
Draft 5/15/01 Standards Analysis
Analysis of Dimensional Metrology Standards

by the

NIST Manufacturing Engineering Laboratory

Contributors:

John Evans

Simon Frechette

John Horst

Hui Huang

Thomas Kramer

Elena Messina

Fred Proctor

Bill Rippey

Harry Scott

Ted Vorburger

Al Wavering
i

Draft 5/15/01 Standards Analysis
Disclaimer
Commercial equipment and materials are identified in order to specify certain
procedures adequately. In no case does such identification imply recommendation or
endorsement by the National Institute of Standards and Technology, not does it imply
that the materials or equipment identified are necessarily the best available for the
purpose.

Acknowledgements
Partial funding for the writing of this paper was provided to Catholic University by the
National Institute of Standards and Technology under cooperative agreement Number
70NANB7H0016.

Abstract
This is an analysis of standards related to dimensional metrology.

Keywords
dimensional, DMIS, inspection, metrology, NIST, numerical control, process planning,
standard
ii

Draft 5/15/01 Standards Analysis

CONTENTS
1.0 Executive Summary .. 1

2.0 Introduction... 3

2.1 Focus ..3

2.2 Purpose...3

2.3 Scope..3

2.3.1 In Scope ...3
2.3.2 Out of Scope ..4

2.4 Overall System Considerations..5

3.0 Activities, Modules, and Interfaces ... 6

3.1 Activities, Software Modules, and Software Systems6

3.1.1 Connectability ..7

3.2 Dimensional Metrology Activities Identified ..7

3.2.1 Activity Coordination ..8
3.2.2 Computer-Aided Design (CAD)..8
3.2.3 Hand-held Device Measuring ..8
3.2.4 High-level Inspection Instruction Execution ...9
3.2.5 Inspection Planning..9
3.2.6 Inspection Programming..9
3.2.7 Low-level Inspection Instruction Execution..9
3.2.8 Machining Planning ...9
3.2.9 Machining Programming ...9
3.2.10 Math Computing ..9
3.2.11 Other Inspection Device Control ...10
3.2.12 Probe Instruction Execution...10
3.2.13 Reporting and Analysis..10
3.2.14 Routing Planning ...10
3.2.15 Solid Modeling ..10

3.3 Simulation ..10

3.4 Interfaces and Architecture ..11

3.4.1 Active Interface..13
3.4.2 Data Interface...13
3.4.3 Distinction May be Blurred ...13
3.4.4 Independence of Architecture and Interfaces14
3.4.5 NIST ISD Implementation...14

4.0 Software Systems... 15
iii

Draft 5/15/01 Standards Analysis
4.1 Systems ..15

4.2 Hot Interfaces...16

4.2.1 Design ..16
4.2.2 Program..16
4.2.3 Measurement Data ...17
4.2.4 API for Low-level Inspection Instruction Execution...........................17
4.2.5 Inspection Planning Data ...17

5.0 Languages .. 18

5.1 Separate vs. Combined Information Model and Representation18

5.2 General-Purpose Programming Languages ...18

5.3 Syntax Specification Languages ..18

5.4 Interface Definition Languages and Information Modeling Languages..........19

5.4.1 CORBA IDL and Microsoft IDL...20
5.4.2 EXPRESS ..20
5.4.3 C++ Header Files ...21
5.4.4 XML...21

5.5 STEP Part 21 Generic File Format ..21

5.6 Process Planning Languages..22

5.6.1 A Language for Process Specification (ALPS)22
5.6.2 Process Specification Language (PSL)..22

5.7 Configuration and User Option Files...22

6.0 APIs and Data Formats for Dimensional Metrology......................... 24

6.1 CAD APIs ..24

6.2 CAD Data Formats ..24

6.2.1 Non-Proprietary CAD Data Formats ...26
6.2.2 Proprietary CAD Data Formats ...27

6.3 Hand-Held Device Measuring APIs ..27

6.4 High-Level Inspection Instruction Execution APIs...27

6.4.1 DMIS Part 2 ...28
6.4.2 Another Type of API to High-level Instruction Execution..................28

6.5 High-level Inspection Instruction Data..29

6.5.1 DMIS..29

6.6 Inspection Planning APIs...30

6.7 Inspection Plan Data ..30

6.7.1 STEP AP 219 ...31
iv

Draft 5/15/01 Standards Analysis
6.7.2 ALPS with Inspection Operations ...31

6.8 Inspection Programming APIs...31

6.9 Low-Level Inspection Instruction APIs...31

6.9.1 CMM-driver Specification...32
6.9.2 DmeEquip Portion of DMIS Part 2..32
6.9.3 I++..32

6.10 Machining Planning APIs ..32

6.11 Machining Plan Data..32

6.11.1 ISO 14649 ..32
6.11.2 ALPS with Machining Operations...33
6.11.3 STEP AP 213 ...33

6.12 Machining Programming APIs ..33

6.13 Math Computing APIs ...33

6.14 Other Inspection Device APIs ...34

6.15 Probe Instruction APIs...34

6.15.1 NGIS SIM Specification ..34
6.15.2 IEEE 1451 Intelligent Sensor Standard ...35

6.16 Reporting and Analysis APIs...35

6.17 Reporting and Analysis Data ...35

6.18 Routing Planning APIs ..36

6.19 Routing Plan Data ..36

6.20 Setup Data..36

6.21 Solid Modeling APIs ...37

6.21.1 Proprietary Solid Modeling APIs...37
6.21.2 Non-Proprietary Solid Modeling APIs ..37

6.22 Solid Modeling Data ..37

Appendix A Modules and Interfaces in Detail ... 38

A.1 Activity Coordination ... 38

A.2 Computer-Aided Design ... 41

A.3 Hand-held Device Measuring ... 43

A.4 High-level Inspection Instruction Execution .. 44

A.5 Inspection Planning... 46

A.6 Inspection Programming... 48

A.7 Low-level Inspection Instruction Execution... 49
v

Draft 5/15/01 Standards Analysis
A.8 Machining Planning .. 51

A.9 Machining Programming .. 52

A.10 Math Computing ... 54

A.11 Other Inspection Device Control .. 55

A.12 Probe Instruction Execution.. 56

A.13 Reporting and Analysis... 56

A.14 Routing Planning .. 58

A.15 Solid Modeling ... 61

Appendix B Glossary .. 64

Appendix C Combined vs. Separate Model and Representation 66

References .. 68
vi

Draft 5/15/01 Standards Analysis
1 Executive Summary

This paper is an analysis of standards related to dimensional metrology information, with

recommendations regarding standards development. The analysis focuses on the degree to which

existing and developing standards provide a complete set of non-overlapping specifications for

information needed to perform automated dimensional metrology. The analysis was prepared in

the Manufacturing Engineering Laboratory at the National Institute of Standards and Technology.

The intent of the analysis is to assist users, vendors, and standards developers in the area of

dimensional metrology.

The most pressing current needs are:

1. Continue work on DMIS. DMIS is at the key interface between programming and execution for

users of dimensional measuring equipment. DMIS particularly needs fixed conformance classes,

conformance testing, and conformance certification. Current work on DMIS Part 2 and Version

4.0 should be pursued to completion. See, Section 4.2.2, Section 6.4 and Section 6.5.

2. Continue work on the CMM-driver specification and harmonize it with the DmeEquip portion

of DMIS Part 2 and European I++ program efforts. This API will be very useful for builders of

controls for dimensional measuring equipment (particularly CMMs), which receive and execute

API commands. The API should be equally useful to builders of software for executing high-level

inspection programs, since their software makes calls to commands in the API. In both cases a

standard specification will simplify builders’ work by replacing a number of differing APIs with a

single API. Unless a user of dimensional measuring equipment is also building controls or writing

drivers, this API will not be used directly by that user. See Section 4.2.4 and Section 6.9.

3. Work towards a standard 3D shape representation that includes tolerances. STEP AP 203,

which uses boundary representation geometry, is adequate for nominal shape but needs to have

tolerances added. A new version of STEP AP 203 should be created that includes tolerances.

STEP AP 224, which is feature-based, does include tolerances and can be used for many parts, but

is not able to represent a full range of shapes. See Section 4.2.1 and Section 6.2.

4. Work towards a standard representation for measurement data which is input to the reporting

and analysis activity. The bulk of the data is point data, but other data, such as feature data, is also

required. See Section 4.2.3.

5. Complete the Application Reference Model for STEP AP 219 in the form required for a

committee draft as a Technical Specification under STEP. STEP AP 219 will provide a data model

and format for the transfer of inspection planning data. Develop an XML-based interchange

format based on this model for transfers of dimensional inspection information. See Section 4.2.5

and Section 6.7.

6. To the extent possible, the metrology community should work to avoid creating or endorsing

multiple standards for the same purpose. Where standards overlap, they should be harmonized to

the extent that, in the area of overlap, there is a one-to-one mapping from one standard to the

other. Current work to harmonize DMIS and STEP AP 219 should continue to the point where a
1

Draft 5/15/01 Standards Analysis
one-to-one mapping is defined for the area of overlap. STEP AP 219, in turn, should be

harmonized with STEP AP 224 and STEP AP 214.

Some major observations:

1. When defining standards, the dimensional metrology community should move towards

methods in which the information content is separate from the file format or other exchange

specification. A single information model can be used with many different file formats or database

access and communication methods.

2. TCP/IP should suffice for communications in the foreseeable future. This will work for both

Internet and intranet systems.

3. The metrology community should anticipate that computer software modules may be separated

in three degrees: (1) both modules in the same process, (2) modules in different processes on a

single computer (or different computers sharing physical memory), (3) modules in processes on

different computers. Basic standards for one module using another should assume both modules

are in the same process, and, hence, be written as APIs. Any API may then be wrapped in a

messaging system for processes on the same computer, then wrapped again in a communications

system for processes on different computers.
2

Draft 5/15/01 Standards Analysis
2 Introduction

2.1 Focus

This is an analysis of standards related to dimensional metrology information. The analysis

focuses on the degree to which existing and developing standards provide a complete set of non-

overlapping specifications for information needed to perform automated dimensional metrology.

Information, here, means anything that can be transmitted as electronic bits, including both

commands and data. We are using the term “standards” loosely to mean national and international

standard formats, open proprietary standard formats, de facto non-proprietary standards, and non-

standard formats in common use. This analysis covers all of those.

Section 3 describes the entire dimensional metrology function in terms of a set of activities and

the software modules that perform them. Section 4 discusses the software systems into which the

modules are typically divided and makes recommendations regarding the interfaces that are most

important now. Section 5 discusses languages that might be used for defining standards or for

standardized exchange of data. Section 6 looks at APIs and data formats for dimensional

metrology, including an assessment of the situation regarding formats for each type of data or

commands identified. Appendix A discusses in detail the modules of Section 3, their interfaces,

and the types of data and commands that pass over the interfaces.

The dimensional metrology function of a company is tied tightly to the broader function of

assessing product quality and production system performance. Thus, data for dimensional

metrology must often be compatible with data used in or produced by other assessment activities.

The dimensional metrology function must also work with other company functions, particularly

design, resource management, and scheduling, so data compatibility with those functions is also

needed. In this analysis we identify data shared with these other functions.

2.2 Purpose

The purpose of the overall activity of which this analysis is a part is to make it easy to assemble

and operate a dimensional metrology system using components from various vendors.

Another purpose of the overall activity is to allow a manufacturer to acquire and store inspection

data using a variety of types of dimensional inspection equipment and have each type of data be in

the same format regardless of the equipment used to acquire the data.

The above implies that equipment of a given type from different suppliers should produce data in

the same format.

2.3 Scope

2.3.1 In Scope

The activities and hardware described below are in scope. We are interested in the data used in or

produced by the activities, and the commands and responses needed to conduct the activities.
3

Draft 5/15/01 Standards Analysis
We assume that almost all activities are conducted with the help of PC type (or slightly more

powerful engineering workstation) computers. Any number of computers may be involved.

2.3.1.1 Activities

Dimensional metrology for rigid discrete objects (e.g. engine blocks and turbine blades) and

semi-rigid objects (e.g. sheet metal panels for automobiles and aircraft) used in the automotive

and aerospace industries are in scope.

This scope encompasses the dimensional metrology activities of many other types of companies

besides those strictly in the automotive and aerospace sectors. For example, the dimensional

metrology activities of machine shops of all sizes fit in this scope.

Simulation of dimensional metrology (executing a DMIS program in simulation, for example) is

in scope.

Methodologies that make it feasible to handle diverse types of metrology data in a database

system are in scope.

2.3.1.2 Hardware

The following types of devices for taking dimensional measurements are in scope:

1. hand-held electronic dimensional measurement devices (calipers, micrometers),

2. CMM (see below),

3. CNC machining center with touch probe,

4. photogrammetry equipment,

5. sensor (touch probe, non-contact probe, surface roughness sensor),

6. theodolite.

Devices which produce 3D point data in real time are considered to be CMMs in this analysis.

This includes devices with mutually orthogonal physical axes (traditional CMMs) or with

articulated arms. It includes laser trackers. A CMM may be fixed or portable and its axes may be

positioned automatically or manually.

2.3.2 Out of Scope

Analysis and simulation activities not directly tied to dimensional metrology are out of scope.

Finite element analysis, kinematic analysis, and throughput analysis by simulation, for example,

are all out of scope.

Data used by systems performing activities that are not dimensional metrology are out of scope if

such data is not shared with systems performing dimensional metrology. Such out-of-scope data

includes, for example, finite element mesh data, kinematics data, and throughput data.

Activities and data for systems performing other types of metrology are out of scope. Out-of-

scope data includes, for example: hardness, strength, color, density, grain structure, chemical
4

Draft 5/15/01 Standards Analysis
composition, electrical properties, and electronic properties. The activities that gather and analyze

such data are out of scope.

Dimensional metrology of non-rigid bodies (ropes and clothing, for example) is out of scope.

2.4 Overall System Considerations

Automated metrology components and systems should be intranet and internet compatible. To do

this, expect a mix of net languages (XML, Java, VRML), non-net format files transmitted via the

net, database transactions via the net, and non-net format commands transmitted via the net.

Communications and database systems are the infrastructure on top of which an integrated

metrology system runs.

We assume that all communications between computers are performed using ethernet.

Compatibility with services and utilities that make it easy to move communicating processes from

running on the same computer to running on different computers needs to be considered. The

NIST Intelligent Systems Division’s NML communications system [Shackleford] is a utility of

this sort. The availability of tools to make communicating processes run over internet or intranet

is increasing.

We assume that all computers performing dimensional metrology are connected to a database via

ethernet. The database may use files, or it may use other techniques. The database may reside on a

single central server, or it may be a system of networked servers. To serve a dimensional

metrology system, the database should be able to store or retrieve a set of related information

(such as a file) by name. Names may, of course, be pathnames including directory names and

possibly machine names.
5

Draft 5/15/01 Standards Analysis
3 Activities, Modules, and Interfaces

3.1 Activities, Software Modules, and Software Systems

In this analysis, an activity is a process performed to accomplish a goal. Making an inspection

plan, for example, is an activity. The overall activity of performing dimensional metrology may be

broken down into subactivities, some subset of which occur whenever any dimensional metrology

activity is performed. Some subactivities involve only information, and some involve both

information and dimensional measuring equipment hardware. We will not use the term subactivity

much in the remainder of this analysis, but keep in mind that any activity may be a subactivity of

some larger activity and may itself consist of smaller subactivities.

Each activity is performed either entirely by a computer or by a person with the help of a

computer. For hand-held dimensional measuring equipment, the computer may be a chip

embedded in the equipment. Where person and computer are both involved, any division of labor

is possible; the computer may just act as a typewriter with the person doing the thinking, or the

computer may do all the work with the person watching.

A software module includes at least a library of compiled (or compilable) computer code with an

application programming interface (API). The activities identified in Section 3.2 correspond one-

to-one with software modules. When a module executes, it performs the corresponding activity.

One or more software modules may be combined with supporting code (for graphics, user

interface, and possibly other functions) in a software system. Almost all software systems used

for dimensional metrology run on a single computer. Some software systems are contained in a

single computer process. Other software systems execute in multiple processes connected by

interprocess communication. A software system is what a software vendor usually sells. Software

systems may be combined to form larger systems. Section 4 deals with software systems more

fully.

Although it is anticipated that communications among modules will usually be done

electronically, communications may be performed by moving a physical medium (such as a tape,

a CD, a floppy disk, or even paper) from one place to another.

The activity breakdown described here is intended partly to match the module breakdown found

in commercial software systems for dimensional metrology and partly to be a recommended

module breakdown for software systems built in the future.

The activities identified here are those used for dimensional metrology for discrete parts

manufacturing. Some of these activities differ between manufacturing using fixed-program

transfer lines (where each part follows the same route and each machine does the same operation

over and over on the same kind of part) and manufacturing more flexibly (where each machine is

used for different types of parts at different times). Where there is a difference, this is noted in the

detailed activity description given in Appendix A.
6

Draft 5/15/01 Standards Analysis
3.1.1 Connectability

Whenever software module M1 uses the services of module M2, M1 and M2 may be separated

from one another in three degrees, as follows.

1. Both modules run in the same computer process. In this case, M1 makes calls to functions

in M2’s API, and M2 returns status and/or data to M1 as specified by the API. If M2

controls hardware, some of the API function calls make the hardware execute.

2. M1 runs on the same computer as M2, but in a different computer process. In this case, the

API function calls made by M1 and executed by M2 are wrapped in an interprocess

messaging scheme. The messaging scheme provides for any returned value or status from

M2 to M1 (in response to a message from M1) to be sent back in a message.

3. M1 runs on a different computer from M2. In this case, each call to a function in M2’s API

is wrapped in a message and the message is sent between computers by a communications

system. With some messaging schemes (NIST’s NML messaging scheme, for example),

this case (separate computers) and the preceding case (same computer, separate processes)

are handled almost the same by the system builder. As in the previous case, the messaging

scheme provides for any returned value or status from M2 to M1to be sent back in a

message.

We assume there is a file system and/or database system to which every process with a need has

access. Sets of related data (files, for example) identified by name may be put into the system and

obtained from it.

3.2 Dimensional Metrology Activities Identified

The activities of performing dimensional metrology (listed alphabetically) are1:

1. Activity Coordination (deciding what other activities happen, and when)

2. CAD (creating designs with the help of a computer)

3. Hand-held Device Measuring (e.g., using calipers with electronic readout)

4. High-level Inspection Instruction Execution (e.g., executing a DMIS program)

5. Inspection Planning (deciding what to inspect and how to inspect it)

6. Inspection Programming (e.g., writing DMIS programs)

7. Low-level Inspection Instruction Execution (e.g., executing CMM-driver commands)

8. Machining Planning (deciding what to inspect when on-machine inspection is used)

9. Machining Programming (writing NC code for on-machine inspection)

10. Math Computing (feature fitting, statistical calculating, etc., excluding solid modeling)

11. Other Inspection Device Control (controlling theodolite or photogrammetric equipment)

12. Probe Instruction Execution (e.g. executing NGIS standard sensor interface commands)

13. Reporting and Analysis (reporting and analyzing data resulting from inspection)

14. Routing Planning (deciding which workstations2 work-in-process goes to)

15. Solid Modeling (maintaining and querying a 3D model of workpieces and equipment)

1. These activity names are spelled with initial caps throughout this analysis.
7

Draft 5/15/01 Standards Analysis
Although displaying graphics is expected to be performed in many parts of the system, it is not

included in the list above. This is because an interface to a graphics display system is not specific

to dimensional metrology (or any other domain). Thus, defining a standard interface to graphics

requires that a far broader community be involved. Graphics capabilities are generally built into

commercial software systems, anyway, so the lack of a standard should not cause any difficulties

for dimensional metrology.

Interacting with a user is another activity performed throughout dimensional metrology systems

that is not included in the list. Standards might be developed or adopted for the look and feel of

user interfaces, but that issue is not tackled in this analysis. It is too big an issue to be decided

within the dimensional metrology community.

A brief description of each activity follows. The interfaces of each activity are discussed in

Appendix A.

3.2.1 Activity Coordination

Activity Coordination is the process of (1) planning what other activities will take place and when

they will take place and (2) assigning resources (fixtures, tools, people, etc.) to planned activities,

and (3) giving the orders necessary to carry out the plans. Scheduling is included in Activity

Coordination.

3.2.2 Computer-Aided Design (CAD)

CAD is the process of producing a design using a computer. There are many commercial CAD

systems. Dimensions and tolerances are specified during the CAD process that drive downstream

dimensional metrology activities.

The term “solid modeler” is often used to apply to CAD systems. As commonly used to describe

a CAD system, it means one that makes a solid model (as opposed to a wire frame, or a facetted

model, etc.). This analysis does not use that meaning. Our meaning for “solid modeler” is given in

Section 3.2.15 and is a synonym for the term “solid modeling kernel”, often used elsewhere, but

not used in this analysis.

3.2.3 Hand-held Device Measuring

Hand-held Device Measuring is the process of measuring things with a hand-held device. Hand-

held devices are things such as electronic calipers. Typically, such a device may be carried around

and is controlled by the person who carries it. These devices are included in this analysis because

they produce data which is returned electronically to the database. If a hand-held dimensional

measuring device does not produce electronic data directly (a manual micrometer, for example),

but a human reads the device and enters data on an electronic device, the hand-held measuring

device is intended to be covered by this analysis.

2. As used in this analysis, a “workstation” is a working area including a principal machine (such as a CMM,
lathe, or machining center) for processing work-in-process, and possibly including associated equipment
(such as a storage unit or powered vise).
8

Draft 5/15/01 Standards Analysis
3.2.4 High-level Inspection Instruction Execution

High-level Inspection Instruction Execution is the process of executing high-level inspection

instructions, such as statements from a DMIS program. High-level inspection instructions may

define things such as features, tolerances, and datums or may give motion control directives. The

motion control directives may be high-level (such as measure a feature) or low-level (such as set a

feed rate or measure a point). The high-level instructions may come from a file or from a user.

3.2.5 Inspection Planning

Inspection Planning is the process of deciding what to inspect and how to inspect it (which

equipment, how many points, etc.), given the design for a part. Inspection Planning may also

involve computing estimated uncertainties for making specific measurements using different

equipment and techniques. In existing software systems, Inspection Planning may overlap with

Routing Planning and/or Inspection Programming.

3.2.6 Inspection Programming

Inspection Programming is the process of producing a high-level inspection program, a DMIS

program, for example. In existing software systems, Inspection Programming may overlap with

Inspection Planning.

3.2.7 Low-level Inspection Instruction Execution

Low-level Inspection Instruction Execution is the process of executing low-level inspection

instructions. This activity is usually carried out in the same box that sends drive signals to axis

actuators. Low-level inspection instructions deal with low-level data (such as set or get search

distance) or with low-level motion (such as probe a point). Low-level inspection instructions do

not include defining things and do not include high-level motion control directives (such as

measure a feature).

3.2.8 Machining Planning

Machining planning is the process of deciding what operations should be performed on a machine

tool to produce a part. Many machining centers can handle touch probes, so inspection can be

performed. This analysis deals with inspection operations that may be performed on a machine

tool, but not with other machine tool operations.

3.2.9 Machining Programming

Machining Programming is the process of generating a program that may be run on a machine

tool controller to cut a part. This analysis deals with inspection functions that may be

programmed on a machine tool, but not with cutting and other machine functions.

3.2.10 Math Computing

Math Computing is the process of performing mathematical calculations. It is expected that only

relatively sophisticated, difficult, or time-consuming calculations will be performed in Math
9

Draft 5/15/01 Standards Analysis
Computing, since simple math can be done in most any computer program. Such calculations

would include fitting features to sets of points, for example. It is also expected that Math

Computing will not perform solid modeling, since that activity is sufficiently difficult to require a

separate Solid Modeling module.

3.2.11 Other Inspection Device Control

Other Inspection Device Control is the process of controlling other dimensional metrology

equipment, such as theodolites and photogrammetry equipment.

3.2.12 Probe Instruction Execution

Probe Instruction Execution is the process of executing instructions sent to a probe sensor carried

by a CMM.

3.2.13 Reporting and Analysis

Reporting and Analysis is the process of collecting inspection reports, analyzing data returned

from inspection activities, and generating files and graphical representations of analyzed or

unanalyzed data. It is expected that the results of Reporting and Analysis will either be presented

directly to humans or be passed to activities outside the scope of this standards analysis.

Reporting and Analysis may include statistical process control activities.

3.2.14 Routing Planning

Routing Planning is the process of deciding which fabrication and inspection activities will take

place at which workstations. The output of Routing Planning is a plan for the routing of a

workpiece among workstations specifying what work should be done at each workstation.

Routing Planning may also generate specifications of how the workpiece is to be set up in each

workstation and CAD designs for intermediate workpiece shapes.

There are at least two other common meanings of routing planning which this is not. This is not

deciding on paths for pipes or cables to take. This is not planning for cutting with a router.

3.2.15 Solid Modeling

Solid Modeling is the process of building a representation of solid objects (usually via a boundary

representation) and performing calculations done on solid objects, such as determining the mass

of an object, determining if a given point lies on the surface of an object, or boolean subtracting

one object from another. The Solid Modeling activity is usually performed by a software system

called a solid modeler.

3.3 Simulation

Simulation of dimensional metrology activities has not been listed among dimensional metrology

activities. This is not because it is not important or useful; it certainly is. Simulation is more a

mode of conducting an activity than it is an activity and therefore does not affect interfaces, since

it must use the same interfaces that the real activity uses. Simulation occurs when any executing
10

Draft 5/15/01 Standards Analysis
activity (or collection of activities) is playing make-believe rather than dealing with the real

world. To conduct a simulation, all that is necessary is for a faker to be on one end of an interface.

A simulation is usually conducted by reconfiguring the system before the simulation starts. One

or more faking modules are swapped in and the real ones swapped out. Modules downstream of a

fake module may be removed entirely.

Some or all modules participating in a simulation may be the same when real work is being done

as when a simulation is being done, because they need to behave exactly the same in either case.

A simulation of running a program to inspect part X might be conducted in the absence of the part

by having a human stand by the CMM and trip the probe with a finger. In a simulation of this sort,

the entire system is the real system. Only the object being inspected is faked.

A simulation of the same program for probing part X might be conducted at a higher level by

swapping the real Low-level Inspection Instruction Execution module for a fake one that feeds

fake data back to High-level Instruction Execution. In this case, no Probe Instruction Execution

module executes at all.

Almost all commercial software systems for dimensional metrology include some type of

simulation. For Inspection Programming and Machining Programming, the simulation is usually

of high-level instruction execution and shows on a computer monitor a picture of the process with

the workpiece and tool.

3.4 Interfaces and Architecture

The focus of this analysis is on interfaces between modules. For efficient automatic operation,

each interface must be formally defined. To help identify the interfaces, we present an architecture

in this section. By the architecture of a system, we mean a description of which software modules

are connected to which other software modules by an interface. Figure 1 shows a dimensional

metrology system architecture that might be used. The figure includes the 15 software modules

for the activities listed in Section 3.2. The software modules shown on the figures may be

separated in any of the three ways described in Section 3.1.1. User interfaces are not included in

the figure, but are expected to be present.

The presented architecture is not intended as a recommended architecture, but only as a

representative architecture showing all the interfaces.

Appendix A discusses each of the fifteen software modules individually, including a diagram of

its interfaces to other modules (as shown in Figure 1) and a discussion of each interface.
11

Draft 5/15/01 Standards Analysis
Activity

Coordination

CAD Math

Computing

Hand-held

Device

Measuring

Inspection

Planning

Machining

Planning

Low-level

Inspection

Instruction

Execution

Inspection

Programming

Solid

Modeling

High-level

Inspection

Instruction

Execution

Reporting &

Analysis

Routing

Planning

Other

Inspection

Device

Control

Machining

Programming

Figure 1 Interfaces in a Dimensional Metrology System Architecture
White arrows show producer → consumer for data interfaces.

Black arrows show user→used for active interfaces.

Probe

Instruction

Execution
12

Draft 5/15/01 Standards Analysis
3.4.1 Active Interface

An active interface is one in which a command is given. The relationship between the two parties

attached by an active interface may be either supervisor-subordinate or client-server. In both cases

there is a user module and a used module. Active interfaces are shown on Figure 1 with black

arrows leading from the user module to the used module. Any of the three degrees of separation

discussed in Section 3.1.1 may occur between the user and used modules. The black arrows are

shown going in the direction from user to used. As discussed in Section 3.1.1, status or data is

expected to be sent back in the reverse direction to the user module from the used module.

In systems that are not fully automated (all existing systems) some of the active interfaces are

between two humans. These interfaces will be called person-to-person interfaces. In this

document, person-to-person interfaces are assumed to be implemented using natural language,

spoken or written; the boss tells the worker what to do. Person-to-person interfaces could be

implemented using a formally defined language, but this is not done.

Some other active interfaces are between two software modules. A formally specified and

automated interface is required.

The remaining active interfaces are between a human user and a software module. In this case, the

user interface with which the human interacts may be assumed to send commands to the used

module in the same format a software user module would have employed.

3.4.2 Data Interface

A data interface is one in which a producer puts data into a file system or database system, and a

consumer retrieves data from the file system or database system. Although there is no direct

contact between producer and consumer, both must have the same understanding of the format

and meaning of the data. Data interfaces are shown on Figure 1 with white arrows leading from

the producer software module to the consumer module.

Unlike the black active interface arrows, no status or data travels back along the white data

interface arrows.

3.4.3 Distinction May be Blurred

A command passing over an active interface may include a pointer (such as a file name) to data.

The used module must then retrieve the data from a file system or database. In these cases, the

data is not considered to pass over the active interface. Rather, there is considered to be a data

interface between the source of the data (usually different from the user module that gave the

command) and the used module.

If a command includes data (such as the “1, 2, 3” in “GOTO 1, 2, 3”), the data is considered to be

part of the command and no data interface is identified.

The distinction between the two types of interface is easily blurred. A simple form of this is to

send commands via a file in the database that is re-written each time there is a new command. The

commanding software module writes the file whenever it wants to send a command, and the
13

Draft 5/15/01 Standards Analysis
commanded module reads the file each time the file is updated. Conversely, it is also possible to

send large amounts of data in a command-and-status API. This analysis identifies the types of

interface commonly used now or most likely to be used in the future.

3.4.4 Independence of Architecture and Interfaces

Interfaces can be made independent of architecture.

A module writing data to a file system or database does not know which modules might use the

data. A module reading data from a file system or database does not know what module put it

there. Thus, data interfaces are independent of architecture. Of course, the content of the data

must be such that it serves the purposes of the modules that use it, so consideration must be given

to possible uses when the information model for the data is defined, but that is only a loose

connection to architecture.

Each module has certain capabilities and an API is written that allows those capabilities to be

used. Any other module might make calls to that API. Thus, active interfaces are independent of

architecture. As with data, consideration must be given to what capabilities other modules might

need when the API for a module is built, but this is also only a loose connection to architecture.

3.4.5 NIST ISD Implementation

Thirteen of the fifteen activities shown on Figure 1 have been implemented within two

workstations of the NIST Intelligent Systems Division (ISD): the Inspection Workstation

[Messina] and the EMC Bridgeport Machining Workstation. Both workstations have a multi-level

RCS hierarchical control architecture and use the Feature-Based Inspection and Control System

(FBICS) for the upper two or three levels of the hierarchy [Kramer]. The two activities from

Figure 1 not implemented in either ISD system are Hand-held Device Control and Other

Inspection Device Control.

Almost all the interfaces shown on Figure 1 (apart from those to the two unimplemented

activities) are implemented in these ISD systems and are defined formally. The Activity

Coordination activity is distributed in these ISD systems, not centralized. Thus, while Figure 1

includes the interfaces used in the NIST systems, it does not show their architecture. In the two

ISD systems, instances of all three degrees of separation described in Section 3.1.1 may be found.
14

Draft 5/15/01 Standards Analysis
4 Software Systems

Understanding the software modules and interfaces for dimensional metrology presented in

Section 3 and Appendix A is essential for systems builders and for formulating standards, but may

not be directly useful to users. This section focuses on software systems a user might buy today

and the interfaces between them.

4.1 Systems

Where several modules are combined in a commercial software system, the interfaces between

those modules become invisible to the user. The interfaces between systems, however, are

exposed. From a user perspective, it is important that there be effective standards for these

exposed interfaces. To the extent that different commercial system encompass different sets of

modules, however, different sets of interfaces become exposed. The primary groupings of

modules into systems and the most important associated interfaces are shown on Figure 2. The

figure lists the names of several major commercial systems (or systems makers) of each type1.

The figure also shows the hot interfaces — those for which having a standard is now of high

priority.

The CAD system of Figure 2 has the same function as the CAD module of Figure 1. A solid

modeler is assumed to be part of the CAD system.

1. The Valisys systems listed on Figure 2 are now Tecnomatix systems with different names.

CAD

•AutoCAD
•Catia

•I-DEAS
•Pro/E

•Solid Edge
etc.

Inspection
Program

Execution

Control for
•B&S
•G&L
•LK

•Mitutoyo
•Starett
•Zeiss

etc.

Reporting
and

Analysis

•Origin
•QMC

•Valisys
analyze

etc.

Figure 2 Metrology Automation Major Systems and Hot Interfaces

Inspection
Programming

Software

•Camio
•Metrolog
•PC DMIS
•Quindos
•Umess
•Valisys

programming

etc.

Design Program

Low-level Inspection

Meas. Data

Instruction Commands

Inspection
Planning
Data
15

Draft 5/15/01 Standards Analysis
The CMM Programming Software system of Figure 2 includes the functions of the Inspection

Planning and Inspection Programming modules of Figure 1. Commercial versions of this system

always include the capability to simulate the execution of a CMM program graphically (as a

picture on a computer monitor) and may include collision checking and simulated data output and

analysis. Thus, many other modules from Figure 1 may be involved, but the involvement of other

modules does not matter to the user, since their interfaces are not exposed and the end output of

the system is still a program for a CMM. The interface of Inspection Planning Data between the

Inspection Planning and Inspection Programming modules, which is actually internal to the

Inspection Programming Software system, is shown on Figure 2 because of its current

importance. STEP AP 219 is expected to provide this interface.

The CMM Program Execution system of Figure 2 includes the functions of the High-level

Inspection Instruction Execution, Low-level Inspection Instruction Execution, and Probe

Instruction Execution modules of Figure 1. Some commercial versions of this system include the

Reporting and Analysis module (and the modules it uses) as well. Most commercial versions

enable the export of point data to a separate Analysis and Reporting system, even if they

encompass one themselves. The interface of CMM-driver commands between the High- and

Low-level Inspection Instruction Execution modules, which is actually internal to the CMM

Program Execution system, is shown on Figure 2 because of its current importance.

The Reporting and Analysis System of Figure 2 includes the functions of the Reporting and

Analysis, Math Computing, and Solid Modeling modules of Figure 1.

Although the systems shown on Figure 2 have the functionality described above in terms of the

functions of modules from Figure 1, actual commercial systems are not necessarily divided into

those modules. They may be modularized some other way. They may not be modularized at all,

though that is very unlikely.

4.2 Hot Interfaces

Five currently hot interfaces are shown on Figure 2. These are high-priority interfaces which

should be the focus of attention now and in the near future.

4.2.1 Design

Designs pass from CAD to the Inspection Programming system. This interface is a tower of

Babel. Details are given in Section 6.2. The situation is very bad but has persisted for so long and

has received so much attention that people are used to it. STEP is making some headway with this

interface but needs improvement. The most pressing need here is to get tolerances into STEP AP

203.

4.2.2 Program

Inspection programs pass from the Inspection Programming system to the Inspection Program

Execution system. Here again there are many commercial proprietary languages and a standard,

DMIS. The course of action here is to strengthen DMIS. Details are given in Section 6.4.
16

Draft 5/15/01 Standards Analysis
4.2.3 Measurement Data

The bulk of measurement data is point data, but Reporting and Analysis may also need other data

(nominal point and feature data, for example) it cannot get from the CAD model but can get from

CMMs and other measurement devices. Work on standardizing measurement data is just

beginning. Details are given in Section 6.17.

4.2.4 API for Low-level Inspection Instruction Execution

The active interface inside the Inspection Program Execution system between the High-level

Inspection Instruction Execution module and the Low-level Inspection Instruction Execution

module is the focus of three standardization efforts currently in progress (the CMM-driver

Specification, the DmeEquip module of DMIS Part 2, and some part of the European I++ effort).

Harmonizing these efforts is of high priority. It would be very unfortunate to have multiple

standards for low-level inspection instructions. This work should continue until a single formal

standard is established. Further details are given in Section 6.9.

4.2.5 Inspection Planning Data

STEP AP 219, Dimensional Inspection Information Exchange, is being developed now. AP 219 is

expected to provide data that may be used for inspection planning. The scope of AP 219 includes

planning, execution, and analysis of dimensional inspection activities, so AP 219 may have an

impact on other interfaces identified in this analysis. Details are given in Section 6.7.1.
17

Draft 5/15/01 Standards Analysis
5 Languages

This section describes formal languages relevant to dimensional metrology. It is necessary to

understand the choices to be made among languages before tackling specific interfaces. The

choice of language for a data standard or API makes a great difference in how clearly the standard

or API can be stated, how easily it can be understood, and how easily it can be implemented. The

choice of language, therefore, is a large factor in determining how widely accepted an API or data

standard will be.

5.1 Separate vs. Combined Information Model and Representation

A language may provide for modeling both (a) the information content of statements and (b)

representations of statements, or it may specify only the information content. If only information

content is specified, then an additional specification is needed for how to make representations.

An example is given in Appendix C

Languages which separate the two enjoy a great advantage over languages which do both.

Software tools for working with languages which separate information content from

representation are widely available. Such tools are enabled by the fact that, working from

information models, it is possible, given a specific information model, to produce source code

automatically for dealing with data corresponding to the model. Moreover, tools may be built for

any computer programming language for which a binding from the information modeling

language has been defined.

5.2 General-Purpose Programming Languages

General-purpose programming languages have not been used much for defining information

models, although some could be. General-purpose programming languages usually do not have

accompanying representation languages, which is a disadvantage. Two such languages that might

be suitable for defining information models are C++ and Java.

C++ is currently the language preferred by most developers for engineering applications. A C++

class hierarchy would be a usable information model.

Java is the language of choice for net applications. Java runs uncompiled, and has been

implemented on almost all computer architectures for networked computers. Java is similar to a

simplified form of C++.

5.3 Syntax Specification Languages

Syntax specification languages are not used directly for expressing programs or data, but are used

for defining languages in which programs and data may be written. In deciding how to represent

the definition of a language, it is important to understand how syntax specification languages may

be useful.

The definition of a language (C++ or DMIS, for example) may be made unambiguous for parsing

by defining the language in terms of a syntax specification language. The best known of these is
18

Draft 5/15/01 Standards Analysis
Extended Backus Naur Form (EBNF), ISO/IEC14977:1996 (E). A well-written definition of a

language given in a syntax specification language makes it possible to determine if any sequence

of characters (from one line to an entire file) is an allowed statement of the language. This is

tremendously useful for determining if implementations of a language purported to conform to

the specification of the language actually conform. Any other type of specification is apt to leave

ambiguities that will be resolved differently by different implementors, leading to incompatible

implementations.

An EBNF specification of a language is often split into two parts. The first part defines words1 in

terms of characters. The second part (1) defines non-terminal symbols which stand for various

combinations of words and (2) specifies the allowed sequences of words and non-terminal

symbols.

The two parts of an EBNF specification have a parallel in the lex and YACC input specification

languages. Lex is a language for defining a lexical scanner (a program that recognizes character

strings that form words). YACC (Yet Another Compiler Compiler) is a language for defining a

parser of sequences of words. Both lex and YACC have compilers that automatically build C

language source code for a parser; this code may also be compiled in C++. Given an EBNF

specification, it is relatively straightforward (as compared to starting with some other type of

language specification) to write an equivalent lex and YACC specification. Thus, building a

standard parser for a language is greatly facilitated by having an EBNF specification of the

language. Having a standard parser available to developers and users of a language makes it

feasible to test the conformance of an implementation relatively easily.

5.4 Interface Definition Languages and Information Modeling Languages

In theory, interface definition languages (IDLs) and information modeling languages (IMLs)

differ in that IDLs specify how you can get and set information, while IMLs specify what

information is needed to define things. In practice, as long as a language is talking about the

properties of things (which is how such languages are being used for metrology), the two types of

language are equivalent. Both types have inheritance hierarchies. Both types can be processed by

utilities that will automatically generate C++ code, and the C++ code sets generated from the two

language types are very similar. For example, the C++ code for a circle produced by a generator

for either type of language will almost certainly have methods for getting and setting the radius or

diameter of the circle.

So, we will treat IDLs and IMLs together. Well-written descriptions of these languages may be

found at http://www.objs.com/x3h7/fmindex.htm, which is a comparison of object-oriented

languages.

IDLs and IMLs are well-suited to defining object-oriented versions of standards. This is

convenient for building implementations in object-oriented computer languages. IDLs and IMLs

are workable, but slightly un-natural (to many users) for defining declarative languages (ones that

1. As intended here, a “word” is any sequence of characters (such as “inspect” or “3.1415”) having a
meaning taken as a whole. “Terminal symbol” is a synonym for “word” used in this sense.
19

Draft 5/15/01 Standards Analysis
say: do A, do B, etc.). IDLs have the disadvantage, compared to IMLs, of not having a standard

mapping for data from a model to a file format.

5.4.1 CORBA IDL and Microsoft IDL

The central thing IDLs provide is the “interface” definition. The heart of an interface is a list of

function signatures (function name and number and types of arguments) for the functions in the

interface. An indication of which arguments are set and sent out with a call to the function and

which are returned and set as a result of the function executing is included with each signature.

IDLs do not provide data “attributes” in the sense that IMLs do. CORBA IDL defines “attributes”,

but they are described as simply being shorthand for declaring interfaces.

The CORBA IDL [CORBA] is the official object modeling language of the Object Management

Group. It is well-documented. It has been used for building DMIS Part 2 and was adequate for

that task. Commercial software tools exist that will take a CORBA IDL information model and

automatically generate C++ code for manipulating data conforming to the model.

Microsoft IDL (MIDL) also exists. Documentation is harder to find than for CORBA IDL and

tends to be oriented to explaining how to use MIDL to build Windows-based software.

CORBA IDL is somewhat more expressive than MIDL in that it provides for multiple inheritance

and exceptions, which MIDL does not. MIDL provides multiple interfaces rather than multiple

inheritance.

5.4.2 EXPRESS

The central thing EXPRESS provides is the “entity” definition. The heart of an entity is a list of

attributes with their data types. EXPRESS also provides powerful methods for putting constraints

on the attributes of entities and on data sets (sets of entity instances). EXPRESS does not provide

for the declaring interfaces composed of functions.

EXPRESS (Part 11 of international standard ISO 10303) [ISO1] is the official STEP information

modeling language. EXPRESS is used for representing all the STEP application protocols (the

things that are to be used as data standards). Many commercial software tools exist that will take

an EXPRESS information model and automatically generate C++ code for manipulating data

conforming to the model. The generated C++ invariably contains functions for setting and getting

the values of attributes. So (presto!) attributes have turned into functions, and entities resemble

IDL interfaces. The commercial packages usually also include a library of functions for

manipulating data in many ways, such as reading and writing data files or selecting all objects of a

given type from a data set.

EXPRESS works together with a generic exchange file format specified in Part 21 of STEP. Tools

for manipulating STEP data are generally able to read and write Part 21 files corresponding to an

EXPRESS information model. Each data file gives the name of the EXPRESS information

model(s) to which it corresponds. IDLs and C++ lack this key feature of EXPRESS (because there

is no file equivalent of a function).
20

Draft 5/15/01 Standards Analysis
5.4.3 C++ Header Files

The central thing C++ language header files provide is the “class” definition. A class definition is

generally a combined declaration of interface functions and attributes. C++ header files do not

provide for constraints as EXPRESS does, and they do not provide for identifying outgoing and

incoming function arguments the way IDLs do. C++ could be used for writing standards but has

not been used much. Standards writers prefer not to have standards tied to specific computer

languages.

C++ header files, however, are the principal target for automatic code generators that take either

IDLs or IMLs as input. In some cases, there is a standard for the conversion from an IDL or IML

to C++, so that various implementation can expect the C++ code to be interoperable.

5.4.4 XML

XML (eXtensible Markup Language) [XML] provides a generic file format for data and two

methods for describing formats. XML is a particularly convenient language because many

existing internet-based communications systems (including web browsers) use it. Thus, the

infrastructure for using XML in communications relating to dimensional metrology may already

be in place in many enterprises.

XML can communicate both data and data formats. To deal with XML data formats, senders and

receivers must agree on what formats may be used and have software in place to put data into the

correct format on the sending end and get it back out on the receiving end.

One method of specifying a data format in XML is to use an XML Document Type Definition

(DTD). DTDs are suitable for relatively simple data formats. DTDs are likely to be suitable for

active interfaces but are not likely to be useful for data interfaces.

A second method of specifying a data format in XML is to use an XML schema. An XML schema

is similar to an EXPRESS schema. An information model can be represented well in an XML

schema. Schemas are relatively new in XML. The language for XML schemas is large and

complex. XML schemas are likely to be useful for data interfaces.

5.5 STEP Part 21 Generic File Format

STEP Part 21, “Clear Text Encoding of the Exchange Structure” [ISO2], provides a method, given

an EXPRESS information model, of automatically and unambiguously defining the syntax of data

files corresponding to that model. This is extremely convenient, since there are many commercial

systems that implement the method, allowing them to write and read STEP exchange files. This

frees the standards writer from having to invent syntax (How do I write that down?) and allows

the standards writer to concentrate on semantics (What do I mean to say?), which is generally the

important part of a standard.

STEP Part 21 files are not easily human-readable.
21

Draft 5/15/01 Standards Analysis
5.6 Process Planning Languages

Two domain-independent, general-purpose process planning languages have been developed at

NIST. To use either of these languages in a specific domain, additional domain-specific extensions

must be created.

We are not aware of any domain-independent proprietary process planning languages.

5.6.1 A Language for Process Specification (ALPS)

The fundamental object of ALPS [Catron] is the plan. A plan is a recipe for performing a specific

task. A plan in ALPS is a one-level breakdown of a task into subtasks, expressing the

requirements of each subtask and its interrelation with other subtasks in the plan. A plan contains

a set of nodes (or steps) which provide sequencing information and detail how to perform the task

in terms of individual subtasks. Every plan has an associated target system which may execute the

plan. ALPS provides for parallel operations, alternatives, synchronization of events, parameters,

and resource allocation.

To use ALPS for FBICS, two suites of subtypes of the ALPS primitive_task_node were created.

The first suite is for plans coming from routing planning and consists of a single task subtype,

run_setup. The second suite is for plans coming from inspection planning or machining planning

and consists of many subtypes. Section 6.7.2 and Section 6.11.2 provide more details.

Software for traversing ALPS plans was built for use in FBICS. With such software available,

ALPS becomes executable, and may be regarded as a programming language.

ALPS appears to be usable in a commercial setting for expressing process plans, but no

commercial use has been made of ALPS. It has been used only in research-grade systems.

5.6.2 Process Specification Language (PSL)

PSL, another domain-independent, general-purpose process planning language, has been under

development at NIST for several years. The initial testing of PSL is underway, but PSL is not yet

available for general use.

5.7 Configuration and User Option Files

Every CAX system has at least one, and usually several, configuration file or user option file. On

PCs, they often have the suffix “.ini”. A PC convenient to one of the authors listed 66 files when

asked to find all “.ini” files. These files generally consist of attribute value pairs, such as

“error_signal=bell”, or “error_signal:bell”, typically with one pair per line. These files are so

structurally simple and so pervasive that it would be easy to define a standard format for them (not

including standard contents). The interested community, however, is all computer users and

builders. If a standard were to be made, the dimensional metrology community would be only one

among many interested parties.
22

Draft 5/15/01 Standards Analysis
Developing a standard in this area, while intriguing, is of low priority. In the absence of a

standard, it is still easy to exchange simple configuration and options files, since it is easy to write

parsers for them.

If user options are more complex than a list of attribute-value pairs, a simple file format is no

longer feasible. FBICS, for example, has a file of user options which consists of rules for deciding

how to use cutting tools (set speeds, feeds, etc.). These rules may include complex expressions. If

options are complex, it would be better to model the options in an information modeling language

(such as EXPRESS) and use the default file format that works with the modeling language (such

as STEP Part 21), if there is one.
23

Draft 5/15/01 Standards Analysis
6 APIs and Data Formats for Dimensional Metrology

This section discusses the APIs and data formats needed for dimensional metrology and assesses

the status of each. The principal subsections are arranged alphabetically.

The term API is used broadly in this section to mean either an API in the narrow sense or an API-

like messaging protocol. In the narrow sense of API, a command in an API is a function in some

computer language which tells the executor of the call to manipulate data or perform a physical

activity and (usually) returns a value or values to the caller before the caller is able to do anything

else. In an API-like messaging protocol, the caller sends a message which tells the executor of the

call to manipulate data or perform a physical activity, but the caller might not wait for a return

message before continuing, and return values may be returned in messages received at various

times in the future.

The term “data format” is used in this section to mean either an explicit data format or a data

model which may be combined with an exchange format. The difference between the two is

explained at the beginning of Section 5, and an example is given in Appendix C. Where a data

format is for files of executable instructions (a DMIS file, for example), “language” would be a

synonym for “data format”.

For each type of API or data format, we look at the usage of existing specifications, the adequacy

of existing specifications, and the needs of existing specifications. Where the current situation

needs improvement, we recommend a situation that would be better and suggest how

improvements might be made.

Standardizing the various interfaces is ranked simply as being of high, medium, or low priority. In

a fully automated system, every interface, even those ranked here as of low priority, must be

formally defined.

6.1 CAD APIs

The active interface from Activity Coordination to CAD (sections A.1.1 and A.2.1) could use an

API to tell CAD what to design and when to design it, but no commonly used API for that

purpose exists. Standardizing this API is of low priority.

All CAD systems have APIs for their design functions. When a user is designing on a CAD

system, calls to functions in the CAD API are made by the user interface module in response to

the user’s actions. Some CAD systems hide their API. Others open their APIs to developers by

providing a description of the API functions and a linkable library. CAD APIs of this sort are not

further discussed in this analysis.

6.2 CAD Data Formats

The data interfaces from CAD to Inspection Planning (sections A.2.2 and A.5.4), Inspection

Programming (sections A.2.3 and A.6.3), Machining Planning (sections A.2.6 and A.8.3),

Machining Programming (sections A.2.7 and A.9.3), Routing Planning (sections A.2.5 and

A.14.3), and Solid Modeling (sections A.2.4 and A.15.7) all require a CAD data format. In
24

Draft 5/15/01 Standards Analysis
addition, CAD data representing the intermediate shapes of workpieces and shapes of volumes to

be inspected or removed may be: generated by Routing Planning and used by Inspection Planning

(sections A.5.5 and A.14.5) generated by Inspection Planning and used by Inspection

Programming (sections A.5.6 and A.6.4), generated by Routing Planning and used by Machining

Planning (sections A.8.4 and A.14.6), and generated by Machining Planning and used by

Machining Programming (sections A.8.5 and A.9.4).

Many widely-used CAD data formats exist. Some of these are drawing formats (i.e., their

principal function is to describe a drawing) while others are model formats (i.e., their principal

function is to describe all or part of the shape of a solid object). In practice, the distinction is

blurred, since drawing formats may be able to represent some model data and model formats may

be able to represent views (including dimensions, tolerances, and other annotations) of the object

modeled. Model formats are more useful and are displacing drawing formats.

There are many varieties of model format. Simple models may be built as wire frames, in which

only the part edges are represented. All CAD systems can draw wire frame representations for the

user, but no major CAD systems use wire frames as the underlying representation. For some

purposes, facetted models, in which all surfaces are represented as planes, may suffice. Again, all

CAD systems can draw facetted models, but no major CAD system has a facetted underlying

representation. Some CAD systems require modeled objects to be physically reasonable, so that,

for example, the entire surface must be defined. Other CAD systems specialize in surface

representation and may model only a portion of the surface, leaving the rest undefined. For some

CAD systems, the external file representation is a list of modeling commands which must be rerun

by the system in order to create a working representation of the object modeled. Representations

of the last type are difficult or impossible to translate from one system to another. The STEP

Parametrics Committee is working on a standard for representation of modeling history.

An additional difficulty is that the notion of a CAD file has no well-defined boundary, overlapping

with representations of graphics, printed circuit layout, animations, etc. An example of an

overlapping language is VRML (Virtual Reality Modeling Language). VRML files typically

contain a great deal of geometry, but the geometry is not required to make sense (objects can share

space, for example) and complex geometry is facetted. VRML is usable as CAD output, therefore,

only for simple objects or for applications not requiring that the model be physically possible,

such as fly-throughs.

The boundary between CAD file formats and solid modeler file formats (which are discussed in

Section 6.21) is very faint.

Because so many widely-used formats exist, many commercial software systems that deal with

CAD data have been equipped with translators that convert from one format to another. Product

literature for such software systems usually includes a section listing the various CAD formats the

system can handle. Software system vendors enter into agreements with CAD vendors to get their

cooperation in dealing with CAD formats. Huge numbers of programmer-years are devoted to

building and maintaining translators.

Standardizing CAD data is of high priority.
25

Draft 5/15/01 Standards Analysis
6.2.1 Non-Proprietary CAD Data Formats

6.2.1.1 STEP AP 203

STEP AP 203, “Configuration Controlled Design”, provides a boundary representation (a type of

solid model) for the design of solid objects. AP 203 is an ISO international standard. STEP AP

203 was devised specifically to help solve the problem of multiple, non-standard CAD data

formats. AP 203 input and output is supported by all major CAD vendors.

AP 203 does not include tolerances, so it is not usable for transmitting design information from

CAD to most inspection activities and is weak for transmitting design information to

manufacturing activities.

Systems exist that will allow a user to start with an AP 203 design and add tolerances to it. The

FBTol System from Allied Signal in Kansas City is an example of such a system. The output file

from such a system is not an AP 203 file, however.

The most straightforward way to get a standard for CAD data that could be used for dimensional

metrology activities would be to revise STEP AP 203 to include tolerances.

6.2.1.2 STEP AP 224

STEP AP 224, “Mechanical Product Definition for Process Planning Using Machining Features”

defines a library of machining features. The library provides 51 parametric

“manufacturing_features” including, for example: boss, chamfer, circular_pattern,

compound_feature, counterbore_hole, countersunk_hole, edge_round, fillet, general_pattern,

general_pocket, groove, pocket, rectangular_pattern, rectangular_pocket, round_hole, slot,

spherical cap, thread. Each manufacturing_feature has a stereotypical shape governed by several

parameters. To specify a round_hole, for example, the parameters include diameter, hole_depth,

and bottom condition (among others). A particular instance of a round_hole is defined by

specifying a value for each parameter.

AP 224 provides two general types of tolerance: (1) tolerances on numeric parameters and (2)

geometric and dimensional tolerances. In the first case, the tolerance is an attribute of a parameter

which is an attribute of a feature. The hole_depth of a round_hole, for example, may be a

numeric_parameter_with_tolerance. In the second case, each tolerance is a self-standing entity

which may be applied to more than one feature, and several tolerances may apply to the same

feature. The AP 224 geometric and dimensional tolerances are a full suite of tolerances from

ASME Y14.5.

There are a few commercial software systems that generate AP 224 files, but the use of AP 224 is

not yet widespread.

FBICS uses AP 224 to describe parts and sets of removal volumes. AP 224 features generally

consist of collections of bounded DMIS features. An AP 224 hole with a flat bottom, for example

includes a DMIS cylinder for its sides and a DMIS plane for its bottom. The FBICS DMIS

generator decomposes AP 224 features into their constituent DMIS features.
26

Draft 5/15/01 Standards Analysis
Compared to AP 203, AP 224 has a large advantage for dimensional metrology uses in that it

provides tolerances. AP 224 has the disadvantage that not as large a range of shapes can be

described with its manufacturing feature library as can be described by a boundary representation.

Also, many fewer commercial CAD systems support AP224.

6.2.1.3 STEP AP 214

STEP AP 214, “Core Data for Automotive Design Process” is a large (several thousand pages)

application protocol for automobile design and manufacturing. An outline of the scope of AP 214,

alone, is a page long, including for example, eight different methods of shape representation.

In the area of machining features and tolerances, AP 214 duplicates AP 224 rather than simply

referencing it. This is unfortunate because it makes translation necessary for data exchange.

Because the feature suites are largely identical, translation is not difficult.

6.2.1.4 IGES

IGES (Initial Graphics Exchange Specification), is an open drawing format standard of the

National Computer Graphics Association that is widely supported by CAD vendors. It is

generally regarded as obsolescent, though still widely used.

6.2.2 Proprietary CAD Data Formats

CAD systems from the major CAD vendors (including, for example, PTC’s Pro-Engineer,

SDRC’s I-DEAS, Dassault/IBM’s CATIA, and UGS’s Solid Edge), each have their own

proprietary data format for representing designs. Designs from these systems are generally design

history files and cannot be usefully manipulated without using the system that generated them.

6.2.2.1 DXF

The Drawing eXchange Format (DXF) is a proprietary format for AutoDesk’s AutoCAD. As the

name implies, it is a drawing format, not a solid model format, though it does have some 3D

modeling capabilities. Many commercial software systems use DXF input. AutoDesk revises

DXF from time to time. The current version is release 15, for which the specification is open and

available on the internet at http://www.autodesk.com/techpubs/autocad/acad2000/dxf/index.htm.

6.3 Hand-Held Device Measuring APIs

An API is used by Activity Coordination to tell Hand-Held Device Measuring what to measure

and when to measure it (sections A.1.4 and A.3.1). There are no existing widely-used APIs for

this interface. Standardizing this API is of low priority.

6.4 High-Level Inspection Instruction Execution APIs

An API is used by Activity Coordination to tell High-level Inspection Instruction Execution what

to do (sections A.1.6 and A.4.1). It is convenient if there are two APIs. The first API provides for
27

Draft 5/15/01 Standards Analysis
execution of any single high-level inspection instruction. The second API provides for execution

of a program or file containing many such instructions.

6.4.1 DMIS Part 2

DMIS Part 2 does not fit neatly into any one section of this analysis because it provides not one,

but three interfaces. Since the largest of the three may be used to send high-level inspection

instructions to High-level Instruction Execution, it is discussed here.

DMIS Part 2 is an interface specification written in CORBA IDL, an object-oriented language

(see Section 5.4.1). Since it is written in CORBA IDL, it may easily and automatically be mapped

into a set of C++ class definitions. Since it is an interface specification, not a software system,

DMIS Part 2 defines interfaces but does not implement them. Commercial implementations of

DMIS Part 2 are expected to be built.

The Dme portion of DMIS Part 2 provides an API for giving individual high-level commands to

High-level Instruction Execution. We will call it the Dme API. Two other portions1 of DMIS Part

2, the DmeEquip portion and the DmeMath portion, are discussed in Section 6.9.2 and Section

6.13, respectively.

A call to an interface function in the Dme API might have the same meaning as commanding that

a single line of text from a high-level program be executed. The Dme API might be used, for

example, (1) by a user interface to DME equipment to give individual commands to the

equipment or (2) internally in Inspection Programming to build a representation of a DMIS

program being written by a programmer, or (3) internally in High-level Instruction Execution to

build a representation of a DMIS program being read from a file.

The Dme API corresponds closely to the commands specified by DMIS Part 1. The DMIS Part 2

specification provides that the meaning of each interface in the Dme API is given by the

description of the corresponding command from DMIS Part 1. This subordination of meaning

does not work for the other two portions of DMIS Part 2 because there is little or nothing in DMIS

Part 1 corresponding to those portions.

Completing standardization of DMIS Part 2 is of high priority.

6.4.2 Another Type of API to High-level Instruction Execution

Another type of API is used by Activity Coordination to tell High-level Instruction Execution

what inspection programs to run and when to run them. In FBICS, this API includes commands

such as “prepare to run program files”, “run high-level program file XYZ”, and “stop running

program files”. There are no known open commercial implementations of such an API.

Presumably, hidden APIs of this sort exist between user interfaces to CMM controllers and the

controllers’ innards. Standardizing this API is of low priority.

1. DMIS Part 2 actually calls these “modules” rather than “portions”, but this analysis is using “module” to
mean something else.
28

Draft 5/15/01 Standards Analysis
6.5 High-level Inspection Instruction Data

The data interfaces to High-level Inspection Instruction Execution from Inspection Programming

(sections A.4.4 and A.6.5) and from Machining Programming (sections A.4.5 and A.9.5) require a

format for inspection instructions and programs. In addition, the user interface to High-level

Inspection Instruction Execution (what a CMM operator deals with) might generate command

strings in this format. The only standard for inspection programs is DMIS Part 1. There are

several proprietary data formats for inspection programs produced as output of commercial

inspection software systems such as Camio, Metrolog, Quindos, Umess, and Valisys

Programming.

The use of RS274 at the interface from Machining Programming to High-level Inspection

Instruction Execution is discussed in Section A.9.

Solidifying the position of DMIS as the one and only standard for inspection programs is of
high priority.

6.5.1 DMIS

DMIS (Dimensional Measuring Interface Standard) is a high-level language for control of

dimensional measuring equipment. Executing a DMIS program in High-level Inspection

Instruction Execution will result in low-level inspection instructions being given to Low-Level

Inspection Instruction Execution.

DMIS includes both an input language and an output language. Part of the DMIS input language

is for defining objects of interest (features, tolerances, sensors, etc.), and the rest is a

programming language with action commands, flow of control commands, variable settings, etc.

The output language serves both as a partial log of commands given and as a report of inspection

results, with actual and nominal point data, features, and tolerances.

DMIS is a U. S. national standard and may soon be an ISO international standard. DMIS 4.0

[CAM-I2] was approved in April 2001 by ANSI as a U.S. national standard. Most existing

implementations are of DMIS 3.0 [CAM-I1]. DMIS is maintained by the DMIS National

Standards Committee (DNSC), a committee of CAM-I. The DNSC has put excellent procedures

in place for collecting and acting on suggestions for improvements in DMIS.

DMIS, however, needs additional infrastructural support to be a strong and useful standard.

Specifically, it needs (1) fixed conformance classes (not just implementor-defined conformance),

(2) a set of conformance tests for each conformance class, providing complete coverage of the

functionality of the class (3) a conformance testing service (not NIST) that will test a DMIS

implementation in a conformance class and certify (if it passes) that the implementation conforms

to the DMIS standard for that class.

Fixed conformance classes are needed because it is too time-consuming, expensive, and

unreliable for a DMIS user to try to analyze implementor-defined conformance statements in

order to determine which implementations fit the user’s needs (even assuming the

implementations conform to the implementors’ claims). Few users are sophisticated enough to
29

Draft 5/15/01 Standards Analysis
determine reliably from a conformance statement whether a system will do the job the user needs

done. If there are fixed conformance classes, a body of experience can be built up so that it will be

common knowledge among frequent DMIS users which conformance class is required to do

which type of job.

A set of conformance tests is needed because you cannot test conformance without them.

Conformance test suites should be freely available to everyone, especially implementors, so that

implementors can assure themselves their implementations are correct before releasing them.

A conformance testing service is needed because without it, poor implementations which claim to

conform but do not may drive out truly conforming implementations. Implementors can save

money by cutting corners. Users lose money as a result. A standard without a conformance testing

service is like a speed limit sign with no cops; it will soon be outrageously violated.

To make DMIS easily usable, standard alternatives to the textual form of DMIS should be

devised. DMIS Part 2 is one alternative and is being standardized. A mapping of DMIS to

EXPRESS, for example, would allow automatic conversion of DMIS files to and from STEP Part

21 files. That would be a useful alternative because it would allow DMIS to be included

seamlessly in the STEP world.

NIST can help provide the needed infrastructure by devising conformance tests, participating in

standardizing DMIS Part 2, and generating a mapping of DMIS to EXPRESS.

Portions of developing standard AP 219 (primarily feature, tolerance, and datum definitions)

overlap with DMIS. Several meetings have been held to harmonize these aspects of DMIS and AP

219. Completing the harmonization is of high priority.

6.6 Inspection Planning APIs

An API is used by Activity Coordination to tell Inspection Planning what to plan for and when to

plan (sections A.1.2 and A.5.1). This API is defined in FBICS, but there are no existing widely-

used APIs for this interface. Standardizing this API is of low priority.

6.7 Inspection Plan Data

The data interface from Inspection Planning to Activity Coordination (sections A.1.12 and A.5.3)

requires a data format for inspection plans. An inspection plan at this level says what to inspect in

one fixturing of a part being manufactured. There is no existing widely-used data format for

inspection planning. This interface is person-to-person in many industrial systems.

Commercial systems dealing with inspection usually combine inspection planning with

inspection programming, so that the interface is invisible or non-existent. FBICS uses the ALPS

high-level process planning language augmented with inspection tasks, as described in Section

6.7.2. STEP AP 219, currently being developed, is expected to provide data that may be used on

this interface. Standardizing this data is of high priority.
30

Draft 5/15/01 Standards Analysis
6.7.1 STEP AP 219

Application Protocol 219, Dimensional Inspection Information Exchange, is planned as the

information model for dimensional inspection operating under STEP. It aims to be the principal

link between dimensional inspection implementation software and the system of STEP standards

that deal with inspection information such as AP 224, “Mechanical Product Definition for Process

Plans Using Machining Features” and AP 214, “Core Data for Automotive Mechanical Design”.

The developing AP 219 information model includes an activity model, a data dictionary of terms

in the activity model, a draft EXPRESS-G and EXPRESS reference model, and a draft XML

Document Type Definition (DTD) based on the EXPRESS model. The next component to be

added will be the set of object definitions of elements in the EXPRESS reference model. The

scope of AP 219 includes planning, execution, and analysis of dimensional inspection activities.

The AP 219 data model will be implemented in data formats of clear text encoding (STEP Part

21) and XML DTDs (STEP Part 28).

From the scope of AP 219, it is apparent that AP 219 may provide other types of data in addition

to inspection plan data.

6.7.2 ALPS with Inspection Operations

The ALPS language is described in Section 5.6.1. For FBICS inspection, the “inspection_task”

was defined as a subtype of the ALPS primitive_task_node. The inspection_task has two subtypes

itself: inspect_feature_geometry, and inspect_feature_surface. The inspect_feature_geometry

subtype is intended to work with AP 224 features. For FBICS, this data is modeled in an

EXPRESS information model. Specific plans are generated automatically and written in STEP

Part 21 files.

6.8 Inspection Programming APIs

An API is used by Activity Coordination to tell Inspection Programming what to write programs

for and when to write them (sections A.1.3 and A.6.1). This API is defined in FBICS, but there are

no existing widely-used APIs for this interface. Standardizing this API is of low priority.

6.9 Low-Level Inspection Instruction APIs

An API is used by High-level Inspection Instruction Execution to tell Low-level Inspection

Instruction Execution what to do (sections A.4.3 and A.7.1). Standardizing this API is of high
priority.

Low-level instructions are generated by High-level Instruction Execution and executed in real

time, not read from a file or sent by a human user. Thus, for low-level inspection instructions, it is

not expected that there will be files of instructions (except for testing), so no standard data format

is required.

A low-level inspection instruction API was defined for the NIST DMIS Interpreter and

implemented in FBICS. Two, possibly three, standardization efforts are currently in progress

(CMM-driver Specification, the DmeEquip portion of DMIS Part 2, and possibly the European
31

Draft 5/15/01 Standards Analysis
I++ effort), each of which defines a low-level inspection instruction API. Harmonizing these
efforts is of high priority. It would be very unfortunate to have different standards for low-level

inspection instructions.

6.9.1 CMM-driver Specification

This is primarily an API for low-level commands for control of a CMM. It is actually an API-like

messaging protocol plus a communications method. The initial statement and testing of this

specification was done by a group of three CMM vendors (Zeiss, LK, and B&S) working together.

NIST has been working to assist developing the specification and test methods for it.

NIST has developed a CMM-driver command file format for testing purposes, not further

discussed here.

6.9.2 DmeEquip Portion of DMIS Part 2

The DmeEquip portion of DMIS Part 2 includes almost all of the functionality of the current

version of the CMM-driver specification, plus additional functionality. Other discussion of DMIS

Part 2 is given in Section 6.4.1 and Section 6.13.

6.9.3 I++

A European effort named I++ is said to be working on a low-level inspection instruction API and

possibly related data. Further information about what I++ is doing is needed.

6.10 Machining Planning APIs

Machining planning is relevant to the extent that it includes planning for in-process inspection.

An API is used by Activity Coordination to tell Machining Planning what to plan for and when to

plan (sections A.1.8 and A.8.1). This API is defined in FBICS, but there are no existing widely-

used APIs for this interface. Standardizing this API is of low priority.

6.11 Machining Plan Data

The data interface from Machining Planning to Activity Coordination (sections A.1.13 and A.8.6)

requires a data format for machining plans (which may contain in-process inspection steps). There

are no widely-used data formats for machining plans, but three existing formats are described

here. In addition to the three plan formats described below, it is expected that PSL (see Section

5.6.2) will be used in the future to express machining process plans. Standardizing this data is of

medium priority.

6.11.1 ISO 14649

ISO 14649, “Industrial Automation Systems and Integration — Physical Device Control — Data

Model for Computerized Numerical Controllers” is a committee draft international standard

intended to replace M and G codes for controlling NC machines. ISO 14649 provides higher-level

data that can be used directly for machine control. A closely related, but not quite synonymous,
32

Draft 5/15/01 Standards Analysis
effort is called STEP NC, which implements ISO 14649 using STEP techniques. ISO 14649

includes only two basic touch probing capabilities: (1) probe a point, and (2) probe an entire part

to establish its orientation.

6.11.2 ALPS with Machining Operations

For machining process plans, FBICS uses ALPS (see Section 5.6.1) with a suite of machining

tasks added. One of these tasks is finish_mill_adaptive, which may be used for machining

pockets. This is performed by milling a smaller pocket than specified, measuring the results with a

touch probe, calculating a size error, and then milling the pocket to the specified size by adjusting

the final pass to offset the expected size error. FBICS machining plans may also include any of the

inspection tasks described in Section 6.7.2.

6.11.3 STEP AP 213

STEP AP 213 is a draft international standard for process plans for machined parts. AP 213 is

unlikely to become a full international standard in its present form. Its progress has been stopped

for several years. While it has in-process inspection in its scope, there is little support for the

expression of tolerances or for inspection activities. AP 213 is thus not very relevant to inspection

and is not further discussed in this analysis.

6.12 Machining Programming APIs

Machining programming is relevant to the extent that machining programs may include in-

process inspection.

An API is used by Activity Coordination to tell Machining Programming what to write programs

for and when to write them (sections A.1.9 and A.9.1). This API is defined in FBICS, but there are

no existing widely-used APIs for this interface. Standardizing this API is of low priority.

6.13 Math Computing APIs

An API is used by High-level Inspection Instruction Execution (sections A.4.2 and A.10.1) and

Reporting and Analysis (sections A.10.2 and A.13.3) to tell Math Computing what to compute

and to get answers back. There is no widely used API for this interface. Each commercial Math

Computing package has its own API. Standardizing this API is of medium priority.

FBICS defines this API with only a set of feature-fitting functions. FBICS passes a set of touch

points and a nominal feature description to Math Computing and gets back an actual feature

description. Math Computing is implemented using feature fitters provided by the NIST

Algorithm Testing System.

The DmeMath portion of DMIS Part 2 defines this interface with a generic feature-fitting

function, feature constructions, tolerance evaluation, installation of feature-fitting functions (to be

used by the generic feature-fitting function), and transformation matrix transformations.
33

Draft 5/15/01 Standards Analysis
There are many other types of mathematical calculations beyond those of FBICS and DMIS Part 2

that might be done by Math Computing, particularly statistical analyses on behalf of Reporting

and Analysis.

Commercially available mathematics packages include Mathematica and Matlab. These do not

include feature-fitting functions of the sort required by High-level Inspection Instruction

Execution, but they do have statistical computing capabilities that might be used by Reporting and

Analysis.

6.14 Other Inspection Device APIs

An API is used by Activity Coordination to tell Other Inspection Device Control what other

device control activities to perform and when to perform them (sections A.1.10 and A.11.1).

There are no existing widely-used APIs for this interface. Standardizing this API is of low

priority.

6.15 Probe Instruction APIs

An API is used by Low-level Instruction Execution to tell Probe Instruction Execution what to do

and to get data back (sections A.7.2 and A.12.1).

It would be very useful to CMM vendors, integrators of dimensional metrology equipment, and

(probably) probe vendors if there were a standard API (and standard hardware connections) for

probes. There is not much activity in standardizing this API at this time, but it appears to be a

worthwhile thing to do and is of medium priority. From a technical viewpoint, standardizing this

interface seems nearly as important as standardizing the interface to Low-level Inspection

Instruction Execution, for which there is currently a substantial effort, as described in Section 6.9.

Commercially available probes come equipped with APIs and hardware interfaces. These are all

proprietary and none is used by a vendor other than the owning vendor.

There are two existing possibilities for standardizing this interface: either finish development of

the NGIS SIM specification or apply the IEEE 1451 Intelligent Sensor Standard.

6.15.1 NGIS SIM Specification

A “Next Generation Inspection System (NGIS) Sensor Interface Module (SIM) Specification”

was drafted in 1997 and 1998 by a “SIM API Working Group” comprised of probe vendors, users,

and researchers under the auspices of the National Center for Manufacturing Sciences. NIST staff

served on the working group and served as editors for the draft “NGIS SIM Specification”, which

was published in 1998 as NISTIR 6116. This specification addresses the integration of

commercial probe hardware and software with commercial controllers. The application is control

of coordinate measurement machines (CMMs) and numerically controlled (NC) machine tools to

perform part inspection.
34

Draft 5/15/01 Standards Analysis
The document defines a standard hardware component, the SIM, and an API to the SIM. The

focus of this specification is on touch-trigger probes and scanning probes, but the specification

may be applicable to other types of probes.

The intent is that the SIM will allow part inspection probes to be integrated easily into control

systems for CMMs and NC machine tools. This specification provides for the capability to

integrate a new probe at controller run time, without the need to recompile or reconfigure the

controller software. The goal is to provide sufficient guidance on technical properties of the SIM

that independently developed probe and controller products will be compatible right out of their

“shrink-wrapped” packages.

The SIM API was implemented by one vendor, who continues to use it in commercial products.

The draft was never entered into any standardization process, and was not refined after 1998. It

might be worthwhile to revive and standardize this NGIS SIM Specification.

6.15.2 IEEE 1451 Intelligent Sensor Standard

The intent of IEEE 1451 Intelligent Sensor Standard is to permit integration of multi-vendor

intelligent sensors and actuators on a network. The standard is not specific to probes. The standard

was developed for applications such as process control and building energy control, but it may be

suitable for probing. Researchers at NIST took a preliminary look at using IEEE 1451 for

probing, and constructed a mapping from the NGIS SIM Specification to the IEEE 1451 standard.

Further work would be needed to determine if IEEE 1451 is suitable in principle. If it is suitable in

principle, a prototype probing implementation would be needed to determine if it is practical.

6.16 Reporting and Analysis APIs

An API is used by Activity Coordination to tell Reporting and Analysis what data to analyze and

when to do the analysis (sections A.1.7 and A.13.1).

A set of XML DTDs (see Section 5.4.4) in a file named dml_analysis_request.dtd has recently

been drafted by DaimlerChrysler for this interface.

Standardizing this API is of medium priority.

6.17 Reporting and Analysis Data

The data interface from High-level Inspection Instruction Execution to Reporting and Analysis

(sections A.4.6 and A.13.7) requires a data format for high-level inspection data. Data for this

interface may be provided in DMIS output file format. DMIS output files might be analyzed, for

example, to determine if the same feature is often out of tolerance on parts of the same design, or

if there is a trend over time in making good parts of a specific design. Even if no analysis is done

on DMIS output files in Reporting and Analysis, it would be natural and desirable that Reporting

and Analysis keep records of what DMIS output files were generated.

The data interfaces from Other Inspection Device Control (sections A.11.2 and A.13.4), Hand-

held Device Measuring (sections A.3.2 and A.13.5), and Low-level Inspection Instruction
35

Draft 5/15/01 Standards Analysis
Execution (sections A.7.3 and A.13.6) require a data format for low-level inspection data. There

are many proprietary formats for this data but no widely used format. DMIS programs may be

written so that low-level data is saved in DMIS output files. Thus, the DMIS output file format

may be used for low-level inspection data. If data from several sources (a hand-held electronic

micrometer and a CMM, for example) are to be used together, it is necessary to have data in the

same (or equivalent) formats. It would be very useful to have a standard for this low-level data.

Standardizing this data is of high priority.

It is not clear to the authors whether DMIS output files meet the needs of users of either high-level

or low-level inspection data. If DMIS output files produced by existing DMIS program execution

systems are not meeting users’ needs, any of four causes are possible: (1) the DMIS input format

does not provide a sufficient range for specifying types of output, (2) the programs being executed

are not written so as to provided the desired output, (3) the analysis capabilities of the execution

systems (fitting features to sets of points, primarily) are not adequate, (4) the DMIS output file

format does not provide a sufficient range of types of output.

6.18 Routing Planning APIs

An API is used by Activity Coordination to tell Routing Planning what to plan for and when to

plan (sections A.1.5 and A.14.1). There is no commonly used API for this purpose. This is a

person-to-person interface in all existing industrial systems but has been defined as a command

for a human user to give from the user interface in FBICS. Standardizing this API is of low

priority.

6.19 Routing Plan Data

The data interface from Routing Planning to Activity Coordination (sections A.1.11 and A.14.4)

requires a format for a process plan for directing the activity of performing all machining and

inspection required on a part being manufactured. This is a high-level plan saying which

workstations a workpiece should go to and what should be done at each workstation. In current

systems, this is often a person-to-person interface. FBICS uses the ALPS high-level process

planning language augmented with the run_setup task, defined in EXPRESS information models.

Specific plans are written in STEP Part 21 files. Standardizing this data is of low priority.

6.20 Setup Data

The data interfaces from Routing Planning to Inspection Planning (sections A.5.5 and A.14.5) and

to Machining Planning (sections A.8.4 and A.14.6), from Inspection Planning to Inspection

Programming (sections A.5.6 and A.6.4), and from Machining Planning to Machining

Programming (sections A.8.5 and A.9.4) require a format for setups. A setup includes a

description of where various things are in the coordinate system of the machine (CMM or

machine tool) on which the processing is being done, plus pointers to the files needed to do the

processing. There is no widely used format for setup data. FBICS models setups in EXPRESS and

uses STEP Part 21 files to represent specific setups. Standardizing this data is of low priority.
36

Draft 5/15/01 Standards Analysis
6.21 Solid Modeling APIs

An API to Solid Modeling is used by Inspection Planning (sections A.5.2 and A.15.2), Inspection

Programming (sections A.6.2 and A.15.3), Machining Planning (sections A.8.2 and A.15.5),

Machining Programming (sections A.9.2 and A.15.6), Reporting and Analysis (sections A.13.2

and A.15.4), and Routing Planning (sections A.14.2 and A.15.1) to tell Solid Modeling what to

model, to make inquiries about solid models, and to get answers back. Standardizing this API is

of low priority.

6.21.1 Proprietary Solid Modeling APIs

As noted in Section 3.2, this analysis distinguishes between CAD systems and solid modelers.

Users interact directly with CAD systems to design things. Users do not usually interact directly

with solid modelers. Solid modelers are used by CAD and other software systems via an API.

Software developers include calls to solid modeler API functions in the programs they write.

The two predominant solid modelers are ACIS (from Spatial Technology) and Parasolid (from

Unigraphics Solutions, Inc.).

ACIS and Parasolid each have their own API for telling the modeler what to do and getting

answers back.

6.21.2 Non-Proprietary Solid Modeling APIs

The Application Interface Specification, developed in the 1980s under the auspices of Consortium

for Advanced Manufacturing - International, is a generic solid modeler API but has not been

standardized. The most recent version of the specification is version 2.1 from 1994. Early versions

of the Parasolid API were similar to the specification.

A generic solid modeler API has been developed at Allied Signal, along with a binding of the

generic API to the ACIS API. The generic API is being used in Allied Signal’s FBMach and

FBTol systems. A binding to Parasolid is contemplated.

6.22 Solid Modeling Data

As shown on Figure 1, this analysis does not anticipate that solid model data files will be used

outside of Solid Modeling. There are formats for solid modeling data, similar to but distinct from

CAD data.

Both ACIS and Parasolid make their file format publicly available on the internet. The ACIS

format is called the “SAT” file format and is currently at version 6.0. The Parasolid file format is

called the “XT” format. These file formats provide structures for the data required by a solid

modeler but do not provide structures for tolerances, datums, etc.
37

Draft 5/15/01 Standards Analysis
Appendix A Modules and Interfaces in Detail

This appendix describes interfaces on a module-by-module basis for each of the 15 modules

previously identified (as shown on Figure 1). A separate figure is provided for each module,

showing the same interfaces as shown on Figure 1. A brief description of the content of each

interface is provided. Cross-references from arrows to text are included on the figures.

Bear in mind, as stated earlier, that the intent of showing connections is only to make it clear what

the content of the interfaces must be, not to espouse a particular architecture.

For each interface, a reference is provided to the part of Section 6 describing the APIs or data

formats for the interface. Priorities for standardizing interfaces are given in this section and in

Section 6. Interfaces for which developing a standard is of high priority are also discussed in

Section 4.

For active interfaces, it is expected that the used module will always return at least an “I did it” or

error response to the user. These status responses are not further described here. Data may also be

returned from the used to the user via an active interface. If data is returned, that is described here.

A.1 Activity Coordination

For the purposes of this analysis, Activity Coordination is treated as a central function. In actual

systems, Activity Coordination is almost always distributed. If Activity Coordination is

distributed, the same interfaces to other modules will be needed as if Activity Coordination were

centralized, but additional active interfaces will be required among the various Activity

Coordination modules.
38

Draft 5/15/01 Standards Analysis
A.1.1 Active to CAD

Activity Coordination tells CAD what to design and when to design it. There is no commonly

used API for this purpose. This is a person-to-person interface in all existing industrial systems

and is not likely to be automated in the near future. Standardizing this interface is of low priority

(see Section 6.1).

A.1.2 Active to Inspection Planning

Activity Coordination tells Inspection Planning what to plan for and when to plan. There is no

commonly used API for this purpose. This is a person-to-person interface in most existing

industrial systems but has been defined as a command-and-status interface and automated in

FBICS. Standardizing this interface is of low priority (see Section 6.6).

Activity
Coordination

Hand-held

Device

Measuring

Inspection

Planning

Machining

Planning

Inspection

Programming

High-level

Inspection

Instruction

Execution

Reporting &

Analysis

Routing

Planning

Other

Inspection

Device

Control

Figure 3 Activity Coordination Interfaces
White arrows show producer → consumer for data interfaces.

Black arrows show user→used for active interfaces.

CAD

Machining

ProgrammingA.1.3

A.1.4

A.1.2

A.1.1

A.1.6 A.1.10

A.1.9

A.1.8

A.1.7

A.1.5

A.1.12

A.1.11

A.1.13
39

Draft 5/15/01 Standards Analysis
A.1.3 Active to Inspection Programming

Activity Coordination tells Inspection Programming what to write programs for and when to write

them. There is no commonly used API for this purpose. This is a person-to-person interface in

most existing industrial systems but has been defined as a command-and-status interface and

automated in FBICS. Standardizing this interface is of low priority (see Section 6.8).

A.1.4 Active to Hand-held Device Measuring

Activity Coordination tells Hand-held Device Measuring what to measure and when to measure.

There is no commonly used API for this purpose. This is a person-to-person interface in all

existing industrial systems and is not likely to be automated. Standardizing this interface is of low

priority (see Section 6.3).

A.1.5 Active to Routing Planning

Activity Coordination tells Routing Planning what to plan for and when to plan. There is no

commonly used API for this purpose. This is a person-to-person interface in all existing industrial

systems but has been defined as a command for a human user to give from the user interface in

FBICS. Standardizing this interface is of low priority (see Section 6.18).

A.1.6 Active to High-level Inspection Instruction Execution

Activity Coordination tells High-level Inspection Instruction Execution what inspection programs

to run and when to run them. There is no commonly used API for this purpose. This is usually a

person-to-person or person-to-machine interface in existing industrial systems but has been

defined as a command-and-status interface and automated in FBICS. Standardizing this interface

is of low priority (see Section 6.4).

A.1.7 Active to Reporting and Analysis

Activity Coordination tells Reporting and Analysis what data to analyze and when to do the

analysis. There is no commonly used API for this purpose. An XML DTD has been drafted by

DaimlerChrysler. This is a person-to-person interface in most existing industrial systems.

Standardizing this interface is of medium priority (see Section 6.16).

A.1.8 Active to Machining Planning

Activity Coordination tells Machining Planning what to plan for and when to plan. There is no

commonly used API for this purpose. This is a person-to-person interface in most existing

industrial systems but has been defined as a command-and-status interface and automated in

FBICS. Standardizing this interface is of low priority (see Section 6.10).

A.1.9 Active to Machining Programming

Activity Coordination tells Machining Programming what to write programs for and when to

write them. There is no commonly used API for this purpose. This is a person-to-person interface
40

Draft 5/15/01 Standards Analysis
in most existing industrial systems but has been defined as a command-and-status interface and

automated in FBICS. Standardizing this interface is of low priority (see Section 6.12).

A.1.10 Active to Other Inspection Device Control

Activity Coordination tells Other Inspection Device Control what other device control activities to

perform and when to perform them. There is no commonly used API for this purpose. This is a

person-to-person interface in all existing industrial systems. Standardizing this interface is of low

priority (see Section 6.14).

A.1.11 Data from Routing Planning

Activity Coordination uses a process plan generated by Routing Planning for directing the activity

of performing all machining and inspection required on a part being manufactured. This is a high-

level plan saying which workstations a workpiece should go to and what should be done at each

workstation. In current systems, this is often a person-to-person interface. Standardizing this

interface is of low priority (see Section 6.19).

A.1.12 Data from Inspection Planning

Activity Coordination uses a process plan generated by Inspection Planning for directing the

activity of performing the inspection required in one fixturing of a part being manufactured.

Standardizing this interface is of high priority (see Section 6.6).

A.1.13 Data from Machining Planning

Activity Coordination uses a process plan generated by Machining Planning for directing the

activity of performing all machining (including in-process inspection) required in one fixturing of

a part being manufactured. Standardizing this interface is of medium priority (see Section 6.11).

A.2 Computer-Aided Design

CAD generates designs used by other modules. Different modules have differing needs for design

data.

CAD is clearly not confined to the dimensional metrology domain. CAD is important as a self-

contained activity and is also linked closely to other activities, particularly part forming

(machining, turning, etc.). Thus, it does not make sense to develop CAD standards within the

dimensional metrology community. That community should, however, participate in setting CAD

standards.
41

Draft 5/15/01 Standards Analysis
A.2.1 Active from Activity Coordination

Activity Coordination tells CAD what to design and when to design it. There is no commonly

used API for this purpose. This is a person-to-person interface in all existing industrial systems

and is not likely to be automated in the near future. Standardizing this interface is of low priority

(see Section 6.1).

A.2.2 Data to Inspection Planning

Inspection Planning uses designs generated by CAD. Inspection Planning requires tolerance data

(including datums) in the design and may be facilitated by a feature-based design. Standardizing
this interface is of high priority (see Section 6.2).

A.2.3 Data to Inspection Programming

Inspection Programming uses designs generated by CAD. Inspection Programming requires

tolerance data (including datums) in the design and may be facilitated by a feature-based design.

Standardizing this interface is of high priority (see Section 6.2).

CAD

Routing

Planning

Inspection

Planning

Machining

Planning

Inspection

Programming

Solid

Modeling

Activity

Coordination

Machining

Programming

Figure 4 CAD Interfaces
White arrows show producer → consumer for data interfaces.

Black arrows show user→used for active interfaces.

A.2.7

A.2.4

A.2.6

A.2.3

A.2.5

A.2.2

A.2.1
42

Draft 5/15/01 Standards Analysis
A.2.4 Data to Solid Modeling

Solid Modeling uses designs generated by CAD. Solid modelers usually use boundary

representations, so Solid Modeling is facilitated if CAD provides a boundary representation.

Standardizing this interface is of high priority (see Section 6.2).

A.2.5 Data to Routing Planning

Routing Planning uses designs generated by CAD. Standardizing this interface is of high
priority (see Section 6.2).

A.2.6 Data to Machining Planning

Machining Planning uses designs generated by CAD. For prismatic parts (those having standard

features like pockets and holes), Machining Planning is helped by having a feature-based design.

If Machining Planning does not receive a feature-based design from CAD, it may create one.

Machining Planning requires tolerance information in the design, both for determining what

machining operations to use and for determining what in-process inspection to perform.

Standardizing this interface is of high priority (see Section 6.2).

A.2.7 Data to Machining Programming

Machining Programming uses designs generated by CAD. For prismatic parts (those having

standard features like pockets and holes), Machining Programming is helped by having a feature-

based design. Standardizing this interface is of high priority (see Section 6.2).

A.3 Hand-held Device Measuring

Hand-held
Device

Measuring

Reporting &

Analysis

Activity

Coordination

Figure 5 Hand-held Device Measuring Interfaces
White arrows show producer → consumer for data interfaces.

Black arrows show user → used for active interfaces.

A.3.2

A.3.1
43

Draft 5/15/01 Standards Analysis
A.3.1 Active from Activity Coordination

Activity Coordination tells Hand-held Device Measuring what to measure and when to measure.

There is no commonly used API for this purpose. This is a person-to-person interface in all

existing industrial systems and is not likely to be automated. Standardizing this interface is of low

priority (see Section 6.3).

A.3.2 Data to Reporting and Analysis

Reporting and Analysis uses data generated by Hand-held Device Measuring. Some existing

systems automate the recording of data from hand-held devices. Standardizing this interface is
of high priority (see Section 6.17).

A.4 High-level Inspection Instruction Execution

A.4.1 Active from Activity Coordination

Activity Coordination tells High-level Inspection Instruction Execution what inspection programs

to run and when to run them. There is no commonly used API for this purpose. This is usually a

person-to-person or person-to-machine interface in existing industrial systems but has been

High-level
Inspection
Instruction
Execution

Math

Computing

Activity

Coordination

Reporting &

Analysis

Inspection

Programming

Figure 6 High-level Inspection Instruction Execution Interfaces
White arrows show producer → consumer for data interfaces.

Black arrows show user → used for active interfaces.

A.4.6

A.4.3

A.4.4

A.4.1
Low-level

Inspection

Instruction

Execution

A.4.2

Machining

Programming

A.4.5
44

Draft 5/15/01 Standards Analysis
defined as a command-and-status interface and automated in FBICS. Standardizing this interface

is of low priority (see Section 6.4).

A.4.2 Active to Math Computing

High-level Inspection Instruction Execution requires specialized math computations to be

performed if (as in a DMIS interpreter) it does data analysis while it runs. Fitting a cylinder to a

set of data points is an example of such a computation. Commercial solid modelers do not do

these computations. High-level Inspection Instruction Execution has an active interface to Math

Computing for this purpose. Math Computing may also be given less demanding tasks, such as

handling coordinate transformations. Math computing returns numerical data to High-level

Inspection Instruction Execution on this interface. This interface is automated in all systems that

have it; this includes FBICS. Standardizing this interface is of medium priority (see Section 6.13).

A.4.3 Active to Low-level Inspection Instruction Execution

High-level Inspection Instruction Execution gives commands to Low-level Inspection Instruction

Execution in order to carry out a high-level program. Data (the location of a probe trip point, for

example) is returned by Low-level Inspection Instruction Execution. There are several proprietary

sets of commands used for this interface in commercial systems. A standard set is under

development. This interface is automated in all systems. Standardizing this interface is of high
priority (see Section 6.9).

A.4.4 Data from Inspection Programming

High-level Inspection Instruction Execution uses inspection programs generated by Inspection

Programming. There is one standard language (DMIS) plus several proprietary languages for

expressing inspection programs. Standardizing this interface is of high priority (see Section

6.5).

A.4.5 Data from Machining Programming

High-level Inspection Instruction Execution uses instructions generated by Machining

Programming. See the beginning of Section A.9 for a discussion of this.

A.4.6 Data to Reporting and Analysis

Reporting and Analysis uses data generated by High-level Inspection Instruction Execution. The

data coming out of High-level Inspection Instruction Execution may be raw data (such as probe

trip positions), low-level processed data (such as points on a surface), or high-level processed data

(such as the diameter of a measured cylinder). Standardizing this interface is of high priority
(see Section 6.17).
45

Draft 5/15/01 Standards Analysis
A.5 Inspection Planning

A.5.1 Active from Activity Coordination

Activity Coordination tells Inspection Planning what to plan for and when to plan. There is no

commonly used API for this purpose. This is a person-to-person interface in most existing

industrial systems but has been defined as a command-and-status interface and automated in

FBICS. Standardizing this interface is of low priority (see Section 6.6).

A.5.2 Active to Solid Modeling

Inspection Planning uses Solid Modeling as a source of geometry data (what is the direction of the

axis of a hole, for example). This interface is automated in all systems that have the interface; this

includes FBICS. There is no standard set of commands for using Solid Modeling. Existing

commercial solid modelers each have their own proprietary API. Standardizing this interface is of

low priority (see Section 6.21).

A.5.3 Data to Activity Coordination

Activity Coordination uses a process plan generated by Inspection Planning for directing the

activity of performing the inspection required in one fixturing of a part being manufactured.

Standardizing this interface is of high priority (see Section 6.6).

Inspection
Planning

Solid

Modeling

Activity

Coordination

Inspection

Programming

CAD

Figure 7 Inspection Planning Interfaces
White arrows show producer → consumer for data interfaces.

Black arrows show user → used for active interfaces.

A.5.6

A.5.2

A.5.4

A.5.1

A.5.5

Routing

Planning

A.5.3
46

Draft 5/15/01 Standards Analysis
A.5.4 Data from CAD

Inspection Planning uses designs generated by CAD. Inspection Planning requires tolerance data

(including datums) in the design and may be facilitated by a feature-based design. Standardizing
this interface is of high priority (see Section 6.2).

A.5.5 Data from Routing Planning

Inspection Planning uses inspection setup data and geometric feature data from Routing Planning.

This is a barely formalized interface in existing industrial systems and is likely to be tied closely

to the active interface from Activity Coordination. In FBICS, this interface is fully formalized,

including a setup file and a list of features to inspect generated by Routing Planning.

Standardizing this interface is of low priority (see Section 6.20).

A.5.6 Data to Inspection Programming

Inspection Programming uses geometry and tolerance data from Inspection Planning. This data is

referenced in commands to Inspection Programming from Activity Coordination. Existing

commercial systems generally use some proprietary CAD format. FBICS uses STEP AP 224 data,

defined in an EXPRESS information model. In FBICS, data regarding individual geometric

features and tolerances are extracted from AP 224 CAD data and written in STEP exchange files.

STEP AP 219, currently being developed, is expected to provide data that may be used on this

interface. Standardizing this interface is of high priority (see Section 6.2).
47

Draft 5/15/01 Standards Analysis
A.6 Inspection Programming

A.6.1 Active from Activity Coordination

Activity Coordination tells Inspection Programming what to write programs for and when to write

them. There is no commonly used API for this purpose. This is a person-to-person interface in

most existing industrial systems but has been defined as a command-and-status interface and

automated in FBICS. Standardizing this interface is of low priority (see Section 6.8).

A.6.2 Active to Solid Modeling

Inspection Programming uses Solid Modeling as a source of geometry data (is a candidate

inspection point on the surface of the part, for example). This interface is automated in all systems

that have the interface; this includes FBICS. There is no standard set of commands for using Solid

Modeling. Existing commercial solid modelers each have their own proprietary API.

Standardizing this interface is of low priority (see Section 6.21).

Inspection
Programming

Solid

Modeling

Activity

Coordination

High-level

Inspection

Instruction

Execution

CAD

Figure 8 Inspection Programming Interfaces
White arrows show producer → consumer for data interfaces.

Black arrows show user → used for active interfaces.

A.6.5

A.6.2

A.6.3

A.6.1

A.6.4

Inspection

Planning
48

Draft 5/15/01 Standards Analysis
A.6.3 Data from CAD

Inspection Programming uses designs generated by CAD. Inspection Programming requires

tolerance data (including datums) in the design and may be facilitated by a feature-based design.

Standardizing this interface is of high priority (see Section 6.2).

A.6.4 Data from Inspection Planning

Inspection Programming uses geometry and tolerance data from Inspection Planning. This data is

referenced in commands to Inspection Programming from Activity Coordination. Existing

commercial systems generally use some proprietary CAD format. FBICS uses STEP AP 224 data,

defined in an EXPRESS information model. In FBICS, data regarding individual geometric

features and tolerances are extracted from AP 224 CAD data and written in STEP exchange files.

STEP AP 219, currently being developed, is expected to provide data that may be used on this

interface. Standardizing this interface is of high priority (see Section 6.2).

A.6.5 Data to High-level Inspection Instruction Execution

High-level Inspection Instruction Execution uses inspection programs generated by Inspection

Programming. There is one standard language (DMIS) plus several proprietary languages for

expressing inspection programs. Standardizing this interface is of high priority (see Section

6.5).

A.7 Low-level Inspection Instruction Execution

Probe

Instruction

Execution

Low-level
Inspection
Instruction
Execution

Reporting &

Analysis

High-level

Inspection

Instruction

Execution

Figure 9 Low-level Inspection Instruction Execution Interfaces
White arrows show producer → consumer for data interfaces.

Black arrows show user → used for active interfaces.

A.7.1 A.7.2

A.7.3
49

Draft 5/15/01 Standards Analysis
A.7.1 Active From High-level Inspection Instruction Execution

High-level Inspection Instruction Execution gives commands to Low-level Inspection Instruction

Execution in order to carry out a high-level program. Data (the location of a probe trip point, for

example) is returned by Low-level Inspection Instruction Execution. There are several proprietary

sets of commands used for this interface in commercial systems. A standard set is under

development. This interface is automated in all systems. Standardizing this interface is of high
priority (see Section 6.9).

A.7.2 Active To Probe Instruction Execution

Low-level Inspection Instruction Execution gives commands to Probe Instruction Execution in

order to carry out low-level inspection commands. This interface is automated in all systems that

have it. Data (the location of a probe trip point, for example) is returned by Probe Instruction

Execution. Proprietary sets of commands are used for this interface in commercial systems. A

proposed standard set has been drafted. Standardizing this interface is of medium priority (see

Section 6.15).

A.7.3 Data To Reporting and Analysis

Reporting and Analysis uses data from Low-level Inspection Instruction Execution. There is no

widely used format for this data. This interface is automated in all systems that have it, since the

same data (probe trip points, normally) might be sent by High-level Inspection Instruction

Execution. FBICS does not have this interface. Standardizing this interface is of high priority
(see Section 6.17).
50

Draft 5/15/01 Standards Analysis
A.8 Machining Planning

A.8.1 Active From Activity Coordination

Activity Coordination tells Machining Planning what to plan for and when to plan. There is no

commonly used API for this purpose. This is a person-to-person interface in most existing

industrial systems but has been defined as a command-and-status interface and automated in

FBICS. Standardizing this interface is of low priority (see Section 6.10).

A.8.2 Active To Solid Modeling

Machining Planning uses Solid Modeling as a source of geometry data (what is the direction of

the axis of a hole, for example). This interface is automated in all systems that have the interface;

this includes FBICS. There is no standard set of commands for using Solid Modeling. Existing

commercial solid modelers each have their own proprietary API. Standardizing this interface is of

low priority (see Section 6.21).

A.8.3 Data from CAD

Machining Planning uses designs generated by CAD. For prismatic parts (those having standard

features like pockets and holes), Machining Planning is helped by having a feature-based design.

Machining
Planning Solid

Modeling

Activity

Coordination

Machining

Programming

Routing

Planning

Figure 10 Machining Planning Interfaces
White arrows show producer → consumer for data interfaces.

Black arrows show user → used for active interfaces.

A.8.5

A.8.2

A.8.4

A.8.1

CAD

A.8.3

A.8.6
51

Draft 5/15/01 Standards Analysis
If Machining Planning does not receive a feature-based design from CAD, it may create one.

Machining Planning requires tolerance information in the design, both for determining what

machining operations to use and for determining what in-process inspection to perform.

Standardizing this interface is of high priority (see Section 6.2).

A.8.4 Data From Routing Planning

Machining Planning uses machining setup data and geometric feature data from Routing

Planning. This is a barely formalized interface in existing industrial systems and is likely to be

tied closely to the active interface from Activity Coordination. In FBICS, this interface is fully

formalized, including a setup file and a list of features to machine (possibly with in-process

inspection) generated by Routing Planning. Standardizing this interface is of low priority (see

Section 6.20).

A.8.5 Data To Machining Programming

Machining Programming uses geometry data from Machining Planning. This data is referenced in

commands to Machining Programming from Activity Coordination. Existing commercial systems

generally use some proprietary CAD format. FBICS uses STEP AP 224 data, defined in an

EXPRESS information model. In FBICS, data regarding individual geometric features are

extracted from AP 224 CAD data and written in STEP exchange files. Standardizing this
interface is of high priority (see Section 6.2).

A.8.6 Data to Activity Coordination

Activity Coordination uses a process plan generated by Machining Planning for directing the

activity of performing all machining (including in-process inspection) required in one fixturing of

a part being manufactured. Standardizing this interface is of medium priority (see Section 6.11).

A.9 Machining Programming

The usual method of dealing with a touch probe on a machining center is to put the probe in a tool

holder, so that it may be put into the spindle and taken out like any other tool A dialect of RS274

is used that includes M and G codes for probing, so that the probe may be programmed like any

other tool. Results of probing may be saved in the controller’s table of machine parameters. The

results may be used in control of subsequent machining.

Machining Programming includes an interface to High-level Inspection Instruction Execution.

This means executing high-level inspection instructions on a machining center. The machining

commands in a machining program would, of course, be executed by a module for high-level

machining instruction execution, but machining instructions are out of scope and not shown on

the diagrams in this analysis.

In existing systems, high-level inspection instructions executed on a machining center are written

using non-standard M and G codes. These allow only for simple inspection routines. Thought

should be given as to whether high-level inspection instructions for a machining center should be

written according to the same standard (DMIS) as for a CMM. This would allow for more
52

Draft 5/15/01 Standards Analysis
advanced inspection methods but would require that the machine tool controller include a DMIS

interpreter as well as an M and G code interpreter. Settling this issue is of low priority.

A.9.1 Active From Activity Coordination

Activity Coordination tells Machining Programming what to write programs for and when to

write them. There is no commonly used API for this purpose. This is a person-to-person interface

in most existing industrial systems but has been defined as a command-and-status interface and

automated in FBICS. Standardizing this interface is of low priority (see Section 6.12).

A.9.2 Active To Solid Modeling

Machining Programming uses Solid Modeling as a source of geometry data (for picking nominal

probe points, for example). This interface is automated in all systems that have the interface; this

includes FBICS. There is no standard set of commands for using Solid Modeling. Existing

commercial solid modelers each have their own proprietary API. Standardizing this interface is of

low priority (see Section 6.21).

Machining
Programming

CAD Machining

Planning

Activity

Coordination

Solid

Modeling

Figure 11 Machining Programming Interfaces
White arrows show producer → consumer for data interfaces.

Black arrows show user → used for active interfaces.

A.9.2A.9.1

A.9.4A.9.3

High-level

Inspection

Instruction

Execution

A.9.5
53

Draft 5/15/01 Standards Analysis
A.9.3 Data From CAD

Machining Programming uses designs generated by CAD. For prismatic parts (those having

standard features like pockets and holes), Machining Programming is helped by having a feature-

based design. Standardizing this interface is of high priority (see Section 6.2).

A.9.4 Data From Machining Planning

Machining Programming uses geometry data from Machining Planning. This data is referenced in

commands to Machining Programming from Activity Coordination. Existing commercial systems

generally use some proprietary CAD format. FBICS uses STEP AP 224 data, defined in an

EXPRESS information model. In FBICS, data regarding individual geometric features are

extracted from AP 224 CAD data and written in STEP exchange files. Standardizing this
interface is of high priority (see Section 6.2).

A.9.5 Data to High-level Inspection Instruction Execution

High-level Inspection Instruction Execution uses instructions generated by Machining

Programming. See the beginning of Section A.9 for a discussion of this.

A.10 Math Computing

A.10.1 Active from High-level Inspection Instruction Execution

High-level Inspection Instruction Execution requires specialized math computations to be

performed if (as in a DMIS interpreter) it does data analysis while it runs. Fitting a cylinder to a

set of data points is an example of such a computation. Commercial solid modelers do not do

these computations. High-level Inspection Instruction Execution has an active interface to Math

Computing for this purpose. Math Computing may also be given less demanding tasks, such as

handling coordinate transformations. Math computing returns numerical data to High-level

Inspection Instruction Execution on this interface. This interface is automated in all systems that

have it; this includes FBICS. Standardizing this interface is of medium priority (see Section 6.13).

Math
Computing

High-level

Inspection

Instruction

Execution

Reporting &

Analysis

Figure 12 Math Computing Interfaces
White arrows show producer → consumer for data interfaces.

Black arrows show user → used for active interfaces.

A.10.1 A.10.2
54

Draft 5/15/01 Standards Analysis
A.10.2 Active from Reporting and Analysis

Reporting and Analysis requires specialized math computations to be performed. Fitting a

cylinder to a set of data points is an example of such a computation. Commercial solid modelers

do not do these computations. Reporting and Analysis has an active interface to Math Computing

for this purpose. Math Computing returns numerical data to Reporting and Analysis on this

interface. This interface is automated in all systems that have it. FBICS does not have this

interface. Standardizing this interface is of medium priority (see Section 6.13).

A.11 Other Inspection Device Control

Other Inspection Device Control requires mathematical processing, such as extracting point data

from range data. Since the type of processing is specific to the type of other device

(photogrammetry equipment or theodolite), we assume that this processing is done by the

controller of the other device, not by Math Computing. Thus, we do not include an interface to

Math Computing. It may be that this interface should be added, since Math Computing might well

be used for further processing of point data.

A data interface from Inspection Programming to Other Inspection Device Control might be

added. Other devices may be programmable and, if so, need to get programs from somewhere.

A.11.1 Active from Activity Coordination

Activity Coordination tells Other Inspection Device Control what other device control activities to

perform and when to perform them. There is no commonly used API for this purpose. This is a

person-to-person interface in all existing industrial systems. Standardizing this interface is of low

priority (see Section 6.14).

Other
Inspection

Device
Control

Reporting &

Analysis

Activity

Coordination

Figure 13 Other Inspection Device Control Interfaces
White arrows show producer → consumer for data interfaces.

Black arrows show user → used for active interfaces.

A.11.2

A.11.1
55

Draft 5/15/01 Standards Analysis
A.11.2 Data to Reporting and Analysis

Reporting and Analysis uses data generated by Other Inspection Device Control. Some existing

systems automate the recording of data from hand-held devices. Standardizing this interface is
of high priority (see Section 6.17).

A.12 Probe Instruction Execution

Probe Instruction Execution has no downward interfaces to other dimensional metrology

activities.

A.12.1 Active from Low-Level Inspection Instruction Execution

Low-level Inspection Instruction Execution gives commands to Probe Instruction Execution in

order to carry out low-level inspection commands. This interface is automated in all systems that

have it. Data (the location of a probe trip point, for example) is returned by Probe Instruction

Execution. Proprietary sets of commands are used for this interface in commercial systems. A

standard set has been drafted. Standardizing this interface is of medium priority (see Section

6.15).

A.13 Reporting and Analysis

Reporting and Analysis is shown in Figure 15 with no CAD data going into it. This is not because

Reporting and Analysis does not need CAD data to compare with actual data; that is needed. It is

assumed, however, that Solid Modeling (which is used by Reporting and Analysis, and does have

CAD data as input) will deal with the CAD data.

Reporting and Analysis is shown in Figure 15 with no data coming out of it. This is misleading,

since the whole point of Reporting and Analysis is to prepare useful data. The data is currently

prepared for the use of humans only and does not feed into other modules. A person reads a report

or looks at data displayed pictorially, decides if the data looks OK, and, if not, what to do about it.

In the future, Reporting and Analysis should return digested data directly to other modules. For

example, it might suggest to Inspection Programming that more points be used to inspect a

particular feature, or that another feature does not need to be inspected on every part of a given

Figure 14 Probe Instruction Execution Interfaces
White arrows show producer → consumer for data interfaces.

Black arrows show user → used for active interfaces.

Probe
Instruction
Execution

Low-level

Inspection

Instruction

Execution
A.12.1
56

Draft 5/15/01 Standards Analysis
design because that feature has never been out of tolerance on any part of that design. Data

interfaces of this sort are currently rare in industry. Standardizing such interfaces is of very low

priority at this time.

A.13.1 Active from Activity Coordination

Activity Coordination tells Reporting and Analysis what data to analyze and when to do the

analysis. There is no commonly used API for this purpose. An XML DTD has been drafted by

DaimlerChrysler. This is a person-to-person interface in most existing industrial systems.

Standardizing this interface is of medium priority (see Section 6.16).

A.13.2 Active to Solid Modeling

Reporting and Analysis may need the services of Solid Modeling to do analyses. This interface is

automated in all systems that have it. There is no standard set of commands for using Solid

Modeling. Existing commercial solid modelers each have their own proprietary API.

Standardizing this interface is of low priority (see Section 6.21).

Activity

Coordination

Hand-held

Device

Measuring

Other

Inspection

Device

Control

Solid

Modeling

High-level

Inspection

Instruction

Execution

Reporting
and

Analysis

Figure 15 Reporting and Analysis Interfaces
White arrows show producer → consumer for data interfaces.

Black arrows show user → used for active interfaces.

A.13.2A.13.1

A.13.5A.13.4

A.13.6 A.13.7

A.13.3
Math

Computing

Low-level

Inspection

Instruction

Execution
57

Draft 5/15/01 Standards Analysis
A.13.3 Active to Math Computing

Reporting and Analysis requires specialized math computations to be performed. Fitting a

cylinder to a set of data points is an example of such a computation. Commercial solid modelers

do not do these computations. Reporting and Analysis has an active interface to Math Computing

for this purpose. Math Computing returns numerical data to Reporting and Analysis on this

interface. This interface is automated in all systems that have it. FBICS does not have this

interface. Standardizing this interface is of medium priority (see Section 6.13).

A.13.4 Data from Other Inspection Device Control

Reporting and Analysis uses data generated by Other Inspection Device Control. Some existing

systems automate the recording of data from hand-held devices. Standardizing this interface is
of high priority (see Section 6.17).

A.13.5 Data from Hand-held Device Measuring

Reporting and Analysis uses data generated by Hand-held Device Measuring. Some existing

systems automate the recording of data from hand-held devices. Standardizing this interface is
of high priority (see Section 6.17).

A.13.6 Data from Low-level Inspection Instruction Execution

Reporting and Analysis uses data from Low-level Inspection Instruction Execution. There is no

widely used format for this data. This interface is automated in all systems that have it, since the

same data (probe trip points, normally) might be sent by High-level Inspection Instruction

Execution. FBICS does not have this interface. Standardizing this interface is of high priority
(see Section 6.17).

A.13.7 Data from High-level Inspection Instruction Execution

Reporting and Analysis uses data generated by High-level Inspection Instruction Execution. The

data coming out of High-level Inspection Instruction Execution may be raw data (such as probe

trip positions), low-level processed data (such as points on a surface), or high-level processed data

(such as the diameter of a measured cylinder). Standardizing this interface is of high priority
(see Section 6.17).

A.14 Routing Planning

For production line rather than discrete part manufacturing, the functions of Routing Planning

may be performed when the production line is laid out.

Routing Planning will typically produce designs of in-process workpieces, and may also produce

setup instructions, in addition to producing a routing plan.
58

Draft 5/15/01 Standards Analysis
A.14.1 Active from Activity Coordination

Activity Coordination tells Routing Planning what to plan for and when to plan. There is no

commonly used API for this purpose. This is a person-to-person interface in all existing industrial

systems but has been defined as a command for a human user to give from the user interface in

FBICS. Standardizing this interface is of low priority (see Section 6.18).

A.14.2 Active to Solid Modeling

Routing Planning uses Solid Modeling to help with geometric reasoning (what features do not

need to be machined because they do not intersect the initial workpiece, for example). This

interface is automated in all systems that have the interface; this includes FBICS. There is no

standard set of commands for using Solid Modeling. Existing commercial solid modelers each

have their own proprietary API. Standardizing this interface is of low priority (see Section 6.21).

A.14.3 Data from CAD

Routing Planning uses designs generated by CAD. Standardizing this interface is of high
priority (see Section 6.2).

Routing
Planning

Inspection

Planning

Solid

Modeling

Activity

Coordination

CAD

Machining

Planning

Figure 16 Routing Planning Interfaces
White arrows show producer → consumer for data interfaces.

Black arrows show user → used for active interfaces.

A.14.2

A.14.5

A.14.1

A.14.4

A.14.6

A.14.3
59

Draft 5/15/01 Standards Analysis
A.14.4 Data to Activity Coordination

Activity Coordination uses a process plan generated by Routing Planning for directing the activity

of performing all machining and inspection required on a part being manufactured. This is a high-

level plan saying which workstations a workpiece should go to and what should be done at each

workstation. In current systems, this is often a person-to-person interface. Standardizing this

interface is of low priority (see Section 6.19).

A.14.5 Data to Inspection Planning

Inspection Planning uses inspection setup data and geometric feature data from Routing Planning.

This is a barely formalized interface in existing industrial systems and is likely to be tied closely

to the active interface from Activity Coordination. In FBICS, this interface is fully formalized,

including a setup file and a list of features to inspect generated by Routing Planning.

Standardizing this interface is of low priority (see Section 6.20).

A.14.6 Data to Machining Planning

Machining Planning uses machining setup data and geometric feature data from Routing

Planning. This is a barely formalized interface in existing industrial systems and is likely to be

tied closely to the active interface from Activity Coordination. In FBICS, this interface is fully

formalized, including a setup file and a list of features to machine (possibly with in-process

inspection) generated by Routing Planning. Standardizing this interface is of low priority (see

Section 6.20).
60

Draft 5/15/01 Standards Analysis
A.15 Solid Modeling

A solid modeler may be needed by CAD, Inspection Planning, Inspection Programming,

Machining Planning, Machining Programming, and Routing Planning. Solid Modeling is

performed by a solid modeler. Solid modelers are large, complex programs available from only a

handful of vendors. Hundreds of person-years are required to build a good one. The best-known

solid modelers are ACIS and Parasolid.

CAD systems generally come with a solid modeler built in, so the independent solid modeler used

by the rest of a dimensional metrology system may not have to be used by CAD. A solid modeler

built into a CAD system cannot be expected to be available for use by other modules.

Solid modelers have not traditionally been connected to many other modules, but more and more

modules are using them. Since many modules can potentially benefit from using them and modern

PCs have the required speed and memory for fast solid modeling, it is expected that in the future

many modules will use them.

It is not clear whether a single central solid modeler will be used, or several. In this analysis, we

use a central solid modeler. Solid modelers require a lot of RAM memory (100 Mbytes when

dealing with a large model is not unusual), so for most PCs today, running a central solid modeler

is more practical than running several modelers. Also, if a central modeler is used, it is relatively

straightforward to compare solid models used by different modules. This is a useful capability,

since it is often desirable to check that different modules are dealing with the same shape.

Solid
Modeling

Routing

Planning

Inspection

Planning

Machining

Planning

Inspection

Programming

Reporting &

Analysis

Machining

Programming

Figure 17 Solid Modeling Interfaces
White arrows show producer → consumer for data interfaces.

Black arrows show user → used for active interfaces.

CAD

A.15.6

A.15.5

A.15.4

A.15.7

A.15.3

A.15.2

A.15.1
61

Draft 5/15/01 Standards Analysis
A central modeler for a dimensional metrology system will require a standard API that can serve

all the modules that use it. Distributed modelers can get by with a separate API for each domain.

Existing solid modelers come with very big, domain-independent APIs. A higher-level, much

smaller, domain-specific API was developed and is used for FBICS. The higher-level API is

implemented via calls to a commercial low-level API. An interesting research issue is whether it

is feasible to define a smallish solid modeler API covering all the requirements of dimensional

metrology. If so, it would be feasible and useful to have it as a standard.

A.15.1 Active from Routing Planning

Routing Planning uses Solid Modeling to help with geometric reasoning (what features do not

need to be machined because they do not intersect the initial workpiece, for example). This

interface is automated in all systems that have the interface; this includes FBICS. There is no

standard set of commands for using Solid Modeling. Existing commercial solid modelers each

have their own proprietary API. Standardizing this interface is of low priority (see Section 6.21).

A.15.2 Active from Inspection Planning

Inspection Planning uses Solid Modeling as a source of geometry data (what is the direction of the

axis of a hole, for example). This interface is automated in all systems that have the interface; this

includes FBICS. There is no standard set of commands for using Solid Modeling. Existing

commercial solid modelers each have their own proprietary API. Standardizing this interface is of

low priority (see Section 6.21).

A.15.3 Active from Inspection Programming

Inspection Programming uses Solid Modeling as a source of geometry data (is a candidate

inspection point on the surface of the part, for example). This interface is automated in all systems

that have the interface; this includes FBICS. There is no standard set of commands for using Solid

Modeling. Existing commercial solid modelers each have their own proprietary API.

Standardizing this interface is of low priority (see Section 6.21).

A.15.4 Active from Reporting and Analysis

Reporting and Analysis may need the services of Solid Modeling to do analyses. This interface is

automated in all systems that have it. There is no standard set of commands for using Solid

Modeling. Existing commercial solid modelers each have their own proprietary API.

Standardizing this interface is of low priority (see Section 6.21).

A.15.5 Active from Machining Planning

Machining Planning uses Solid Modeling as a source of geometry data (what is the direction of

the axis of a hole, for example). This interface is automated in all systems that have the interface;

this includes FBICS. There is no standard set of commands for using Solid Modeling. Existing

commercial solid modelers each have their own proprietary API. Standardizing this interface is of

low priority (see Section 6.21).
62

Draft 5/15/01 Standards Analysis
A.15.6 Active from Machining Programming

Machining Programming uses Solid Modeling as a source of geometry data (for picking nominal

probe points, for example). This interface is automated in all systems that have the interface; this

includes FBICS. There is no standard set of commands for using Solid Modeling. Existing

commercial solid modelers each have their own proprietary API. Standardizing this interface is of

low priority (see Section 6.21).

A.15.7 Data from CAD

Solid Modeling uses designs generated by CAD. Solid modelers usually use boundary

representations, so Solid Modeling is facilitated if CAD provides a boundary representation.

Standardizing this interface is of high priority (see Section 6.2).
63

Draft 5/15/01 Standards Analysis
Appendix B Glossary

ACIS — a commercial solid modeler

ALPS — “A Language for Process Specification” (a process planning language)

ANSI — “American National Standards Institute” (a U.S. standards-approving organization)

AP — “application protocol” (a generic STEP term for a standard to be applied)

AP 203 — an ISO STEP international standard for configuration controlled design

AP 214 — an ISO STEP international standard for automotive data

AP 213 — a draft ISO STEP international standard for machining process plans

AP 219 — a developing ISO STEP international standard for dimensional metrology

AP 224 — an ISO STEP international standard for machining features

API — “application programming interface” (a generic term)

B&S — “Brown and Sharpe” (a company)

CAM-I — “Consortium for Advanced Manufacturing - International”

C++ — a widely used programming language

CMM — “coordinate measuring machine”

CMM-driver — a language under development for low-level CMM control

CORBA — “Common Object Request Broker Architecture”

DMIS — “Dimensional Measuring Interface Standard” (an ANSI/CAM-I standard)

DMIS Part 1 — a combined file format and semantic specification of DMIS

DMIS Part 2 — an object version of DMIS with semantics subordinate to DMIS Part 1

DNSC — “DMIS National Standards Committee” (a CAM-I committee)

DOT — “DMIS Object Technology” (an implementation of DMIS Part 2)

DTD — “Document Type Definition” (in XML)

DXF — “Drawing eXchange Format” (a CAD file data format from AutoDesk’s AutoCAD)

EBNF — “Extended Backus Naur Form” (a language for defining languages)

EXPRESS — an ISO STEP international standard information modeling language

FBICS — “Feature-Based Inspection and Control System” (a NIST ISD automated system)

G&L — “Giddings and Lewis” (a company)

IDL — “interface definition language” (a generic term)

IGES — “Initial Graphics Exchange Specification” (a drawing-oriented CAD file format)

IML — “Information Modeling Language”

IP — “internet protocol”, usually seen as part of TCP/IP

ISD — “Intelligent Systems Division” (part of NIST’s Manufacturing Engineering Laboratory)

ISO — “International Organization for Standardization”

ISO 10303 — the ISO number for STEP
64

Draft 5/15/01 Standards Analysis
I++ — a European dimensional metrology standards effort (maybe)

Java — a widely used net programming language

lex — a language and processor for building lexical scanners

MAA — “Metrology Automation Association”

NGIS — “Next Generation Inspection System”

NIST — “National Institute of Standards and Technology” (a federal agency)

NML — Neutral Message Language (a NIST ISD interprocess communications utility)

Parasolid — a commercial solid modeler

PC — “Personal Computer”

PSL — “Process Specification Language” (a process planning language)

RCS — “Real-time Control System” (a control system architecture developed in ISD)

SIM — “Sensor Interface Module”

Socket — a widely used net communications software item with an API

STEP — “STandard for the Exchange of Product model data” (a set of standards, ISO 10303)

TCP — “Transmission Control Protocol”, usually seen as part of TCP/IP

XML — “eXtensible Markup Language” (an international standard language for net use)

VRML — “Virtual Reality Modeling Language”

YACC — “Yet Another Compiler Compiler” (a language and processor for building compilers)
65

Draft 5/15/01 Standards Analysis
Appendix C Combined vs. Separate Model and Representation

This appendix uses the example of a circle to show how the handling of modeling and

representation differs between a language that does both, and a language that does only modeling

and, hence, requires separate specification of a file format.

A language that does both information content and representation (DMIS, for example) might

describe how to represent a circle in a DMIS program file by the following (simplified a little from

real DMIS):

F(label) = FEAT/CIRCLE, var_1, x, y, z, i, j, k, diam

Where the label is an identifier, var_1 could be either INNER or OUTER and x, y, z, i, j, k, diam
are all real numbers. Then an instance of a circle in a DMIS program might be:

F(circle1) = FEAT/CIRCLE, INNER, 5.0, 5.0, 0.0, 0.0, 0.0, 1.0, 4.0.

A language that does information content but not representation (EXPRESS, for example) might

describe exactly the same information needed to define a circle by the following. Note that the

label is omitted:

TYPE inner_outer_type = ENUMERATION OF (inner, outer);
END_TYPE;

ENTITY circle;
in_or_out : inner_outer type;
x : REAL;
y : REAL;
z : REAL;
i : REAL;
j : REAL;
k : REAL;
diam : REAL;
END_ENTITY;

That says what information is needed to define a circle, but does not specify how to write the

definition of a given circle in a file. There is a separate specification for a file format. Alternative

file formats might even be provided. Under the usual file format used with EXPRESS models, the

DMIS circle instance above would be represented as:

#43 = CIRCLE(.INNER., 5.0, 5.0, 0.0, 0.0, 0.0, 1.0, 4.0);

The #43 (which might be #2 or #901 or anything else in that format as long as it is unique in the

file) serves as the label for this instance of a circle.

Under a different file format specification using the same EXPRESS definition, the same circle

might be represented as:
66

Draft 5/15/01 Standards Analysis
circle1 = CIRCLE(in_or_out .INNER., diam 4.0, i 0.0, j 0.0, k 1.0, x 5.0, y 5.0, z 0.0);

In this file format, the identifier (circle1) is once again a name, and, since the attribute names are

included, the order in which the values of attributes are specified is arbitrary.
67

Draft 5/15/01 Standards Analysis
References

[CAM-I1] Consortium for Advanced Manufacturing - International; Dimensional
Measuring Interface Standard; Revision 3.0, ANSI/CAM-I 101-1995; CAM-I,
Arlington, Texas; 1995

[CAM-I2] Consortium for Advanced Manufacturing - International; Dimensional
Measuring Interface Standard; Revision 4.0, ANSI/CAM-I 104.0-2001; CAM-
I, Arlington, Texas; 2001

[Catron] Catron, Bryan; Ray, Steven R.; ALPS — A Language for Process Specification;
International Journal of Computer Integrated Manufacturing; Vol. 4, No. 2;
1991; pp 105 -113

[CORBA] http://www.omg.org/technology/documents

[ISO1] ISO 10303-11:1994; Industrial automation systems and integration - Product
data representation and exchange - Part 11: The EXPRESS Language
Reference Manual; ISO; Geneva, Switzerland; 1994

[ISO2] ISO 10303-21:1994; Industrial automation systems and integration - Product
data representation and exchange - Part 21: Clear Text Encoding of the
Exchange Structure; ISO; Geneva, Switzerland; 1994

[ISO3] ISO 10303-224:1998; Industrial automation systems and integration - Product
data representation and exchange - Part 224: Application Protocol:
Mechanical Product Definition for Process Planning Using Machining
Features; ISO; Geneva, Switzerland; 1998

[Kramer] Kramer, Thomas R.; Huang, Hui-Minh; Messina, Elena; Proctor, Frederick M.;
Scott, Harry; A Feature-Based Inspection and Machining System; Computer-
Aided Design, Vol. 33, Issue 9; August 2001

[Messina] Messina, E.; Horst, J.; Kramer, T.; Huang, H.; Tsai, T.; Amatucci, E.; A
Knowledge-Based Inspection Workstation; Proceedings of the IEEE
International Conference on Information, Intelligence, and Systems; Bethesda,
MD; November 1999

[Shackleford] Shackleford, Will; Real-Time Control Systems Library Documents; http://
www.isd.mel.nist.gov/projects/rcslib/index.html; 2001

[XML] http://www.xml.com
68

	Analysis of Dimensional Metrology Standards
	NIST Manufacturing Engineering Laboratory
	John Evans
	Simon Frechette
	John Horst
	Hui Huang
	Thomas Kramer
	Elena Messina
	Fred Proctor
	Bill Rippey
	Harry Scott
	Ted Vorburger
	Al Wavering
	1.0 Executive Summary 1
	2.0 Introduction 3
	2.1 Focus 3
	2.2 Purpose 3
	2.3 Scope 3
	2.3.1 In Scope 3
	2.3.2 Out of Scope 4

	2.4 Overall System Considerations 5

	3.0 Activities, Modules, and Interfaces 6
	3.1 Activities, Software Modules, and Software Systems 6
	3.1.1 Connectability 7

	3.2 Dimensional Metrology Activities Identified 7
	3.2.1 Activity Coordination 8
	3.2.2 Computer-Aided Design (CAD) 8
	3.2.3 Hand-held Device Measuring 8
	3.2.4 High-level Inspection Instruction Execution 9
	3.2.5 Inspection Planning 9
	3.2.6 Inspection Programming 9
	3.2.7 Low-level Inspection Instruction Execution 9
	3.2.8 Machining Planning 9
	3.2.9 Machining Programming 9
	3.2.10 Math Computing 9
	3.2.11 Other Inspection Device Control 10
	3.2.12 Probe Instruction Execution 10
	3.2.13 Reporting and Analysis 10
	3.2.14 Routing Planning 10
	3.2.15 Solid Modeling 10

	3.3 Simulation 10
	3.4 Interfaces and Architecture 11
	3.4.1 Active Interface 13
	3.4.2 Data Interface 13
	3.4.3 Distinction May be Blurred 13
	3.4.4 Independence of Architecture and Interfaces 14
	3.4.5 NIST ISD Implementation 14

	4.0 Software Systems 15
	4.1 Systems 15
	4.2 Hot Interfaces 16
	4.2.1 Design 16
	4.2.2 Program 16
	4.2.3 Measurement Data 17
	4.2.4 API for Low-level Inspection Instruction Execution 17
	4.2.5 Inspection Planning Data 17

	5.0 Languages 18
	5.1 Separate vs. Combined Information Model and Representation 18
	5.2 General-Purpose Programming Languages 18
	5.3 Syntax Specification Languages 18
	5.4 Interface Definition Languages and Information Modeling Languages 19
	5.4.1 CORBA IDL and Microsoft IDL 20
	5.4.2 EXPRESS 20
	5.4.3 C++ Header Files 21
	5.4.4 XML 21

	5.5 STEP Part 21 Generic File Format 21
	5.6 Process Planning Languages 22
	5.6.1 A Language for Process Specification (ALPS) 22
	5.6.2 Process Specification Language (PSL) 22

	5.7 Configuration and User Option Files 22

	6.0 APIs and Data Formats for Dimensional Metrology 24
	6.1 CAD APIs 24
	6.2 CAD Data Formats 24
	6.2.1 Non-Proprietary CAD Data Formats 26
	6.2.2 Proprietary CAD Data Formats 27

	6.3 Hand-Held Device Measuring APIs 27
	6.4 High-Level Inspection Instruction Execution APIs 27
	6.4.1 DMIS Part 2 28
	6.4.2 Another Type of API to High-level Instruction Execution 28

	6.5 High-level Inspection Instruction Data 29
	6.5.1 DMIS 29

	6.6 Inspection Planning APIs 30
	6.7 Inspection Plan Data 30
	6.7.1 STEP AP 219 31
	6.7.2 ALPS with Inspection Operations 31

	6.8 Inspection Programming APIs 31
	6.9 Low-Level Inspection Instruction APIs 31
	6.9.1 CMM-driver Specification 32
	6.9.2 DmeEquip Portion of DMIS Part 2 32
	6.9.3 I++ 32

	6.10 Machining Planning APIs 32
	6.11 Machining Plan Data 32
	6.11.1 ISO 14649 32
	6.11.2 ALPS with Machining Operations 33
	6.11.3 STEP AP 213 33

	6.12 Machining Programming APIs 33
	6.13 Math Computing APIs 33
	6.14 Other Inspection Device APIs 34
	6.15 Probe Instruction APIs 34
	6.15.1 NGIS SIM Specification 34
	6.15.2 IEEE 1451 Intelligent Sensor Standard 35

	6.16 Reporting and Analysis APIs 35
	6.17 Reporting and Analysis Data 35
	6.18 Routing Planning APIs 36
	6.19 Routing Plan Data 36
	6.20 Setup Data 36
	6.21 Solid Modeling APIs 37
	6.21.1 Proprietary Solid Modeling APIs 37
	6.21.2 Non-Proprietary Solid Modeling APIs 37

	6.22 Solid Modeling Data 37

	Appendix A Modules and Interfaces in Detail 38
	A.1 Activity Coordination 38
	A.2 Computer-Aided Design 41
	A.3 Hand-held Device Measuring 43
	A.4 High-level Inspection Instruction Execution 44
	A.5 Inspection Planning 46
	A.6 Inspection Programming 48
	A.7 Low-level Inspection Instruction Execution 49
	A.8 Machining Planning 51
	A.9 Machining Programming 52
	A.10 Math Computing 54
	A.11 Other Inspection Device Control 55
	A.12 Probe Instruction Execution 56
	A.13 Reporting and Analysis 56
	A.14 Routing Planning 58
	A.15 Solid Modeling 61

	Appendix B Glossary 64
	Appendix C Combined vs. Separate Model and Representation 66
	References 68

	1 Executive Summary
	2 Introduction
	2.1 Focus
	2.2 Purpose
	2.3 Scope
	2.3.1 In Scope
	2.3.1.1 Activities
	2.3.1.2 Hardware

	2.3.2 Out of Scope

	2.4 Overall System Considerations

	3 Activities, Modules, and Interfaces
	3.1 Activities, Software Modules, and Software Systems
	3.1.1 Connectability

	3.2 Dimensional Metrology Activities Identified
	3.2.1 Activity Coordination
	3.2.2 Computer-Aided Design (CAD)
	3.2.3 Hand-held Device Measuring
	3.2.4 High-level Inspection Instruction Execution
	3.2.5 Inspection Planning
	3.2.6 Inspection Programming
	3.2.7 Low-level Inspection Instruction Execution
	3.2.8 Machining Planning
	3.2.9 Machining Programming
	3.2.10 Math Computing
	3.2.11 Other Inspection Device Control
	3.2.12 Probe Instruction Execution
	3.2.13 Reporting and Analysis
	3.2.14 Routing Planning
	3.2.15 Solid Modeling

	3.3 Simulation
	3.4 Interfaces and Architecture
	Figure 1 Interfaces in a Dimensional Metrology System Architecture
	3.4.1 Active Interface
	3.4.2 Data Interface
	3.4.3 Distinction May be Blurred
	3.4.4 Independence of Architecture and Interfaces
	3.4.5 NIST ISD Implementation

	4 Software Systems
	4.1 Systems
	Figure 2 Metrology Automation Major Systems and Hot Interfaces

	4.2 Hot Interfaces
	4.2.1 Design
	4.2.2 Program
	4.2.3 Measurement Data
	4.2.4 API for Low-level Inspection Instruction Execution
	4.2.5 Inspection Planning Data

	5 Languages
	5.1 Separate vs. Combined Information Model and Representation
	5.2 General-Purpose Programming Languages
	5.3 Syntax Specification Languages
	5.4 Interface Definition Languages and Information Modeling Languages
	5.4.1 CORBA IDL and Microsoft IDL
	5.4.2 EXPRESS
	5.4.3 C++ Header Files
	5.4.4 XML

	5.5 STEP Part 21 Generic File Format
	5.6 Process Planning Languages
	5.6.1 A Language for Process Specification (ALPS)
	5.6.2 Process Specification Language (PSL)

	5.7 Configuration and User Option Files

	6 APIs and Data Formats for Dimensional Metrology
	6.1 CAD APIs
	6.2 CAD Data Formats
	6.2.1 Non-Proprietary CAD Data Formats
	6.2.1.1 STEP AP 203
	6.2.1.2 STEP AP 224
	6.2.1.3 STEP AP 214
	6.2.1.4 IGES

	6.2.2 Proprietary CAD Data Formats
	6.2.2.1 DXF

	6.3 Hand-Held Device Measuring APIs
	6.4 High-Level Inspection Instruction Execution APIs
	6.4.1 DMIS Part 2
	6.4.2 Another Type of API to High-level Instruction Execution

	6.5 High-level Inspection Instruction Data
	6.5.1 DMIS

	6.6 Inspection Planning APIs
	6.7 Inspection Plan Data
	6.7.1 STEP AP 219
	6.7.2 ALPS with Inspection Operations

	6.8 Inspection Programming APIs
	6.9 Low-Level Inspection Instruction APIs
	6.9.1 CMM-driver Specification
	6.9.2 DmeEquip Portion of DMIS Part 2
	6.9.3 I++

	6.10 Machining Planning APIs
	6.11 Machining Plan Data
	6.11.1 ISO 14649
	6.11.2 ALPS with Machining Operations
	6.11.3 STEP AP 213

	6.12 Machining Programming APIs
	6.13 Math Computing APIs
	6.14 Other Inspection Device APIs
	6.15 Probe Instruction APIs
	6.15.1 NGIS SIM Specification
	6.15.2 IEEE 1451 Intelligent Sensor Standard

	6.16 Reporting and Analysis APIs
	6.17 Reporting and Analysis Data
	6.18 Routing Planning APIs
	6.19 Routing Plan Data
	6.20 Setup Data
	6.21 Solid Modeling APIs
	6.21.1 Proprietary Solid Modeling APIs
	6.21.2 Non-Proprietary Solid Modeling APIs

	6.22 Solid Modeling Data
	Appendix A Modules and Interfaces in Detail
	A.1 Activity Coordination
	Figure 3 Activity Coordination Interfaces
	A.1.1 Active to CAD
	A.1.2 Active to Inspection Planning
	A.1.3 Active to Inspection Programming
	A.1.4 Active to Hand-held Device Measuring
	A.1.5 Active to Routing Planning
	A.1.6 Active to High-level Inspection Instruction Execution
	A.1.7 Active to Reporting and Analysis
	A.1.8 Active to Machining Planning
	A.1.9 Active to Machining Programming
	A.1.10 Active to Other Inspection Device Control
	A.1.11 Data from Routing Planning
	A.1.12 Data from Inspection Planning
	A.1.13 Data from Machining Planning

	A.2 Computer-Aided Design
	Figure 4 CAD Interfaces
	A.2.1 Active from Activity Coordination
	A.2.2 Data to Inspection Planning
	A.2.3 Data to Inspection Programming
	A.2.4 Data to Solid Modeling
	A.2.5 Data to Routing Planning
	A.2.6 Data to Machining Planning
	A.2.7 Data to Machining Programming

	A.3 Hand-held Device Measuring
	Figure 5 Hand-held Device Measuring Interfaces
	A.3.1 Active from Activity Coordination
	A.3.2 Data to Reporting and Analysis

	A.4 High-level Inspection Instruction Execution
	Figure 6 High-level Inspection Instruction Execution Interfaces
	A.4.1 Active from Activity Coordination
	A.4.2 Active to Math Computing
	A.4.3 Active to Low-level Inspection Instruction Execution
	A.4.4 Data from Inspection Programming
	A.4.5 Data from Machining Programming
	A.4.6 Data to Reporting and Analysis

	A.5 Inspection Planning
	Figure 7 Inspection Planning Interfaces
	A.5.1 Active from Activity Coordination
	A.5.2 Active to Solid Modeling
	A.5.3 Data to Activity Coordination
	A.5.4 Data from CAD
	A.5.5 Data from Routing Planning
	A.5.6 Data to Inspection Programming

	A.6 Inspection Programming
	Figure 8 Inspection Programming Interfaces
	A.6.1 Active from Activity Coordination
	A.6.2 Active to Solid Modeling
	A.6.3 Data from CAD
	A.6.4 Data from Inspection Planning
	A.6.5 Data to High-level Inspection Instruction Execution

	A.7 Low-level Inspection Instruction Execution
	Figure 9 Low-level Inspection Instruction Execution Interfaces
	A.7.1 Active From High-level Inspection Instruction Execution
	A.7.2 Active To Probe Instruction Execution
	A.7.3 Data To Reporting and Analysis

	A.8 Machining Planning
	Figure 10 Machining Planning Interfaces
	A.8.1 Active From Activity Coordination
	A.8.2 Active To Solid Modeling
	A.8.3 Data from CAD
	A.8.4 Data From Routing Planning
	A.8.5 Data To Machining Programming
	A.8.6 Data to Activity Coordination

	A.9 Machining Programming
	Figure 11 Machining Programming Interfaces
	A.9.1 Active From Activity Coordination
	A.9.2 Active To Solid Modeling
	A.9.3 Data From CAD
	A.9.4 Data From Machining Planning
	A.9.5 Data to High-level Inspection Instruction Execution

	A.10 Math Computing
	Figure 12 Math Computing Interfaces
	A.10.1 Active from High-level Inspection Instruction Execution
	A.10.2 Active from Reporting and Analysis

	A.11 Other Inspection Device Control
	Figure 13 Other Inspection Device Control Interfaces
	A.11.1 Active from Activity Coordination
	A.11.2 Data to Reporting and Analysis

	A.12 Probe Instruction Execution
	Figure 14 Probe Instruction Execution Interfaces
	A.12.1 Active from Low-Level Inspection Instruction Execution

	A.13 Reporting and Analysis
	Figure 15 Reporting and Analysis Interfaces
	A.13.1 Active from Activity Coordination
	A.13.2 Active to Solid Modeling
	A.13.3 Active to Math Computing
	A.13.4 Data from Other Inspection Device Control
	A.13.5 Data from Hand-held Device Measuring
	A.13.6 Data from Low-level Inspection Instruction Execution
	A.13.7 Data from High-level Inspection Instruction Execution

	A.14 Routing Planning
	Figure 16 Routing Planning Interfaces
	A.14.1 Active from Activity Coordination
	A.14.2 Active to Solid Modeling
	A.14.3 Data from CAD
	A.14.4 Data to Activity Coordination
	A.14.5 Data to Inspection Planning
	A.14.6 Data to Machining Planning

	A.15 Solid Modeling
	Figure 17 Solid Modeling Interfaces
	A.15.1 Active from Routing Planning
	A.15.2 Active from Inspection Planning
	A.15.3 Active from Inspection Programming
	A.15.4 Active from Reporting and Analysis
	A.15.5 Active from Machining Planning
	A.15.6 Active from Machining Programming
	A.15.7 Data from CAD

	Appendix B Glossary
	Appendix C Combined vs. Separate Model and Representation
	References

