Post-Packaging Pasteurization: Will it work with country-cured hams? Benjy Mikel Professor/ Coordinator Food Sciences Perhaps we should let him fry a bit longer on the asphalt....You can't be too careful these days about undercooked meat! #### Listeria and 10240.4 - Is Listeria in your plant? - » Probably - Is it on your RTE product? - » Hopefully not - What measures can you take? - » Sanitation - » Anti-microbials - » Post-packaging pasteurization # Risk Management Strategies - Eliminate L. monocytogenes from the environment of processing plants that produce ready-to-eat foods - Use a pasteurization processes to destroy L. monocytogenes - In-pack pasteurization, or - Immediately before packaging - Use product formulations that prevent the growth of L. monocytogenes #### **USDA-FSIS** Alternatives • Alt 1. Post-lethality AND Antimicrobial Agent Alt 2. Post-lethality OR Antimicrobial Agent Alt 3. Sanitation Only #### Post-Packaging Pasteurization # Non-Thermal Post-Packaging Treatments - High Pressure (HPP) - Expensive, batch process - Pulsed Electric Field (PEF) - better with fluid products - Ultraviolet (UV) Light Lm resistant, surface effect only - Electrolyzed oxidizing water - Not near term - Irradiation - some promise, not near term # Post-Packaging Heat/Pasteurization - Heat re-applied to package surfaces to destroy any surface cross contamination. - Immerse pkg. in hot water - Surface steam (205F, 15 sec) - Hot air or infrared. - Pasteurization for 2 or 4 min at 96.1 C reduced LM by 2 and 4 logs (Gill et al., 2002) - Reheat 60-90 sec @195-205 F - Steam or H2O - Goal: 2-3 mm of product to 160 F for 15-30 sec - Immediate chill and 3-4 log reduction - Shelflife- increase 25-33% # Post-Packaging Heat Disadvantages - Difficult to heat all surfaces - May adversely affect package. - Product changes with heat (color, texture, purge, etc.) - Expensive - Apply heat/moisture in refrigerated room (condensation, etc.) Individually-Wrapped Products are Easiest to Post-Package Pasteurize/Heat #### Comparison of Pasteurization Methods Hot Water Bath Advantages: Simple method. Disadvantages: Process time, approx. 8 minutes. Increases internal product temperature. Lack of uniform surface heat distribution. Heating large volumes of water. Steam Chamber Advantages: Simple method. Disadvantages:Long processing time, approx. 15 minutes. Increases internal product temperature. Lack of uniform surface heat distribution. Poor energy utilization. #### **Circulating Water** Advantages: Short processing time (3 minutes) does not affect product characteristics. Very uniform surface heat distribution. Most efficient energy utilization Close ratio of water/product. * A joint development by ALKAR-RapidPak, Inc., Kraft/Oscar-Mayer and USDA-ERRC SSP module extends length by two indexes - Provides a surface kill step immediately before packaging - Adapts to existing line, no effect on line speed or packaging cost #### **Machine Configuration** SSP step = 1.5 sec of high pressure steam Graphics and information provided by ALKAR-RapidPak, Inc. **Vacuum Cooling** **Steam Injection** Servo lifts product pedestal up into SSP chamber Graphics and information provided by ALKAR-RapidPak, Inc. - Maximum contact time on most difficult area --- ends - 1.5 second cycle time with 4 alternating steam bursts per cycle Graphics and information provided by ALKAR-RapidPak, Inc. - Hot dogs inoculated with indicator microorganism - SSP treatment = 1.5 seconds - 4-log reduction for single-layer package configuration - Actual Listeria monocytogenes inoculatedpack tests (10² per package) resulted in zero positives - Double-layer package tests in progress - Preliminary findings show 2.0 2.5 log reduction ## In-Package Pasteurization Stork RMS-Protecon (Townsend) Steam-Based Post-Process Pasteurization System Data and images supplied by Drs. James Marsden and Randall Phebus, Kansas State University # In Package Pasteurization Log cycle reduction of Listeria monocytogenes at 96.1°C Table 3.1. Background bacterial populations and product characteristics on country ham slices. | Listeria monocytogenes | < DL ^a | |------------------------|-------------------| | Staphylococcus aureus | 5.66 b (0.71)c | | Lactic acid bacteria | 6.44 (0.18) | | Aerobic Plate counts | 6.35 (0.35) | | | | | pН | 6.27 (0.11) | | Aw | 0.88 (0.02) | | Salt | 6.65 (1.31) | ^a Below detectable limits. ^b Bacterial populations are in Log₁₀ / gm. ^c Numbers within parentheses are standard deviations. Table 3.2. Minimum inhibitory concentration (MIC) and Activity Units (AU) of antimicrobial compounds. | Compound | MIC | AU (AU / ml) | |---|----------------|--------------| | Nisin | 2.0 μg/ml | 3,200 | | Liquid Smoke L
(Charsol® Supreme Hickory) ^a | 1 % soln v/v | 1,600 | | Liquid Smoke P
(Charsol® Supreme Poly Hickory
& Polysorbate 80) | 0.5 % soln v/v | 1,600 | ^a Liquid smoke compounds were graciously donated by the Red Arrow Co. Table 3.4. Log₁₀ reductions of L. m. populations on non-steamed vs. steamed country ham slices. | Non-steamed Non-steamed | | | | Steamed | | | |-------------------------|----------------------|-----------------------|-----------------------|-----------------------|------------------------|------------------------| | Compound | s 0 | Days
3 | 7 | 0 | Days
3 | 7 | | Nisin
(2 μg/ml) | 0.31 ^{ab A} | 1.35 ^{b B} | 1.45 ^{bB} | 2.49°C | 2.40 ^{bcd C} | 1.98 ^{abc BC} | | N5x
(10 μg/ml) | 1.13 ^c A | 2.27 ^{c BC} | 1.96 ^{cB} | 2.62°BC | 2.95 ^{de C} | 3.00 ^{bcd C} | | N10x
(20 μg/ml) | 0.86 ^{bc A} | 2.04 ^{cB} | 2.17 ^{c B} | 2.33°B | 3.43°C | 3.72 ^{dC} | | L
(1% v/v) | 0.14 ^{ab A} | 0.88 ^{a A} | 1.02 ^a A | 0.63 ^{ab A} | 2.43 ^{cd B} | 3.28 ^{cd B} | | L2
(3% v/v) | 0.20 ^{ab A} | $0.80^{a AB}$ | $1.00^{a\mathrm{AB}}$ | 0.61^{abAB} | 1.62 ^{abc BC} | 2.26 ^{abc C} | | L4
(5% v/v) | 0.11 ^{ab A} | 0.92 ^{a B} | 0.97^{aB} | 0.35 ^{a A} | 1.55 ^{abc C} | 1.73 ^{ab C} | | P
(0.5 % v/v) | 0.18 ^{ab A} | $0.90^{a\mathrm{BC}}$ | 0.93ª BC | 0.72 ^{ab B} | 1.24 ^{aC} | 1.73 ^{ab D} | | P2 (2.5 % v/v) | 0.00 ^a A | 0.75 ^{a B} | 0.89 ^{a B} | 0.74 ^{ab B} | 1.50 ^{ab C} | 1.04 ^{aB} | | P4 (4.5 % v/v) | 0.12 ^{ab A} | 0.71 ^{aB} | 0.79 ^{aB} | 1.10 ^{b B} | 1.29 ^{a B} | 1.20 ^{a B} | | Control (Buffer) | 0.16 ^{ab A} | 0.66^{aB} | 0.78 ^{aB} | 0.52 ^{ab} AB | 1.43 ^{aC} | 1.27 ^{aC} | $^{^{}abcd}$ Different letters within the same column are significant (P < 0.05). ABCD Different letters within the same row are significant (P < 0.05). Table 3.6. Log_{10} reductions of L m. populations against control (buffer) at 0 time, in broths containing elevated levels of NaCL, dextrose, sodium nitrite and antimicrobials. | | | | | Time (min) | | | | | | |--------------------------|-----------------------|----------------------|----------------------|-----------------------|----------------------|---------------------|---------------------|----------------------|---------------------| | Compound | s 0 | 0.5 | 1 | 2 | 5 | 10 | 15 | 30 | 60 | | Nisin (5x)
(10µg/ml) | 0.03 ^b A | 0.09 ^{b A} | 0.55 ^b B | 0.89 ^{dC} | 0.98dCD | 1.09°D | 1.68 ^{dE} | 1.66°E | 2.60 ^{d F} | | Nisin (10x)
(20µg/ml) |) 0.10 ^{a A} | 0.14 ^{b B} | 0.38 ^{bC} | 1.04 ^{e D} | 1.62 ^{eD} | 2.03 ^{eEF} | 1.93 ^{e E} | 2.24 ^{d FG} | 2.34 ^{cG} | | L 2
(3 % v/v) | 0.08 ^b A | 0.07 ^{ab A} | 0.09 ^{a A} | 0.22 ^{c AB} | 0.30 ^{bc B} | 1.06° C | 1.10°C | 7.28 ^{f D} | 7.28 ^{eD} | | L 4
(5 % v/v) | 0.03 ^b A | 0.11 ^{b A} | 0.07 ^a A | 0.24 ^{c B} | 0.41°C | 1.51 ^{dD} | 1.66 ^{dE} | 7.28 ^{fF} | 7.28 ^{eF} | | P 2 (2.5 % v/v) | 0.03 ^{b A} | 0.06 ^{ab A} | 0.00 ^{a A} | 0.18 ^{bc B} | 0.21 ^{b BC} | 0.32 ^{bC} | 0.63 ^{b D} | 0.96 ^{b E} | 1.31 ^{bF} | | P 4 (4.5 % v/v) | | 0.13 ^{b AB} | 0.08 ^a AB | 0.07 ^{ab} AB | 0.20 ^{b BC} | 0.33 ^{bC} | 1.09° D | 2.74 ^{eE} | 7.28 ^{eF} | | Control (buffer) | 0.00 ^{b A} | 0.01 ^a A | 0.00 ^{a A} | 0.00 ^a A | 0.04 ^{a AB} | 0.03ª AB | 0.08 ^{aAB} | 0.09 ^{a AB} | 0.13 ^{aB} | abc different letters within the same column are significant (P < 0.05) ABC different letters within the same row are significant (P < 0.05) Table 3.12. Minolta L * values of non-steamed vs. steamed country ham slices for 0, 3, and 7 days storage. | | | Non-steamed | | | Steamed | | | | |-------------------------|--|---------------------------|---------------------------|---------------------------|----------------------------|---------------------------|--|--| | | 0 | Days
3 | 7 | 0 | Days
3 | 7 | | | | | · · | J | , | · · | J | , | | | | Treatments | <u> </u> | | | | | | | | | N5 x (10 μg/ml) | 51.06 ^A (3.02) ^a | 50.00 ^A (2.63) | 49.00 ^A (3.32) | 51.13 ^A (1.48) | 51.77 ^A (2.94) | 48.31 ^A (2.98) | | | | N10 x (20 μg/ml) | 49.71 ^A (4.27) | 49.04 ^A (3.72) | 51.18 ^A (4.30) | 48.04 ^A (2.58) | 51.01 ^A (4.83) | 49.99 ^A (3.76) | | | | L4 (5% v/v) | 51.29 ^A (3.94) | 45.86 ^A (5.27) | 49.00 ^A (3.32) | 50.22 ^A (2.92) | 46.08 ^A (3.23) | 50.17 ^A (4.64) | | | | P4 (4.5% v/v) | 47.91 ^A (2.45) | 51.95 ^A (1.41) | 51.06 ^A (4.52) | 53.64 ^A (3.32) | 50.14 ^{AB} (1.84) | 52.95 ^B (2.74) | | | | Control (buffer) | 49.82 ^A (2.36) | 49.13 ^A (0.38) | 45.78 ^B (1.17) | 51.36 ^A (2.11) | 50.00 ^A (2.52) | 51.02 ^A (2.29) | | | ^a Numbers in the parentheses are the standard deviations. ABC Different letters within the same row are significant (P < 0.05). #### UK Shrink Tank Study | Water Temp | Time (sec) | Product Temp | |------------|------------|--------------| | 205 | 30 | 152 | | 200 | 30 | 154 | | 195 | 30 | 162 | | 195 | 30 | 151 | | 212 | 30 | 173 | | 200 | 30 | 157 | | 195 | 30 | 148 | | 195 | 30 | 152 | | 202 | 60 | 158 | | 206 | 60 | 164 | | 195 | 60 | 163 | | 201 | 60 | 168 | | 202 | 60 | 161 | | 207 | 60 | 160 | | 210 | 60 | 168 | | 210 | 60 | 178 | ## Appreciation expressed to: Don L. Zink, Ph.D. Office of Plant and Dairy Foods and Beverages Center for Food Safety and Applied Nutrition Food and Drug Administration Alkar