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Hydrologists and ecologists have been working in the Everglades on integrating a long-
term hydrologic data network and a short-term ecological database to support ecological 
models of the habitat of the snail kite, a threatened and endangered bird. Data mining 
techniques, including artificial neural network (ANN) models, were applied to simulate 
the hydrology of snail kite habitat in the Water Conservation Area 3A of the Everglades. 
Hydroperiods of water depths have a significant affect on the nesting and foraging of the 
snail kite. Seventeen water-depth recorders are co-located at transects where extensive 
plant samples are collected.  These continuous recorders were established in 2002. A 
long-term network of three water-level recorders has been maintained since 1991. Using 
inputs representing the three long-term gages, very accurate ANN models were 
developed as input to predict the water depths at the 17 short-term sites. The models were 
then used to hindcast water depths to 1991, resulting, much longer water-level record to 
help scientists better learn how the snail kite’s habitat is affected by changing hydrology. 
A Decision Support System (DSS) was developed to disseminate the models in an easily 
used package. The DSS is a MS ExcelTM/VBA application that integrates the models and 
database with interactive controls and streaming graphics to run long-term simulations. 
As part of the Everglades restoration Interim Operating Plan (IOP), a regional hydrologic 
model is used to generate water levels for alternative flow regulation schedules. The 
alternative IOP water levels are input to the DSS to predict the hydrology of the snail kite 
habitat. The application demonstrates how very accurate empirical models can be built 
directly from data and readily deployed to end-users to support interdisciplinary studies.  



Figure 1. Mapping showing study area and 
location of continuous gaging stations.
Figure 1. Mapping showing study area and 
location of continuous gaging stations.

INTRODUCTION 
 
The restoration of the Everglades 
is one of the most ambitious 
ecosystem restorations 
undertaken [1]. The success of 
the restoration from a 
compartmentalized system of 
water impoundments to a 
flowing hydrologic system is 
dependent on the survivability of 
many threatened and endangered 
species. The snail kite 
(Rostrhamus sociabilis) is an 
endangered raptor with its 
distribution limited to South 
Florida [2]. The life cycle of the 
snail kite is highly dependent on 
the hydrology of the Everglades’ 
wetlands in terms of habitat and 
diet.  Water-depth fluctuations 
directly affect preferred vegetation (wet prairie) and principal food source, the aquatic 
apple snail (Pamacea paludosa). Scientists are studying the ecology of the snail kite in 
Water Conservation Area 3b (WCA3b) of the Everglades, the largest of designated 
critical habitats of the raptor (fig. 1). Much of the area is already serious degraded and 
various studies have documented the conversion of wet prairie to aquatic sloughs and 
losses of interspersed herbaceous and woody species essential for nesting habitat.  

The principal objective of the snail kite study in WCA3b is to separate plant 
community response due to typical seasonal and inter-annual variances in hydrologic 
regimes. The vegetative community structure of these sites is an expression of present 
and historic hydrologic conditions. A critical element of the study is to determine how the 
vegetative communities respond to temporal and spatial changes in hydrology. Water-
level data from 1991 is available from three real-time gaging stations (referred to as 
“long-term” sites). In 2002, as part of the snail kite study, an array of 17 continuous 
water-depth monitors were co-located at transects where extensive plant samples are 
collected (referred to as “short-term” sites).  To assist ecologists analyze the water depth 
and hydroperiods over a large range of hydrologic conditions and to integrate long-term 
ecological data, the hydrologic histories at the 17 transects were hindcast back to 1991 
using artificial neural network (ANN) models. Figure 2 shows long-term (1991 to 2005) 
water-level data for Site 64 (fig. 1) and short-term (2002 to 2005) water-depth data for 
Site W8 (fig 1).  
 



Figure 2. Graph showing long-term water-level and 
short-term water-depth data for the period 1991 to 2005.
Figure 2. Graph showing long-term water-level and 
short-term water-depth data for the period 1991 to 2005.

METHODS 
 
The authors had previously 
developed ANN-based models 
of estuaries in Georgia and 
South Carolina.  The type of 
ANN used was the multi-
layered perceptron (MLP) 
described by Jensen [3], 
which is a multivariate, non-
linear regression method 
based on machine learning. In 
a side-by-side comparison, 
Conrads and Roehl [4] found 
that ANN models had 
prediction errors 60-82 percent 
lower than those of a state-of-the-practice mechanistic model when predicting water 
temperature, specific conductance, and dissolved oxygen on  Cooper River in South 
Carolina. Conrads and others [5] went on to use ANNs to estimate the impacts of nutrient 
loading from rainfall runoff and tidal marsh inundation on DO in the same waterway. In a 
regulatory application, Conrads and others [6] describe an ANN-based model for the 
permitting of three wastewater treatment plants that discharge into the Beaufort River 
estuary. In general, a high-quality predictive ANN models can be obtained when: 

• The data are well distributed throughout the state space (historical range of 
conditions) of interest, 

• The input variables selected by the modeler share a lot of “mutual information” 
about the output variables, 

• The form “prescribed” or “synthesized” for the model used to “map” (correlate) 
input variables to output variables is a good one. Machine learning techniques 
like ANNs synthesize a best fit to the data. 

 
Data Set Preparation 
Prior to analysis and modeling, the two data sets needed to be re-sampled to a common 
time interval, signals decorrelated, and additional variables computed. The long-term and 
short-term data sets were re-sampled to “time merge” the two sets. The short-term water-
depth data are collected every 12 hours at 7:30 AM and 7:30 PM. The long-term water-
level data are a daily mean water level.  The short-term data was re-sampled and 7:30 
AM data were used with the daily mean USGS data.  

Often, explanatory variables share information about the behavior of a response 
variable. It is difficult, if not impossible, to understand the individual effects of these 
variables (sometime known as confounded or correlated variables), on a response 
variable. Empirical models have no notion of process physics, nor the nature of 



Figure 4. Schematic showing the decorrelation of water levels (WL) for Sites 69 and 64. 

interrelations between input variables. To be able to clearly analyze the effects of 
confounded variables, the unique informational content of each variable must be 
determined by “de-correlating” the confounded variables. The data from the snail kite 
network measures water depths at the gaging stations.  The USGS stations measure water 
levels to a known datum.  To decorrelate the water-depth data and to set all the stations to 
a common datum for the analysis, Site 64 was used as the “standard” and the difference 
between Site 64 and the water depths sites was used as the time series for the analysis. 

 
Figure 3.  Plots showing water levels at Site 64, water depths at WL8, and the difference 
between the two time series (W8DIF). In figure 2a, the three time series are plotted on the 
same axis. In figure 2b, W8DIF is plotted on a separate axis to show the detail of the 
variability between the two signals. 
 
Figure 3 shows the time series for the water level at Site 64, the water depth at W8, and 
the difference between the two time series (variable W8DIF). The variability of the 
difference between Site 64 and W8 is clearly seen in figure 3b where W8DIF is plotted 
on a separate axis. In addition to setting all the water- depth and water-level data to the 
same datum, using differences produces new signals that are less correlated than the 
original signals and reduces the multi-colinearity between the time series.  

The 3 long-term sites are highly correlated and Sites 65 and 69 were decorrelated 
from Site 64. Decorrelation was accomplished in two steps (fig.4). The first step was to 
generate a Single Input Single Output (SISO) ANN model1 using Site 69 as input and 

                                                            
1 The iQuest software was used in this study and is exclusively distributed by Advanced 
Data Mining, LLC, 3620 Pelham Road, PMB 351, Greenville, SC 29615-5044 Phone:864 
201 8679 
 



Site 64 as output. The residual error (the difference between predicted and measured 
values) is the “unshared” information between the two signals and the decorrelated signal 
for Site 69. The second step is to build an ANN model using Site 65 and the decorrelated 
signal for Site 69 to predict Site 64. The residual of this model is the decorrelated signal 
for Site 65. 

For the long-term water level data, 2- and 3-day moving window averages (MWA) 
were used. To extract information from the time series on the movement or trajectory of 
the system, time derivatives of 1-, 2-, and 3-day time derivatives were computed on the 
daily and MWA values.  
 
Modeling Approach 
The predictions of water depths at the short-term sites are made in two steps. The first 
step is to develop ANN models to predict the water-depth difference (from Site 64) for 
each site. The second step is to subtract the predicted water-depth difference from Site 64 
for the prediction at the short-term site. Each model uses combinations of two general 
types of input signals from the 3 long-term sites, a water level signal(s) (either the daily 
value or a MWA) and a time derivative signal(s). The input data sets are bifurcated into 
training and testing data sets using a zone averaging, or box, filter of the data. Using the 
zone average filter, all the data is used in the test dataset and a small selected sample of 
the data is used for the training dataset. The filter separates the dataset into user-specified 
number of zones or boxes and determines the input vectors with the highest information 
content and reserves these vectors for the training dataset. The percentage of training and 
testing data depended on the length of the dataset and the range of hydrologic conditions 
in the dataset. Typically, the zone averaging filter uses approximately 40 percent of the 
data for the training dataset. 
 
RESULTS 
 
The final water-depth predictions at the 17 short-term sites were evaluated using four 
“goodness-of- fit” statistics; coefficient of determination (R2), mean square error (MSE), 
root mean square error (RMSE), and percent model error (PME) (Table 1). Model 
accuracy is often reported in terms of R2 and is commonly interpreted as the “goodness of 
the fit” of a model. A second interpretation is one of answering the question, “How much 
information does one variable or a group of variables have about the behavior of another 
variable?” In the first context, an R2 = 0.6 might be disappointing, while in the latter it is 
merely an accounting of how much information is shared by the variables being used. 
The R2 for the models are very high (0.976 – 0.991) and indicates that the models explain 
almost all of the variability of measured data.  

The RMSE is defined as the square root of the mean of the squared differences 
between the measured and predicted data. The RMSE for sites varied from 0.01 to 0.02 
m. For the statistic to be relevant, RMSE should be evaluated with respect to the range of 
the output variable. A model may have a low RMSE but if the range of the output  



 
Table 1. Summary statistics for final water-depths predictions at short-term sites 
[n, number of samples; R, Pearson coefficient; R2, coefficient of  determination; RMSE, 
root mean square error; PME, percent model error] 
 
variable is small, the model may be very accurate but for only a small range of 
conditions. The PME statistic divides the RMSE by the range of the measured data to 
determine the percent of error over the full range of modeled data.  The PME varies from 
1.5 to 2.7 percent. The average RMSE and PME for the model is 0.02 m and 2.4 percent, 
respectively. A plot of measured and predicted water depths for Site W11 is shown in 
Figure 5. Site W11 provides performance results in the middle of the range of model 
statistics. The plot shows that the model is able to simulate the full range of the measured 
data.  The majority of the hindcasted water depths are within the range of the data used to 
train the model.  There are periods in the hindcast when the model extrapolated past the 
range to the training data. Negative water-depths indicate ground-water levels during dry 
periods. Predictions of water depths are not continuous due to missing data for one or 
more of the index stations. For complete predictions, the missing data at the long-term 
stations would need to be filled with estimated data.  
 
Development of Decision Support System 
 
To maximize the usefulness of the ANN models and the hindcasted data to a broad range 
of users, a decision support system (DSS) was developed to integrate the historical data,  



 
Figure 5.  Measured (solid black trace) and predicted (dashed gray trace) water depth for 
Site W11. Period from June 1991 to June 2002 are the hindcasts from the model. Periods 
of missing predictions are due to missing data at one or more of the input stations. 
 
ANN models, simulation controls, statistical analysis, and output. The DSS was 
developed as a Microsoft ExcelTM/Visual Basic for Applications (VBA) program.  Figure 
6 shows the basic architectural elements of the DSS. The DSS is operated through a 
graphical user interface (GUI) composed of menus and controls that requires no typing. 
This makes the DSS easy to use and eliminates the need to trap user errors. The GUI also 
provides graphical outputs of measured and predicted hydrologic behaviors.  The main 
application (Simulator) within the DSS performs all WL predictions and statistical 
analysis. The Simulator uses a total of 19 ANN models (2 decorrelation models and 17 
water depth models). The Simulator reads data and writes output files for the various run-
time options that can be selected by the user through the system’s GUI. Users can also 
select a variety of statistics to calculate for a given simulation.  

User-defined hydrographs for Site 64, 65, and 69 can be inputted to the DSS to 
evaluate alternative water-management scenarios. As part of the Everglades restoration 
Interim Operating Plan (IOP), a regional hydrologic model is used to generate water 
levels for alternative flow regulation schedules. The alternative IOP water levels are input 
to the DSS to predict the hydrology of the snail kite habitat. Ecologist and water-resource 
managers can statistically analyze the predicted water depths to determine impacts on 
vegetative communities and, ultimately, on the snail kite.  

 
SUMMARY 
 
Hydrology has a significant affect on the nesting and foraging of the threatened and 
endangered snail kite. ANN models were developed using the three long-term gages as 
input to simulate the water levels at the 17 short-term sites and predict 11 years of 
hindcasted water depths. To facilitate the technical transfer of historical data and 
predictive models, a DSS MS Excel application was developed that would allow a broad 
range of uses to have equal access to the analytical tools. For ecologists, the DSS will 



 
Figure 6.  Schematic showing Snail kite Decision Support System (DSS) architecture 

 
allow them to generate extended hydrologic records to increase the predictive capabilities 
for evaluating the snail kite habitat to changing hydrology. For water-resource managers, 
the DSS will allow them to evaluate alternative hydrologic regimes. The application 
demonstrates how very accurate empirical models can be built directly from data and 
readily deployed to end-users to support interdisciplinary studies. 
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