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A

Zn(CsMes), + MesCOH R [Zn(OCMej),], + 2CsMesH
(excess)

B

an(ns-C5M95)2 + ME3COH E—— [Zn(OC M93)2]X + Zn + 2C5Me5H

(excess)

Fig. 4. Reactions of Zn(C;Meg), (A) and Zn,(n>-C Me,), (B) with Me,COH.

The alkoxide has been additionally identified
by comparison of its infrared, 'H, and '*C{'H}
NMR spectra with those of an authentic sample
prepared from Zn(C,H;), and Me,COH (22).

The synthesis of compound 1 suggests
that related complexes of Cd and Hg could
be isolated. It also seems plausible that the
stabilization of the [Zn—Zn]?" unit does not
require the existence of Zn—C bonds, which
means that classical coordination com-
pounds of the Zn,?>* central unit are rea-
sonable targets for future synthetic and
structural studies.
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surface in this regard is well known (7).
Ocean temperature anomalies can be pre-
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Furthermore, the atmosphere responds par-
ticularly strongly (and predictably) to
ocean temperature anomalies in certain re-
gions—in “hot spots” of ocean-atmosphere
coupling. The eastern equatorial Pacific is
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the most famous oceanic hot spot, playing a
key role in the El Niflo—La Niiia cycle (3).

Another potentially useful slowly varying
component of the Earth system is soil mois-
ture, which can influence weather through its
impact on evaporation and other surface en-
ergy fluxes. Soil moisture anomalies can per-
sist for months (4), and although a paucity of
observations prevents an unambiguous dem-
onstration of soil moisture impacts on precip-
itation (5), such impacts are often seen in
atmospheric  general circulation model
(AGCM) studies (6, 7). Indeed, some AGCM
studies suggest that in continental midlati-
tudes during summer, oceanic impacts on
precipitation are small relative to soil mois-
ture impacts (8).

This suggests a question: Are there spe-
cific locations on the Earth’s surface for
which soil moisture anomalies have a sub-
stantial impact on precipitation? The identi-
fication of such hot spots would have impor-
tant implications for the design of seasonal
prediction systems and for the associated de-
velopment of ground-based and satellite-
based strategies for monitoring soil moisture,
if such impacts were found to be local. In a
broader sense, such identification is critical
for understanding Earth’s climate system and
the limits of predictability therein.

Although AGCM studies (9—12) and even
numerical weather prediction model studies
(13) have addressed this question, published
results are based on different experimental
designs and reflect distinctive features of dif-
ferent model parameterizations. The coupling
question, however, was recently addressed en
masse by a dozen AGCM groups (/4), all
performing the same highly controlled nu-
merical experiment. The experiments were
coordinated by GLACE, the Global Land-
Atmosphere Coupling Experiment (/5). Each
model contributing to GLACE generated sev-
eral ensembles of boreal summer (June
through August) simulations designed to
quantify that model’s land-atmosphere cou-
pling strength (/6) for that season. By com-
bining the results across these models, we
eliminate much of the undesired individual
model dependence. We obtain, in effect, a
unique result: a multimodel average depiction
of the global distribution of land-atmosphere
coupling strength. Given the limitations of
the observational data, both now and in the
foreseeable future, such a multimodel esti-
mate of coupling strength distribution is ar-
guably the best estimate attainable.

Each GLACE participant performed an
ensemble of 16 simulations in which soil
moisture varied between the simulations, and
another ensemble in which the geographical-
ly varying time series of subsurface soil
moisture was forced to be the same across the
16 simulations (/7). Coupling strength—the
degree to which all prescribed boundary con-
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ditions affect some atmospheric quantity
X——can be estimated (/8) for each of the two
ensembles with the diagnostic ()

Q = (160%_ - — 0%)/150% (D)

where o2, is the intraensemble variance of X
and o?_ . is the corresponding variance of
the ensemble-mean time series—the single
time series generated by averaging across the
16 ensemble members at each time interval,
chosen here to be 6 days. We are interested,
of course, in precipitation; to reduce noise,
however, we take X to be the natural loga-
rithm of the precipitation. Performing statis-
tics on the logarithms of precipitation is a
common practice in hydrology and meteorol-
ogy, because unmodified precipitation distri-
butions tend to be highly skewed (19, 20).
A study of the equation shows that outside
of sampling error, () should vary from 0 to 1,
with higher values implying a higher impact
of the atmosphere’s boundary conditions on
precipitation. To isolate soil moisture’s im-
pact on precipitation from that of all other
forcings, such as time-varying ocean temper-
atures and the seasonal variation of solar
radiation, we compute the difference in the ()
values between the two ensembles. In simple
terms, this () difference approximates the
fraction of the precipitation variance ex-
plained by variations in soil moisture alone.
Figure 1 shows the global map of the ()
difference averaged across all of the partici-
pating models in GLACE. This multimodel
estimation of land atmosphere coupling
strength reveals several distinct hot spots.

REPORTS

Hot spots appear in the central Great Plains of
North America, the Sahel, equatorial Africa,
and India. Less intense hot spots appear in
South America, central Asia, and China.

The positions of the hot spots are not
unexpected (8, 21), particularly if the soil
moisture influence is presumed to be local
rather than remote. Consider first that in wet
climates, for which soil water is plentiful,
evaporation is controlled not by soil moisture
but by net radiative energy. This is illustrated
in Fig. 2, which shows how the () difference
diagnostic, applied to evaporation rather than
precipitation, varies (on average) with soil
moisture. The () difference—the fraction of
the evaporation variance explained by soil
moisture variations—is indeed lowest when
soil moisture is high. Because evaporation in
wet climates is not highly sensitive to soil
moisture variations, precipitation should not
be sensitive to them, either.

Now consider that in dry climates, evap-
oration rates are sensitive to soil moisture
but are also, of course, generally small, as
demonstrated for the models by the dashed
curve in Fig. 2. Intuitively, small evapora-
tion rates should have a limited ability to
affect precipitation. The atmosphere in dry
regions is, in any case, predisposed to limit
precipitation. Only in the transition zones
between wet and dry climates, where the
atmosphere is amenable to precipitation
generation [in particular, where boundary-
layer moisture can trigger moist convection
(22)] and where evaporation is suitably
high but still sensitive to soil moisture, can

Land-atmosphere coupling strength (JJA), averaged across AGCMs
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Fig. 1. The land-atmosphere coupling strength diagnostic for boreal summer (the Q difference,
dimensionless, describing the impact of soil moisture on precipitation), averaged across the 12
models participating in GLACE. (Insets) Areally averaged coupling strengths for the 12 individual
models over the outlined, representative hotspot regions. No signal appears in southern South

America or at the southern tip of Africa.

1139



1140

REPORTS

we expect soil moisture to influence pre-
cipitation. The major hot spots shown lie
mainly in such transition zones (23).

The insets in the map (Fig. 1) show that
not all of the GLACE models place hot
spots in the regions indicated. In North
America, for example, only half of the
models show a statistically significant (24)
coupling strength in the outlined region.
The 12 models agree slightly more in the
Sahelian and Indian hotspot regions; nev-
ertheless, throughout the world, there exists
extensive intermodel variability in the
strength and positioning of the hot spots, a
reflection of ongoing uncertainty in the
proper way to represent the physical pro-
cesses defining land-atmosphere coupling
strength. Indeed, some of the models show-
ing a small coupling strength in the insets
also show a low coupling strength every-
where else on the planet. The intermodel
variability highlights the importance of the
averaging process leading to Fig. 1. The
insets support the idea, stated above, that
any single-model analysis of coupling
strength will provide model-specific re-
sults. The patterns revealed by the averag-
ing process are valuable because they show
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Fig. 2. Average relationship between soil wet-
ness (the degree of saturation in the soil) and
two separate aspects of the land-surface ener-
gy budget: the () difference for evaporation
(solid curve, in dimensionless units) and the
average evaporation rate (dashed curve, in cm/
day). Both aspects should have suitably high
values to allow soil moisture anomalies to be
translated into precipitation anomalies; the
plot shows that this mostly occurs for interme-
diate values of soil wetness, i.e., in the transi-
tion zones between wet and dry climates. The
curves are derived by averaging the soil wet-
ness, () difference, and evaporation fields
across the 12 models, constructing scatter plots
for the two relationships with data from non-
ice land points, and then binning the data ac-
cording to soil wetness value.

where many independent models agree that
the land-atmosphere coupling is important.

The plotted hot spots indicate where a
global initialization of soil moisture may en-
hance precipitation prediction skill during
Northern Hemisphere summer (25, 26). Un-
der the assumption that the soil moisture
impacts are predominantly local, the hot
spots indicate where the routine monitoring
of soil moisture, with both ground-based and
space-based systems, will yield the greatest
return in boreal summer seasonal forecasting.
The hot spots are, in a sense, land-surface
analogs to the ocean’s “El Nifio hot spot” in
the eastern tropical Pacific.
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