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1.1 Getting started with PAN 
This documentation assumes that you have created a .DAVE file.  This is explained 
in the other documentation related to data reduction for the inelastic neutron 
scattering spectrometers. 
 
To start PAN select Peak Analysis from the Data Analysis menu in DAVE as shown 
in figure 1.  PAN requires that the input data be in a particular format, denoted by 
a .DAVE extension in the filename.  If your data has not been converted, you need 
to do so before you can proceed. Use the Data Reduction menu to choose the 
appropriate utility for the data that you have. Read the converted file into PAN by 
using the Load Dave command under the File menu (figure 2). 
 

 
 

Figure 1 Selecting PAN from the DAVE application. 
 
The data that results from the data reduction frequently is not regularly spaced in 
energy and, if you are going to use an instrumental resolution function in the 
fitting, it is necessary to rebin the data to produce a regular grid for the analysis.  
This can be done either using the Rebin DAVE data file(s) in the DAVE→TOOLS 
menu before launching PAN or you can select the Rebin data option from the 
REBIN menu within PAN.  A dialog will launch with entries for the bin width and 
the energy range for the spectrum.  The actual size of the bin is not important (as 
long as it is not less than the original binwidth). 
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Figure 2 Selecting Load Dave from PAN. 
 
1.2 Loading the resolution function 
Load the resolution function using the Load Res Function under the Resolution 
menu.  After you select the file, you will be prompted to limit the energy range of 
the data.  The default is one-half the full range over which the data was collected. 
 
Note that you must always load the data file first, then the resolution file.  Both 
files must be in the DAVE format and have the same detector grouping. 
 
1.3 Fit functions available in PAN 
The functions available in PAN are: 
 
Pseudo δ-function 
Gaussian 
Lorentzian 
Lognormal 
Voigt 
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Damped harmonic oscillator 
Sloping background 
Smooth step function 
Methyl tunnel EISF 
Three-site jump EISF 
Two-site jump EISF 
Kohlrausch function (Fourier transform of stretched exponential) 
 
 
1.3.1 Pseudo-δ Function 
 
Convolution in PAN is performed numerically.  Unfortunately numerical convolution 
will not give a correct integrated intensity if there are few points defining one of 
the functions in the convolution product.  This is encountered frequently in the 
analysis of quasielastic scattering where the overall lineshape is given by the sum 
of a Dirac delta function and a Lorentzian: 
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where Io is the total integrated intensity of the lineshape, A is the fraction of the 
elastic scattering, and 2Γ is the full-width at half-maximum for the Lorentzian 
component.  On a neutron spectrometer, one measures the convolution of this 
function with the instrumental resolution function.  In terms of the resolution 
function, R(E), and the scattering function, S(E), this is expressed as a convolution 
product and integral, 
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Since A provides valuable information on the geometry of motion, it is critical to be 
able to extract it reliably.  In order to extract the integrated intensity of the 
elastic scattering component one must be able to represent the delta function 
somehow. 
 
In order to circumvent this limitation of numerical convolution one can invoke a 
pseudo-δ function in which two approximations are made.  First, a boxcar 
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approximation of the instrumental resolution function, R(E), is made.  We only have 
knowledge of the resolution function sampled at discrete points, Ei.  Thus we only 
really know Ri = R(Ei).  So our first approximation entails redefining the resolution 
function as a constant function of energy as 
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where Θ(E) is the Heaviside step function and ∆ is the interval between points in 
the resolution function.  We will refer to ( )ER~  as the boxcar approximation of the 
resolution function, R(E), given the resolution function data, R(Ei). 
 
The second approximation is to represent the delta function as a narrow gaussian 
curve.  In the limit of small standard deviation, σ, the gaussian approaches a delta 
function: 
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The convolution between the pseudo delta function, ( )E~

δ , and the boxcar 
approximation to the resolution function, ( )ER~ , can be performed analytically: 
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where 
 

  
erf(E) is the standard error function, 
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Note that this requires a constant interval between each data point in the 
resolution function. 
              
 
 
 
 
Description of PAN Fit Functions 
              
Gaussian 
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A: integrated area 
Eo: mean of distribution 
W: full-width at half-maximum 

              
Lorentzian 
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A: integrated area 
Eo: mean of distribution 
W: full-width at half-maximum 
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Lognormal  
 
Distribution function for a random variable whose natural log is normally 
distributed.  Note that this distribution uses absolute values so that it is 
symmetric about E = 0. 
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A: integrated area 
Eo: mean of underlying gaussian distribution 
σ: standard deviation of the underlying gaussian distribution 

 
You can use these parameters to get the mode, Emode, and standard deviation, SD, 
of the lognormal distribution via: 
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The mode and standard deviation are actually displayed whenever you choose to 
display the fit parameters. 
              
Voigt 
 
The voigt function implemented here is a convolution of a lorentzian and a gaussian, 
both centered at E0, with identical full-widths at half maximum 
 

A: integrated area 
Eo: center of distribution 
W: full-width at half maximum of the lorentzian and gaussian components 
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Damped Harmonic Oscillator 
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A: amplitude of function (NOT AREA!) 
Eo: center of each Lorentzian component 
W: full-width at half maximum of the lorentzian component 

 N(E): Bose occupation factor defined as 
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T: Temperature in Kelvin 
              
Smooth Step Function 
 
This function is sometimes more useful than a sloping background if the measured 
background has a smooth transition from one flat level to another. 
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A: Amplitude of transition 
E0: location of midpoint of transition 
W: full-width at half maximum of the transition 

              
Sloping Background 
 

( ) bmEb,m;Ef +=  
 m: slope 
 b: y-intercept 
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Methyl Tunnel EISF 
 
For a methyl group undergoing reorientation via tunneling the neutron scattering 
lineshape is given by 
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where Et is the tunneling energy and f(Q;r) is the elastic incoherent structure 
factor (EISF) given by 
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r: radius of the methyl group (C-H distance) 

              
Three Site Jump EISF 
 
For a methyl group undergoing jump diffusion among three equivalent sites the 
neutron scattering lineshape is given by 
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where L(E;Γ) is a lorentzian lineshape with a FWHM of 2Γ and f(Q;r) is the elastic 
incoherent structure factor (EISF) given by 
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r: radius of the methyl group (C-H distance) 
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Two Site Jump EISF 
 
For a methyl group undergoing jump diffusion among two equivalent sites the 
neutron scattering lineshape is given by 
 
( ) ( ) ( ) ( )( ) ( )Γ−+δ= 2;ELr;Qf1Er;QfE,QS  

 
where L(E;�) is a lorentzian lineshape with a FWHM of 2� and f(Q;r) is the elastic 
incoherent structure factor (EISF) given by 
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r: jump distance 

              
Kohlrausch Function 
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A: integrated area 
β: stretching exponent 
τ: relaxation time 
 

Actually the fit routine uses energy, E = hω for the independent variable, and the 
average relaxation time, τ , for display and fitting purposes where it is defined as 
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2.1 Analyzing data with PAN: An example 
 
We can analyze some simulated neutron scattering data to show how to use PAN in 
some detail.  In particular, we will load in the test data set, fit an appropriate 
model to the data, and extract the Q-dependence of some important parameters. 
 
First launch PAN if it is not already running.  Next, select File→Load test data.  In 
a few moments a data set that contains a large central peak corrupted by noise 
should appear.  Also, the Select group text field should have been updated to read 
“1-20” indicating that there are now 20 detector groups (or Q-values).  You can 
move the slider control labeled select group and the spectrum displayed in the 
window will change.  As you move to larger detector numbers, the central peak will 
be accompanied by two satellite peaks.  This data simulates a tunneling spectrum 
taken on a backscattering instrument.  Move the slider control so that you are 
viewing group (detector) 16.  Click the right mouse button so that you autoscale.  If 
you wish, you can hold the left mouse button down and drag a rubberband-type 
zoom box across the plot to enlarge a particular portion of the data window.  A 
right mouse click will always result in zooming out all the way. 
 
We will fit this group first and then fit the remaining groups automatically.  The 
data looks like it has 4 components.  The central peak looks approximately 
Gaussian, the two satellite peaks are approximately Lorentzian, and there is an 
underlying offset (a background level).  Choose sloping background from the drop-
menu called Select fit function.  Move the cursor into the plot window and hold 
down the left mouse button.  A dashed green line should appear across the extents 
of the data plot.  As you move the cursor up and down in the data window while 
holding down the left mouse button, the green line should follow the cursor.  This 
action is used to specify the offset of the overall model function.  Once you are 
satisfied with the level, release the left mouse button.  Now hold down the left 
mouse button again and move the cursor around the data window.  You should see 
the slope of the line change and pivot about the midpoint of the x-axis.  Once you 
are satisfied with the slope, release the left mouse button.  For this function, the 
slope should be quite small. 
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Figure 3 Test data in group 16. 
 
Next we will add a Gaussian curve to model the central peak.  Choose Gaussian from 
the Select fit function menu.  Move the cursor over the plot window and hold down 
the left mouse button.  A Gaussian should follow your cursor movements both in 
location and in height.  Change the vertical position to change the Gaussian peak 
height and change the horizontal position to change the Gaussian peak center.  
Once you are satisfied that the peak has the correct amplitude as that of the 
central data peak and is located at the correct position, release the left mouse 
button.  Next hold down the left mouse button and move the cursor horizontally, 
thus changing the width of the curve.  Once you are satisfied with the width 
release the left mouse button. 
 
Next add a Lorentzian to fit the satellite peak to the left of the central peak.  
The method to change the amplitude, center, and width of the Lorentzian is 
exactly the same as for the Gaussian.  Finally, add another Lorentzian to model the 
satellite peak to the right of the central peak. 
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You have just specified the initial guesses for the fit using the mouse and now it is 
time to fit the model to the data.  Simply press the button named Fit current 
group.  In a moment you should see the result of a least-squares fit of the model 
to the data.  Your final answer may be different but mine is shown below in figure 
4. 

 

 
 

Figure 4 Fit of model to data in group 16. 
 
The model parameters with uncertainties are found in the text panel displayed to 
the right of the data window.  Note that each curve is labeled as in the window 
with a number.  For instance, curve 2 above is the Gaussian, listed in the text panel 
as C[2].  Curve 4, C[4], is the Lorentzian located to the right of the central peak.  
Note also that the curves are labeled in the data window.  The parameters for each 
curve component are labeled in a similar manner.  For instance, the peak center for 
the Gaussian is listed in the text panel as P[2] of C[2].  This gives us a means to 
identify any of the parameters from any of the curves present in the fit. 
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The next part of the analysis we want to do is to fit all of the detectors.  However 
we need to be careful at this stage.  Scroll the Select group slider control down to 
group 1 and notice how small the satellite peaks have become.  There is a possibility 
that the least-squares routine will have trouble fitting this same model to this 
data.  Therefore we would like to impose a constraint on the area and width of the 
satellite peaks.  Select the left Lorentzian by moving the Select curve slider 
control to 3 (recall that this is the curve labeled C[3]).  Next press the button 
labeled Modify Fit Parameters.  A dialog like the one shown in figure 5 below will 
appear.  You should see only a single box checked (lower bound for the full-width at 
half-maximum, FWHM).  Click the box for the low constraint on the area.  This will 
prevent the area of the Lorentzian from going below zero.  Also click the high 
constraint for the FWHM and type 3.0 in the text box.  Press the button labeled 
Exit to get back to the Peak Analysis main window.  What you have done is impose a 
lower limit on the area of the Lorentzian and an upper bound of 3.0 on the FWHM 
of the Lorentzian. 
 

 
 

Figure 5 Dialog to modify fit parameters, impose constraints, and fix parameters. 
 
Repeat the same process for the other Lorentzian, C[4].  When you have finished 
this, press the button labeled Fit all selected groups.  This button tells PAN to fit 
all of the detectors listed in the text box labeled Select groups (e.g. 1-20) with 
the same model as the initial fit, in our case it is group 16.  You should see fits 
being performed for each group starting with group 1 and finishing with group 20.  
Once it is finished you can change the Select group slider to inspect each fit.  
Whenever a new group is displayed with its fit, its fit parameters and 
uncertainties are also displayed in the text panel to the right of the data window 
for you to examine. 
 
Now we would like to look at the dependence of the peak position of the Lorentzian 
to the right of the central peak on the group number (i.e. the Q-dependence of the 
peak position).  First we should note which parameter and curve this corresponds 
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to in terms of our notation discussed above.  The right Lorentzian is C[4] and the 
center of the peak is specified by P[2].  Next, select the menu option from the 
application menu bar Misc→Enter curve and parameter to plot.  A dialog will pop up 
that asks you for the curve and parameter to plot as shown in figure 6.  The 
default is parameter 2 of curve 1, denoted C[1].P[2].  We actually want to replace 
this with C[4].P[2].  Type this in and press the button labeled done.  PAN will then 
extract this parameter from the fits in detectors 1-20 and pop up the results in a 
new plot window as shown in figure 7.  You can save these parameters and errors in 
a three-column formatted ASCII file, print to a postscript file, zoom into the 
window using the same mouse operations as in the main PAN application, and/or exit 
the plot utility. 
 

 
 

Figure 6  The dialog for plotting a particular parameter. 
 

 
 

Figure 7  Group dependence of the center of the right Lorentzian. 
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The final part of the analysis is to plot the elastic-incoherent structure factor 
(EISF) which is defined as the ratio of the integrated elastic intensity to the total 
integrated intensity.  This is straightforward to calculate and PAN has a function 
built-in to do it.  Choose Misc→Plot EISF from the main menu bar.  You will get a 
dialog box like the one shown in figure 8 below. 
 

 
 

Figure 8  Dialog for entering the parameter for the elastic integrated intensity. 
 
For the elastic intensity we want the area of the Gaussian component, C[2].P[1].  
The next dialog box that pops up is shown in figure 9. 
 

 
 

Figure 9  Dialog for entering the parameter for the inelastic integrated intensity. 
 
This should be the area of the left Lorentzian, C[3].P[1].  Next a dialog asks if you 
wish to add another inelastic integrated intensity.  The answer is yes since we have 
two inelastic peaks.  Press yes and enter C[4].P[1] in a dialog box identical to the 
one shown in figure 9.  When you are asked to add another inelastic feature, press 
no.  The final question you are asked is if you want to subtract an inelastic feature 
from the denominator…press no.  Finally you should see the EISF plotted in a plot 
utility similar to that shown in figure 10.  This has all of the same functionality as 
that shown in figure 7. 
 
You may choose to examine the Q-dependence of any of the fit parameters by 
simply specifying the curve and parameter using the notation discussed above and 
using the menu bar selection Misc→Enter curve and parameter to plot. 
 
Note also that the fit parameters can be saved to a binary file to be restored in a 
future session by selecting File→Save fit parameters.  Furthermore you can save 



Draft 1.0  R.M.Dimeo     03/08/02 
 

the currently-displayed data and fit in ascii form by selecting File→Save data and 
fits. 
 

 
 

Figure 10  Plot of the EISF based on fits to all of the detector groups. 
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