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[1] Zhou and Cess (2001) developed an algorithm for retrieving surface downwelling
longwave radiation (SDLW) based upon detailed studies using radiative transfer model
calculations and surface radiometric measurements. The algorithm links clear sky
SDLW with surface upwelling longwave (LW) flux and column precipitable water
vapor. For cloudy sky cases, the cloud liquid water path is used as an additional parameter
to account for the effects of clouds. Despite the simplicity of the algorithm, it
performs very well for most geographical regions except for those regions where the
atmospheric conditions near the surface tend to be extremely cold and dry. Systematic
errors are also found for scenes that are covered with ice clouds. An improved version of
the algorithm prevents the large errors in the SDLW at low water vapor amounts by taking
into account that, under such conditions, the SDLW and water vapor amount are nearly
linear in their relationship. The new algorithm also utilizes cloud fraction and cloud liquid
and ice water paths available from the Cloud and the Earth’s Radiant Energy System
(CERES) single-scanner footprint (SSF) product to separately compute the clear and
cloudy portions of the fluxes. The new algorithm has been validated against surface
measurements at 29 stations around the globe for Terra and Aqua satellites. The results
show significant improvement over the original version. Preliminary tests also suggest that
the new algorithm works quite well for high elevation locations such as Tibet site where
current satellite products exhibit large biases. The revised Zhou-Cess algorithm is also
slightly better or comparable to more sophisticated algorithms currently implemented in
the CERES processing and will be incorporated as one of the CERES empirical surface
radiation algorithms.
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1. Introduction

[2] The surface longwave (LW) fluxes are major compo-
nents of the energy budget in the Earth’s climate system.
Developing a global, long-term surface radiation database is
essential in monitoring the Earth’s climate, radiation, and
hydrological systems. Since direct measurements of surface
radiation fluxes are expensive and will always be limited, it
is desirable that satellites provide global measurements of
the surface radiation fluxes. However, since the surface
downwelling longwave flux and top of atmosphere out-
going longwave flux are largely decoupled, especially in
cloudy skies [Ramanathan, 1986; Stephens and Webster,
1984], satellite retrievals of surface downwelling longwave

fluxes have to rely heavily on retrieved meteorological
profiles, cloud parameters, and radiative transfer models
to compute the surface downwelling flux, such as those
adopted by the International Satellite Cloud Climatology
Project (ISCCP) [Zhang et al., 2004] and Global Energy
and Water Cycle Experiment — Surface Radiation Budget
(GEWEX-SRB) [Cox et al., 2006].
[3] Using detailed studies based upon radiative transfer

model calculations and surface radiometric measurements,
Zhou and Cess [2001] formulated algorithm development
strategies for retrieving surface downwelling longwave
radiation (SDLW). Their studies demonstrated that clear
sky SDLW could be largely determined by surface upwelling
longwave flux and column precipitable water vapor. For
cloudy sky cases, they used cloud liquid water path as an
additional parameter to account for the effects of clouds
instead of using cloud base height which is theoretically a
more direct factor in determining the SDLW. An illustrative
algorithm was derived and tested using observational data
from the Atmospheric Radiation Measurements (ARM)
Program [Stokes and Schwartz, 1994] measurements at the
U.S. Southern Great Plain (SGP) and Tropical Western
Pacific (TWP) sites.
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[4] Since the algorithm was derived and tested for mid-
latitude and tropical conditions, there was concern that the
algorithm might not perform well for extremely cold and
dry conditions. Indeed, once data had become available
from the ARM North Slope of Alaska (NSA) [Stamnes et
al., 1999], large biases were found when the algorithm was
applied to surface measurements from that location. Sensi-
tivity studies demonstrated that the algorithm significantly
underestimates SDLW when atmospheric water vapor was
low.
[5] Meanwhile, the Cloud and the Earth’s Radiant Energy

System [CERES; Wielicki et al., 1996] Surface Radiation
Budget (SRB) team started to test the algorithm for possible
global application. The CERES program is designed to
provide crucial cloud and radiation measurements for
studying cloud-radiation interaction. CERES instruments
were launched aboard the Tropical Rainfall Measuring
Mission (TRMM) in November 1997 and on the Earth
Observation System (EOS) Terra satellite in December 1999
and Aqua satellite in May 2002. The space-borne CERES
radiometers provide broadband total, shortwave (SW), and
infrared window measurements at the top of atmosphere
(TOA). Differencing the SW from the total measurements
allows for a derivation of the longwave (LW) value.
Deriving reliable estimates of SRB parameters is another
important objective of the CERES project whose goal is to
provide a complete picture of the energy budget of the
Earth’s atmosphere system. Since the SRB cannot be
directly measured by satellite-borne instruments, the surface
fluxes are derived with several different methods using
combinations of radiation models, data assimilation prod-
ucts, and satellite measurements. The Surface and Atmo-
spheric Radiation Budget [SARB; Charlock et al., 1997]
component of CERES represents one such method where
shortwave and longwave fluxes at the surface, at three levels
in the atmosphere, and at the TOA are computed with a
radiative transfer model. In addition to SARB, surface
fluxes are being derived within CERES using two SW
and two LW models, which are based on TOA-to-surface
transfer algorithms or fast radiation parameterizations.
These models are by Li et al. [1993] (SW model A, clear
sky only); Darnell et al. [1992] (SW model B); Inamdar
and Ramanathan [1997] (LW model A, clear sky only); and
Gupta et al. [1992] (LW model B). These models were
incorporated into CERES products to provide independent
sources of surface fluxes to compare with SARB results
[Gupta et al., 2004]. The model designed by Inamdar and
Ramanathan [1997] derives clear sky downwelling long-
wave flux through exploring the relationships between
normalized surface longwave flux and green house param-
eter in the window and non-window spectral regions. The
model by Gupta et al. [1992] computes surface downwel-
ling longwave using a parameterized formula that requires
an estimation of effective emitting temperature of the
atmosphere, total column water amount for clear sky and a
cloud forcing factor that utilizes cloud base temperature and
water vapor amount below the cloud base. The Zhou-Cess
algorithm represents a new methodology for deriving
SDLW globally for both clear sky and cloudy sky using
surface upwelling longwave flux, column water vapor, and
cloud water path that are readily available from the satellite
measurements. A vigorous test was performed on instanta-

neous flux derived by Zhou-Cess algorithm as part of
single-scanner footprints (SSF) products on board Terra
and Aqua satellites against matched ground measurements
from surface radiation measurement sites around the globe.
Despite the simplicity of their algorithm, it performed very
well for most of the geographical regions. Large biases,
however, were found for certain regions, most notably the
Polar Regions, where the atmosphere is extremely cold
and dry. In addition, systematic errors were found for
regions covered with ice clouds.
[6] The modifications to the algorithm discussed in the

present work are aimed at addressing the low water vapor
(including situations associated with high elevations such as
Tibet plateau) and ice cloud situations with the goal of
making the algorithm applicable for global implementation
in the CERES processing. In section 2, a brief description of
the original algorithm will be given followed by bias analysis
of the algorithm when applied to ARM NSA data. In section
3, the algorithm is revised using collocated CERES cloud
parameters and surface radiation measurements. The new
algorithm is validated for CERES Terra and Aqua satellites
with surface measurements from global network. In addition,
a preliminary test and discussion on the application of the
new algorithm on Tibet site are provided. A summary and
discussions of this work are given in section 4.

2. Low Water Vapor Bias

2.1. Original Algorithm

[7] The Zhou-Cess algorithm took the form:

SDLW ¼ aþ b�SULWþ c� lnðPWVÞ þ d� ½lnðPWVÞ�2

þ e� lnð1þ f �LWPÞ ð1Þ

where SULW is the surface upwelling longwave flux
computed from the 2-m air temperature using Stefan-
Boltzmann’s law assuming an emissivity equal to unity.
PWV is the column precipitable water vapor, and LWP is
the cloud liquid water path, both in centimeters. The
regression coefficients a, b, c, d, e, f have values of 123.86,
0.444, 56.16, �3.65, 5.30, 1226.0, respectively. The
algorithm was formulated based on detailed studies of
radiative transfer models and observational data. The unique
feature of this algorithm is that it uses one formula to
compute the clear sky and all sky SDLW. The physical
meaning of this algorithm can be explained as follows: the
SDLW can be considered as contributions from the opaque
regions of the longwave spectrum (for example, H2O and
CO2 bands) in which the downward LW radiation
approximates to a blackbody, albeit the atmospheric
emitting temperature rather than the surface skin tempera-
ture, while the PWV and LWP components dominate the
window regions of the spectrum involving the water vapor
continuum absorption and effective cloud base emission
modified by sub-cloud absorption. These spectral regions
are dynamic and depend upon the atmospheric profiles
themselves. The LWP is used as a surrogate of effective
cloud base height since LWP is found to be correlated with
cloud base height based upon observational data and upon
thermodynamic arguments by Hack [1998]. LWP is also
better defined for any spatial and temporal grid. The
algorithm was derived using observational data obtained
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from six Intensive Observation Periods (IOP) at the ARM
SGP site and was verified with nine other SGP IOP data sets
and TWP Manus data [Zhou and Cess, 2001]. The
algorithm was not tested with observational data from other
geophysical regions because of data availability problems.

2.2. The ARM NSA Data

[8] Recent climate modeling and diagnostic studies indi-
cate the Polar Regions are particularly sensitive to global
climate change and are important to mid-latitude climate
and weather systems [Stamnes et al., 1999]. Radiation tends
to dominate the Arctic heat budget in all seasons. Due to the
extreme weather conditions experienced at high latitudes,
the algorithms developed for mid-latitudes frequently do not
work well for the Polar Regions. Thus, prudence necessi-
tated testing the Zhou-Cess algorithm once high-quality
observations from ARM NSA became available. The data
used in the study were from January to December 2000
from the ARM Barrow facility, which is located at the
northernmost point (71.32�N, 156.61�W) in the United
States, 528 km north of the Arctic Circle. The data were
taken from the same instruments and processed in the same
manner as those used by Zhou and Cess [2001] for the SGP
and TWP sites. The SDLW fluxes were pygeometer meas-
urements, and the surface upwelling fluxes were computed
from the Surface Meteorological Observation Station
(SMOS) 2-m surface air temperature. The column precipi-
table water and cloud liquid water were both measured by
microwave radiometers (MWR). All data were averaged
into half-hour products. The results show that the algorithm
mostly underestimates the SDLW, with large negative bias
at the low SDLW (Figure 1). Further analysis found that
94% of the underestimated cases are related to very low
water vapor amount (PWV < 0.81 cm). The low water vapor
amount has resulted in very large negative value in the 3rd
term in Eq. (1), i.e., the ln(PWV) term, since the logarithmic

function decreases very rapidly with decreasing water vapor
below 1 cm. To remedy the problem, the ln(PWV) terms
were replaced by ln(1 + PWV) to approximate a near-linear
relationship between PWV and SDLW when water vapor
amounts are very low. This modification has the added
advantage of producing a very simple and reasonable
relationship between the SDLW and the water vapor term
which prevents the PWV from producing a negative con-
tribution to the flux as the water vapor amounts asymptote
toward zero.
[9] Although Zhou and Cess [2001] conducted radiative

transfer calculations for six default Moderate-Resolution
Transmittance Radiation Model [MODTRAN, Wang et al.,
1996] atmospheres (including subarctic summer and
subarctic winter atmosphere) and their variations for pro-
viding basic relationships between SDLW and other param-
eters, the actual algorithm was derived using only
observations at SGP site. For any nonlinear relationship,
accounting for the full range of conditions is critical to
derive statistical relationships that apply to most situations.
This is because the statistical relations (usually derived
with least squares fitting) will lean toward highly sampled
situations and miss the under-sampled situations.
[10] The importance of sampling can be illustrated in

Figure 2 where a linear relationship is calculated for

Figure 1. Scatterplot of observed SDLW versus SDLW
calculated with original Zhou-Cess algorithm for ARM data
from Barrow, NSA from January 2000 to December 2000.

Figure 2. Relationships between MODTRAN computed
clear sky SDLW and SULW (upper panel) and flux ratio
versus column water vapor (lower panel). The black and dot
lines are linear regression fits (upper panel) and log-square
fits (lower panel) using data points with PWV greater than
0.5 cm (solid line) and PWV less than 0.5 cm (dash lines),
respectively.
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MODTRAN computed SDLW and SULW from Zhou and
Cess [2001] (upper panel). Using the upper portion (PWV > =
0.5 cm) and the lower portion (PWV < 0.5 cm) of the data
gives very different slope and offset for a linear relation-
ship. The log-square fit of PWV to the ratio of fluxes also
depends significantly on different portions of the sampling
data (lower panel). The reason why the SGP algorithm
does not produce good results for NSA data is because
SGP data only represents middle range of the data and
thus is not applicable to the low end of the curve. Figure 3
illustrates the probability distribution functions (PDF) of
SULW, SDLW, and PWV from global networks of 29 sites
(Figure 4) and those from ARM SGP and NSA sites. An
examination of Figure 3 reveals that the dynamical range
of surface longwave fluxes and PWV from SGP misses a
small fraction of data where SULW is larger than
500 Wm�2 or PWV greater than 5 cm as shown in the
global PDFs. More importantly, however, the NSA PDFs
clearly demonstrate that the distributions of these quanti-
ties largely misrepresent regions of extremely cold and dry
areas. The misrepresentation of low water vapor situations

is particularly serious because of nonlinear logarithmic
relationship between water vapor and SDLW.
[11] Due to data availability, the original algorithm only

used cloud liquid water path to account for cloud effects to
the SDLW. For the SGP and TWP site, the effect of ice
clouds on the SDLW is relatively small since most of the
ice clouds are at high altitudes. Such is not the case for the
Polar Region, where most of the clouds are ice cloud
located at low altitudes. Moreover, since the atmospheric
water vapor concentrations for the Polar Regions are also
very low, the effect of ice clouds on SDLW is not
negligible.

3. Satellite Implementation

3.1. Data

[12] The CERES single-scanner footprint (SSF) product
contains 1 hour of instantaneous CERES data for a single-
scanner instrument. The SSF product combines instanta-
neous CERES data with scene information and cloud
properties derived from a high spatial resolution imager
such as the Visible/Infrared Scanner (VIRS) on TRMM or
the Moderate-Resolution Imaging Spectroradiometer
(MODIS) on Terra and Aqua satellites. The cloud properties
are computed in the cloud subsystem of CERES processing
[Minnis et al., 1997]. Thus, all of the input parameters for
the Zhou-Cess algorithm are already computed or assem-
bled in the current SSF processing.
[13] The ground measurements are taken from the CE-

RES/ARM Validation Experiment [CAVE; Rutan et al.,
2001] database which is maintained at NASA LaRC in a
Web-accessible form for use in the CERES project and is
available to the outside science community. The surface
observations used in this study include five ARM/SGP sites,
one ARM/TWP site, seven National Surface Radiation
Budget Network [SURFRAD; Augustine et al., 2000] sites,
eight Baseline Surface Radiation Network [BSRN; Ohmura
et al., 1998] sites, six Climate Monitoring and Diagnostics
Laboratory (CMDL) sites, the LARC/COVE site [Jin et al.,
2002], and one NREL [Myers et al., 1999] site (Figure 4).
These sites were selected based on data availability and
statistical representative of different geographical regions,
i.e., ocean, land, desert, arctic regions. Temporal matching
of the satellite and site fluxes was done at the highest
resolution of the site data. Spatial matching was done to a
distance of 10 km between the location of the site and
the center of the CERES footprint. Values for all CERES
footprints within the 10-km range of the sites and within the
1-minute interval were averaged together for comparison
with the corresponding ground-based values.
[14] For the purposes of deriving, as well as validating a

new algorithm, it is necessary to separate the training and
validating data set. Here we have chosen 15 ground stations
and collocated cloud parameters from Terra satellite during
58 months from March 2000 to December 2004 as a
training data set. All 29 ground stations and their collocated
Terra products for the same period are used in the validation
since only clear and overcast portions of the training data set
are used in the derivation of the algorithm. The collocated
Aqua and ground measurements from all 29 stations cov-
ering the period from July 2002 to March 2005 serve as
additional data set for validation.

Figure 3. Normalized probability distribution functions
of SDLW, SULW, and PWV from global network (solid
line), ARM SGP site (dash-dot line), and ARM NSA site
(dot line).
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3.2. Performance of the Original Algorithm

[15] Figure 5 shows the scatterplots of SDLW computed
by the original Zhou-Cess algorithm for Terra satellite and
collocated ground measurements from all 29 sites. For most
geographical regions (continental, desert, island, and coastal
area), the algorithm performs reasonably well; however,
there is a significant underestimation of the SDLW in the
Polar Regions, which is defined to include both the Arctic
and Antarctic, when SDLW is below 200 Wm�2. Most of
the low values were observed at the South Pole where mean
water vapor is only 0.38 mm. When the data are stratified
with clear ( fclr > 0.999), water cloud (LWP > 5 gm�2), and
ice cloud (LWP < 5 gm�2 and ice water path (IWP) >
1 gm�2) cases, we find that there is positive bias for most of
the clear sky cases except for some cases in Polar Regions.
Large negative bias was found for both water cloud and ice
cloud, with ice clouds having the largest negative bias
(Figure 6). The large negative bias for cloudy sky flux
might be due to lower cloud liquid water path generally
observed from satellite than those observed from MWR at
the SGP site. Our data indicates that the satellite rarely
observes LWP greater than 1 mm over the SGP site while

MWR observes many cases with LWP greater than 1 mm
(figure not shown). Other studies have also shown that LWP
is rarely greater than 1.3 mm at SGP site [Huang et al.,
2003]. This leads us to suspect that some of the MWR
measured cloud liquid water used in deriving the original
algorithm might have been contaminated by rain or wetness
from other forms of precipitation due to their unlikely larger
value (LWP > 1.3 mm). The systematic difference between
ice cloud and water cloud also indicates that ice clouds can
play an important role for conditions other than the warm,
moist tropical conditions. Taken together, these observa-
tions suggest that the algorithm should be re-derived using
satellite observed cloud parameters and using more sites
globally so that the algorithm better represents various
atmospheric conditions. In the revised algorithm, the effect
of ice cloud is considered by including ice water content in
the same manner as cloud liquid water although with a
smaller weight.

3.3. Revised Algorithm

[16] Based on the above analysis, a new algorithm is
formulated which computes the fluxes for clear portions

Figure 4. Ground stations used in this study.
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( fclr) and cloudy portions (Fcld) of the sky separately and
then sums the results for the all sky flux (Fall):

Fclr ¼ a0þ a1 � SULWþ a2 � lnð1þ PWVÞ
þ a3� ½lnð1þ PWVÞ�2 ð2Þ

Fcld ¼ b0þ b1�SULWþ b2� lnð1þ PWVÞ
þ b3� ½lnð1þ PWVÞ�2 þ b4� lnð1þ LWPÞ
þ b5� lnð1þ IWPÞ ð3Þ

Fall ¼ Fclr� fclr þ Fcld� ð1:0� fclrÞ ð4Þ

Fnet ¼ Fall � SULW ð5Þ

a0 ¼ 37:687; a1 ¼ 0:474; a2 ¼ 94:190; a3 ¼ �4:935
b0 ¼ 60:349; b1 ¼ 0:480; b2 ¼ 127:956;
b3 ¼ �29:794; b4 ¼ 1:626; b5 ¼ 0:535

where fclr is the fraction of clear area in a single CERES
footprint, and Fnet is the net flux. SULW and PWV follow

Figure 5. Scatterplots of SDLW computed using original Zhou-Cess algorithm for Terra satellite versus
ground measurements for different scene types.
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the same units as in (1). LWP and IWP (in gm�2) are not
representative of the total for the pixel but only for the
cloudy portion, since the cloud fraction is explicitly taken
into consideration. The cloud fraction and cloud water path
are part of SSF product and derived from CERES cloud
analysis. The column precipitable water vapor is integrated
from CERES meteorological data. Moreover, clear sky is
defined when fclr is greater than 0.999, and both LWP and
IWP are set to zero. SULW is computed using a surface
skin temperature with an emissivity of unity. Test cases
run to incorporate a global emissivity map demonstrate no
improvement in the algorithm. The physical bases of the
algorithm are the same as the original algorithm, except
that now clear sky and cloudy sky fluxes are computed
separately. The presence of cloud changes the effective
emitting layer of the atmosphere; hence the coefficients for
SULW and PWV have changed accordingly. Notice that
although the contribution of ice cloud has been given less
weight, in the case of ice cloud on top of water cloud, the
algorithm may produce bogus ice cloud contributions.
[17] As noted previously, the above regressions are

derived using satellite observations from the Terra platform
and matched ground measurements from 15 sites around the
globe (Figure 4) from March 2000 to December 2004.
There are 6028 clear sky cases ( fclr > 0.999) for deriving
the clear sky formula and 5788 overcast cases ( fclr < 0.01)
for the cloudy sky formula. These data consist of 43% of all
collocated measurements in the training data set.

3.4. Validation

[18] The modified algorithm has been applied to the
CERES Terra Edition 2B and Aqua Edition 2A SSF data
products. The Terra Edition 2B data, as mentioned previ-
ously, spans the period from March 2000 to December
2004. The Aqua Edition 2A data cover the period from
July 2002 to March 2005. Figure 7 illustrates the compar-
ison of the SDLW of Terra Edition 2B computed with the
modified Zhou-Cess algorithm versus the ground measured
SDLW over 29 sites around the globe stratified for different
scene types. The modified algorithm has smaller bias (less
than 1 Wm�2) than the original algorithm for most of the
scene types except for the coastal scenes where the
systematic bias is 7.3 Wm�2. The scatterplots in Figure 8
of the derived versus measured SDLW show that the
systematic bias from both water cloud and ice cloud is
reduced and the difference between them is also reduced as
compared to those from the original algorithm shown in
Figure 6.
[19] The modified algorithm has also been applied to

Aqua processing along with LWA and LWB, with the
following results covering the 33 months from July 2002
to March 2005. The ground measurements are collected
from the same 29 global sites as shown in Figure 4. All data
available from these periods are used except for some data
gaps. The validation was carried for clear sky and cloudy
sky separately.
[20] Table 1 compares the bias and random error of

the modified algorithm to those of the original algorithm
as well as LWA and LWB for clear sky fluxes. Using the
modified algorithm reduces the huge negative bias for
the Polar Region from �137.0 Wm�2 to an acceptable
�10.5 Wm�2. The use of the modified algorithm has also
resulted in improvement to either the bias or random error
or both for most of the regions. The modified algorithm
does produce biases for coastal and Polar Regions of the
order of 10 Wm�2, whereas, globally, there is a less than
1 Wm�2 bias and an 18 Wm�2 random error. Comparison
of the modified Zhou-Cess algorithm with LWA and LWB
for clear sky fluxes shows that the modified algorithm has
smaller bias for continental region than both LWA and
LWB. The modified algorithm does however have larger
systematic bias in the coastal and desert areas. The global
mean bias is smaller probably due to cancellation of positive
and negative biases. The random error of 18.5 Wm�2 is
slightly higher than those of LWA (17. 7 Wm�2) and LWB
(16.8 Wm�2).
[21] Table 2 compares the bias and random error of the

modified Zhou-Cess algorithm to those of the original
algorithm as well as LWB for cloudy sky fluxes (including
partly cloudy cases). The results in Table 2 show that
the major improvement for cloudy sky flux also occurs at
Polar Region. The bias is reduced from �46.6 Wm�2 to
�0.89 Wm�2. There is also a modest improvement for the
continental areas, though the bias is slightly larger for
coastal and desert regions. Globally, the bias is 1.2 Wm�2

with a random error of 23.6 Wm�2. Comparing cloud
sky flux with those of LWB (note that LWA only
computes clear sky flux), we find that the modified
algorithm performs slightly better in continental, polar,
desert, and island regions while only slightly worse in
coastal areas.

Figure 6. Scatterplots of SDLW computed using original
Zhou-Cess algorithm versus ground measurements stratified
for clear sky (Area_clr > 99.9%), water cloud (LWP >
5 gm�2), and ice cloud (LWP < 5 gm�2, IWP>1 gm�2)
conditions for Terra satellite.
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[22] Similar results for all sky fluxes (clear plus cloudy
cases) are shown in Table 3. The modified algorithm shows
improvements over original algorithm for most geograph-
ical regions in systematic error, except for coastal and
island regions. Meanwhile, the random error is reduced
for every region. The modified Zhou-Cess algorithm has
slightly smaller systematic bias than LWB for all the
regions except for the coastal region, which still has a

systematic bias of 6.6 Wm�2. The global mean bias of all
sky fluxes is 1.1 Wm�2, and the random error is
23.0 Wm�2, slightly better than LWB. Although the
Zhou-Cess algorithm and LWB are very different algo-
rithms, we have observed that the random errors of both
models are fairly close to each other for each geographical
region. This might be related with the spatial temporal
collocation of satellite measurements with ground measure-

Figure 7. Scatterplots of SDLW computed using modified Zhou-Cess algorithm versus ground
measurements for different scene types for Terra satellite from March 2000 to December 2004.
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ments and the uncertainties associated with satellite
retrieved cloud parameters, i.e., cloud fraction used in both
algorithms. According to Dong et al. (X. Dong et al.,
Comparison of CERES-MODIS stratus cloud properties with
ground-based measurements at the DOE ARM Southern
Great Plains site, submitted to Journal of Geophysical
Research, 2007), there is about 30–50% of uncertainty of
CERES-derived LWP in comparison with ground radar
and lidar-based observations at ARM SGP site. The IWP
retrieval could also be biased for 30% by neglecting
multilayer cloud in the current one-layer cloud retrieval

algorithm for multilayer clouds [Huang et al., 2005]. The
above estimates of errors/biases in the CERES cloud
property retrievals are based on ARM SGP data. There is
limited knowledge over other geographical regions. The
errors and uncertainties in these cloud parameters can
contribute to large standard deviations in the derived
fluxes.
[23] Despite the overall good performance, there are still

a few noticeable drawbacks with the current algorithm.
First of all, this algorithm is empirically derived, and the
exact regression coefficients are subject to the specific
training data set. Uneven sampling and errors in the
training data set will to be carried into the algorithm. We
noticed that the algorithm seems to overestimate at very
low SDLW (<100 Wm�2) and underestimate at very high
SDLW (>420 Wm�2) (Figure 7). This may partly be due to
small number of samples and measurement errors associ-
ated with extreme cases in the training data set. The slight
positive bias for low SDLW is dominated by comparison in
the Polar Region which is notorious for challenging even
the best cloud retrieval algorithms. The other reason may
be due to a fixed linear relationship between SDLW and
SULW. From the lower panel of Figure 2, we have seen
that the ratio of SDLW/SULW increases with increasing
column water vapor so that the fixed slope of SULW in our
algorithm is partly compensated by the PWV term. How-
ever, the algorithm’s treatment of SULW and PWV as
independent terms might have limited coupling between
SULW and PWV at extreme conditions and hence limited
its dynamic range.
[24] There are also a few regions or stations that present

quite large biases. It is found that the large bias of coastal
area mainly comes from the COVE (Chesapeake light
house, 36.90�N, 75.71�W) site which has a positive bias
of 18.6 Wm�2. A few other sites, namely, Fort Peck (FPK,
48.31�N, 105.10�W), Sioux Falls (SXF, 43.73�N,
96.92�W), Payerne (PAY, 46.82�N, 6.95�E), and the
South Pole (SPL) also have systematic bias larger than
10 Wm�2. The causes for the large biases in these sites
may be related with specific conditions of the sites and
should be examined individually.
[25] Gupta et al. [2004] found that systematic bias of

LWB varies with instrument network and day-night skin
temperature bias. To rule out that some of the systematic
bias might be due to instrument setup, we computed the

Figure 8. Scatterplots of SDLW computed using modified
Zhou-Cess algorithm versus ground measurements stratified
for clear sky (Area_clr > 99.9%), water cloud (LWP >
5 gm�2), and ice cloud (LWP < 5 gm�2, IWP > 1 gm�2)
conditions for Terra satellite from March 2000 to December
2004.

Table 1. Error Statistics of Longwave Clear Sky Fluxes Computed From Zhou-Cess Algorithm (Original and

Modified), LWA and LWB Against Surface Measurements for Aqua Satellite From July 2002–March 2005

Sites Original Modified

LWA LWB# of Points Zhou-Cess Zhou-Cess

Continental Bias Wm�2 (%) 6.71 (2.38) �0.16 (�0.06) �4.48 (�1.59) �6.93 (�2.46)
5012 s Wm�2 (%) 20.9 (7.4) 16.6 (5.9) 15.8 (5.6) 15.4 (5.5)
Coastal Bias Wm�2 (%) 16.66 (5.84) 10.03 (3.52) 4.92 (1.72) �0.15 (�0.05)
609 s Wm�2 (%) 17.8 (6.3) 14.8 (5.2) 12.9 (4.5) 13.2 (4.6)
Polar Regions Bias Wm�2 (%) �137.0 (122.0) 10.45 (9.30) �16.0 (14.30) �8.83 (�7.88)
903 s Wm�2 (%) 34.5 (30.7) 11.1 (9.9) 11.0 (9.9) 11.0 (9.9)
Desert Bias Wm�2 (%) �1.68 (�0.53) �7.12 (�2.27) �0.41 (�0.13) �5.15 (�1.64)
1640 s Wm�2 (%) 24.4 (7.8) 23.9 (7.6) 22.8 (7.3) 21.1 (6.7)
Island Bias Wm�2 (%) 9.31 (2.47) 2.92 (0.77) �0.75 (�0.20) �0.77 (�0.20)
138 s Wm�2 (%) 10.3 (2.7) 12.6 (3.3) 12.0 (3.2) 13.8 (3.6)
Global Bias Wm�2 (%) �9.81 (�3.61) 0.42 (0.15) �4.18 (�1.54) �6.19 (�2.28)
8302 s Wm�2 (%) 41.4 (15.3) 18.5 (6.8) 17.7 (6.5) 16.8 (6.2)
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biases grouped with different network. Table 4 shows no
discernible trends in systematic biases between different
networks. The ARM instruments have smaller random
error because four out of five instruments are clustered
in the ARM SGP site. The BSRN instruments have the
largest random error due to varied geographical locations
of the measurements. The small systematic bias should not
be contributed to instruments themselves.
[26] The systematic differences between daytime and

nighttime biases, however, are found for all sky fluxes
from both Terra and Aqua platforms (Table 5). The revised
algorithm 4 overestimates the daytime SDLW by 3–
4 Wm�2 and underestimates nighttime SDLW by 2–
3 Wm�2. This might be related to the use of skin
temperature estimates. The original algorithm uses 2-m
air temperature which is more closely related to the lower
atmosphere and hence the SDLW. Another problem of Tskin
or 2-m temperature arises in regions of anomalous temper-
ature lapse rate. For example, desert regions can have
super-adiabatic lapse rates so 2-m temperature overesti-
mates the effective emission level temperature. Conversely,
temperature inversions are common for high latitude
regions so 2-m temperature may underestimate the effective
emitting temperature. An investigation is currently under-
way at NASA Langley Research Center to use a con-
strained surface temperature in the CERES surface
radiation product since all of the LW models tend to

overestimate the surface downward LW radiation for cases
where the surface temperatures are significantly higher
than the air temperatures. The modified skin temperature
(or constrained temperature) might help reduce the day-
night bias and also the overall bias in this algorithm and
others.

3.5. Tibet Site

[27] Besides the Polar Region, the Tibet plateau repre-
sents another kind of special conditions (low temperature,
low humidity, and low atmosphere mass) due to its high
elevation. This special condition leads to high shortwave
radiation and low longwave radiation. Yang et al. [2006]
have found that current satellite products have much larger
negative biases in LW in Tibet (40 Wm�2) than in other
regions. It is natural to examine whether the new algorithm
will work in such special conditions. More importantly,
Tibet is a key region for Asian monsoon, and the summer
heating over the plateau is strongly related to the onset and
withdraw of the Asian monsoon. A validated radiation
product for studies of Tibet heating is much desired by
Tibet research community.
[28] Since coincident surface radiation measurements and

CERES SSF data are very rare, which makes direct valida-
tion impossible at this time, we have used an indirect
method to demonstrate that our revised algorithm works
well in high altitude regions, such as Tibet. First, we show

Table 2. Error Statistics of Longwave Cloudy Sky Fluxes Computed Using Zhou-Cess Algorithm (Original,

Modified) and LWB Against Surface Measurements for Aqua Satellite From July 2002–March 2005

Sites Original Modified

LWB# of Points Zhou-Cess Zhou-Cess

Continental Bias Wm�2 (%) �7.42 (�2.33) 0.61 (0.19) �3.38 (�1.06)
21117 s Wm�2 (%) 28.0 (8.8) 22.6 (7.1) 22.4 (7.0)
Coastal Bias Wm�2 (%) 1.80 (0.52) 6.00 (1.72) 2.51 (0.72)
3302 s Wm�2 (%) 21.2 (6.1) 18.5 (5.3) 19.0 (5.4)
Polar Regions Bias Wm�2 (%) �46.63 (�20.17) �0.89 (�0.39) �6.17 (�2.67)
17663 s Wm�2 (%) 50.6 (21.9) 23.6 (10.2) 25.0 (10.8)
Desert Bias Wm�2 (%) 8.19 (2.42) 9.67 (2.85) 11.88 (3.51)
4170 s Wm�2 (%) 28.1 (8.3) 27.7 (8.2) 28.8 (8.5)
Island Bias Wm�2 (%) 0.58 (0.14) 0.95 (0.23) 5.71 (1.39)
6729 s Wm�2 (%) 13.5 (3.3) 12.5 (3.0) 14.8 (3.6)
Global Bias Wm�2 (%) �17.67 (�5.80) 1.20 (0.39) �1.59 (�0.52)
52981 s Wm�2 (%) 40.1 (13.2) 23.6 (7.8) 24.4 (8.0)

Table 3. Error Statistics of Longwave All Sky Fluxes Computed Using Zhou-Cess Algorithm (Original, Modified)

and LWB Against Surface Measurements for Aqua Satellite From July 2002–March 2005

Sites Original Modified

LWB# of Points Zhou-Cess Zhou-Cess

Continental Bias Wm�2 (%) �4.71 (�1.51) 0.46 (0.15) �4.06 (�1.31)
26129 s Wm�2 (%) 27.2 (8.7) 21.6 (6.9) 21.3 (6.8)
Coastal Bias Wm�2 (%) 4.12 (1.21) 6.63 (1.95) 2.10 (0.62)
3911 s Wm�2 (%) 20.9 (6.1) 18.1 (5.3) 18.4 (5.4)
Polar Regions Bias Wm�2 (%) �51.03 (�22.64) �0.34 (�0.15) �6.30 (�2.79)
18566 s Wm�2 (%) 51.6 (22.9) 23.3 (10.3) 24.8 (11.0)
Desert Bias Wm�2 (%) 5.40 (1.63) 4.93 (1.48) 7.08 (2.13)
5810 s Wm�2 (%) 27.5 (8.3) 27.4 (8.3) 27.3 (8.2)
Island Bias Wm�2 (%) 0.76 (0.19) 0.99 (0.24) 5.58 (1.36)
6867 s Wm�2 (%) 13.5 (3.3) 12.5 (3.1) 14.8 (3.6)
Global Bias Wm�2 (%) �16.61 (�5.54) 1.09 (0.36) �2.22 (�0.74)
61283 s Wm�2 (%) 41.1 (13.7) 23.0 (7.7) 23.5 (7.8)
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that our revised algorithm produces a significant improve-
ment over dry, cold conditions while making little changes
under other conditions. This is done by comparing the
original Zhou-Cess algorithm with LWB and the revised
Zhou-Cess algorithm with LWB for January 2005 and
July 2005, respectively, over a validation subset on Tibet
plateau (89�E–90�E, 33�N–34�N). Here we used LWB,
which is also used in the GEWEX SRB effort, as a
surrogate for surface measurements. The upper panel of
Figure 9 shows a comparison between the old model and
LWB in cross symbol, and a comparison between the
revised model and LWB in square symbol. As we can
see, for cold, dry January conditions, the comparison
between the revised model and LWB is much improved
over the comparison between the old model and LWB. In
contrast, the lower panel of Figure 9 shows results for
warmer, somewhat wetter July conditions, where little
difference is seen among the old model, the new model,
and LWB regardless of the altitude.
[29] Next, we show that the LWB results compare quite

well with the surface measurements at the Tibet site and
thus represent surface measurements in Figure 9. Since
the only surface data available for the Tibet site, which
were also coincident with CERES measurements, were for
the warmer, somewhat wetter months from late May
through September 1998 during GEWEX Asian Monsoon
Experiment–Tibet [GAME-Tibet, Koike et al., 1999], we
have instead shown a comparison between LWB derived
fluxes and that surface measurements from Naqu, Tibet
(91.54�E, 31.38�N) (Figure 10). At first glance, the
comparison appears to have more RMS than what is
considered ideal; however, it is noted that the scatter of
points in the upper part of the plot is due to relatively
high skin temperatures in relation to near surface air
temperatures. This is a known problem, which often
occurs over areas such as desert in the summer and the
Sea of Japan in winter, and which will be addressed in
CERES Edition 3. The slightly negative bias is an artifact
of the surface being at an altitude which is significantly
lower than the grid box altitude [Yang et al., 2006]. This

means that LWB is calculating a surface flux which is
over 300 m higher than the surface site, which should
cause the negative bias. The conclusion is that LWB
represents surface measurements reasonably well over
the Tibet site.
[30] Together, these results suggest that the revised Zhou-

Cess algorithm is an improvement over the old model for
cold, dry conditions while making little changes under other
conditions, and there seems to have no systematic bias
associated with high elevations as demonstrated with Tibet
data. Of course, the performance of the algorithm will rely
highly on the accuracy of input parameters such as surface
temperature and column water vapor as with other long-
wave algorithms.

4. Conclusions and Discussions

[31] An improved version of Zhou-Cess algorithm has
been formulated which avoids the large errors in the SDLW
at low water vapor conditions by adding an offset to the
logarithmic water vapor term. The new algorithm also

Table 4. Biases of Longwave All Sky Fluxes Computed Using

Zhou-Cess Algorithm Compared With Surface Measurements

Stratified With Observational Network

Platform ARM SURF BSRN CMDL

Terra Bias Wm�2 1.1 2.9 �3.1 0.5
s Wm�2 17.6 22.2 26.2 21.2

Aqua Bias Wm�2 2.7 0.9 �0.2 �1.1
s Wm�2 18.8 22.6 27.6 21.1

Table 5. Biases of Longwave All Sky Fluxes Computed Using

Zhou-Cess Algorithm Compared With Surface Measurements

Stratified With Observational Time

Platform Daytime Nighttime

Terra Bias Wm�2 4.9 �3.4
s Wm�2 15.7 24.3

Aqua Bias Wm�2 3.5 �2.3
s Wm�2 20.9 24.2

Figure 9. Comparisons of SDLW computed by original
(cross) and modified (square) Zhou-Cess algorithms versus
LWB for January (upper panel) and July (lower panel)
2005, respectively, over a Tibet validation site located at
(33–34�N, 89–90�E).
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utilizes cloud fraction and cloud liquid and ice water paths
available from the CERES SSF product to separately
compute the clear and cloudy portions of the flux. The
new algorithm has been validated for the Terra and Aqua
satellites against surface measurements at 29 stations around
the globe. The results show significant improvement over
the original version and are comparable or slightly better
than the more complicated algorithms currently imple-
mented in the CERES processing. Preliminary tests also
suggest that the new algorithm works quite as well for high
elevation locations such as Tibet site. This revised version
of the Zhou-Cess algorithm will be incorporated into the
CERES operational processing.
[32] The SDLW fluxes generated for the CERES SSF

should be an instantaneous product with input from
instantaneous satellite retrieved cloud parameters and
PWV derived from meteorological products. The accuracy
of the algorithm will depend on these input parameters. It
is mostly applicable to producing maps of the surface
radiation budget rather than for determining accurate
variability or trends over time. The latter would require
very stable, well-calibrated input of PWV, LWP, IWP.
The current algorithm assumes a fixed linear relationship
between SDLW and SULW, which seems to allow smaller
dynamic range of SDLW than those of observed
SDLW. A better training data set with high quality input
data and more coverage of extreme dynamic range
may help improve the algorithm if such data set is
available.
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