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ABSTRACT

The diurnal cycle in rainfall varies considerably from region to region in the tropics. Determining this variability
is important both for comparing predictions of atmospheric models to real atmospheric behavior and for making
sure that estimates of total rainfall from low-altitude satellites are not biased because of their infrequent obser-
vations of a given region of the earth. Although there are no data from the proposed Tropical Rainfall Measuring
Mission (TRMM ) satellite to work with yet, we can ask how well the diurnal cycle in rainfall will be detected
when the satellite is eventually collecting data, given the satellite’s proposed sampling characteristics. Data
analyses for the diurnal cycle are discussed, taking into account the fact that the satellite visits will be irregularly
spaced in time. The amplitudes of the first few harmonics will be determined by least-squares fits to the satellite
observations, and the tests needed to establish the statistical significance of the fitted amplitudes are discussed.
The accuracy with which the first few harmonics of the diurnal cycle can be detected is estimated from several
months of satellite data using rainfall statistics observed during the GARP (Global Atmospheric Research

Program) Atlantic Tropical Experiment (GATE).

1. Introduction

There is good reason to expect that the probability
distribution of rain in a given area will vary with the
time of day since atmospheric dynamics are influenced
by the daily passage of the sun. Establishing this diurnal
cycle quantitatively in rainfall is important for several
reasons. Because its amplitude and phase are the result
of a subtle interplay between dynamical and radiative
processes, the degree of our success in explaining it
serves as a useful measure of our understanding of the
physics of the atmosphere on this time scale. Knowl-
edge of changes in rainfall statistics with the time of
day is also essential in interpreting satellite estimates
of rainfall, since satellites (at least nongeosynchronous
ones) view a given spot only intermittently, and inter-
polating between the measurements should be adjusted
according to the time of day.

Randall et al. (1991) have recently compared the
diurnal cycle in rainfall seen in their general circulation
model (GCM) with rainfall climatology where it is
known. They remark how variable the diurnal cycle is
over the earth, even over the oceans. The physical
mechanisms behind these variations are not always
obvious. Over the oceans, the diurnal cycle seems con-
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trolled by cloud radiative heating and cooling. There
is, of course, a dearth of surface rainfall measurements
over the oceans, and we must generally rely on satellite
estimates of rainfall for establishing the global clima-
tologies needed for testing the GCMs.

There have been some attempts to characterize the
diurnal cycle of rainfall based on inferences of con-
vective activity from images taken in the visible and
infrared by geosynchronous satellites. These satellites
have the advantage that they provide frequent obser-
vations during the course of a day over long periods
and so can document changes in the statistics with the
time of day. Augustine (1984) has, for instance, found
afternoon maxima in tropical Pacific rainfall, inferred
using the Griffith and Woodley convective infrared
satellite technique described in Griffith et al. (1978).
Shin et al. (1990), using the Arkin (1979) GOES
(Geostationary Operational Environmental Satellite)
precipitation index (GPI) to estimate rain rates, find
a midday maximum over much of the tropical rainy
areas. These findings seem to be in conflict with those
of Gray and Jacobson (1977), who find early morning
maxima in island raingage reports, and also with Fu
et al.’s (1990) finding that deep convective clouds, as
inferred from ISCCP (International Satellite Cloud
Climatology Project) data, tend to peak in the morning
hours. There is some concern that infrared techniques
may overestimate rainfall from cold cirrus debris left
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behind by deep convection and show a peak in rainfall
later than it actually occurs.

These and many other questions concerning tropical
" dynamics require more accurate rainfall measurements
with the coverage that only satellites can provide. The
National Aeronautics and Space Administration
(NASA), in collaboration with the National Space De-
velopment Agency of Japan (NASDA), has recently
proposed orbiting a satellite specifically designed to
observe tropical rainfall from space, the Tropical
Rainfall Measuring Mission (TRMM). Simpson et al.
(1988) describe its goals and the instruments it will
carry (radar, most importantly), although details of
the instrument package are still being modified to ac-
commodate various mission constraints.

A number of statistical questions connected with the
mission have been examined recently. Laughlin (1981)
early on provided a rough estimate of the accuracy
with which monthly means could be obtained, given
the TRMM revisit times to a given area, which sub-
sequent more elaborate estimates have borne out (Shin
and North 1988; Bell et al. 1990). Based on the statistics
of rain observed in the GARP (Global Atmospheric
Research Program) Atlantic Tropical Experiment
(GATE), TRMM should be able to provide monthly
means over 5° boxes accurate to about 10%.

We shall investigate here the accuracy with which
the diurnal cycle of rainfall can be extracted from
TRMM data when it becomes available. The statistical
problem is described in section 2. Using the statistical
methods developed there, the diurnal cycle in the
GATE data is reexamined in section 3. The implica-
tions for TRMM are explored in section 4. Problems
still unresolved are discussed in section 5. Some tech-
nical details are given in the appendixes.

2. Satellite estimation of the diurnal cycle

Although no data from the TRMM satellite are
available to work with yet, we can ask whether a diurnal
cycle will be detectable when the satellite is eventually
collecting data, given the satellite sampling character-
istics. That there is something to detect has been amply
demonstrated in many studies, especially over the con-
tinents (see, for example, Wallace 1975; Hamilton
1981; Desbois et al. 1989). Over the oceans, there is
indirect and somewhat conflicting evidence from sat-
ellite observations, as has been described in the previous
section. Because the diurnal cycle tends to be weaker
there, statistical concerns will play a larger role in in-
terpreting the results.

Quite a few simplifying assumptions about the
problem will be made in order to obtain some prelim-
inary estimates of the size of the phenomena being
dealt with. Some of the assumptions can be relaxed at
the cost of greater complexity in the analysis. Others,
however, will require careful study in order to deal
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adequately with the problems raised. These issues will
be discussed further in this section and in section 5.
Suppose that estimates for the area-averaged rain‘all,
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within a given area 4 are provided at observation titnes
tm(m = 0,1, -+ ). These observation times z,, will
be separated by intervals ranging from roughly 2 to
24 h, depending on the physical location of the area
observed. An example is shown in Fig. 1. Near the
equator, the observations will be nearly equally spaced
at intervals of approximately 12 h. Near 30° latitude,
the observations will occur in bursts of 4 or 5, 90 min
apart, followed by a gap of some 20 h.

Ry(tm) = LR(X, tm)dx, (z.1)
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FiG. 1. Local observation times of a 500-km X 500-km area cen-
tered on the equator (top) and at 30°N (bottom) for 1 month cf
observations by a satellite orbiting at 35° inclination, 350-km altitud:
and viewing a 720-km-wide swath.
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A diurnal cycle, if it exists, would be represented by
a change in the probability distribution of rain with
the time of day. This study will concentrate on deter-
mining a single aspect of this change: the variation of
the mean rain rate (averaged over 4) with the time of

day. Other statistics that might be both strongly de-

pendent on time of day and physically interesting are
the fraction of area with rain and changes in the pa-
rameters of the probability distribution of rain, or of
rain type, with time of day, but the statistical problems
associated with them will not be investigated here.

To see if the mean rain rate changes with the time
of day, averages of the observations are found for the
different periods of the day. Break the day up into time
intervals of equal duration (each 1 h long, for instance),
using ¢ to denote the time interval whose midpoint is
at time z. Then the interval averages can be written
formally as

- 1
R == 2 Raltm), (2.2)

L et

where the notation ¢,, € ¢ denotes observations that
fall within the interval ¢ and #, is their number,

n= > 1.

€L

(2.3)

If there is a diurnal cycle, the climatic mean rainfall
ER(t) will vary periodically during the course of the
day. Here the expectation is a hypothetical average over
a large number of days but taken at the same time of
day and during the same season, with all other “cli-
matological influences” held fixed. The diurnal cycle
in r(¢) = ER(t) can be expressed by a Fourier series

r(t) = ro + ry cos(wt — ¢;)

+ rpcosQwt — ¢r) + - - -, (2.4)

where the first term r, represents the daily mean rain-
fall,

w=2m(24 h)™, (2.5)

is the diurnal frequency, and r, and ¢, are the ampli-
tude and phase for simple sinusoidal variation of the
mean. The number of harmonics needed to describe
the variation of r(¢) is limited by the number of inter-
vals into which the day has been broken up. Harmonics
higher than the first few will be neglected in what fol-
lows.

A natural approach to determining the parameters
of the expansion (2.4) is to find ones that minimize
the total square difference of the fit

D* = T [R(t) ~ r())]Pw,, (2.6)

where the sum is over all the hourly intervals, and w,
is a weighting factor proportional to the reciprocal of
the expected variance of [R(z) — r(¢)]. Because the
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usual assumptions of independence and normality are
not met, the least-squares estimates will not have the
usual efficiency properties, although they will be con-
sistent. More efficient estimates could be obtained by
generalized least squares if the form of the correlation
function was known or by maximum likelihood if a
plausible distribution for rain rate was available.
For lack of a better estimate, the weighting

W, oC A, (2.7)

will be used, since this would be the case for indepen-
dently identically distributed differences. It also has the
advantage that minimizing (2.6) is essentially equiv-
alent to a least-squares fit of () to R4(t,,); that is, the
parameters in (2.4) can be obtained by minimizing

N
D? = T [Ra(tm) — r(tm)1?,

m=0

(2.8)

where N + 1 is the number of satellite observations.
The approximation becomes exact as the number of
observations increases. See appendix A for the argu-
ment. By recasting the problem in terms of minimizing
(2.8), we can draw on standard methods for time series
analysis to develop significance tests for the fitted har-
monics. The least-squares approach to detecting a pe-
riodic signal in unevenly spaced data is discussed, for
example, by Press and Teukolsky (1988).

Since we are trying here to obtain an idea of the
order of magnitude of the statistical problem posed by
the intermittent sampling of the satellite, we shall sim-
plify it by assuming that the satellite samples are at
equally spaced intervals

tw=mat, m=90,---,N, (2.9)

for one month, so that NAr is approximately one
month. The fact that the satellite will not view the entire
area on every visit will also be ignored. A more rigorous
treatment of the problem would take into account the
size of the area averaged over for each observation of
area-averaged rain rate.

The harmonic analysis (2.4) of the diurnal cycle is
cast in a form amenable to least squares with linear
coefficients by writing it as

r(t) =~ ro + ¢ coswt + s sinwt, (2.10)

with ¢ = r) cosw¢, and s = r, sinw¢,. The higher har-
monics in (2.10) are neglected, but they can be treated
as a straightforward generalization of the approach fol-
lowed. It can also be shown that if all hours of the day
are sampled equally, estimates of the amplitudes of the
diurnal harmonics can be made independently of each
other because the Fourier modes are orthogonal. In
fact, this assumption will be made here so that the mean
ro can be estimated independently of the first harmonic
from a simple average of the data { R,(¢,,), m = O,
e N} as
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N
fo= Z

tm).
N+1 Ratm)

(2.11)

If the satellite observations during the different parts
of the day were not approximately equal in number,
to could not be estimated in this way independently of
r,. An estimate of the diurnal cycle could be obtained
by grouping the observations according to the hour of
the day as in (2.2) and minimizing (2.6). Signiﬁcance
tests become more difficult and may require Monte
Carlo methods. i
The least-squares estimates of s and ¢ are

= D_I(A“.S - AscC), : (2123)
¢ = D7 (— A4S + A4,0), (2.12b)
where
D= AssAcc - Agca
and
N
Ag = > sin’wt,,,
m=0
N
A= > cos’wt,,,
m=0
. N
A = 2 sinwt,, COSwl,y,,
m=0

and S and C are the sine and cosine components of
the rainfall data

N

S = 2 sin(wl,)[Ra(tm) — fo], (2.13a)
m=0
N

C= 3 cos(wtm)[Raltm) — fo]. (2.13b)

m=0

The estimated amplitude is #1 = §? + é? and the esti-
mated phase is ¢; = tan~'(§/¢). The usual distribution
theory for least-squares does not apply here because
the observations R 4(¢,,) are correlated and the central-
limit theorem cannot be directly applied. However, .S
and C are sums of data extending over times much
longer than the correlation time of rain, and it is as-
sumed that they contain enough effectively indepen-
dent observations to be approximately normally dis-
tributed. This assumption will be examined with some
simulated data in the next section. It is also assumed
that the time series of rain rate is sufficiently long that
the variances of § and ¢ are approximately the same
and that the correlation of § and ¢ may be neglected.
It is easy to show that this must be the case in the limit
of an infinite time series, and it appears to be a good
approximation for the GATE data, as discussed in sec-
tion 3.
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If there is no diurnal cycle, then under these sim-
plifying assumptions, § and ¢ are approximately in-
dependent normal random variables w1th Zero msan
and the same variance; §?/ (vars) + 2 /(var$) is ap-
proximately distributed as X3; and

A ~ Xz(VaI'S) —~(E0f1)X%, (214)
where the latter equality follows from Ey#? ~ var§
+ varé. Here E, means expectation as described above
but under the assumption that ¢ = s = 0 in (2.10). It
follows from (2.14), under this “null” hypothesis, that
the probability of 71 being larger than some R? is given
by

Pr(7} > R?) = exp[ - R*/(EofD)].  (2.15)

In order to compare an estimated value for 7; with
its expectation in the absence of a diurnal cycle, it is
necessary to estimate the variances of § and ¢, which
in turn depend on the variances of S and Cin (2.1 3)
From (2.12),

EO(S 2) = —2[(/4 '*'A.vc)E‘OS2

+ (A + Ass)EOCZ - 2(Acr: + Ass)AscEOS( ]
(2.16)

Equations for EyS?, EoC?, and ESC are derived in
appendix B in terms of the lagged correlation of rainfall

ea(r) = E[RG(DRA(t + ))/o%,  (2.17)

where 3 is the variance of R, and R/ (¢) is the devia-
tion of R4(2) from its mean. Zwiers and Hamilton
(1986) suggest an alternative estimate based on an av-
erage over the spectral power at nearby frequencies.

Under our assumptions, we could, in principle, sirn-
plify the estimation of Eg#? by only estimating var$,
but the version outlined here may be more reliatle
under slight deviations from these assumptions.

To proceed further in assessing whether or not
TRMM will be able to detect the diurnal cycle, infor-
mation about the variance and correlations requlred
is needed in the equanons above. In the next sectlo a,
this methodology is applied to some tropical rainfe 1l
data, the GATE data. As these data have not to our
knowledge been analyzed in this way before, it is hopéd
that the conclusions will be of interest themselves.

!

3. Diurnal cycle in the GATE data

The most widely studied tropical rainfall dataset :is
derived from an experiment carried out in the Atlantic
off the west coast of Africa. Ships with meteorological
radars took data almost continuously for several pe-
riods during the summer of 1974 as part of the GATE.
(See Houze and Betts 1981.) The rainfall data were
converted into quarter-hourly gridded maps covering
an area 400 km in diameter centered on 8°30'N,
23°30’W, with each grid point representing the averag:
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Fi1G. 2. Rain rate, averaged over a 280-km X 280-km area, for phase I (28 June-16 July 1974)
of GATE versus Julian day. Vertical divisions are placed at 0000 UTC.

rain rate within a 4-km X 4-km area. The gridded da-
taset is described by Hudlow and Patterson (1979).

In order to represent the type of data to be collected
by satellite, a time series of area-averaged rainfall was
created by averaging the rainfall reported over a 280-
km X 280-km area, the size of the largest square fitting
within the circular GATE area. The data are available
in 15-min intervals, but the data analyzed here use
hourly samples. A time series of the data from phase
1, 28 June-16 July (Julian days 179-197), is shown in
Fig. 2. The gaps represent missing data; there are 14
missing hours in the record and 442 observations. The
results did not seem to depend significantly on what
interpolation method was used to fill in gaps, since the
only large gap (6 h) occurs when there is little rain.
The average rainfall 7, is 0.49 mm h ™!, and the esti-
mated variance 6% is 0.51 (mm h™')2. To compute
Eg#? in (2.14), lagged correlations are needed for lags
T equal to all time intervals between satellite obser-
vations. The lagged correlation was fitted to a simple
exponential model cx(7) = exp(—71/7,4), based on lags
1-20, giving 7, = 8.4 h. A plot of the lagged correlations
is shown in Fig. 3, and the exponential fit is shown as
the solid line. These values agree with those obtained
by Laughlin (1981), with the exception of 7, which
Laughlin estimates as 7.2 h.

In order to separate the influence of 62 and cz(7)
on Egi3, write

Eof%= azzlfz(N: At, TA), (3'1)

where f(N, At, 7,) = [Eo(§? + ¢2)]'/?/6,. The de-
pendence of f on the sampling interval and on the
correlation time is expressed in (2.16) and (B.6)~(B.8)
of appendix B.

The estimate of 7, is sensitive to the number of lags
used, but the estimate of f( N, At, 74) is not. Figure 4

shows the function f( N, At, 7,4) plotted for NAt ~ 18
days and 74, = 7.2, 8.4, and 10 h. The value f= 0.165,
corresponding to 7, = 8.4 and At = 1 h, was used. The
least-squares estimates of ¢ and s in (2.10) are —0.137
and —0.176, respectively, leading to an estimated am-
plitude 7, = 0.22 mm h™! and an estimated phase ¢,
of 1600 UTC. Figure 5a shows the hourly rainfall data
with the daily averages imposed, and Fig. 5b shows the
hourly averages and the estimated sine wave. Using
the chi-squared approximation derived in section 2 and
the estimated 7, = 8.4, 65 = 0.51, (2.15) shows that
7y is significantly different from zero at about p = .03.
This is confirmed by the excellent fit to the averages
shown in Fig. 5b, and confirms the conclusion of
Albright et al. (1981). If Laughlin’s estimate of 7¢
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FIG. 3. Sample correlations é,(7) plotted as a function of the lag.
First-order exponential (solid) and second-order exponential (dashed)
fits,
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FIG. 4. Plot of f( N, At, 7 ) as a function of sampling interval
At(h)for7,=72(-+-),84(—),and 10(---)h.

(7.2 h) is used, f changes to 0.172 but the p value
changes only slightly.

To investigate the sensitivity of fto using an expo-
nential fit for the correlation function, the correlation
function is also fitted to that of a continuous second-
order process,

71 €Xp(—7/711) — T2 €Xp(—7/72)
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FIG. 5. (a) Hourly rain rates with hourly averages superimposed.
(b) Hourly averages with fitted sine wave superimposed. (Times
shown are relative to UTC. Local solar “noon” occurred at approx-
imately 0130 UTC.)
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Based on lags 1-20, the parameters of the least-squares
fitare 7, = 7.56 h, v, = 0.85 h. It is shown in Fig. 3 as
the dotted line. The corresponding value of fwas cal-
culated to be 0.175 and therefore seems relatively :in-
sensitive to the choice between these two correlation
functions.

As a partial check on some of the assumptions made
in section 2, separate sinusoids were fitted by least
squares (2.8) for each of the 18 days of GATE phzse
I. The original data at At ~ 0.25 h spacing were used.
The average values and variances of the estimated cozf-
ficients are displayed in Table 1. There is a sample
correlation of 0.33 between ¢ and §, casting some doubt
on the assumption of independence of ¢ and §. The
correlation only has a significance level of p = 0.16,
however, using a standard test for the correlation of
two normally distributed variables (# = 18 samples),
described, for example, by Beyer (1968). The variances
Es(¢?) =0.11 and Ey(§?) = 0.19 can be predicted from
equations analogous to (2.16) and agree well with the
observed variances. Note that when the fits are obtain&]:d
from only 1-day-long series, the expected variances of
the coefficients ¢ and § differ somewhat surprisingly by
almost a factor of 2. The difference is not due to sam-
pling error alone. The chi-squared distribution assumed
in (2.14) would not be valid for such short samples;

There was exceptionally high rainfall on day 188 of
phase I at 1600 and 1700 UTC (4.8 and 4.4 mm h™',
respectively). As a check on the influence of this on
the estimated diurnal cycle, the full least-squar¢s
regression is fit to the time series excluding these two
observations. The estimated amplitude 7, is now 0.19
mm h~', with an observed significance level of about
0.09. Although in this case the observed outliers ar:
valid observations, the sensitivity of the significanc:
level to these observations is worrisome if there is the
possibility that the conversion of radar intensity data
to rainfall rates may result in the occasional spurious
large observation.

The data from phase II of the GATE study was also
analyzed by the same techniques as described above.
This data covers 19 days from 26 July to 13 August
1974. A plot of the data is shown in Fig. 6, and the¢
hourly values and superimposed average are shown in
Fig. 7. Because there is a large gap between Julian days
211 and 215, only the last 13 days are used in our
analysis. Somewhat surprisingly, the evidence for &
diurnal cycle is very weak in the dataset. The estimated

TaBLE 1. Daily least-squares fits for GATE phase I (18 days).

Mean Variance
(mm h™!) (mm h™'Y '
¢ -0.12 0.10
s -0.19 0.17
7 = (2 + &) 0.23 —
¢ = tan~'(s/c) 159 h —
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FIG. 6. Area-averaged rain rate for phase Il of GATE: 26 July-13 August 1974.

amplitude is just 0.11 mm h ™!, with rainfall peaking
at 0900 UTC. The phase estimate is not really relevant,
given the weakness of the signal. The 13 phase estimates
can be thought of as observations on a circle, and a
simple cosine test for uniformity (Cox and Hinkley
1974, p. 67) has a p value of about 0.27.

The value of Egi is more sensitive to the assumed
value for ¢3 than r,. The estimate 0.51 (mm h™")?
obtained from the phase I data has been used, although
it would be preferable to have an independent estimate
of ¢ for assessing the effect of the diurnal cycle. The
estimated variance goes down to 0.42 (mm h™!)? if
the two largest observations are deleted, so the signif-
icance level reported above is probably conservative.
McGarry and Reed (1978) combined the phase II series
with data from phase III (30 August-19 September
1974) and found some evidence for a diurnal cycle
peaking at about 1530 UTC. This suggests the possi-
bility that there is some nonstationarity in the diurnal
cycle through this summer.
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F1G. 7. Hourly rain rates for phase 11 of GATE,
with hourly average superimposed.

It is straightforward to include a semidiurnal cycle
in the least-squares fitting procedure, replacing (2.10)
with

r(t) = ro + ¢ coswt + §; sinwt

+ ¢ cos2wt + 55 sin2wt.  (3.3)
The estimated amplitude of the semidiurnal compo-
nent was negligible in both phases of the GATE data.
It is possible that a signal might be detectable from a
longer series or a larger-area average and, in this case,
it is of interest to note that r3 = s3 + ¢3 is estimated
independently of r%.

The plot of f( N, At, 7.) = [ Eo(§? + ¢2)1'/?/ o, given
in Fig. 4 is equivalent to a theoretical version of the
periodogram (sample spectrum), but with the sampling
frequency At varying instead of the cyclical frequency
of the time series. The spectrum of the GATE data
does not, however, indicate a large-frequency com-
ponent at 24 and 12 h, as might be hoped. This is
probably a reflection of the fact that the average diurnal
fluctuation is relatively small (0.22 mm h ') and the
variance of the residuals after this fluctuation has been
accounted for is still large. Of course the main objective
in this section 1s not to model the rainfall series with
a sum of Fourier components but rather to investigate
the effect of area averaging involved in satellite obser-
vation on our ability to detect a signal at a fixed fre-
quency, expected a priori from physical arguments.

As discussed earlier, the chi-squared approximation
(2.14) for the distribution of the diurnal amplitude
under the null hypothesis is assumed to be adequate
for testing the significance of a diurnal fit. This is not
entirely obvious, since individual rain rates (even av-
eraged over the GATE area) are far from being nor-
mally distributed, and the sums in (2.13) may not con-
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tain a sufficient number of samples for the central-
limit theorem to be applicable.

The distribution of area-averaged rain rate R,(?) it-
self is not easy to predict. Large values of R, occur
with a frequency far greater than a Gaussian or ex-
ponential distribution would predict. A lognormal dis-
tribution is sometimes postulated for large rain rates,
and in fact for many other properties of rainfall as well
(Crane 1985, 1986; Biondini 1976; Crow et al. 1979;
Houze and Cheng 1977; Lopez 1977; Kedem et al.
1990). That the distribution of R4(z) for the GATE
data has a very strong tail is evident from the frequency
plot in Fig. 8, where the GATE rainfall data for the
18-day phase I period and the 15-day phase II period
are histogrammed with logarithmic bins of size A Inr,
= 0.3. Because the data are strongly correlated in time,
however, it is difficult to gauge the size of sampling
errors in the histogram values.

To get some impression of the sort of sampling error
present, a two-dimensional stochastic model of rainfall
(Bell 1987; Bell et al. 1990) with point statistics and
spatial and temporal correlations adjusted to be as close
as possible to those of GATE phase I was used to sim-
ulate 16 successive 18-day periods, and the histograms
for each 18-day period were computed. The mean and
standard deviation of frequencies for each bin is su-
perimposed on the GATE data in Fig. 8 and gives some
impression of the possible amount of variability due
to sampling. The distribution of rain rates greater than
0.12 mm h ™! in the model, which contribute more than
95% of the accumulated rainfall in the model, is fit
quite well by a lognormal distribution. It is, however,
clear that the lognormal distribution would not fit the
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FIG. 8. Histogram of rain rate R 4(¢) averaged over 280-km X 280-
km area plotted as fraction of time In R, falls within bins of width
0.3. The solid and open circles show GATE phases I and II rain-rate
frequencies, respectively (recorded quarter-hourly). The smooth curve
at the center of the stippled region is the average of 16 model sim-
ulations, each 18 days long, and the stippled regions denote the one
and two standard-deviation limits estimated from the 16 simulated
periods for each bin.
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FIG. 9. Lognormal probability plots for phase I data, reco;ded
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distribution of rain rates over the entire range of values
displayed in Fig. 8.

Lognormal probability plots for the phase I data are
shown in Fig. 9. Two curves are shown, one for :he
cumulative distribution of rain rates R4 > 0.0l mm h™!
and the other for R4 > 0.12 mm h™'. (Over 99.9% of
the total rain volume that fell in GATE phase I is due
to rain rates R, > 0.01 mm h™'.) The plots use ihe
quarter-hourly data; the hourly plots are very similar.
The curve for R4 > 0.01 mm h™' indicates that the
area-averaged rates have a shorter right-hand tail and
longer left-hand tail than the lognormal distributiopn
would predict. This is consistent with Jensen’s in-
equality if the rain rate R(x, t)-at a fixed point in tirne
and space follows a lognormal distribution. By increas-
ing the cutoff to 0.12 mm h™!, the fit to a lognormal
distribution improves, as indicated by the other curve
in Figs. 8 and 9.

Given the highly skewed distribution of R, then
there is reason for concern that the length of the time
series used is sufficiently long enough to assure co';n-
vergence of the statistics to the approximate chi-squared
one proposed in (2.14), To explore this assumption
for the GATE data, a simulated time series of hourly
GATE rain rates has been generated using the sto-
chastic model mentioned above, which reproduces the
temporal correlations and highly skewed distribution
of area-averaged rain rate but has no intrinsic diurn;l
cycle. Diurnal fits to 200 segments each 6 days lorg
were obtained, and the probability distribution of the
quantity

p? = F(F2)"! (3.4)

is compared with the x3 distribution in Fig. 10. It can
be seen that the chi-squared distribution is in rouga
agreement with the actual distribution over the usuél
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FI1G. 10. Comparison of the x2 distribution with the distribution
of the diurnal amplitude fits /| to 200 6-day samples of simulated
data with GATE-like distribution and correlation time but no diurnal
cycle.

significance levels but provides a very poor represen-
tation of the extreme tail of the distribution. The chi-
squared approximation is of course better for GATE-
length time series (18 days) and is still better when
applied to 30-day time series of rain rates averaged
over the 500-km X 500-km areas of interest in the
TRMM experiment.

4. Implications for TRMM

The estimated amplitude 7, obtained from the phase
I data is significantly different from O using the X * test
derived in section 2, but the evidence is not over-
whelming, and the apparent lack of a significant signal
in phase II is somewhat worrying. The analysis of the
diurnal cycle of convective cloudiness over tropical Af-
rica and surrounding oceans by Desbois et al. (1989)
shows a diurnal cycle that is strong over the continent
and persists weakly out to the GATE area; the cycle
may therefore be stronger there than over more remote
oceanic regions. The easterly waves appear to extend
to the GATE area (e.g., Albright et al. 1981). Nev-
ertheless, assume that a diurnal cycle as large as
0.22 mm h~! may occur, and ask whether a satellite
sampling roughly every 12 to 24 h would be able to
detect it.

Figure 11 shows the critical factor ffor NAt =~ 30
days and correlation time 7, = 8.4 h. When sampling
takes place every 12 h, but differently enough from 12
h that the entire diurnal cycle is observed during |
month, we find f = 0.2. Under the assumptions that
rainfall will be averaged over an area of size 600 X 600
km?, and that the variance o3 decreases inversely as
the area so that it is about one-fourth the value found
in GATE, we could conclude that a 5% critical value
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for 7, is0.12 mm h™'; that is, that a diurnal cycle whose
amplitude is about 25% of the mean would be detect-
able. Averaging over longer periods or greater areas
would further reduce the critical value for detecting
the diurnal cycle. Because the time period considered
is longer than the 18 days of GATE phase I, the sam-
pling interval At is longer; this result for the satellite’s
performance is probably less sensitive to our assump-
tions than was the result for the GATE diurnal cycle.
The diurnal cycle seen in phase I of GATE should be
easily seen in a month of data taken by the satellite.

5. Discussion

Within the context of a statistical model, we have
calculated the probability that the changes in the mean
rainfall in GATE with the time of day could have been
due to chance, given the small number of days for
which data are available. The amplitude of the first
harmonic was found to be significant at the 0.03 level
during phase I but not to be significant at the 0.05 level
in phase II. The methods used could be applied to the
kind of data TRMM would produce, and a diurnal
cycle like the one seen in GATE could be detected with
a month of such data averaged over a 5° latitude-lon-
gitude box.

There are, however, a number of issues not addressed
by the statistical method used that deserve more atten-
tion and about which we would like to offer our ob-
servations here.

(a) The lagged correlations used do not capture
longer time-scale phenomena that are known to occur
over GATE and over the tropical oceans in general.
The easterly waves that pass over the GATE region at
intervals of about 4 or 5 days create large-scale con-
ditions favorable to convective activity. These pulses
of activity are clearly visible in the time series (Fig. 2).
Phase I shows a rise in autocorrelation at lag 5 days
that appears significant in spite of the shortness of the
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F1G. 11. Plot of f( N, At, 74) as a function of sampling
interval At (h) for 7, = 8.4 h.
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time series. A crude attempt to introduce this additional
correlation at lag 5 days in the calculation of the critical
level for detecting a diurnal cycle with TRMM sam-
pling at the equator produced very little change in the
critical level. More data with which to generate better
estimates of the autocorrelation out to many days’ lag
are needed to pursue this further.

At an even longer time scale, the 30-60-day oscil-
lation (Madden and Julian 1971; Lau and Shen 1988)
could cause significant aliasing of power at this fre-
quency into the diurnal cycle for TRMM observations
at higher latitudes, where the time of day of the over-
flights shifts slowly during a month (see Fig: 1). So-
lutions to this may require either combining months
of data from several years or interpolating between
TRMM measurements using observations from other
satellites,

(b) The effects of measurement error on the
weighting of the observations used to obtain the least-
squares fit have not been taken into account. They
may be less important than the sampling errors mainly
dealt with here because we have used averages over
large spatial and temporal domains, and sampling error
seems likely to dominate measurement error in such
averages, as discussed, for example, by Bell et al.
(1990).

(c) Our estimates used equally spaced observations
and assumed the entire area 4 was viewed by TRMM
at each pass. The calculations of E(S?), E(C?), and
E(SC) in appendix B could be carried out for irregu-
larly sampled data but would require a model for the
lagged covariance of partial area averages R, (¢#;) and
R,,(2;) (the area-averaged rain rates over area A4, at
time ¢, and area A4, at time #,, where the A; are the
portions of A observed at the times ¢;). This would be
possible in principle if the statistics are sufficiently ho-
mogeneous over the area A.

(d) Once a detectable diurnal cycle is found, one
would like to know the confidence limits for 7; and
¢;; that is, how well can one determine the amplitude
and phase of the cycle for a given amount of data? A
rough estimate of these limits may be obtained by
treating the diurnal cycle amplitude as a vector (¢, §),
with the 95% confidence “interval” being the circle
centered on the end of the vector (¢, §) in its two-
dimensional vector space, whose radius is estimated
from the null hypothesis estimate (2.15) for the desired
confidence level. We have not been able to discover a
discussion in the statistical literature for the confidence
limits of ¢ alone relevant to our problem. Resampling
strategies, taking into account the problems of temporal
correlation (see, for example, Zwiers 1990), may be
helpful here.

(e) Data from other satellites may be necessary for
resolving some of the aliasing problems at higher lat-
itudes. These will be less accurate, though, and appro-
priate weighting schemes for a least-squares treatment
will be needed.

JOURNAL OF APPLIED METEOROLOGY

VOLUME 32

(f) A basic problem that needs more attention is
that the diurnal cycle seems to be the result of a com-
bination of influences, one of them certainly the diurnal
heating by the sun, but also the current synoptic situ-
ation in the region determining large-scale convergence
in the lower troposphere. This is certainly the casz in
GATE. There is a nonlinear interaction between these
two time scales, as discussed in Albright et al. (1981).
As McGarry and Reed (1978) point out, the diwrnal
cycle is much clearer during the passage of eastarly
wave troughs. This interaction is not described well by
the linear model used here. Although our linear ap-
proach can be justified for long time series, more ten-
sitive methods of establishing the diurnal cycle might
be developed if based on models that are physically
motivated. This problem of describing the waxing and
waning of rain over many time scales is an aspeci: of
rainfall that bedevils all efforts to deal with it statisti-
cally: it is a combination of dry periods and areas, with
a finite probability of occurring, and wet periods with
highly skewed statistics. !

Acknowledgments. This paper had its origins in part
from material presented at the American Statistical
Association meeting in San Francisco, August 1937,
in a session entitled “Statistical Problems in Clima-
tology.” We are grateful to F. Zwiers for organizing
the session. We would like to thank L. S. Chiu, D..R.
Cox, A. Feuerverger, D. A. S. Fraser, B. Kedem, G.'R.
North, S. Ravipati, and D. A. Short for helpful com-
ments. Research support from the Natural Sciences
and Engineering Research Council Canada is also ac-
knowledged. ;

APPENDIX A

Fitting Hourly Averages Versus Fitting Time Seriis
to Daily Harmonics ‘

|

Rewrite r(7) in (2.4) so that the parameters to be fit
appear linearly:

r(t)

1l

ro + ¢; coswt + §; sinwt + - - -

2 Uaful1),

Il

(A1)

so that the unknown coeflicients u, are ry, ¢;, s, etc.,
and the functions f,(¢) are 1, coswt, sinw?, etc. Theén
the total square differences (2.6), with choice (2.7),
can be written

D?=3 [R(1) - 2 wfu D,  (AZ)

and the linear equations for u, that minimize (A.2)
are

Z [Z LD fOn)ue = Z RS, (A3)

which are obtained by requiring the derivatives of (A.2)
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with respect to u, to vanish. Substitute (2.2) and (2.3)
into (A.3) to obtain

22 2 MODuw = 2 2 Raltm) 1)

PO ) ! 1€t
(A4)

If the intervals ¢ are small enough that the variations
of £,(t") over the interval can be neglected, then the
sums 2, 2, e can be replaced by a sum over all sample
times, and (A.4) can be rewritten as

N N
22 ftm) o)t = 2 Raltm)fultm), (A5)

a’  m=1 m=1

which is exactly the equation obtained by minimizing
(2.8). This equivalence becomes more nearly exact as
the number of samples becomes large and the size of
the intervals ¢ in (2.2) can be made small.

APPENDIX B
Details of Calculations of E(S?), E(C?), and
E(SC)in (2.16)
The variance of § defined in (2.13a) is given by
N N
E(S?) = 2 2 {sin(wiy,) sin(wim,)

my=0 ny=0

X E{R(tm)Ru(tm,)1}. (B.1)

The lagged covariance of rainfall R (¢) (primes indi-
cating deviation from the mean) is

E[R4 ()R (1)] = oher(lt — ul),

where o is the variance of R4 and cr(7) its lagged cor-
relation. Use a trigonometric identity for sind sinB to
write (B. 1) as

E(S?%) = 2 Z {cos[wAt(m — m;)]
m;=0 nip;=0
~ cos[wAt(m, + my)}}er(Imy — my|Ar).  (B.2)

Change summation variables from (m;, m,) to (w, u)
using the identity

N N
> 2 Sl + m)g(m

— my)
my=0 my=0
N N-ul
= 2 2 flul +2w)g(u).
u=~N w=0
Equation (B.1) becomes
2 N N-jul
E(S?) === 3% 3 {cos(uwAr)
u=—N w=0

—cos[(lu| + 2w)wAt]}cx(uat). (B.3)
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Define
N-lul
V(u)= 2. cos[(|u| +2w)wAr], (B.4)
w=0
which can be explicitly summed to
sin[(N 4+ 1 — |u|)wAt]
V(u) = . .
(u) Sin (@A) cos(NwAt). (B.5)
Substituting this into (B.3) gives
E(S?) = Z ((N+1— [u])
u=—-N
X cos(uwlt) — V(u)lcr(ulAt). (B.6)
Similar techniques can be used to obtain
E(CY =— Z [(N+1—ul)
2 u=—N
X cos(uwAt) + V(u)lcr(uAr) (B.7)
and
2 N
E{SC)=?f > Wi(u)er(ubt), (B.8)
u=—N
with
N—|ul|
Wu)= 2 sin[(|u] +2w)wAt], (B.9)
w=0

which can be explicitly summed to

sin[(N + 1 — |u|)wAr]
sin( wAt)

Wi(u) = sin( NwAt). (B.10)

Note that the coefficients in (2.12) can be expressed in
terms of the sums (B.4) and (B.9) as

A, =L [N+ 1 - v(0)],

N

II

N

[N+ 1+ V(0)],

and

A, =1 w0).

N

REFERENCES

Albright, M. D., D. R. Mock, E. E. Recker, and R. J. Reed, 1981: A
diagnostic study of the diurnal rainfall variation in the GATE
B-scale area. J. Atmos. Sci., 38, 1429~1445.

Arkin, P. A., 1979: The relationship between fractional coverage of
high cloud and rainfall accumulations during GATE over the
B-scale array. Mon. Wea. Rev., 107, 1382-1387.

Augustine, J. A., 1984: The diurnal variation of large-scale inferred
rainfall over the tropical Pacific Ocean during August 1979.
Mon. Wea. Rev., 112, 1745-1751.

Bell, T. L., 1987: A space-time stochastic model of rainfall for satellite
remote-sensing studies. J. Geophys. Res., 92D, 9631-9643.



322

——, A. Abdullah, R. L. Martin, and G. R. North, 1990: Sampling
errors for satellite derived tropical rainfall: Monte Carlo study
using a space-time stochastic model. J. Geophys. Res., 95D,
2195-2205.

Beyer, W. H., 1968: Handbook of Tables for Probability and Statistics,
2d ed. CRC Press, 642 pp.

Biondini, R., 1976: Cloud motion and rainfall statistics. J. Appl.
Meteor., 15, 205-224.

Cox, D. R., and D. V. Hinkley, 1974: Theoretical Statistics. Chapman
and Hall, S5t1.

Crane, R. K., 1985: Evaluation of global and CCIR models for es-
timation of rain rate statistics. Radio Sci., 20, 865-879.

——, 1986: Horizontal small scale structure of precipitation. Proc.
23rd Conf. on Radar Meteorology, Snowmass, Colorado, Amer.
Meteor. Soc., 181-184.

Crow, E. L., A. B. Long, J. E. Dye, and A. J. Heymsfield, 1979:
Results of a randomized hail suppression experiment in North-
east Colorado. Part II: Surface data base and primary statistical
analysis. J. Appl. Meteor., 18, 1538-1558.

Desbois, M., T. Kayiranga, and B. Gnamien, 1989: Diurnal cycle of
convective cloudiness over tropical Africa observed from Me-
teosat: Geographic characterization and interannual variations.
Ann. Geophys., 7, 395-404.

Fu, R., A. D. Del Genio, and W. B. Rossow, 1990: Behavior of deep
convective clouds in the tropical Pacific deduced from ISCCP
radiances. J. Climate, 3, 1129-1152.

Gray, W. M., and R. W. Jacobson, Jr., 1977: Diurnal variation of
deep cumulus convection. Mon. Wea. Rev., 105, 1171-1188.

Griffith, C. G., W. L. Woodley, P. G. Grube, D. W. Martin, J. Stout,
and D. N. Sikdar, 1978: Rain estimation from geosynchronous
satellite imagery— Visible and infrared studies. Mon. Wea. Rev.,
106, 1153-1171. ’

Hamilton, K., 1981: A note on the observed diurnal and semi-diurnal
rainfall variation. J. Geophys. Res., 86C, 12122-12126.

Houze, R. A, and C.-P. Cheng, 1977: Radar characteristics of tropical
convection observed during GATE: Mean properties and trends
over the summer season. Mon. Wea. Rev., 105, 964-980.

—— and A. K. Betts, 1981: Convection in GATE. Rev. Geophys.
Space Phys., 19, 541-576.

Hudlow, M. D., and V. L. Patterson, 1979: GATE Radar Rainfall
Atlas. NOAA Special Rep., 158 pp. [ Available from U.S. Gov-
ernment Printing Office, Washington, DC 204021].

JOURNAL OF APPLIED METEOROLOGY

VOLUME 32

Kedem, B., L. S. Chiu, and G. R. North, 1990: Estimation of raean
rain rate: Application to satellite observations. J. Geophys. Res.,
95D, 1965~1972.

Lau, K.-M,, and S. Shen, 1988: On the dynamics of intraseasonal
oscillations and ENSO. J. Atmos. Sci., 45, 1781-1797.

Laughlin, C. R., 1981: On the effect of temporal sampling on the
observation of mean rainfall. Precipitation Measurements jrom
Space, workshop rep., D. Atlas and O. W. Thiele, Eds., NASA
Publ. [ Available from Goddard Space Flight Center, Greenbelt,
MD 20771}, DS9-D66.

Lopez, R. E., 1977: The lognormal distribution and cumulus cloud
populations. Mon. Wea. Rev., 105, §65-872.

Madden, R., and P. Julian, 1971: Detection of a 40-50 day oscillétion
in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702~
708.

McGarry, M. M,, and R. J. Reed, 1978: Diurnal variation in ron-
vective activity and precipitation during Phases II and I]I of
GATE. Mon. Wea. Rev., 106, 101-113.

Press, W. H., and S. A. Teukolsky, 1988: Search algorithm for weak
penodlc signals in unevenly spaced data. Comp. Phys., 2,77~
82.

Randall, D. A., Harshvardhan, and D. A. Dazlich, 1991: D1urnal
variability of the hydrologic cycle in a general circulation mcdel.
J. Atmos. Sci., 48, 40-62. ’

Shin, K.-S., and G. R. North, 1988: Sampling error study for rair.fall
estimate by satellite using a stochastic model. J. Appl. Meteor.,

28, 1218-1231. |

——, Y.-S. Ahn, and P. A. Arkin, 1990: Time scales and vari-
abxhty of area-averaged tropical oceanic rainfall. Mon. Weaq. Rev

118, 1507-1516.

Simpson, J., R. F. Adler, and G. R. North, 1988: A proposed trop cal
ramfall measuring mission satellite. Bull. Amer. Meteor. Svc
69, 278-295.

Wallace, J. M., 1975: Diurnal variations in precipitation and thun-
derstorm frequency over the conterminous United States. Mon.
Wea. Rev., 103, 406-419.

Zwiers, F. W., 1990: The effect of serial correlation on statistical

mferences made with resampling procedures. J. C/zmate 3,

1452-1461.

, and K. Hamilton, 1986: Simulation of solar tides in the ( a-
nadxan Climate Centre general circulation model. J. Geophys.

Res., 91D, 11 877-11 896.




