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Solving xa .:..b (mod c) for x and Undecimating Recursions

(U) There are many times when the ability to undo the effecis of lkcimation on'a ·linear
recursive sequence would be of great vaiue .10 the analyst. This' is'a tliorough look at the
problem of unlkcimating, with his'torical notes and severale:camples of important
calculational techniques. While unlkcimating can' now be done with software, this rather
complete tutorial offers a worthwhile historical perspective ofthe process.

INTRODUCTION

•:,

(U) The ring of integers modulo c has long been a most lucrative area for
mathematical recreations. On occasion, these mathematical diversions can actually be
useful in cryptanalysis and signals analysis, like the solution of xa = b (mod c) described
here. The approach will be to first describe the general problem of solving xa = b (mod c)
for x. Then this will be extended to the special case where b=l and c=20 - 1 for some
integer n (that is, c is the cycle length of a primitive recursion of degree n), 'making the
process very near to undoing a decimation ·of a primitive linear recursive sequence
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~Once upon a time, the degrees of polynomials used in communications'equipment
were of such low degree· that decimating .and .undecimating the polynomials were
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easily done with a glance a4 lpe~~~~n'S):ble[I,2l.However, modern equipment
rarely uSes degree 4 and 5 recursions, with the degree ofeven randomizers often in the 20s.
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•
(U) At the risk of presenting this algorithm less than optimally, I will build it from

scratch ... that is, from the point where one first scratches one's head and ponders it,· The
first question to ask is, "Does it even have a solution?" And a good question it is, too, for
one is not always guaranteed an x that will solve xa = b (mod c). For example, it is easily
seen that x'2 =3 (mod 4) cannot be solved, Begging the reader's pardon, I will expand
this simplistic example to show fully that there is no possible x that works. In fact, the
integers modulo 4 contain only four possible replacements for x. These are 0, 1, 2, and 3.
Now. .

0'2 = 0 (mod 4),

1'2 = 2 {mod 4),

2'2 =4 =o(mod 4),

and 3'2 =6 =2 (mod 4).

(U) Of course, the classical result is that a solution to the equation xa = b (mod c) is
guaranteed as long as (a,c) divides (b,c), where (,) is the standard notation for the greatest
common divisor function. That is, if (a,c) = 1, an x that solves xa = b (mod c) is
guaranteed. !f(a,c) > I, a solution will exist only when this factor can'be divided out of all
three terms a, b, and c; thus the solution is the guaranteed x' that solves x"a' = b' (mod c').

(U) The first method one comes to is what I call the hard way, That is, exhaustively
test all positive integers I, 2, ' .. , c-I until getting one that works. That is essentially
what took place in the earlier example where all four integers mod 4 were checked to show
there was no x that solved x'2 = 3 (mod 4), Seriously, though, zero need never be checked,
SO the worst case for the exhaustive method is c-l multiplications to perform, This is fine

>.
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for c= 4, but I wouldn't care to try this method for x'U = 19 (mod 281) or (worse) x'701 =
44 (mod 1993). So there inustbe a better way, and there is.

(U) The second method is a clever \yay of approaching this exhaustion problem. It
really isn't worthwhile to check every possible' integer as x. Only certain ones have a
chane!" and one way to write the form of those that might work is k[cla] + n where [ I
denotes the greatestintegerfunction, k = 1,2, ... ,a-I and n=[blal+ 1 initially with some
modification necessary as k increases. This modification to n will become' clear in the
example' and the next method, but the importance of this method is, that it reduces an
exhaustion over c-l integers to an exhaustion over a-I integers. I still wouldn't be happy
with this for solving x'701 = 44 (mod 1993), but it is worthwhile doing an ex~mple for,
say, xOll = 19 (mod 281).

[clal = [281111] = 25

[blal+l = [19/11]+1 = 1+1 = 2

correct interval: (11-21)

k=l,n=2: k[clal+n= 25+2= 27,27°U= 297= 16 (mod 281)

k=2,n=2: k[cla]+n= 50+2= 52, 52'U= 572= 10 (mod 281)

n= 3: adjust n to 3 53, 53°11 = 583 = 21 (mod 281)

k=3,n=3: k[clal+n= 75+3= 78,78'11= 858'= 15 (mod 28l)

k=4,n=3: k[cla]+n=100+3=103,103°11=U33= 9 (mod 281)

n=4: adjustnto4 104,104°11=1144= 20 (mod 281)

k=5, n=4: k(cla]+n= 125+4= 129,129'11 = 1419= 14 (mod 281)

k=6, n=4: k(clal+n= 150+4= 154,154°11 C' 1694= 8 (mod 281)

n=5: adjustnt05 155,155°11=1705= 19 (mod 281)

so x= 155

and 155°U = 1705 = 19 + (6°281) = 19 (mod 281)

(U) This example shows the real reason for the form of the numbers to be tried. With
the greatest integer ofcia, one picks up the number of full multiples of :'a" needed to get to
"c." The"+ I" term of n moves past c and the [bla] moves the appropriate number of full
multiples of "a" beyond this to get, to the correct interval to have a chance. The
adjustments to n must be made whenever, the tested number drifts out of this correct.
interval.

(U) The third method is related to the second method, but is an eve'n more clever way
of doing it. Instead of exhausting the possible x's 'of the form k[cla) + n, only the first two'
need to be done and the difference will point to the correct'solution through (mod a)

arithmetic. Say

'I,
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([clal+ n)'a = dl· + c

and (2-[cla]+ nY-a = d2 + 2c,

then d = d2 - il, is the differeitce (note: because of the greatest integer functiort, -a <d <0).
The set of numbers (mod a) generated hy dl +·kd, with n incremented and a added each
time the sum goes ·negative, is checked until one of these numbers is db = b (mod a). The
even more cleve'r part of the algorithm 'is that it has turned the multiplicative JirOlllem
(mod c) into an additive problem (mod a). ·It also has the possibility of being appiied
recursively [e.g., in d, + kd = di; (mod a) the right k is the ,,' that solves the equation x"(
d) = (dl-db) (mod all. It is not worthwhile to pursue this recursive definition'at present
because there are still better ways, but the same example, x"l1 = 19.<mod 281) is
beneficial.

[cia] = [281/11] = 25

[b/al+l = [19/11]+1 = 1+1 = 2

k= I, n=2: k[cJal+n= 25 +2= 27,27'11 = 297= 16 + 281·

k=2, n=2: k[cJa]+n= 50+ 2= 52; 52'1'1=572= 10+(2*281)

.,

for k=6, n=5, x= k[cla]+n=(6*25)+5= 155

and 155'11 = 1705 = 19 + (6'281) = 19 (mod 281)

(U) The third method is well on the way to becoming the· classical solution, the
Euclidean Algorithm. Through the hinted recursiye possibility, the repetitive. divisions in
the Euclidean Algorithm are simulated.. Given two numbers (a andc in this case), the
Euclidean Algorithm finds integers sand t such that sa .+ .tc =.-1. Thus; bs (mod· c) is a
solution to xa = b (mod c).

(U) Since the s is the only impOrtant integer to be found for this· application (working
mod c), the following slight modification of the Extended Euclidean Algorithm can·be used
here. .The motivlltion for this particular..rorm is :that it is tailored to the case of

.undecimating recursions, so it is used here despite the slightly nonstandard form. This
form of the EuclideliP Algorithm specifically gives the multiplicative inverse fOf.a, mod c.
In the equation xa = b (mod c), a will alwliys be less than c, so let Ito = c al)d RI .= a (the
general condition is that Ito> R, > 1). So = 0 and S, = 1. For i = 1,2,3, ... (as neededl

[db=19=8(mod 11)]

dl = 16 = 5 (mod.11)

d, + d = -1 = 10 (mod 11)

dl + 2d = 4 (mod 11):

dl + 3d = -2 = 9 (mod 11)

dl + 4d = 3 (mod 11)

d , + 5d = -3 = 8 (mod 11Y'

T9' SEERET WMB",

d= 10-16='6

k';"I,';'-=2 .

k=2,n=3

k=3, n=3 .

k=4,n=4

k=5, n=4

k=6, n=5;;
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Qi+l = [R;_I~J, the greatest integer in this quotient,

R;+ 1 = R;.I-(Qi+ i·R;)~ the remainder of the quotient,

5;+1 = 5;-I-(Qi+l·5;).

IfRHl = 0, Ro and RI !ire. not relati~ely'prime(no inverse e!'ioits and Ri. i's the greatest
common divisor), . .. ... . .

..
IfRi +I := I, t!len Si+ 1is the multipli~ative'inverseofRl.

[note: if5;+1< 0, 5;+1 +Roalsow~rksJ .

IfRi+l >,I,anotherstepisneeded..

[comment: at any step, 5;~I'RI=Ri+i (mod Ron

Examples:

. '

i=5 2

i=6· 1

R S

1993 0

701 1

591 .-2

·110 3

41 . -17

28 37

13 -54

2 145

1 -924

+1993

1069

2

6

2.

1

5

x·701 = 44 (mod 1993)·

Q

i=7

i=8

check:

x'11 = .19 (mod 281)

Q R S

i=O 281 0

i= 1 11 1

i=2 25 6 -25

i=3 1 5 26

i=4 1 1 ·51

+281

230

check:

230·11 =2530= 1+(9·281):

19'230=4370= 155 +(15·281)

sox=155
. .

and 155'11 = 1705= 19+.(6~281) 1069*701 =749369= 1 +(376~1993)

44·1069=47036= 1197 +(23·1993)

" •• I
so.x= 1197

. and 1197'701 =839097=44+(421'1993).

(u) With this algorithm, solving ~a =. b(;"od c) is fairly straightforward. it is time to
move'on to the sp~ci';Jcase:wher~b= 1 and c ,; 2"-1 for some integer n:
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(0,2,3,7,11) is found .

on width 5 (is the 5th

decimation ofsomething)

solve: x*S = 1 (mod 2047)

[cia) = [2047/5] =409

n=l

410°5=2050=3+2047

819*5=4095= 1+2*2047

Sox,:,819

Decimate (0,2,3,7,11) by·

·819 to find the base

recursion whose 5th

decimation is (0,2;3,7,11)

thuds: (O,2;U) ,

(0,7,10) is fClund down

columns on width 40.

solve: x·40. = 1 (mod 1023)

[cia) = [l023/40] =25

26°40= 1040= 17 + 1023

51'40=2040=-6+2'1023

d=-23

k=I,n=117

k=2, n= 117-23=-6,;,34 (mod 40)

k=3,n=234-23=11

, k=4, n=211-23=-12=28

.. k=5,n=328-23=5 '

k,;, 6. n= 35-23=-18=22

k=,7, n=4 22-23=-1 (=39)

a "trick": since k=7, n=4 gives (7'25)4'4= 179
I . . ..'

. and 179'40 = ·1 (mod 102;1)

(-179)°40 must be 1 (mod 1023)

(.179) = 844 (mod 1023)

check: 844'40=33760'= 1+(33*1023)

So decimatirig (0,7,10) by' 844 gives th~ base

.recursion whose 40th decimation is (0,7,,10) ..

. this is: (0,3,7,9.10)

(U) The classical solution, the Euclidean Algorithm put forward in [4], co~ld also be
used to solve these problems. However, in practical appli~ations the "a~ is going to be
small enoiJgh that perhaps the Euclidean Algorithm isn't any better, ' Especially when one
considers u,sing necklaces (residue ,classes formed by powers of 2) to get the smallest
related entry, the even more clever way is often the quickest, most efficient method. For
the second example above, the width 40 could have been replaced by 5 (5, 10, 20. 40, ... are
always on the same; necklace), and a maximum. of 5 additions is hard to beat. That
example is rewo~ke,j'here with the even inore clever way using a = 5 and the Euclidean.
Algorithm for comparison.
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solve: x'5 = 1 (m'od 10231 x'40 = 1 (mod 1023) .

' ..
:

.
~

i
I,

R S

1023 0

40 1

23 -25 .

17 '26

6 -51

I) 128

1 -179

Q[cia I=[1023151=204

614'5=3070=1 +(3'1023)

n=1

205'5= 1025=2+1023

409'5= 2045= -1 + 2'1023

trick: (-409)'5 = 1 (mod·l023)

and (-409) = 614 (mod 1023)

check:

25

1

1

2

1

(-179)'= 844 (mod 1023)

Decimate (0,7,10) by either 614 or 844 '(bOth work the same) to get the recursion whose
40thdecimationisW,7,10). . (S) (3)-P.L. 86-36

. this is:(0,3,7,9,10)\

(UI Another possibility for undecimating small degree polynoJ!1ials is1 '1
(Peterson's) table. This method wasn't available for the xa=b (mod c) c.ase because it is
unique to polynomials. These' tables list (as minimally as. possible) all irreducible
polynomials and a root of that polynomial. This is getting into some more advanced'
mathematics, but for the present purposes I will describe only what is needed to
understand theundecimating process. .

(U) Since. the"powers of the 'roots of degree n irreducible polynomials fall into the
residue classes mentioned above, and these are equivalent to decimations, the first entries
of the table for degree 11

14005E 34445E 54215E 74055E 96015G

show that 0,2,3,7,11 (4215) is the 5th decimation of 0,2,11 (4005), A diversion to describe .
the elements of the table and how to use them is beneficial before going on to the second
example, The letter in the entry tells a·number ofthings about the roots of the polynomial,
the most important being that E, F, G, or H mean the polynomial is primitive, For further
description of these letters, I refer the interested reader to Appendix C of [2]. The
polynomials are entered in octsl characters:

0=000 1=001 2=010 3=011 4=100 .5=101 ·6=1,10 7=111,

Substituting these 3-bit values for the octal characters 'gives the bitmap ofthe polynomial
taps; for example, 4005 becomes 100000000101 in bits and the Is appear in positions 0; 2,
11 when counting from O-up, right to lelt, It doesn't actiially make much' difference which
direction one counts, since each entry in the table represent's both a polynomial and its·
reverse (the polynomial with bitmap read the other direction), The integer in front of the
polynomial tells a root of the polynomial based on wI being a root of the base r~ursiori
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4005. Thus w3 is a ,:oot of 4445 or equivalently 4445 is the 3rd decimation of 4005, w5 is a
root of 4215 or 4215 is the 5th decimation of 4005, and so on. Once One root (or decimation)
is known, they all are because ofthe necklaces described earlier. Fo;example,

wi w2 w4 w8 wiG w32 w64 w128 w256 w512 and wl024
• ' J , , , . I , , r ,

are the eleven roots of4005. This is written in shorthand by only recording the power, and
can easily be recognized as the fact that decimating a primitive Irs by a pOw~r of 2gives
the. same polynomial. [t is also 'noteworthy that w2048 is also a root, but 2048 =1 (mod 211 •

ll1md it was already listed (the 2048th decimation ofa 2047-long cycle' is 'a decimatiort by
1). Some necklaces are

1 4005: [,.2,4,8,16,32,64,128,256.. 512,1024

3 4445: 3, 6,12,24,48,96,192,384,768,1536,3072= 1025

5 4215: 5,10, 20, 40, 80,160;320, 640, '1280, 2560=513,'1026'.

The necklace ~fthe ~everse polynomial'coh~lsts'ofcomplements(mod 2047,:1'; this ease) to
, the entries on the i:u:icklace for the polynomial. .He~c~ .., " . ' "

lR5001:2046,2045:2043,2039;2031,2015,1983,i919, 1891,1535,1023

3R 51.11: 2044, 20~l, 2035', 2023, 1~99, 1951, 1855, 1663, 1279, 511,'1022..

(U) This method is painless when the desired undecimation is actually .the first listed
. ". , •. I

,polynomial in the table, and it is possible otherwise. The.eq\lation x'a = 1 (mod 2degre.'_I)

must· be solved when the first polynomial in the table (s not involved. The widt.h: 40
example (above) iJlustrates this.. . , ' '..

Find the polynomial w~ose 40.th decimation is(O,7;10)

(0;7,10) is the reverse oreriuy 1 in the degree 10

. portionofPeterson's table: 1 201IE

sO sOlve: x'40 = 1 (mod 1023)·

this has been done in the previous examples,

x = -179 (reverse has ~ =179).

so,.iethere is a 179 entry in Peterson's,table'

(lind there. is), it is the hase recursion'

..

.. '

. i

.C

.. 1793211G . .. " ! .

.'

So the 40th decimation of(O,3,7,9,lOJ gives (0,7,10).

(U) This was too easy, mostly because (0,7;10) is the first entry and all numbers were
in Peterson's table without having to go through' necklaces.· A ·tougher· example is
beneficial. In fact, this example will have an imprimitive whose cycle is shortened by the
proper amount from the decimation (henc'e'there will be two possible answers):

, " .'. . ...
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(b) (1)
?) (3) -18 USC 798
b) (3) -F',L. 86-36 ,,-

The polynomial (0,1,2,3,5,6,7,8,11) is foundl

(Ull

,(U) One significant note on the necklace is that only t!)e smallest entry from a
necklace or its complement is listed. Unfortunately, the examples here never required
using the complementary necklace, but the smallest element on' the complementary
necklace is easily found by (2degree·l) minus the largest entry on the necklace

Peterson's table seems to be much more widely aval a e an It lSi '

austlve to egree 16 with selected polynomials listed up to degree 34. This limitation
(based mostly on the space required to list all the .irreducible polynomials as degree rise$l
makes this a hand calculation method only. It is not general enough to be much more than
a fun exercise for mathematicians.

(U) I 'lis that it can undo the d~cimations that
shorten cycles length (like the more difficult example abovel, although it gives a primitive
and an imprimitive possibility to this problem that has no unique solution. In practical

I'O""~""'" 0 ,,'m"....,'''''''"''' •~.=., '''''',""'''do. fo, ,....... ~""""' Sol

WHEN niE POLYNOMIAL IS NOT PRIMITIVE
. ". !!

(U) The previous argUment~work for p~imitives and some imp~h~\itive i~:~e9'~~ibles,
but the methods can"be extended to reducible polynomials naturally. For reducibles, the

"

"
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polynomial must be broken into its irreducible factors. Each of the factors must be
undecimated, and the product of these undecimations is the base polynomial whose given
decimation is the' original reducible polynomial. As a final example, 'what is the
polynomial whose 100th decimation is (0,2,19)7

First, factor (0,2,19):

.(0,2,19)= (0,1,2)' (O,I,2,4,5,Il,7)' (0,6,7,8,10)

Then undecimate eacnfactor by 100...

or better, by 25

[regardless ofdegree, 25, 50 and 100 are on the same necklace;,in fact, 25 is already bigger
than the cycle length of<O,I,2)}

the 25th d~cimationof(O,I,2) is (0,1,2)

the 25th decimation of(O,6,7) is (0,1,2,4,5.6.7)

the 25th decimation of(O,2,3,5,7,9,10) is (0,6,7,8,10)

(0,1,13,14,15,18,19) = (0,1,2)' (0,6,7)' (0,2,3,5,7,9,10)

So the25th decimation of (0,1,13,14,15,18,19) is (0,2,19). This method of undec\mating
reducibles gives a unique solution only when all factors have a unique solution.

CONCLUSION

(li) Many polynomials, primitive, impriml'tive or reducible, can be undecimat~d. For
primitives, any of the 'methods discussed works, and these cannot be undecimated only,
when the decimation a and the cycle iength 2degree_l have a common factor. For
imprimitives, if(a, 2degree-ll = 1 anything still works, if(a,cycle length) = 1 a method like
the Peterson's table examples (perhaps having to extend it for degree) is required and two
solutions are possible. Again there is no undecimation if (a,cycle length) > 1. For
reducibles, the polynomial must be broken into its irreducible faetors. Each of the factors
must be undecimated, 'and the product" of these undecimations is the base ~lynomial

whose given decimation is the original reducible polynomial. Each time an irreducible
factor has two solutions, both· generate possible.solutions. l'iny time a factor cannot be
uniquely undecimated [(a,cycle length) > II. the product cannot be uniquely backed up.

(V) There are always additional solutions of much higher degree (just interleave
several, different recursions), but the basic assumption here is that a simple recursion was
decimated. And that very practical problem in both cryptanalysis and signals analysis is
easily solved with the methods described here. Thankfully, there is software available
that does most of the calculations presented here.

r
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(3)-P.L. 85-36
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