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ABSTRACT

Using the same satellite observations as in Part I of this paper, the authors explore ways to remove the cloud
albedo bias (or plane parallel albedo bias), the difference between the plane parallel homogeneous albedo and
the average albedo of independent pixels, in regions similar in size to climate model grid boxes.

Scaling regional mean optical depths with the reduction factor of R. F. Cahalan et al. provides albedos close
to the independent pixel values. Computed albedos approach the independent pixel values within 0.01 for ;40%
of the regions tested and give standard deviations ;0.02–0.04. Fitting lognormal distributions to the observed
optical depth distributions gives albedos within 0.01 of the independent pixel values more than 70% of the time,
with standard deviations ;0.02–0.06. Gamma distributions are less successful than lognormal distributions,
giving acceptable results (average bias ;0.01–0.02, standard deviation ;0.05–0.08) only when their parameters
are estimated from the maximum likelihood estimates method. The poor performance of the gamma distribution
when the method of moments is used for parameter estimation (as H. W. Barker et al. did) is attributed to the
presence of high optical depth values in our retrieved fields.

To apply any of the above corrections in GCMs, quantities that are not presently provided by these models
are required. The reduction factor and ‘‘gamma IP’’ method require the mean logarithm of optical depth, whereas
the lognormal method also requires the variance. The authors suggest a parameterization of these quantities in
terms of mean optical depth and cloud fraction, variables available in most GCMs. The albedos resulting from
the parameterized versions of the correction methods are still much closer to the independent pixel values than
the albedos of the plane parallel homogeneous assumption. Although the ‘‘lognormal IP’’ gives the best overall
performance, it requires knowledge of two logarithmic moments and numerical integration. It may therefore
prove more appealing for observational than modeling applications.

1. Introduction

The difference between the albedo calculated assuming
horizontally homogeneous cloud properties and that ob-
tained by averaging independent pixel calculations,
termed the plane parallel albedo bias (PPH bias), has been
shown in a companion paper by Oreopoulos and Davies
(1998) to be very significant when evaluated from rep-
resentative satellite data and applied to regions similar
in size to the grid scale of general circulation models
(GCMs). This confirms similar results obtained by Ca-
halan et al. (1994) and Barker et al. (1996), who used
more limited datasets, and indicates a need to more ac-
curately account for the radiative effects of the subgrid-
scale variability of cloud liquid water. The radiation
schemes of existing GCMs (Barker 1996) typically un-
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derestimate cloud water content in order to obtain realistic
radiation budgets, so that a more detailed treatment of
subgrid-scale variability should also yield better consis-
tency between the radiative and hydrologic treatment of
cloud water content.

The magnitude of the observed PPH bias and the im-
plications of this for GCM parameterization motivate the
search for its reduction. This paper explores two avenues
that lead to a reduced bias, especially for large-scale mod-
el applications. The first is the ‘‘effective thickness ap-
proximation’’ (ETA) of Cahalan et al. (1994) (hereafter
CRWBS). The second is the ‘‘approximate IP’’ method,
wherein optical depth frequency distributions are fitted
with analytic functions, as was done recently by Barker
et al. (1996, hereafter BWP), who used only one such
function and tested it on a limited Landsat dataset. Here,
we compare and extend the application of the ETA and
approximate independent pixel (IP) techniques, using
again the large Advanced Very High Resolution Radi-
ometer (AVHRR) dataset of Oreopoulos and Davies
(1998, hereafter OD98).
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2. Dataset and methodology

The dataset used in this study is the same as that used
by OD98. It consists of AVHRR local area coverage
(LAC) observations (1.1-km resolution at nadir) from the
NOAA-11 polar orbiter, which cover the geographical re-
gion of the Atlantic bounded by the 98 and 458N latitude
circles and 198 and 588W meridians. More details about
this dataset can be found in OD98 and in Oreopoulos
(1996). The AVHRR scan lines (2048 pixels) were divided
to 300-pixel-long segments viewed by the radiometer at
near-nadir, medium, and oblique angles (both in the for-
ward- and backscattering directions) as explained in OD98.
The names of the various segments of the scanline are
‘‘nadir’’, ‘‘fsmv’’ (forward scattering, medium views),
‘‘fsov’’ (forward scattering, oblique views), ‘‘bsmv’’
(backward scattering, medium views), and ‘‘bsov’’ (back-
ward scattering, oblique views). The total number of pixels
analyzed was 1.5 3 108, but most of the results that will
be shown here are from the nadir segment (;3 3 107

pixels). Solar zenith angles for the nadir dataset are be-
tween 538 and 788 (a frequency distribution of solar zenith
angles for the complete dataset is given in OD98). For
illustration purposes, we also show some results for the
six Landsat scenes used in OD98.

Detection of cloudy pixels, retrievals of optical depth
(t) distributions for both AVHRR and Landsat, and the
limitations of our method are described in OD98. The
cloud optical depths and albedos for AVHRR correspond
to 0.63 mm and those for Landsat to 0.83 mm. The albedo
bias B of a region is defined as the difference between the
albedo of the approximate method (PPH, ETA, ‘‘approx-
imate IP’’) and the IP albedo, for the cloudy pixels of the
region

B 5 Rap 2 Rip, (1)

where

N

iRO `pp
i51

R 5 5 R(t, u )p(t) dt, (2)ip E 0N
0

where N is the number of cloudy pixels in the region,
is the plane parallel albedo of the ith pixel, R(t, u0)iRpp

is the planar albedo, u0 is the solar zenith angle, and p(t)
is the normalized probability density function (PDF) of
optical depth. Equation (2) implies that regional albedo
can be calculated by averaging plane parallel calculations
over individual pixels (columns). That is, in the indepen-
dent pixel approximation (IPA) pixels are assumed to be
radiatively isolated from each other. When Rap 5 Rpph we
obtain the standard definition of albedo bias as in CRWBS
and BWP. The PPH albedo is calculated from

Rpph 5 R(t , u0), (3)

where t is the mean optical depth of the region

N

tO `i
i51t 5 5 tp(t) dt. (4)EN 0

The albedo definitions for ETA and approximate IP are
given later. Most of the results that are shown in the fol-
lowing sections are albedo biases that are averaged over
many regions of a certain size. These are either straight
averages given by

M

BO j
i51B̂ 5 (5a)

M

or weighted averages given by

M

A BO cj j
j51

B̂ 5 , (5b)CF M

AO cj
j51

where M is the number of regions with nonzero cloud
fraction Ac. Sometimes the absolute bias |Bj| is inserted in
Eq. (5).

For AVHRR there are two sets of albedo biases: those
calculated from optical depths retrieved without account-
ing for atmospheric effects (‘‘no atm’’) and those calcu-
lated from optical depths retrieved with the atmospheric
effects of a standard LOWTRAN 7 maritime atmosphere
included (‘‘atm’’). Details are given in OD98; we should
point out here, however, that all albedo biases shown here-
after refer to the cloud top and not the top of the atmo-
sphere (TOA). No atmospheric effects were considered in
the Landsat retrievals (as in Harshvardhan et al. 1994).

3. Effective thickness approximation

The analysis and understanding of albedo bias is some-
times facilitated by expressing the dependence of albedo
on logt, rather than directly on t. CRWBS demonstrated
the various advantages of this approach. Particularly in-
sightful was the expansion of the albedo R about the mean
logarithm of the optical depth distribution logt . Defining
x 5 so that 5 log CRWBS obtainedlogt2logt10 , logt (x t ),
the mean (IP) albedo of the distribution as

R 5 Rip ø 1 · · · ,R(xt ) 1 M R0(xt )/22 (6)

where M2 is the variance of logt and the primes indicate
derivatives of R with respect to logt evaluated at t 5

. Note that averaging over all pixels eliminates the firstx t
derivative term and higher-order odd logarithmic mo-
ments, and that the average albedo is equal to the albedo
at an effective optical thickness if the variance andx t
higher-order moment terms can be neglected. The essence
of the ETA is therefore that Rip ø Reta [ R( when thex t )
product M2R0( is very small. Obviously, when thex t )/2
scene is homogeneous M2 5 0 and x 5 1. The ETA is
expected to give albedos close to the IPA when the vari-
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FIG. 1. Albedo of the C.1 cloud as a function of the logarithm of
optical depth for solar zenith angles of 08 (solid curve) and 608
(dashed curve).

FIG. 2. Average reduction factors x0 and x and variance M2 of logt
for all cloudy (55 km)2 areas of the nadir no atm dataset within mean
optical depth bins of variable width.

ability of the optical depth field is small or when the
logarithmic curvature R0 is small—that is, when the albedo
is an almost linear function of logt.

Figure 1 shows the albedo of the C.1 cloud model (Deir-
mendjian 1969) used in OD98 as a function of logt for
solar zenith angles of 08 and 608. The range of t for which
the logarithmic curvature is close to zero depends on solar
zenith angle. Barker (1996) suggested that the second de-
rivative approaches zero when 5 # , wherex t /m # 150

m0 is the cosine of the solar zenith angle. However, since
it is the product of curvature and variance that is important,
the effectiveness of the ETA can vary even among optical
depth distributions with the same t . Ultimately, of course,
the desired accuracy in albedo is the main factor that de-
termines the suitability of the ETA for the specific problem
at hand.

Here, a new reduction factor, x0, is defined as a measure
of cloud inhomogeneity:

21R (R ) t̃ip
x 5 5 # 1. (7)0 t t

This is the ratio of the optical depth that gives the IP
albedo over the mean cloud optical depth. By definition,
the albedo calculated at is the IP albedo. In general,tx 0

the smaller x0, the greater the cloud inhomogeneity. This
reduction factor is expected to be close to that of CRWBS
when conditions permit the omission of the second deriv-
ative and higher-order terms in Eq. (6) (low logarithmic
variance and/or near-zero curvature). Note that, in prin-
ciple, both reduction factors can be computed only when
the complete t distribution is known, in which case the
PPH bias would also be known. Thus, the reduction factors
would be useful for removing the PPH bias only if they
could be obtained with sufficient accuracy from more lim-

ited information through, for example, a parameterization
(this is examined in section 5). However, at least for x,
such a parameterization would be helpful for albedo cor-
rections only if ETA conditions occur frequently in ob-
served cloud distributions. This can be examined by com-
paring x with x0.

The average x0, x, and M2 within variable width bins
of t are plotted in Fig. 2 for (55 km)2 (50 3 50 pixels)
areas of the nadir no atm dataset. Note that the variance
increases monotonically with optical depth and that, in
agreement with theory, the two reduction factors are close
for low variance and for optical depths associated with the
low logarithmic curvature region of the albedo curve [R0
ø 0 in Eq. (6)]. The observations show that these two
requirements often work together—that is, the bins of in-
termediate optical depth also exhibit small variance. For
high values of optical depth the cloud albedo becomes
insensitive to optical depth and large reductions in mean
optical depth (small reduction factors) are needed to match
the IP albedo. The reduction factors reported here are sig-
nificantly smaller than the ones reported by CRWBS,
which were based exclusively on observations of single-
layer marine stratocumulus clouds. CRWBS recognized,
however, that smaller reduction factors are expected for
most cloud types other than stratocumulus. Since the pres-
ent dataset is temporally and spatially extensive, it contains
a wide variety of cloud types, structures, and microphysics,
so smaller reduction factors come as no surprise.

When the reduction factors of regions that satisfy the
‘‘Barker criterion’’ 5 # # 15 are compared, thex t /m0

agreement is very good (Fig. 3). The two reduction factors
keep a constant average difference of about 0.01 and cor-
relate well (r ø 0.99) for all region sizes. Thus, the Barker
criterion appears to be a robust criterion for applying the
ETA.

The extensive agreement between the reduction factors
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FIG. 3. Average reduction factors as a function of region size for
all cloudy regions of the nadir no atm dataset that satisfy the Barker
criterion 5 # x t /m # 15.0

FIG. 4. Average ETA (solid and dotted curves) and PPH (dashed
curves) biases as a function of region size for the nadir segment. The
dotted curves are absolute biases. Squares are for the no atm and
diamonds for the atm case.

FIG. 5. Average ETA biases as a function of region size (in pixels)
for the various segments of the scan line. All results are for the no
atm case.

in Fig. 2 is an indication that ETA should perform well
on average for the AVHRR dataset. Indeed, the B̂ results
for the nadir segment confirm this (Fig. 4). Here, B̂ for
ETA maintain values smaller than 0.01 for all region sizes
of both the atm and no atm datasets, and are thus much
lower than the corresponding PPH biases (also plotted in
Fig. 4). The absolute ETA biases (dotted curves) suggest
that canceling errors somewhat enhance the performance
of the ETA, but the standard deviations are only ;0.02–
0.04 (not shown), implying that the ETA albedo rarely
deviates from the IP albedo by a large amount. The prox-
imity of the averages calculated from Eq. (5a) to the
weighted averages calculated from Eq. (5b) (not shown)
suggests that the performance of ETA does not depend on
the regional cloud amount.

The low ETA biases for the current AVHRR dataset
are explained by the low logarithmic variance for the op-
tical depths associated with nonzero logarithmic curva-
ture—that is, the small optical depths. Moreover, the ETA
apparently performs adequately for the large optical depths
too, because cloud albedo is not very sensitive to t vari-
ability (especially at the large solar zenith angles of the
dataset) and because the scaled optical depths fre-x t
quently assume moderate values (due to the low values
of x). The lower quality of ETA for the atm case is due
to the higher logarithmic variances associated with this
dataset (see OD98). ETA also succeeds when applied to
off-nadir data as evidenced by Fig. 5. Errors are in general
less than 0.01—much smaller than the corresponding PPH
biases (shown in OD98).

The above results are in disagreement with the results
of BWP, who found ETA biases larger than PPH biases
for broken stratocumulus and scattered cumulus. BWP,
however, did not use CRWBS’s exact definition x 5

10 of the reduction factor, but a modified definitionlogt2logt

appropriate for gamma distributions fitted to the observed
PDFs. Part of the disagreement may have therefore been
due to deviations of the observed PDFs from gamma
PDFs. Still, the main reason for the poor ETA results in
the BWP study is the apparent presence of high variances
at low optical depths when this type of boundary layer
cloud is observed with a very high resolution sensor. In-
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FIG. 6. PPH and approximate IP biases for the six Landsat scenes
used to study the resolution effect in OD96. The distribution param-
eters were calculated with the method of moments.

deed, we also found very large discrepancies between x0

and x for the four Landsat scenes of OD98 containing
broken clouds. On the other hand, there was excellent
agreement for the two overcast stratocumulus scenes,
which were very homogeneous (note their small PPH bi-
ases in OD98) with reduction factors above 0.9.

4. The ‘‘approximate IP’’ method

a. Rationale

The working assumption in the approximate IP method
is that the IP albedo can be computed from the integral
of Eq. (2), but with the observed PDF of optical depth
p(t) replaced by a PDF generated from a theoretical func-
tion. If the theoretical function can be calculated using
simple statistical information extracted from the observed
distribution and provides a good fit, then relatively ac-
curate albedos can be calculated without complete knowl-
edge of the optical depth field. In practice, however, the
real problem is to find the theoretical distribution that gives
the best IP albedo when integrated with the reflectance
function (Eq. 2): it is possible for a theoretical distribution
that systematically overestimates and underestimates dif-
ferent frequencies of optical depth to give good IP albedos
due to cancellation of errors.

The distributions tested here are the gamma (g), the
beta (b), and the lognormal (ln) [see Eq. (8) later]. The
parameters of these functions can be easily calculated from
the observed distributions with the method of moments
[where relationships for the distribution parameters are
obtained by equating sample moments to population mo-
ments (Wilks 1995)], and their flexibility in taking a va-
riety of shapes makes them strong candidates as fits of

optical depth distributions. The theoretical aspects of ap-
plying the g distribution for albedo calculations have been
explored by Barker (1996) and its application to Landsat
observations has been presented by BWP. Barker showed
that albedo computations for the gamma PDF can be very
efficient since the integral of Eq. (2) has a closed form
solution for the generalized two-stream reflectance func-
tion of Meador and Weaver (1980), in both cases of con-
servative and nonconservative scattering. The beta distri-
bution has been used successfully by Falls (1974) and
Karner and Keevallik (1993) to fit observed cloud cover
distributions of a variety of shapes but to our knowledge
has never been used to fit optical depths. CRWBS showed
that the 18-day average distribution of liquid water path,
derived from a microwave radiometer on San Nicolas Is-
land during FIRE, closely followed a lognormal distri-
bution. They did not however use this distribution for
albedo calculations.

b. Application to observations

The three approximate IP albedos are calculated from
the integral (2) by inserting one of the following dis-
tributions in place of p(t):

1) the g-distribution,

g211 t t
p (t) 5 exp 2 , (8a)g 1 2 1 2G(g)a a a

where a 5 t /g and g 5 (t /s)2, s is the standard
deviation of the observed PDF, and G is the gamma
function;

2) the b-distribution,

j211 G(j 1 h) t 2 tminp (t) 5b 1 2(t 2 t ) G(j)G(h) t 2 tmax min max min

h21
t 2 tmin3 1 2 , (8b)1 2t 2 tmax min

where h 5 [(1 2 x)/ ][x(1 2 x) 2 ], j 5 xh/2 2s sx x

(1 2 x), and x , are the mean and variance, re-2s x

spectively, of x 5 (t 2 tmin)/(tmax 2 tmin); and
3) the ln-distribution,

1 1
2p (t) 5 exp 2 (lnt 2 m) , (8c)ln 2[ ]2sstÏ2p

where m and s are the mean and standard deviation,
respectively, of lnt .

Thus, the theoretical distributions and their corre-
sponding approximate IP albedos can be calculated from
the method of moments with knowledge of only the
regional mean and variance of t or its logarithm. Figure
8b shows typical shapes of these functions obtained
from the moments of AVHRR optical depth PDFs dis-
cussed in detail later.

Figure 6 shows the PPH and approximate IP albedo
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FIG. 7. Average approximate IP biases as a function of region size
for the nadir no atm dataset. The corresponding PPH bias is also
shown.

biases for the clouds of the six (58 km)2 Landsat scenes
used in OD98. Note that the validity of the IPA for such
a high-resolution (28.5 m) dataset (especially for optical
depth retrievals) is questionable, as discussed in Or-
eopoulos (1996). The reason is that such pixels are usu-
ally optically narrower than they are deep, and the dom-
inance of horizontal over vertical radiative transfer vi-
olates the assumption of isolated pixels. However,
Chambers et al. (1997) argue that despite the significant
errors for individual pixel retrievals, PDFs are not much
affected. While this is a topic of ongoing research, the
IPA-retrieved PDFs nevertheless appear to be well de-
scribed by the theoretical distributions of Eq. (8): all
approximate IP biases are much smaller than the PPH
biases, with the exception of the ‘‘b IP’’ bias for scene
40. The good performance of the ‘‘g IP’’ is in agreement
with the findings of BWP.

Figure 7 shows the average biases B̂ of the three
approximate IPs for the no atm dataset. The correspond-
ing PPH bias is also shown for comparison. Both the g
IP and b IP do not perform well and underestimate the
IP cloud albedo by about the same amount (which is
somewhat larger than the overestimate by PPH). On the
other hand, the ‘‘ln IP’’ approximates very well the true
IP albedo. Cancellation of albedo overestimates and un-
derestimates plays only a minor role in the success of
the ln IP. This is evidenced by the average of the ab-
solute lognormal biases, which is still #0.01 for all
region sizes (not shown). However, the standard devi-
ations range from 0.02 to 0.04 (they decrease with re-
gion size) and are larger than those of ETA (especially
for small region sizes).

For the atm case (not shown), the ln IP underestimated
Rip by less than 0.01 for all region sizes, but the other

two theoretical distributions produced average biases
very close (in absolute values) to PPH. The absolute ln
IP biases were always less than 0.02 and the standard
deviations less than 0.06. Very similar qualitative be-
havior was found for the off-nadir data: the g IP and b
IP gave biases comparable to PPH and the ln IP albedos
were in excellent agreement with Rip. Whether the anal-
ysis is carried out on an equal pixel number or equal
area basis (explained in OD98) does not affect these
conclusions.

The poor performance of the b and g distributions
was not anticipated, in view of their success in the Land-
sat scenes (Fig. 6) and several GAC scenes we examined
in a preliminary pilot study. The g IP in particular gave
very good results for 45 Landsat scenes of BWP. One
of the reasons the g and b distributions fail for the
current dataset is that a large number of regions contain
extreme (high) optical depths, which despite represent-
ing only a small fraction of pixels, rapidly raise the
optical depth variance. The high optical depths distort
the shape of the theoretical distributions when the meth-
od of moments is used for parameter estimation.

An illustration of this effect is given in Fig. 8a, which
shows the observed and approximate distributions (from
the method of moments) for a 150 3 150 pixel array
of the nadir no atm dataset. The shape of the b and g
distributions does not resemble the shape of the ob-
served (and lognormal) distribution since the method of
moments gives j , 1 and g , 1 resulting in concen-
tration of probability near zero for both distributions
(Wilks 1995) and a large error in albedo (see caption).
However, when the ;0.4% of the pixels with optical
depths greater than 100 are excluded from the calcu-
lations, the g and b distributions acquire ‘‘nonzero’’
modes (j . 1 and g . 1), as a result of the standard
deviation dropping below t , and agree more with the
observed distribution (Fig. 8b). This yields g IP and b
IP albedos much closer to the true IP albedo (see cap-
tion). Both the true IP and ln IP albedos are relatively
unaffected by the truncation of the optical depth distri-
bution to values less than 100. While the neglected pix-
els contribute significantly to the mean optical depth,
their contribution to the mean albedo is not as large
since the albedo is already near saturation for t ø 100.
This explains the small change in true IP. The small
change in ln IP albedo after truncation is due to the fact
that the mean and variance of lnt remain close to their
original values.

When albedo bias calculations are repeated with all
t . 100 pixels neglected, the g IP and b IP give much
smaller biases (Fig. 9). However, the PPH biases also
drop significantly from their initial values (Fig. 4). This
is consistent with the conclusion of OD98, who noted
that a large fraction of the PPH bias was due to ex-
tremely high optical depths inferred from a plane par-
allel radiative transfer model under conditions of low
solar illumination. These large optical depths (repre-
senting ;2% of the pixels for the nadir segment) sig-
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FIG. 8. (a) Observed and theoretical optical depth distributions for a 150 3 150 pixel region selected from the nadir no atm dataset. All
pixels with t . 100 have been included in one bin. The region has Ac 5 0.981, u0 5 62.28, t 5 12.84, s 5 19.05, m 5 2.222, and s2 5
0.659; calculated cloud albedos are Rip 5 0.601, Rpp 5 0.671, Rg 5 0.460, Rb 5 0.460, and Rln 5 0.599. (b) As in (a) but pixels with t .
100 were excluded from the distribution and the calculation of the PDF statistics. Here, t 5 12.02, s 5 9.57, m 5 2.210, and s2 5 0.624;
calculated cloud albedos are Rip 5 0.599, Rpp 5 0.658, Rg 5 0.586, Rb 5 0.573, and Rln 5 0.596.

FIG. 9. Average PPH and approximate IP biases as a function of
region size for the nadir no atm (solid curves, open symbols) and
atm (dotted curves, solid symbols) cases when all pixels with t .
100 are neglected.

nificantly increase the apparent cloud field variability
and render the b and g distributions incapable of cap-
turing the shape of the observed distributions. However,
it will be shown later that, at least for the gamma dis-
tribution, this problem can be largely eliminated by
avoiding the method of moments for parameter esti-
mation.

An additional reason that makes the failure of the b
and g IPs look so conspicuous in Fig. 7 is the occasional
occurrence of extreme deviations from the true IP. An
alternative way of evaluating the quality of the approx-
imate IPs is to calculate their ‘‘success ratios,’’ defined,
for example, as the fraction of regions (in %) for which
they give biases lower than PPH, or the fraction of
regions for which they approach the exact IP (from
above or below) within 0.01. These results are shown
in Table 1.

The g IP and b IP biases are lower than the PPH
biases for a significant number of regions, but the quality
of their performance drops as area size increases because
of the associated increase in the likelihood of including
extreme optical depths. There is no such systematic
trend for the ln IP. However, even for the cases where
the g IP and b IP are better than PPH, their average
biases are still quite large (not shown). For regions larg-
er than (55 km)2, these two approximations approach
the IP to within 0.01 only for the few cases where the
PPH bias is also small—that is, for relatively homo-
geneous regions. This is shown in Fig. 10 for the g IP.
When only the areas with x0 . 0.7 are kept, the g IP
and b IP work better than PPH at most times (see Table
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TABLE 1. Percentage of regions of various sizes for which the different approximate IP methods either perform better than PPH or approach
the IP albedos within 0.01. Two cases are examined: one where all data are used (all data) and one where all regions with x0 # 0.7 are
excluded. These results refer to the nadir no atm dataset.

|Approximate IP bias|
, PPH bias

20.01 , Approximate
IP bias , 0.01

Region
size
(km)

All data

g b ln

x0 . 0.7

g b ln

All data

g b ln

x0 . 0.7

g b ln

55
110
165
220
275
330

74.3
59.8
51.6
45.8
42.5
37.9

67.9
54.5
46.2
40.8
39.3
34.0

94.3
97.2
97.9
98.7
99.4
99.3

94.2
90.7
85.6
85.8
89.7
82.9

85.6
82.5
77.8
78.3
82.4
73.0

93.0
96.6
97.3
98.0

100
98.7

46.8
29.8
20.8
15.8
12.3
9.9

38.9
23.6
15.9
12.7
9.6
7.3

86.5
84.7
83.3
80.5
81.6
77.3

74.1
60.0
50.5
47.3
40.2
35.5

60.7
48.2
40.8
41.1
34.1
30.2

96.1
98.0
98.6
98.7

100
100

FIG. 11. Average g IP biases as a function of region size for both
the no atm and atm cases of the nadir dataset (squares), when the
parameters of the g distribution are calculated from the MLE method.
The absolute biases are also shown (diamonds).

FIG. 10. Average g IP and PPH biases for the nadir no atm dataset
when the g IP gives smaller biases than the PPH (solid curves, open
symbols) and when the g IP approaches the true IP within 0.01
(dashed curves, solid symbols).

1) but are still far less successful than the ln IP. Thus,
the poor showing of the g IP and b IP in Fig. 7 is only
in part due to contributions from complete failures; it
also reflects their frequent failure in the presence of
anomalously high optical depths.

The performance of the g IP can be improved without
rejection of pixels with high optical depth by calculating
the parameters of the g distribution with the method of
maximum likelihood estimates (MLE) instead of the
method of moments. MLE seeks values of the distri-
bution parameters that maximize the likelihood function
(Wilks 1995). The procedure follows from the notion
that the likelihood is a measure of the degree to which
the data support particular values of the parameters.
Thus, the maximum likelihood estimators are consid-
ered the most probable values of the parameters, given
the observed data (Wilks 1995). Unfortunately, this
method is impractical to apply to the b distribution

(Falls 1974; Karner and Keevallik 1993; Wilks 1995),
so the MLE is applied to the current dataset only for g
IP calculations.

MLE values of g are obtained from (Wilks 1995;
BWP):

d lnG(g)
1 lnt 2 lng 2 m 5 0. (9)

dg

Wilks provides the following approximate solution:

1 1 Ï1 1 4y/3
g̃ 5 , ã 5 t̃ /g̃, (10)

4y

where y 5 lnt 2 m. Thus, with the MLE the g distri-
butions can be calculated with knowledge of only t and
m (both calculated as before). Figure 11 shows the av-
erage biases of the g IP when the parameters of the g
distribution are calculated from the MLE. There is a
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TABLE 2. Intercept (A), slope (B, C), and correlation coefficients (r) of Eq. (11) for various region sizes, determined from the Simplex
method: (a) The no atm optical depths, and (b) the atm optical depths.

Region
size
(km)

m

A B C r

s2

A B C r

a
55

110
165
220
275
330

20.069
20.083
20.081
20.094
20.088
20.084

0.578
0.522
0.498
0.487
0.482
0.479

0.599
0.698
0.734
0.738
0.733
0.748

0.935
0.926
0.925
0.918
0.919
0.918

0.086
0.027
0.022
0.015

20.020
20.045

0.555
0.590
0.586
0.590
0.590
0.580

20.648
20.570
20.514
20.466
20.405
20.324

0.829
0.870
0.889
0.894
0.908
0.906

b
55

110
165
220
275
330

20.506
20.547
20.582
20.626
20.615
20.611

0.612
0.566
0.557
0.554
0.549
0.545

0.846
0.948
0.987
0.979
0.968
0.984

0.934
0.925
0.926
0.918
0.918
0.917

0.913
0.895
0.865
0.913
0.836
0.768

0.557
0.565
0.574
0.572
0.579
0.571

21.169
21.066
20.961
20.901
20.785
20.640

0.780
0.809
0.824
0.819
0.828
0.824

vast improvement over the g IP from the method of
moments (Fig. 7), since the relationship that gives the
g shape parameter involves only logarithmic quantities,
which are much less sensitive to the presence of extreme
optical depths. The g IP still does not perform as well
as the ln IP; for example, it gives substantially larger
absolute biases and standard deviations (;0.05–0.06 for
no atm and ;0.07–0.08 for atm). However, the g IP
could in some cases be chosen over the ln IP since it
requires knowledge of only the mean logarithm of t ,
while the latter also requires the variance. Comparable
improvement in performance is also obtained for the
other scan line segments (not shown).

5. A parameterization

In the previous two sections we have shown that the
ETA of CRWBS, the ln IP, and the MLE g IP can
provide approximate IP albedos close to the true IP
albedos. However, incorporation of any of these cor-
rection methods in a GCM may be hampered not only
by the low liquid water amounts of present GCMs, but
also by the unavailability of diagnostics for the mean
and variance of lnt . The first quantity is required for
both ETA and g IP calculations, while both quantities
are required for ln IP calculations. Thus, direct appli-
cation of any of these correction methods does not seem
feasible, unless m and s2 are parameterized in terms of
quantities provided by large-scale models such as t and
Ac. A parameterization following this concept was at-
tempted by BWP—they expressed g of Eq. (8a) as a
nonlinear function of cloud fraction and obtained par-
ameterized g IP albedos, which remained reasonably
close to the IP values. In this study, the quantities to be
parameterized are the first two moments of lnt . We
found that parameterizations in terms of both t and Ac

gave much better results than single variable parame-
terizations. The parameterization we finally adopted has
the following form:

q 5 A 1 B lnt 1 CAc, (11)

where q 5 m or s2. The coefficients A, B, C were de-
termined from the Simplex method (Press et al. 1986)
and are given in Table 2 (along with the correlation
coefficient r).

As can been seen from Table 2, the parameterization
works better for m (r . 0.9) than s2 (r . 0.78). The
goodness of the fit was found to depend on region size
(number of pixels) and to differ between the atm and
no atm datasets (s2 for atm produces worse fits than no
atm). The approximate IP biases derived from the par-
ameterized moments of lnt are shown in Fig. 12. The
curves plotted are the simple and weighted averages,
determined from Eqs. (5a) and (5b), for both the atm
and no atm datasets (lower set of curves). The corre-
sponding absolute averages (upper set of curves) are
also plotted. In these calculations, only the regions
where the parameterization gave positive values of s2

and g, and x values between 0 and 1 (more than 95%
of the regions for all sizes) were considered.

The parameterization works quite well overall, giving
biases much lower than the PPH assumption for all three
methods. The performance in all three cases is com-
parable, with differences depending on whether the atm
or no atm dataset was used, and on whether the aver-
aging was weighted or nonweighted. The ETA does not
appear very sensitive to the type of averaging and seems
to perform slightly better than the other two. The ln IP
and g IP average biases do not depend significantly on
the dataset used (for nonweighted averaging). The ln IP
performs well considering that it requires the parame-
terization of both m and s2. In general, weighting the
biases by cloud fraction erodes the performance (prob-
ably because for overcast regions the parameterization
has only mean optical depth as the independent vari-
able). The standard deviations (not shown) are slightly
larger than the average absolute biases shown in Fig.
12; the high values of these two quantities indicate a
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FIG. 12. (a) Average biases of the parameterized ETA for the no
atm (squares) and atm (diamonds) datasets. The upper set of curves
are the averages of the absolute biases. Solid symbols correspond to
weighted averages. (b) As in (a) but for the ln IP. (c) As in (a) but
for the MLE g IP.

significant cancellation of errors. Thus, the fitted ver-
sions of the three correction methods are successful only
in an average sense and do not necessarily provide good
local albedos at a given instant.

In conclusion, GCMs using the above type of param-
eterization could be able to remove a great fraction of
the PPH albedo bias by using only mean optical depth
and cloud fraction information. Of course, the param-
eterization introduced here should be further tested with
more extensive satellite observations. Most likely, it can
be improved by stratifying the data by solar zenith angle,
cloud fraction, and optical depth. It should be under-
lined, however, that such an empirical parameterization
of optical depth variability is only one of the possible

approaches climate modelers may wish to consider. It
is perhaps more physically sound for climate models to
explicitly represent the processes that produce hetero-
geneous clouds. Results obtained by turbulence closure
and large eddy simulation models can prove useful in
this respect.

6. Conclusions

As discussed by Harshvardhan and Randall (1985),
Barker (1996), CRWBS, and OD98, the inability of cur-
rent GCMs to allow for subgrid water variability forces
them to use cloud liquid water amounts lower than ob-
served to counteract inflated TOA albedos due to the
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PPH assumption. This study used the same satellite ob-
servations as OD98 to investigate two methods that
GCM modelers may find useful in their effort to achieve
better TOA albedos with realistic cloud water amounts.
The first simply applies a scaling factor to the mean
cloud optical depth to yield albedos close to the IP val-
ues. It was shown that the effective thickness approx-
imation of CRWBS provides a reduction factor (cal-
culated from the mean logt) that is quite successful.
The second method assumes that cloud optical depth
distributions can be fitted by theoretical functions when
the first two moments of the optical depth PDF are
known. The lognormal distribution was found to be very
successful in this regard, while the gamma distribution
gave good results only when its parameters were cal-
culated with the MLE method.

The range of optical depths over which the effective
thickness approximation is valid appears somewhat
broader than originally expected. This is attributed to
the small variance in logt at low optical depths (where
the approximation would otherwise break down), to the
small values of x at large optical depths, and possibly
to some canceling of error when biases are averaged.
ETA albedos were within 0.01 of the IP values at least
40% of the time for the no atm dataset, within 0.02 of
IP at least 50% of the time for the atm dataset, and
standard deviations ranged from ;0.02 to ;0.04. The
exact numbers depend on region size. Due to the greater
apparent variability of the atm optical depth fields (as
shown in OD98), performance was better for the no atm
dataset.

Of the three theoretical distributions used to fit the
observed distributions of optical depth, the gamma and
lognormal proved the most useful in approximating the
IP albedo. The gamma distribution gave average biases
;0.01–0.02 with standard deviations 0.05–0.08, while
the lognormal had average biases of almost zero and
smaller standard deviations (0.02–0.06). The beta dis-
tribution should be rejected for this task, even though
it is the distribution with the widest variety of possible
shapes. The reason is that parameter estimation with the
method of moments can be very inaccurate in the pres-
ence of outlier optical depths, while maximum likeli-
hood estimation requires a large computational effort.
Despite the fact that the lognormal is clearly superior
to the gamma distribution, implementation of the latter
in a climate model may be more practical. The g IP
calculations would be computationally more efficient
since the albedo can be expressed in a closed form for
the generalized two-stream albedo function (as shown
by Barker 1996). Also, only t and m need to be known
(when the MLE is used) for the distribution to be de-
fined; in contrast, the ln IP requires knowledge of both
m and s2, and more time-consuming numerical integra-
tion.

Based on these results, we suggest that quantities such
as m, s2, and x0 should be added to the list of observables
for satellite sensors. Climatologies of the first two would

allow estimates of x, further comparisons among ETA,
g IP, ln IP, and exact IP albedos, and development of
parameterizations in terms of known variables [as in Eq.
(11)]. These comparisons should help us identify with
greater confidence which method is more appropriate
for the task at hand. The appropriate data resolution for
building such a climatology is an issue open to debate.
Too high a resolution (such as Landsat) while allowing
for more accurate cloud detection pushes the limits of
the IPA. On the other hand, for certain types of clouds
such as fair weather cumulus, the AVHRR resolution
may render the assumption of pixel homogeneity du-
bious and yield underestimates in horizontal cloud water
variability (see OD98).

This study showed that the ln IP has the best overall
performance, but the computational burden may restrict
its usefulness to only satellite applications. For example,
recovery of regional albedos would require storing only
the first two logarithmic moments of t , and not the entire
PDF. For GCM applications the ETA and g IP appear
more attractive. The ETA would be extremely simple
to apply in a climate model provided m is available.
However, further measurements of x0 and comparisons
with x (at appropriate solar zenith angles) are needed
to identify how often and for which cloud regimes the
ETA is appropriate.

There are several other considerations that affect the
choice of correction method. While the primary con-
sideration is that the average albedo be unbiased, the
method should also yield a realistic spatial variability
and be valid for both broadband and visible albedos.
The ETA, for example, has the lowest standard devia-
tion, suggesting that ETA albedos rarely deviate much
from true IP albedos, satisfying the main requirements.
It is not obvious, however, that the broadband absorp-
tance corresponding to a scaled optical depth would be
close to the IP absorptance. Further cloud and radiation
modeling will also help to more accurately delineate the
limits of the IPA in optical depth retrieval and albedo
calculations. While the IPA corrects first-order effects
of horizontal cloud variability it does not provide ac-
curate fluxes for all types of clouds and solar geometries.
The recent development of extensions of the IPA such
as the ‘‘tilted’’ IPA (Várnai 1996) and the nonlocal IPA
(Marshak et al. 1995) may provide a theoretical frame-
work to bridge the gap between complex 3D and IP-
type approaches. However, since current GCMs still
have too coarse a resolution to meaningfully include 3D
cloud structure, it is reasonable to consider in many
situations the IPA as the benchmark of accuracy.
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