the realization specific power spec-

trum, σℓ, which is simply the averaged power in each
multipole for one given realization,

σℓ =
1

2ℓ + 1

ℓ
∑

m=−ℓ





aT
ℓmaT∗

ℓm aT
ℓmaE∗

ℓm aT
ℓmaB∗

ℓm

aE
ℓmaT∗

ℓm aE
ℓmaE∗

ℓm aE
ℓmaB∗

ℓm

aB
ℓmaT∗

ℓm aB
ℓmaE∗

ℓm aB
ℓmaB∗

ℓm



 . (3)

Explicitly, Cℓ is the power spectrum corresponding to
some cosmological model, and σℓ is the power spectrum
of one realization drawn from that model. It may there-
fore be useful to imagine that observations of the CMB
sky provide us with σℓ, and from this we seek to con-
strain the underlying cosmological theory, parametrized
by Cℓ and summarized by the conditional distribution
P (Cℓ|σℓ).

With this notation, it is straightforward to write down
the joint probability distribution for the CMB sky signal,
s, the CMB power spectrum, Cℓ and the data, d,

P (s, Cℓ,d) = P (d|s, Cℓ)P (s, Cℓ)

∝ e−
1
2 (d−s)TN

−1(d−s)P (s, Cℓ). (4)

and the CMB posterior distribution,

P (s, Cℓ|d) =
P (s, Cℓ,d)

P (d)
∝ P (s, Cℓ,d) (5)

These expressions involve two factors, namely the χ2 =
(d − s)TN

−1(d − s) and the CMB probability distribu-
tion P (s, Cℓ). Since we assume that the CMB field is
isotropic and Gaussian, as discussed above, the latter
may be written as (e.g., Larson et al. 2007)

P (s, Cℓ) = P (s|Cℓ)P (Cℓ)

∝ e−
1
2 s

†
C

−1
s

√

|C|
P (Cℓ)

=
∏

ℓ,m

e−
1
2a

†

ℓm
C

−1
ℓ

aℓm

√

|Cℓ|
P (Cℓ)

=
∏

ℓ

e−
1
2

P

m
tr(aℓma

†

ℓm
C−1

ℓ
)

|Cℓ|
2ℓ+1

2

P (Cℓ) (6)

=
∏

ℓ

e−
2ℓ+1

2 tr(σℓC
−1
ℓ

)

|Cℓ|
2ℓ+1

2

P (Cℓ)

=
∏

ℓ

P (σℓ|Cℓ)P (Cℓ),
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where P (Cℓ) is a prior on Cℓ. P (σℓ|Cℓ) is recognized
as an inverse Wishart distribution when interpreted as a
function of Cℓ.

Before turning to the main topic of this paper, we
recall that, for a probability distribution P (x, y), the
marginal distribution is defined by P (x) =

∫

P (x, y)dy,
and the conditional by P (y|x) = P (x, y)/P (x). From
these, one may also trivially derive Bayes’ theorem,
P (x|y) = P (y|x)P (x)/P (y). Therefore, for uniform pri-
ors on both Cℓ and s, which we assume in this paper,
P (σℓ|Cℓ) ∝ P (Cℓ|σℓ).

3. CMB POWER SPECTRUM DISTRIBUTIONS

The main goal of this paper is to derive explicit expres-
sions for the marginals, and thereby the conditionals, of
P (Cℓ|σℓ). These are summarized in Table 1.

As seen above, P (Cℓ|σℓ) is given by the inverse Wishart
distribution, which, in n dimensions and including the
full normalization factor (Gupta & Nagar 2000), reads

P (Cℓ|σℓ) =
(2ℓ+1

2 )
n(2ℓ−n)

2 |σℓ|
2ℓ−n

2

Γn(2ℓ−n
2 )|Cℓ|

2ℓ+1
2

e−
2ℓ+1

2 tr(σℓC
−1
ℓ

). (7)

Here Γn is the multivariate Gamma function.
However, as discussed in Section 2, we are in this paper

interested in the special case for which CTB
ℓ = CEB

ℓ =
0. In this case, the trace in equation 7 expands into a
sum of two terms, and the Cℓ determinant factorizes into
the product of a two-dimensional (T, E) determinant and
CBB

ℓ . Thus, the joint distribution factorizes as

P (Cℓ|σℓ) = P (CTT
ℓ , CTE

ℓ , CEE
ℓ |σℓ)P (CBB

ℓ |σℓ). (8)

That is, CBB
ℓ is independent of (CTT

ℓ , CTE
ℓ , CEE

ℓ ), and
follows a one-dimensional inverse Wishart (or inverse
Gamma) distribution. We will therefore not consider
the BB component further in this paper. However, we
note that if one is interested in exotic models for which
{TB, EB} 6= 0, the expressions derived in this paper will
have to be revised accordingly.

3.1. The (TE, EE) distribution, P (CTE
ℓ , CEE

ℓ |σℓ)

We start by considering the two-dimensional marginal
distribution P (CTE

ℓ , CEE
ℓ |σℓ), which is obtained by inte-

grating P (CTT
ℓ , CTE

ℓ , CEE
ℓ |σℓ) over CTT

ℓ ,

P (CTE
ℓ , CEE

ℓ |σℓ) =

∫

P (CTT
ℓ , CTE

ℓ , CEE
ℓ |σℓ)dCTT

ℓ

∝ |σℓ|
2ℓ−2

2

∫

∞

(CTE
ℓ

)2

CEE
ℓ

(

1

CTT
ℓ CEE

ℓ − (CTE
ℓ )2

)
2ℓ+1

2

(9)

· e
−

2ℓ+1
2

σTT
ℓ

CEE
ℓ

+σEE
ℓ

CTT
ℓ

−2σTE
ℓ

CTE
ℓ

CTT
ℓ

CEE
ℓ

−(CTE
ℓ

)2 dCTT
ℓ .

Note that the lower limit in this integral is defined by
|Cℓ| > 0, since the power spectrum covariance matrix in
equation 2 must be positive definite.

If we now define

k ≡ σEE
ℓ

(CTE
ℓ )2

CEE
ℓ

− 2σTE
ℓ CTE

ℓ + σTT
ℓ CEE

ℓ , (10)

and make the change of variable

y =
(2ℓ + 1)k

2(CTT
ℓ CEE

ℓ − (CTE
ℓ )2)

, (11)

this expression is transformed into

P (CTE
ℓ , CEE

ℓ |σℓ) ∝
|σℓ|

2ℓ−2
2

CEE
ℓ k

2ℓ−1
2

e
−

2ℓ+1
2

σEE
ℓ

CEE
ℓ

∫

∞

0

y
2ℓ−3

2 e−ydy.

(12)

The integral in this expression is simply the Gamma
function,

Γ

(

2ℓ− 1

2

)

=

∫

∞

0

y
2ℓ−3

2 e−ydy, (13)

and, for our purposes, an irrelevant numerical normal-
ization factor. Thus, the final distribution reads

P (CTE
ℓ , CEE

ℓ |σℓ) ∝
|σℓ|

2ℓ−2
2

CEE
ℓ

e
−

2ℓ+1
2

σEE
ℓ

CEE
ℓ ·

· 1
(

σEE
ℓ

(CTE
ℓ

)2

CEE
ℓ

− 2σTE
ℓ CTE

ℓ + σTT
ℓ CEE

ℓ

)
2ℓ−1

2

(14)

Note that because TT and EE occur symmetri-
cally in equation 7, the corresponding expression for
P (CTT

ℓ , CTE
ℓ |σℓ) is obtained simply by interchanging EE

and TT in equation 14.

3.2. The (TT, EE) distribution, P (CTT
ℓ , CEE

ℓ |σℓ)

Next, we consider P (CTT
ℓ , CEE

ℓ |σℓ), which is obtained
by integrating P (CTT

ℓ , CTE
ℓ , CEE

ℓ |σℓ) over CTE
ℓ . Unfor-

tunately, this distribution does not have a closed expres-
sion, but can instead be written on the form

P (CTT
ℓ , CEE

ℓ |σℓ) ∝
|σℓ|

2ℓ−2
2

(CTT
ℓ CEE

ℓ )ℓ
· I1(ℓ, A, B). (15)

Here I1 denotes the integral

I1 =

∫ 1

−1

e
−

A−Bx

1−x2

(1 − x2)
2ℓ+1

2

dx, (16)

and we have defined the two dimensionless auxiliary pa-
rameters

A =
2ℓ + 1

2

(

σTT
ℓ

CTT
ℓ

+
σEE

ℓ

CEE
ℓ

)

(17)

B =
(2ℓ + 1)σTE

ℓ
√

CTT
ℓ CEE

ℓ

(18)

However, the fact that I1 depends only on two dimen-
sionless parameters and ℓ, implies that it can easily be
tabulated (and optionally splined for higher accuracy)
for each ℓ, and thus computationally efficient lookup-
tables may be constructed. In most practical appli-
cations, which typically require repeated evaluations of
P (CTT

ℓ , CEE
ℓ |σℓ), Equation 15 is therefore as useful for

(CTT
ℓ , CEE

ℓ ) as Equation 22 is for (CTE
ℓ , CEE

ℓ ), although
implementationally a little more complicated.

3.3. The marginal EE distribution, P (CEE
ℓ |σℓ)

We now compute the corresponding one-dimensional
marginals, and begin with P (CEE

ℓ |σℓ), by integrating
equation 14 over CTE

ℓ . This is simplified by introduc-
ing the new variable

y =
σEE

ℓ CTE
ℓ − σTE

ℓ CEE
ℓ

√

|σℓ|CEE
ℓ

, (19)
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TABLE 1
CMB power spectrum distributions

Distribution Expression

Joint {T, E} distribution

P (CTT
ℓ

, CTE
ℓ

, CEE
ℓ

|σℓ) ∝ |σℓ|
2ℓ−2

2

|Cℓ|
2ℓ+1

2

e−
2ℓ+1

2
tr(σℓC

−1
ℓ

)

Bivariate marginals

P (CTT
ℓ

, CTE
ℓ

|σℓ) ∝
|σℓ|

2ℓ−2
2 (CTT

ℓ )
2ℓ−3

2

`

σTT
ℓ

(CTE
ℓ

)2−2σTE
ℓ

CTE
ℓ

CTT
ℓ

+σEE
ℓ

(CTT
ℓ

)2
´ 2ℓ−1

2

e
− 2ℓ+1

2

σTT
ℓ

CTT
ℓ

P (CTE
ℓ

, CEE
ℓ

|σℓ) ∝
|σℓ|

2ℓ−2
2 (CEE

ℓ )
2ℓ−3

2

`

σEE
ℓ

(CTE
ℓ

)2−2σTE
ℓ

CTE
ℓ

CEE
ℓ

+σTT
ℓ

(CEE
ℓ

)2
´ 2ℓ−1

2

e
− 2ℓ+1

2

σEE
ℓ

CEE
ℓ

P (CTT
ℓ

, CEE
ℓ

|σℓ) ∝
|σℓ|

2ℓ−2
2

(CTT
ℓ

CEE
ℓ

)ℓ
· I1(ℓ, A, B)

Univariate marginals

P (CTT
ℓ

|σℓ) ∝
(σTT

ℓ )
2ℓ−3

2

(CT T
ℓ

)
2ℓ−1

2

e
− 2ℓ+1

2

σT T
ℓ

CT T
ℓ

P (CTE
ℓ

|σℓ) ∝
|σℓ|

2ℓ−2
2

(σTT
ℓ

σEE
ℓ

)
2ℓ−1

2

· I2(ℓ, C, D)

P (CEE
ℓ

|σℓ) ∝
(σEE

ℓ )
2ℓ−3

2

(CEE
ℓ

)
2ℓ−1

2

e
− 2ℓ+1

2

σEE
ℓ

CEE
ℓ

P (CBB
ℓ

|σℓ) ∝
(σBB

ℓ )
2ℓ−1

2

(CBB
ℓ

)
2ℓ+1

2

e
− 2ℓ+1

2

σBB
ℓ

CBB
ℓ

Univariate marginals, one conditional variable

P (CTT
ℓ

|CTE
ℓ

, σℓ) ∝
(σTT

ℓ σEE
ℓ )

2ℓ−1
2 (CTT

ℓ )
2ℓ−3

2

`

σTT
ℓ

(CTE
ℓ

)2−2σTE
ℓ

CTE
ℓ

CTT
ℓ

+σEE
ℓ

(CTT
ℓ

)2
´ 2ℓ−1

2 I2(ℓ,C,D)

e
− 2ℓ+1

2

σTT
ℓ

CTT
ℓ

P (CTE
ℓ

|CTT
ℓ

, σℓ) ∝
|σℓ|

2ℓ−2
2 (CTT

ℓ )2ℓ−2

`

σTT
ℓ

(CTE
ℓ

)2−2σTE
ℓ

CTE
ℓ

CTT
ℓ

+σEE
ℓ

(CTT
ℓ

)2
´ 2ℓ−1

2 (σTT
ℓ

)
2ℓ−3

2

P (CTE
ℓ

|CEE
ℓ

, σℓ) ∝
|σℓ|

2ℓ−2
2 (CEE

ℓ )2ℓ−2

`

σEE
ℓ

(CTE
ℓ

)2−2σTE
ℓ

CTE
ℓ

CEE
ℓ

+σTT
ℓ

(CEE
ℓ

)2
´ 2ℓ−1

2 (σEE
ℓ

)
2ℓ−3

2

P (CEE
ℓ

|CTE
ℓ

, σℓ) ∝
(σTT

ℓ σEE
ℓ )

2ℓ−1
2 (CEE

ℓ )
2ℓ−3

2

`

σEE
ℓ

(CTE
ℓ

)2−2σTE
ℓ

CTE
ℓ

CEE
ℓ

+σTT
ℓ

(CEE
ℓ

)2
´ 2ℓ−1

2 I2(ℓ,C,D)

e
− 2ℓ+1

2

σEE
ℓ

CEE
ℓ

P (CTT
ℓ

|CEE
ℓ

, σℓ) ∝ |σℓ|
2ℓ−2

2 I1(ℓ,A,B)

(σEE
ℓ

)
2ℓ−3

2 (CTT
ℓ

)l
q

CEE
ℓ

e

2ℓ+1
2

σEE
ℓ

CEE
ℓ

P (CEE
ℓ

|CTT
ℓ

, σℓ) ∝ |σℓ|
2ℓ−2

2 I1(ℓ,A,B)

(σTT
ℓ

)
2ℓ−3

2 (CEE
ℓ

)l
q

CTT
ℓ

e

2ℓ+1
2

σTT
ℓ

CTT
ℓ

Note. — The determinant σℓ denotes the two-dimensional {T, E} determinant. See main text for definitions of I1(ℓ, A, B) and I2(ℓ, C, D).

The distribution then reads

P (CEE
ℓ |σℓ) =

∫

P (CTE
ℓ , CEE

ℓ |σℓ)dCTE
ℓ

∝ (σEE
ℓ )

2ℓ−3
2

(

CEE
ℓ

)
2ℓ−1

2

e
−( 2ℓ+1

2 )
σEE

ℓ

CEE
ℓ

∫

∞

−∞

(

1

y2 + 1

)
2ℓ−1

2

dy. (20)

The integral in this expression is, for ℓ > 1,

∫

∞

−∞

(

1

y2 + 1

)
2ℓ−1

2

dy =
Γ(1

2 )Γ(2ℓ−2
2 )

Γ(2ℓ−1
2 )

, (21)

which is a simple numerical constant. The desired
marginal distribution therefore reads

P (CEE
ℓ |σℓ) ∝

(σEE
ℓ )

2ℓ−3
2

(

CEE
ℓ

)
2ℓ−1

2

e
−( 2ℓ+1

2 )
σEE

ℓ

CEE
ℓ . (22)

Again, we note that the corresponding expression for
P (CTT

ℓ |σℓ) is obtained simply be replacing EE with TT .

3.4. The marginal TE distribution, P (CTE
ℓ |σℓ)

Finally, we consider P (CTE
ℓ |σℓ) =

∫

∞

0
P (CTE

ℓ , CEE
ℓ |σℓ)dCEE

ℓ . As was the case for

P (CTT
ℓ , CEE

ℓ |σℓ), this distribution does not have a



5

closed form, but may instead be written on a computa-
tionally convenient form,

P (CTE
ℓ |σℓ) ∝

|σℓ|
2ℓ−2

2

(σTT
ℓ σEE

ℓ )
2ℓ−1

2

· I2(ℓ, C, D), (23)

where I2 denotes the integral

I2 =

∫

∞

0

x
2ℓ−3

2 e−
1
x

(

(x− C)
2
+ D2

)
2ℓ−1

2

dx. (24)

The two dimensionless auxiliary parameters in this inte-
gral are

C =
σTE

ℓ CTE
ℓ

σTT
ℓ σEE

ℓ

(25)

D =

√

|σℓ|CTE
ℓ

2ℓ+1
2 σTT

ℓ σEE
ℓ

(26)

Thus, as was the case for I1, also I2 may be tabu-
lated over a two-dimensional grid for each multipole. It
is therefore computationally straightforward to evaluate
P (CTE

ℓ |σℓ) at a given value of CTE
ℓ , even if it does not

have a closed analytic expression.

3.5. The conditional TE distribution, P (CTE
ℓ |CEE

ℓ , σℓ)

From the above expressions, we may also derive
all possible conditional distribution, since P (x|y) =
P (x, y)/P (y). Here we will only explicitly consider the
conditional TE distribution,

P (CTE
ℓ |CEE

ℓ , σℓ) =
P (CTE

ℓ , CEE
ℓ |σℓ)

P (CEE
ℓ |σℓ)

∝ (CEE
ℓ )

2ℓ−3
2

(
σEE

ℓ
(CTE

ℓ
)2

CEE
ℓ

− 2σTE
ℓ CTE

ℓ + σTT
ℓ CEE

ℓ )
2ℓ−1

2

|σℓ|
2ℓ−2

2

(σEE
ℓ )

2ℓ−3
2

,

(27)

which is relevant to several important applications (see,
e.g., Section 4).

If we make the same linear transformation of CTE
ℓ as

in Section 3.3, but including an additional 2ℓ− 2 factor,

x =

√
2ℓ− 2

√

|σℓ|CEE
ℓ

(

σEE
ℓ CTE

ℓ − σTE
ℓ CEE

ℓ

)

, (28)

this we see that this may be rewritten into a familiar
form,

P (CTE
ℓ |CEE

ℓ , σℓ) ∝
1

(1 + x2

2ℓ−2 )
2ℓ−1

2

. (29)

We recognize this as the Student’s t distribution with
ν = 2ℓ− 2 degrees of freedom.

Since one of our goals is to sample from this distribu-
tion, it is useful to have its cumulative distribution, F ,
on a closed form,

F (CTE
ℓ |CEE

ℓ , σℓ) =

1

2
+ xΓ(

ν + 1

2
)
2F1(

1
2 , ν+1

2 ; 3
2 ;−x2

ν
)√

πνΓ(ν
2 )

.
(30)

Here 2F1 denotes the hypergeometric function (e.g.,
Abramowitz & Stegun 1972).
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Fig. 1.— Comparison of marginal distributions obtained with
the direct inverse Wishart sampler and with the new conditional
sampler.

4. CMB GIBBS SAMPLING APPLICATIONS

The analytic expressions derived in Section 3 are the
main results of this paper. Being completely general,
these may in principle be applied to a wide range of prac-
tical CMB applications. However, they are particularly
useful for methods that consider both the sky signal s

and the power spectrum Cℓ as free variables, such as
the CMB Gibbs sampler. In this section, we demon-
strate two specific Gibbs-based applications, namely 1)
a new Cℓ sampling algorithm that supports general bin-
ning schemes, and 2) new Blackwell-Rao estimators for
marginal and conditional distributions.

4.1. A new Cℓ sampling algorithm

The CMB Gibbs sampler draws samples from the joint
posterior, P (s, Cℓ|d), by alternately sampling from the
two corresponding conditionals (e.g., Jewell et al., Wan-
delt et al., Eriksen et al. 2004),

s
i+1 ← P (s|Ci

ℓ,d), (31)

Ci+1
ℓ ← P (Cℓ|si+1). (32)

(In this expressions, the arrow indicates sampling from
the distribution on the right hand side.) The former of
these distributions is a high-dimensional Gaussian distri-
bution, while the latter, which is the topic of the present
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Fig. 2.— A single joint power spectrum sample Cℓ drawn from
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paper, is a product of independent inverse Wishart dis-
tributions.

There is already a well known and simple algorithm
available in the literature to sample from the inverse
Wishart distribution (e.g., Larson et al. 2007 or Gupta
& Nagar 2000): Let p be the dimension of the target ma-
trix (e.g., p = 2 for {T, E}), and Σℓ = (2ℓ + 1)σℓ. Then
the algorithms goes as follows: 1) Draw 2ℓ − p vectors
from a Gaussian distribution with covariance matrix Σℓ;
2) compute the sum of outer products of these vectors;
3) invert this matrix.

This algorithm produce samples for a given multipole
ℓ. However, in low signal-to-noise applications it is of-
ten desirable to bin many multipoles together, in order
to increase the effective signal-to-noise of each variable.
Because the CMB power spectrum essentially scales as
O(ℓ−2), it is customary to bin in units of Cℓℓ(ℓ + 1)/2π.
With this convention, the above algorithm may be gen-
eralized to include binning by redefining the covariance
matrix as follows,

Σℓ =
∑

ℓ∈b

ℓ(ℓ + 1)

2π
(2ℓ + 1)σℓ. (33)

Here b = [ℓmin, ℓmax] indicates the multipole range of the
bin under consideration. Note that the total number of
modes is now M = (ℓmax + 1)2 − ℓ2

min, and therefore M
Gaussian vectors must be drawn from Σℓ.

Unfortunately, this method has the serious drawback
that the binning scheme must be identical for CTT

ℓ , CTE
ℓ

and CEE
ℓ . This is a problem because the signal-to-noise

ratio of most experiments is very different for TT than
for EE, and one would lose much spectral resolution if
one were to bin CTT

ℓ with a bin size such that the signal-
to-noise ratio for the corresponding CEE

ℓ bin is unity.
The new analytical expressions derived in Section 3

allows us to resolve this problem. First, we use the defi-
nition of a conditional distribution, and write

P (CTT
ℓ , CTE

ℓ , CEE
ℓ |σℓ) = P (CTT

ℓ |CTE
ℓ , CEE

ℓ , σℓ) ·
· P (CTE

ℓ |CEE
ℓ , σℓ) ·

· P (CEE
ℓ |σℓ).

(34)

The algorithm may now be written symbolically as fol-
lows,

C̄EE
ℓ ← P (CEE

ℓ |σℓ) (35)

C̄TE
ℓ ← P (CTE

ℓ |C̄EE
ℓ , σℓ) (36)

C̄TT
ℓ ← P (CTT

ℓ |C̄TE
ℓ , C̄EE

ℓ , σℓ). (37)

Then {C̄TT
ℓ , C̄TE

ℓ , C̄EE
ℓ } will be a sample drawn from the

joint distribution P (CTT
ℓ , CTE

ℓ , CEE
ℓ |σℓ). Note that each

of these conditional distributions is a one-dimensional
distribution, and the correlation with other polariza-
tion components comes into play only conditionally, not
jointly. One is therefore completely free to specify the
binning schemes for each component independently of
the others.

We still need to write down a sampling algorithm for
each of these conditionals. However, since these are all
one-dimensional, this is a trivial task. The simplest ap-
proach, and the one currently implemented in our codes,
is to take advantage of the cumulative distribution: Sup-
pose we want to draw a sample from a univariate dis-
tribution, P (x), and have access to the corresponding
cumulative distribution, F (x). Then we can draw a uni-
form variate η ∼ U [0, 1], and solve for F (x) = η. The
sample x will then be drawn from P (x).

However, a computational issue with this approach is
the evaluation of the cumulative distribution. With the
notable exception of P (CTE

ℓ |CEE
ℓ , σℓ) for a single multi-

ple, we do not have explicit analytic expressions for the
cumulative distributions. Therefore, in these cases we in-
stead have to map out the analytic probability densities
over a grid, and do the integration numerically. Fortu-
nately, this requires only ∼ O(102) function evaluations,
and is therefore computationally quite fast. The cost of
the full Gibbs sampler is anyway hugely dominated by
sampling from the sky signal distribution P (s|Cℓ,d).

Nevertheless, one might want to consider alternative
approaches for applications in which this sampling step
may be dominating. In such cases, the rejection sampler
(e.g., Liu 2001) appears as a promising candidate. In
this approach, one samples from an auxiliary distribu-
tion that preferably should approximate the target dis-
tribution quite well. Since our distributions are all one
dimensional, and strongly single-peaked, it should not
be difficult to establish such auxiliary functions. Indeed,
the Student’s t distribution itself is a typical candidate
for such purposes, since it has a quite heavy tail.

In Figure 1 we compare the marginal distributions ob-
tained by the direct inverse Wishart distribution and by
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the new sampler presented here, for ℓ = 10 only. As ex-
pected, they agree perfectly. Next, in Figure 2 we show a
single sample from the joint all-ℓ distribution P (Cℓ|σℓ),
with appropriate binning schemes for each of CTT

ℓ , CTE
ℓ

and CEE
ℓ . Again, producing a similar sample with the di-

rect inverse Wishart sampler is not possible, as discussed
above.

4.2. Marginal Blackwell-Rao estimators

Next, we consider Blackwell-Rao estimators for
marginal and conditional distributions, and focus for now
on the factorization of P (Cℓ|σℓ) given in equation 34.
However, we note that any one of the distributions in
Table 1 gives rise to a separate estimator.

Recall first the derivation of the Blackwell-Rao estima-
tor (Chu et al. 2005),

P (Cℓ|d) =

∫

P (Cℓ, s|d) ds

=

∫

P (Cℓ|s,d)P (s|d) ds

=

∫

P (Cℓ|σℓ)P (σℓ|d)Dσℓ

≈ 1

NG

NG
∑

i=1

P (Cℓ|σi
ℓ), (38)

Thus, the full Blackwell-Rao estimator for P (Cℓ|d) is
nothing but the sum (or average) of P (Cℓ|σℓ) over Gibbs
samples, σℓ.

This estimator, as written here, has notoriously poor
convergence properties as the dimension of the parame-
ter volume increases (Chu et al. 2005): It requires an ex-
ponential number of samples in order to converge. The
reason is simply that the volume of a single Gibbs sam-
ple is given by cosmic variance alone, whereas the volume
of the full distribution is determined also by noise and
sky cut. Therefore, even if the width of P (Cℓ|σℓ) for
a single multipole is as much as, say, 90% of the width
of P (Cℓ|d), the relative volume fraction in ℓmax dimen-
sions is f = 0.9lmax. For ℓmax = 30, this number is
f = 0.04, and for ℓmax = 100 it is f = 2.65 · 10−5.
Clearly, a brute-force Blackwell-Rao approach will not
work for high-dimensional spaces unless the volume ra-
tio per multipole is unrealistically large. However, the
same problem does not affect the marginal distributions
described above, because the number of dimensions is
low, and typically just one, by construction.

Let us consider the Blackwell-Rao estimator for
P (CEE

ℓ |d) for a single multipole, ℓ. First, marginaliza-
tion over other multipoles consists, as usual for MCMC
algorithms, simply of disregarding the sample values of
all other ℓ’s. Second, marginalization over CTT

ℓ and CTE
ℓ
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Fig. 3.— Comparison of three Blackwell-Rao estimators and sim-
ple histograms computed from a low-resolution CMB simulation.

is done using the expressions derived in Section 3,

P (CEE
ℓ |d) =

∫∫

P (CTT
ℓ , CTE

ℓ , CEE
ℓ |d)dCTT

ℓ dCTE
ℓ

≈
∫∫

∑

i

P (CTT
ℓ , CTE

ℓ , CEE
ℓ |σi

ℓ)dCTT
ℓ dCTE

ℓ

=
∑

i

∫∫

P (CTT
ℓ , CTE

ℓ , CEE
ℓ |σi

ℓ)dCTT
ℓ dCTE

ℓ

=
∑

i

P (CEE
ℓ |σi

ℓ)

=
∑

i

(σi,EE
ℓ )

2ℓ−3
2

(CEE
ℓ )

2ℓ−1
2

e
−

2ℓ+1
2

σ
i,EE
ℓ

CEE
ℓ (39)

Similarly, the Blackwell-Rao estimator for
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P (CTE
ℓ |CEE

ℓ ,d) reads

P (CTE
ℓ |CEE

ℓ ,d) =
P (CTE

ℓ , CEE
ℓ |d)

P (CEE
ℓ |d)

(40)

∝ P (CTE
ℓ , CEE

ℓ |d)

=
∑

i

P (CTT
ℓ , CEE

ℓ |σi
ℓ)

∝
∑

i

(CEE
ℓ )−1|σi

ℓ|
2ℓ−2

2 e
−

2ℓ+1
2

σ
i,EE
ℓ

CEE
ℓ

(

σi,EE
ℓ

(CTE
ℓ

)2

CEE
ℓ

− 2σi,TE
ℓ CTE

ℓ + σi,TT
ℓ CEE

ℓ

)
2ℓ−1

2

(41)

First, note that because CEE
ℓ is a constant in this

expression, P (CEE
ℓ |d) is also a constant, and can be

disregarded after equation 40. Second, we emphasize
that it is crucial to use the full joint expression for
P (CTE

ℓ , CTT
ℓ |d) in this estimator, and not the naive “al-

ternative” P (CTE
ℓ |CEE

ℓ ,d) ≈ ∑

i P (CTE
ℓ |CEE

ℓ , σi
ℓ); the

latter approach would require the underlying Gibbs sam-
ples, σi

ℓ, to be drawn conditionally on CEE
ℓ in original

Gibbs analysis, and this is usually not the case.
Finally, we consider the expression for

P (CTT
ℓ |CTE

ℓ , CEE
ℓ ,d) for a single multipole. How-

ever, there is little simplification involved in this
expression, as it simply reads

P (CTT
ℓ |CTT

ℓ , CEE
ℓ ,d) ∝ P (CTT

ℓ , CTE
ℓ , CEE

ℓ |d) (42)

≈
∑

i

P (CTT
ℓ , CTE

ℓ , CEE
ℓ |σi

ℓ)

=
∑

i

|σi
ℓ|2ℓ−2

|Cℓ|
2ℓ+1

2

e−
2ℓ+1

2 tr(σi
ℓC

−1
ℓ

),

where σℓ and Cℓ indicate 2-dimensional {T, E} matrices.
As a simple illustration, we plot the three Blackwell-

Rao estimators given above for ℓ = 10 in Figure 3, as
computed from a low-resolution simulation (Nside = 16,
ℓmax = 47, Gaussian beam of 10◦ FWHM, and white
noise of σT = 1µK and σQ,U = 0.5µK for tempera-
ture and polarization, respectively) drawn from a stan-
dard ΛCDM spectrum. As expected, the agreement with
direct histograms is excellent, but the smoothness and
faster convergence of the Blackwell-Rao estimator make
it the preferred choice for most applications.

While these expressions are useful in their own right,
for example for plotting marginal or joint power spec-
tra and corresponding confidence regions from a set of
Gibbs samples (say, by maximizing and/or integrating
the Blackwell-Rao estimator for each ℓ individually),
their main application lies in providing robust estimates
of P (CTT

ℓ , CTE
ℓ , CEE

ℓ |d) in terms of univariates. This
may open up for some very interesting possibilities for
stabilizing the exponential behaviour of the full multi-
variate estimator. This topic will be explored further in
a future publication.

5. CONCLUSIONS

We have derived computationally convenient expres-
sions for all marginals of P (Cℓ|σℓ). These expressions
may be useful to any CMB analysis method that consid-
ers both the CMB sky signal s and the power spectrum
Cℓ as unknown parameters. One prominent example is
the CMB Gibbs sampler.

We have also presented two specific applications of
these expressions. First, we demonstrated a new sam-
pling algorithm for P (Cℓ|σℓ) that supports different bin-
ning schemes for each polarization component. This
is useful because most experiments have very different
signal-to-noise ratio to temperature and polarization.

Second, we have provided explicit expressions for
the Blackwell-Rao estimators for P (CTT

ℓ |CTE
ℓ , CEE

ℓ ,d),
P (CTE

ℓ |CEE
ℓ ,d) and P (CEE

ℓ |d). Together, these three
can be used to map out the joint distribution P (Cℓ|d)
for a single multipole in terms of univariate distributions
alone. Further, we note that any of the distributions
listed in Table 1 give rise a separate, and potentially
useful, Blackwell-Rao estimator.

We thank Jeff Jewell, Greg Huey, Kris Górski and
Graca Rocha for useful and interesting discussions. We
acknowledge use of the HEALPix6 software (Górski et al.
2005) and analysis package for deriving the results in this
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Microwave Background Data Analysis (LAMBDA). The
authors acknowledge financial support from the Research
Council of Norway.
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