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ABSTRACT

Several studies have uncovered a break in the scaling properties of Landsat cloud scenes at nonabsorbing
wavelengths. For scales greater than 200–400 m, the wavenumber spectrum is approximately power law in k25/3,
but from there down to the smallest observable scales (50–100 m) follows another k2b law with b . 3. This
implies very smooth radiance fields. The authors reexamine the empirical evidence for this scale break and
explain it using fractal cloud models, Monte Carlo simulations, and a Green function approach to multiple
scattering theory. In particular, the authors define the ‘‘radiative smoothing scale’’ and relate it to the characteristic
scale of horizontal photon transport. The scale break was originally thought to occur at a scale commensurate
with either the geometrical thickness Dz of the cloud, or with the ‘‘transport’’ mean free path lt 5 [(1 2 g)s]21,
which incorporates the effect of forward scattering (s is extinction and g the asymmetry factor of the phase
function). The smoothing scale is found to be approximately ltDz at cloud top; this is the prediction of diffusionÏ
theory which applies when (1 2 g)t 5 Dz /lt * 1 (t is optical thickness). Since the scale break is a tangible
effect of net horizontal radiative fluxes excited by the fluctuations of t, the smoothing scale sets an absolute
lower bound on the range where one can neglect these fluxes and use plane-parallel theory locally, even for
stratiform clouds. In particular, this constrains the retrieval of cloud properties from remotely sensed data. Finally,
the characterization of horizontal photon transport suggests a new lidar technique for joint measurements of
optical and geometrical thicknesses at about 0.5-km resolution.

1. Introduction and overview

Imagery from the Land Resources Satellite System
(Landsat) has supplied the remote sensing community
at large with a reliable cost-effective tool for studying
the earth’s environment over the past decades. Appli-
cations range from prospection geology to urban de-
velopment and, in most cases, the occurrence of clouds
in Landsat scenes is considered a nuisance. Recently,
however, atmospheric scientists have developed a strong
interest in this instrument. It is well calibrated and boasts
unusually high spatial, spectral, and radiometric reso-
lutions by meteorological standards:

● the five-channel Multi-Spectral Scanning (MSS,
Landsat 1-3) radiometer resolved features at 80 m
with 7 bits of dynamic range; and
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● the seven-channel Thematic Mapper’s (TM, Landsat
4-5) pixels are only 30 m wide and 8 bits deep.

Both instruments are almost linear in nadir-viewing
radiance. Scores of Landsat completely or partially
cloudy scenes have thus been acquired, mainly for the
purposes of characterizing cloud morphology. One of
the most remarkable properties of Landsat cloud scenes
is their statistical ‘‘scale invariance:’’ quantities depen-
dent on a scale parameter ‘‘r’’ follow power laws over
a large range of values of r.

Two main types of scale-by-scale statistical analysis
have been applied to cloudy Landsat data: joint area–
perimeter distributions for ensembles of individual
clouds, defined by some threshold in radiance or bright-
ness temperature (Welch and Wielicki 1986; Welch et
al. 1988; Cahalan and Joseph 1989; Sèze and Smith
1990), and spectral analysis of the 2D image (Cahalan
and Snider 1989; Lovejoy et al. 1993; Barker and Davies
1992; Gollmer et al. 1994). We are primarily interested
in the latter: wavenumber spectrum E(k), which is es-
sentially a scale-by-scale decomposition of variance as
captured by Fourier modes, where the wavenumber k
5 1/r goes from 1/L, L being the outer scale of the
image, to the Nyquist frequency 1/(2,), , being the pixel
size. For Landsat radiance fields, , 5 30 m (TM) or 80



242 VOLUME 54J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 1. Portion of a Landsat TM image in channel 2 (0.52–0.60 mm). This 123 km 3 123 km scene was
captured at , 5 30 m resolution on 30 June 1987, off the coast of San Diego, California, during FIRE.
These 40962 ø 1.6 3 107 Landsat pixels show only a small portion of an extensive marine Sc deck. Some
17% of the pixels are saturated at gray level 255, mostly on the rhs.

m (MSS) and E(k) is found to be approximately power
law:

E(k) ; k2b, (1)

with an exponent b ø 5/3. However, this applies only
over a subrange of k; at scales smaller than some critical
scale, generally around 0.2–0.4 km, the spectrum be-
comes much steeper, with b * 3 (Cahalan and Snider
1989).

In the following section, we survey the literature on
the Landsat scale break and present new empirical ev-
idence. In section 3, we present Monte Carlo simula-
tions, scale break included, of Landsat-type radiometry
based on randomly generated fractal cloud models (de-
scribed and justified in the appendix). We also assess
the sensitivity of the scale break to structural parameters
of the models. By introducing the appropriate Green
functions in section 4, we relate the scale break to hor-
izontal photon transport in section 5 and use Brownian
motion (photon diffusion) theory to explain this con-

nection. Applications to cloud property retrievals from
both passive and active remote sensing methods are dis-
cussed in section 6 before being summarized in section
7.

2. The Landsat scale break

a. Observations

1) THE FOURIER-SPACE PICTURE

Figure 1 is a typical Landsat cloud scene, a 123 km
3 123 km portion of a TM image, 40962 pixels (16
Mbytes of data). It was captured 30 June 1987, during
the First ISCCP Regional Experiment (FIRE) off the
coast of San Diego, California, and clearly illustrates
the intricate structure of a marine stratocumulus (Sc)
deck that extends far beyond this area.

Figure 2 shows an energy spectrum E(k) plotted
against scale r 5 1/k in log–log axes; the 2048 leftmost
columns in Fig. 1 were used, thus avoiding the saturated
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FIG. 2. Energy spectrum of half the radiance field in Fig. 1. To
avoid saturation effects, only the lhs of the image is used where only
8% of the pixels have a value of 255; EI(k) was averaged over 2048
columns for r 5 1/k going from 2, 5 60 m to L 5 4096, ø 123
km. The scale break is clearly seen at r ø 200 m. Digitization noise
appears at the very smallest scales and at the expected level of (1/48)/
2562 ø 1026.5 below the well-defined level of variance for the largest
scales (1026.5; this is the variance of a deviate uniformly distributed
between 0 and 0.5/256). The bold dots correspond to octavewide bins
in k. A reference spectrum in k25/3 is indicated and the inset shows
Cahalan and Snider’s (1989) original figure showing a more noisy
energy spectrum. Since it is based on only a few transepts through
another Landsat image from the FIRE database.

regions on the rhs. By using over 8 3 106 data points,
the statistical noise is low enough that we can see at
least two distinct scale breaks: one at 0.2–0.4 km and
one at ø20 km. Between these two limits, power law
behavior prevails with an exponent b ø 2 in Eq. (1).
For reference, a b 5 5/3 law is shown on the same plot;
this is the prediction of Corrsin’s (1951) and Obukhov’s
(1949) phenomenology for a passive scalar in fully de-
veloped 3D turbulence, as well as Kraichnan’s (1967)
prediction for 2D turbulence.

The transition from b ø 2 to b ø 0 at 20 km marks
the integral scale for marine Sc during FIRE and agrees
with Davis et al.’s (1996a) estimate using in situ liquid
water content (LWC) probings of the same type of
cloud. This break is required on physical grounds to
keep the overall variance finite, and because radiance
is a nonnegative field the amplitude of its fluctuations
cannot exceed its mean; simply put, the statistical sig-
nificance of this break is that there are correlations in
cloud structure up to 20 km and none above. However,
Cahalan and Snider (1989) saw no flattening up to 100
km in their liquid water path (LWP) data from ground-
based microwave radiometry, so this break in the scaling

of Landsat radiances may be influenced by saturation
effects.

The transition to smoother behavior at scales of
0.2–0.4 km is the subject of this study; we will denote
the characteristic transition scale hrad and call it the
‘‘radiative smoothing scale.’’ The best fit to Eq. (1)
between 70 and 180 m (over 1000 k) yields b ø 3.4,
but we cannot rule out an exponential cutoff. The inset
in Fig. 2 reproduces Cahalan and Snider’s original en-
ergy spectrum showing the scale break. At the very
smallest scales, we detect the presence of white (b 5
0) digitization noise.

2) THE PHYSICAL-SPACE PICTURE

The robust feature at 0.2–0.4 km can be apprehended
from another statistical vantage point, this time in phys-
ical space. Let w(x) ∈ [0, 255] be the grayscale value,
approximately proportional to nadir-viewing radiance,
of the Landsat pixel at x 5 (x, y) ∈ [0, L 2 1]J[0, L
2 1], where we adopt a unit of length where pixel size
, 5 1, hence outer-scale L 5 4096. Following Monin
and Yaglom (1975), we consider the ‘‘increment’’ [w(x
1 r) 2 w(x)] over r 5 (r cos u, r sin u). Fields with
b , 1 are stationary (‘‘statistically’’ homogeneous) in
the sense that their statistical properties are invariant
under translation in x. If b . 1, this statistical invariance
is generally violated, the field being nonstationary per
se; however, if b , 3, its increments are stationary.
Spatial averages are only meaningful for stationary
quantities.

In statistically isotropic situations, the ‘‘structure
function’’ or ‘‘semivariogram’’ ^[w(x 1 r) 2 w(x)]2& is
a function of r 5 zrz alone; this function Dw(r) is related
to the energy spectrum by a Wiener–Khinchin theorem
(e.g., Monin and Yaglom 1975):

`

D (r) 5 2 [1 2 cos 2pkr]E (k) dk. (2)w E w

0

The power law in Eq. (1) can be substituted into the
above as long as b ∈ (1, 3), yielding

2 2H2D 5 ^[w(x 1 r) 2 w(x)] & ; r (3)w

with

b 2 1
H 5 ∈ (0, 1). (4)2 2

[The subscript 2 used here refers to the fact that we are
considering only a second-order statistic, as opposed to
^zw(x 1 r) 2 w(x)zq& with any real q.] For instance,
energy spectra in k 2 5/3 are in Fourier duality with struc-
ture functions in r2/3. If the field is stationary (i.e., b ,
1, with some small-scale cutoff to avoid infinite vari-
ance), then Eq. (2) yields Dw(r) 5 constant 1 correction
term in 1/r12b, thus H2 5 0 in Eq. (3). If the field is at
least once differentiable (b $ 3), then Eq. (3) leads in
theory to H2 5 1.
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FIG. 3. Structure function for half the radiance field in Fig. 1. The
same data as in Fig. 2; DI(r) was averaged over 2048 columns for
12 values of r, from , 5 30 m to L/2 5 2048, ø 62 km by factors
of 2. A reference trend in r2/3 corresponding to E(k) } k25/3 is indicated.

Equations (3) and (4) have a consequence that is im-
portant in the sequel: w(x 1 r) and w(x) must generally
be close if r is relatively small (cf. the appendix). In
other words, large jumps between almost neighboring
pixels are at best a rare occurrence. Following usage in
the statistical literature, we will refer to this property as
‘‘stochastic continuity.’’

We have computed Dw(r) for r/, 5 1, 2, 4, ··· , 2048
5 (L/,)/2, where , 5 30 m using the same data as for
Fig. 2 in the same manner, namely, analyzing the 2048
leftmost columns in Fig. 1, treating each one as a 1D
field and averaging. The results are plotted versus r on
log–log axes in Fig. 3, where the scale break is again
apparent. The empirical value for the slope 2H2 ø 0.95
is compatible with Eq. (4) for b ø 2.0, given the typical
uncertainties on such exponents (60.05). The transition
to stationary behavior (slope ø 0) is observed at the
integral scale. The transition to smooth behavior at hrad

is also seen; however, due to finite size effects and noise
the small-scale slope assumes a spurious value smaller
than 2 (which in theory corresponds to the differentiable
case, b $ 3 and H2 5 1).

b. Explanations

1) PHYSICAL THEORIES

Cahalan and Snider (1989) noted that the smoothing
scale is close to the nominal geometrical thickness Dz

ø 200–400 m for marine Sc, recalling that Dz is more
or less the size we expect for a convection cell. Fur-
thermore, it is conceivable that the prevailing turbulent
dynamics unfold in 3D below this scale and in 2D above
this scale where, according to Kraichnan’s (1967) phe-

nomenology, an inverse (small-to-large eddy) enstrophy
cascade predicts a k25/3 spectrum. However, we have
shown elsewhere (Davis et al. 1994, 1996a) that in situ
probings of LWC fluctuations in marine Sc are scale
invariant from a few tens of meters to a few tens of
kilometers; no special behavior occurs at cloud-thick-
ness scale nor at that of the whole boundary layer. This
makes a dynamical mechanism that controls internal
cloud structure an unlikely explanation for the Landsat
scale break.

Cahalan and Snider also point to a possible connec-
tion between hrad and the mean free path (MFP), ^s&21,
where ^s& ø 40 km21 is the mean value for extinction.
This quantity is estimated empirically from the mean
optical thickness ^t& 5 ^s&Dz ø 13, as obtained from
their passive microwave radiometry. To correct for the
effects of forward scattering, we can use the ‘‘transport’’
MFP: lt 5 [(1 2 g)^s&]21 ø 150 m ø 0.5Dz, where g
ø 0.85 is the usual asymmetry factor value for cloud
droplet phase functions. If we use the most probable
value of t (ø 6) instead of the mean, lt would be about
twice as large (øDz). The importance of lt stems from
the fact that we generally expect radiance to be insen-
sitive to small fluctuations of extinction at scales much
smaller than a transport MFP. This is because lt is ef-
fectively the MFP for a single isotropic scattering, as
opposed to ø(1 2 g)21 more or less forward ones. In
other words, after traveling one transport MFP a photon
has ‘‘forgotten’’ its original position and direction. Note
that the transport MFP idea is relevant only if Dz/lt 5
(1 2 g)^t& * 1, that is, one or more effectively isotropic
scatterings occur for most photons. [Interestingly, our
multiple scattering approach exposed in sections 3–5
shows that radiance indeed decorrelates from optical
depth but at a somewhat larger scale, close to the har-
mopic mean of lt and Dz, and this is readily explained
within the diffusion approximation to radiative transfer.]

2) STATISTICAL THEORIES

Lovejoy et al. (1993) also sketch two explanations
for the Landsat scale break that preserve the scaling of
both cloud structure and the associated radiation fields.
The authors first remark that the Landsat radiometer
frequently saturates in cloudy scenes, the gray level is
255 (TM) or 127 (MSS) over large clusters of pixels
and argue that this can cause a spurious scale break. In
our Fig. 1, 17% of the pixels are indeed saturated and
this ratio can reach as much as a third of all pixels, as
in the rhs of Fig. 1. However, the data on the lhs used
to obtain the statistics in Figs. 2 and 3 is only 7.6%
saturated, and the numerical experimentation presented
below shows that saturation affects the proportionality
factor in Eq. (1), not the exponent nor the range of
scales, at least within a large class of models with b
. 1.

Second, Lovejoy et al. recall that scale invariance is
only a statistical symmetry of the data and that every
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FIG. 4. Energy spectra of scale-invariant cloud models and IPA
radiance fields. Optical depth fields t(x) were similar to that in Fig.
A2a (50 realizations were used). The IPA radiance field I(x) was
expressed as a bidirectional reflectance distribution function (BRDF):
pI(x)/cosu0. The BRDF values were then digitized in Landsat radi-
ometry fashion over 255 gray levels. The upper IPA case used a
mapping of unit (or more) BRDF to 255, as if the instrument were
designed to study highly reflective objects such as clouds. The lower
curve corresponds to a 30% saturation at level 255, as in the worst
situations reported for the actual Landsat images. All the spectra have
almost the same scaling exponent b ø 1.5.

realization (a single Landsat scene) can be nonscaling
without preventing the whole ensemble (all possible
scenes at that location, season, and time of day) from
having perfect scaling. In other words, we are suffering
from insufficient sampling. The authors further argue
that Welch et al.’s (1988) power law area/perimeter re-
lations do not break at the observed range of values for
hrad, namely, 0.1–0.5 km (H. Barker and S. Gollmer,
personal communications). However, area/perimeter
analyses apply to broken cloud scenes, not to the almost
completely overcast cases that are of interest here. Love-
joy’s (1982) empirical relation is

area ; perimeter4/3, (5)

in contrast to the Euclidian prediction, area ; perim-
eter2. Marine Sc are very extended and thus fall at the
end of the range of cloud sizes: outer-scale ø areaÏ
ø 103 km, perimeter ø 104.5 km. Cahalan and Joseph
(1989) investigated Lovejoy’s law for different cloud
types, finding that Sc follow a similar power law as long
as the radiometric threshold used to define ‘‘cloud’’ is
representative of cloud base. At any rate, areas and pe-
rimeters relate to the cloud’s outer scale, and there is
no conflict with the existence of a scale break in the
internal structure and/or the associated radiation fields
at much smaller scales.

3. Artificial Landsat data

In the appendix, we describe two kinds of scale-in-
variant random cloud models with b . 1 used in this
study: bounded cascades (Cahalan et al. 1990, 1994a;
Marshak et al. 1994) and fractionally integrated singular
cascades (Schertzer and Lovejoy 1987; Wilson et al.
1991; Davis et al. 1996b). In particular, we discuss their
‘‘stochastic continuity,’’ a two-point statistical property
that plays a critical role for radiative transfer.

In this section, we describe then compare results for
two methods of simulating radiance fields that in turn
are analyzed in the same way as the Landsat data. One
accounts for net horizontal fluxes excited by the vari-
ability, the other not. Only in the former case can we
simulate the Landsat scale break in strictly scaling cloud
models, thus demonstrating that a radiation transport
mechanism mediated by horizontal fluxes is causing the
scale break.

a. Independent pixel approximations

The simplest way of treating radiative transfer in a
horizontally inhomogeneous cloud model, next to ne-
glecting internal variability altogether, is to use an in-
dependent pixel approximation (IPA) (Cahalan 1989;
Davis et al. 1993; Cahalan et al. 1994a). This amounts
to applying plane-parallel theory on a per pixel basis.
Using Monte Carlo results as a standard of comparison,
Cahalan et al. (1994b) show that the IPA is very accurate
for large-scale averages in the case of stratiform clouds

with internal LWC fluctuations modeled with bounded
cascades. Davis et al. (1993) find the opposite is true,
but their cloud model is based on a singular cascade,
which does not have the continuity property of its
bounded counterparts.

We extend this work in two directions:

1) by computing radiances rather than albedoes;
2) by assessing the accuracy of the IPA in predicting

the fluctuations of the radiation field, not only its
average over the computational domain.

The first task is easily performed. Cahalan et al.
(1994a) use an analytical expression for albedo that gen-
eralizes the two-stream result. Although there is no such
expression for radiance, there are a number of Software
packages that perform plane-parallel radiance compu-
tations; we used Stamnes et al.’s (1988) discrete ordinate
code, DISORT. Since the only optical parameter that
varies is t(x), one can compute in advance enough ra-
diances to generate a look-up table Ipp(t) that covers the
appropriate range in optical depth. We now compare the
statistical properties of t(x) and IPA radiance fields I(x)
5 Ipp[t(x)].

Figure 4 shows three energy spectra in log–log axes.
The top curve is for the t(x) fields: 50 realizations of
bounded cascades (H 5 1/3, p 5 0.25, 12 steps) with
the mean ^t& 5 13. At much smaller values than for
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Et(k), we see two counterparts for the radiance field I(x)
obtained in the IPA for a Henyey–Greenstein (1941)
phase function with g 5 0.85 and sun angle u0 5 22.58
(as in Fig. 1). To better simulate Landsat measurements,
radiance was represented as a bidirectional reflectance
function and then digitized on 255 levels. The upper
curve was obtained by mapping 255 to unity and map-
ping the digitized values back into [0, 1]. For the lower
curve, 255 is mapped to all pixels equal or greater than
some critical value; this value was chosen so that it
produced a 30% saturation, a worst case scenario for
Landsat cloud scenes. We see that the nonlinear mapping
of t to I, and subsequent digitization and (optional)
truncation only changes the prefactor in Eq. (1), the
scaling exponent b does not change significantly.

To see why this happens, we can use the physical
space statistic DI(r), that is, the integral of [I(x 1 r) 2
I(x)]2 weighted by the joint probability measure for I(x
1 r) and I(x). Because of the continuity property of the
random field t(x), the integrand can be approximated
linearly by [t(x 1 r) 2 t(x)]2zdI/dt z2t5t(x 1 r/2). The Ja-
cobian zdI/dt z being bounded, we have DI(r) } Dt(r)
and proportionality for the energy spectra follows from
Eq. (2). Furthermore, the above argument fails for high-
er-order structure functions ^[I(x 1 r) 2 I(x)]q&, q k 1,
if t(x) is continuous but has a broad distribution of
increments because of the effect of nonlinear terms in
the expansion of I[t(·)] around x 1 r/2; this indeed
occurs for multifractal t(x) fields (Marshak et al. 1995).

In summary, the IPA, a nonlinear but monotonic map-
ping from t to radiance, predicts accurately (in the sense
of low-order statistics) the fluctuating radiance field in
regimes where it is valid, task (2) in the above. In the
following, we address this question of IPA validity by
comparing its results with those of a numerically exact
approach to radiation transport in variable media, name-
ly, Monte Carlo.

b. Monte Carlo methodology

A better but more costly way of computing a radiance
field than IPA is to run a Monte Carlo (MC) simulation.
For flux computations, MC is algorithmically simple,
using only the most basic elements of kinetic theory.
Straightforward MC is competitive with any other gen-
eral solution of numerical radiative transfer problems
for domain-average quantities but requires large
amounts of computer time to reduce the idiosyncratic
noise at the pixel scale. Furthermore, for accurate ra-
diance computations, we rely on a variance-reduction
technique based on ‘‘local estimation’’ (see Marchuk et
al. 1980 or Marshak et al. 1995 for details).

The stochastic continuity of the extinction field is as
important here as in the IPA. Given the local value of
extinction s(x), one can define a local MFP. However,
photons propagating in heterogeneous media have dif-
ferent free path distributions, hence means, between
scatterings at different points and in different directions.

Moreover, it can be shown on general grounds that, on
average, geometrical free path distributions are no lon-
ger exponential (Davis 1992); consequently, a single
MFP value (e.g., the ‘‘mean’’ MFP) can no longer define
it completely. If the medium is continuous, however,
then the photon encounters rather small changes in ex-
tinction as it cumulates path. If, moreover, pixels are,
on average, optically thick in the horizontal, then few
pixel boundaries are crossed between two scattering
events. In these circumstances, a mean-field approach
(i.e., one that assumes there is a uniform/isotropic value
of the MFP) should work relatively well. Diffusion the-
ory is precisely such an approach, and we use it later
on to model statistically MC photon trajectories and,
from there, to explain the Landsat scale break.

c. IPA and MC fields compared

1) VISUAL COMPARISON

Figure 5a shows IPA and MC nadir radiance fields
for the same one-dimensional cloud model as in Fig.
A1 with, however, 10 cascade steps rather than 12. This
is consistent with Cahalan and Snider’s (1989) analyses
of FIRE data (leading to ^t& ø 13, b ø 5/3, p ø 0.25)
and Davis et al.’s (1994, 1996a) observation of three
decades of scaling. The geometrical and optical param-
eters reflect the general conditions during FIRE (Dz 5
0.3 km, g 5 0.85) and for the Landsat scene in Fig. 1
in particular (u0 5 22.58). For the 2 3 108 photon MC
simulation, the pixel size , is set to 12.5 m, somewhat
less than the 30-m Landsat resolution and close to the
inner scale in Davis et al.’s (1996a) LWC data. The
outer scale is therefore L 5 210, ø 12.8 km, not far
from their (admittedly uncertain) estimate of the integral
scale for LWC fluctuations, ø20 km; horizontally cy-
clical boundary conditions are used beyond this scale.

The more realistic MC field is visibly smoother than
the IPA prediction. Figure 5b shows a zoom onto a 1-km
portion of Fig. 5a, highlighting the empirical uncertain-
ties (ø1% on average) on the nadir radiances obtained
by local estimation. We now quantify and parameterize
the smoothing that occurs as soon as we relax the IP
assumption, thus allowing for horizontal fluxes.

2) STATISTICAL COMPARISON

Figure 6 is a log–log plot of EI(k) for MC nadir ra-
diances. Continuing to emulate the Landsat observa-
tions, the radiance field was first saturated at the 8%
level then digitized over a 255 grayscale. Two reali-
zations of the cascade were used and their spectra were
averaged. In spite of this averaging, the statistical noise
remains strong and it is helpful to represent EI(k) using
octavewide wavenumber bins (Davis et al. 1996a). We
note the inevitable presence of numerical MC noise at
the very smallest scales.

The large-scale spectral slope in Fig. 6 is ø2 as in
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FIG. 5. Comparison of IPA and MC nadir radiance fields. The
optical depth field in Fig. A2a was used with 10, rather than 12,
cascade steps. (a) The whole computational domain of size L 512.8
km is plotted; the thickness of the MC line is roughly the uncertainty.
(b) A 1-km zoom into panel (a) showing the ø1% empirical error
bars on the pixel scale (, 5 12.5 m) radiances that were obtained
by local estimation (see text). The cloud’s thickness Dz was set to
300 m and it was irradiated with 200 3 106 photons coming in at u0

5 22.58; scattering was determined by a Henyey–Greenstein phase
function with g 5 0.85; periodic boundary conditions were applied
in the horizontal.

FIG. 6. Energy spectrum of MC radiance fields. The MC field in
Fig. 5a was saturated at 8% and digitized on 255 levels, emulating
closely the way Landsat data is captured, and another realization was
added. The scale break occurs at ø400 m, and white MC noise is
apparent at the smallest scales.

Fig. 2 and the scale break occurs around 400 m, about
twice the value of hrad in Fig. 2. This is a deliberate
choice, forced by the current limits of our computational
power. Indeed, Fig. 2 uses the equivalent of 2048 re-
alizations of a 12-step cascade and radiance is measured
to within ø1:255 accuracy. As a result of our parameter
choices, the mean and variance are somewhat larger in
Fig. 5a than in Fig. 1. In the following, we show how
hrad depends on cloud parameters.

Figure 7 is the theoretical counterpart of Fig. 3: it
shows the structure functions DI(r) for both the MC and
IPA fields. The break at hrad ø 400 m is clear and we
see that the IPA works fairly well for scales larger than
hrad. For a more systematic comparison of MC and IPA
fields beyond spectral (second order) statistics, we refer
to Marshak et al. (1995) who use multifractal techniques
to quantify the breakdown of the IPA at large scales
with higher-order statistics.

d. Factors controlling the smoothing scale

It is of interest to explore the dependence of hrad on
the optical (^t& and g) and geometrical (u0, Dz, L, and
,) parameters of the problem, as well as their structural
counterparts (H, p, and/or choice of variability model).
In Table 1 we summarize the parameter ranges we used.

As for cloud models, both fractionally integrated and
bounded cascades gave similar results as long as a rel-
ative measure of their variance, such as st/^t& and the
spectral exponent b, remains constant. Increasing b
(min{2H, 1} 1 1 for bounded models) and decreasing
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FIG. 7. Structure functions of IPA and MC radiance fields. The
same data as in Figs. 5 and 6 were used. Note the scale break and
the approximate agreement of the two methods at large scales.

TABLE 1. Exhaustive list of cloud model parameters with values used in this study; those that have a first-order effect on horizontal
transport are italicized.

Cloud model parameter Symbol Typical value Range

Mean optical thickness t, ^t& 13 2–64
Variance parameter st/^t& 0.5 0–0.7
Geometrical thickness Dz 300 m 200 m–400 m
Grid size L 12.8 km 6 km–20 km
Grid constant , 12.5 m 6 m–60 m
Number of pixels (L/,) in 1D

(L/,)2 in 2D
1024
1282 5 16,384

1024–4096

Wavenumber spectrum E(k), k $ 0
0 , k # 1/(2,)

} d(k), homogeneous
} k2(2H11), fractal H 5 ⅓

Asymmetry factor g 0.843 0–0.85
Solar angle u0 228 08–608

st (with p → 1/2 for bounded models) both lead to
smaller variability at all scales and smaller hrad values.
Varying L and , has no effect on hrad as long as they
straddle this scale with enough distance to operationally
define the two distinct regimes; in particular, the latter
is kept as far below hrad as possible to avoid contami-
nation by MC noise of scales near the break. We also
found hrad to be insensitive to u0, excluding grazing
angles where the radiance field becomes highly variable
at all scales and decoupled from the optical depth field
due to strong shadowing (rather than smoothing) effects.

Figure 8 illustrates the dependence of hrad on the re-
maining parameters: ^t&, g, and Dz, for 12-step bounded
cascade models (two realizations) with H 5 1/3, p 5
0.25, and u0 5 08. Using DI(r), Fig. 8a shows that hrad

is reduced by a factor of ø2 when ^t& quadruples, Fig.
8b that going from g 5 0 to g 5 0.85 increases hrad by
a factor of ø3, and panel Fig. 8c that doubling Dz rough-
ly doubles hrad. These dependencies are now explained

in the framework of a mean-field Green function ap-
proach.

4. Green function analysis of horizontal photon
transport

Radiative smoothing is clearly a consequence of hor-
izontal photon transport driven by the gradients in the
optical depth field. To explain the dependence of hrad

on ^t&, g, and Dz, we adopt a naive method of quantifying
horizontal transport. A large number of photons are in-
jected into a model cloud from a single point on the
upper boundary, and we observe where they ultimately
escape from the cloud. From a theoretical perspective,
we generate a radiance distribution at all points of space
from a d-function source term in the radiative transfer
(or linear transport) equation. The resulting radiance
field is called interchangeably ‘‘Green function,’’ ‘‘im-
pulse response,’’ or ‘‘point-spread function’’ of the op-
tical medium. From an instrumental perspective, we are
irradiating the cloud with an ideal laser beam—an idea
we pursue in section 6.

We will restrict our focus to the remotely observable
part of this radiative response, that is, photons escaping
the cloud from various boundary points in various di-
rections. With this caveat, we will designate this limited
sample of the whole radiance field as a Green function.

a. ‘‘Spots’’ of reflected and transmitted light
associated with a point source

Photons start their trajectories in a plane-parallel me-
dium at a horizontal position (xin, yin)T on the upper
boundary (zin 5 0) and the illumination pattern is kept
azimuthally symmetric (i.e., a collimated beam normal
to the boundary or a diffuse point source). We are in-
terested in the statistics of the photon’s cumulative hor-
izontal displacement vector,

x 2 xout inr 5 , (6)1 2y 2 yout in

especially it’s Euclidian norm,
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FIG. 8. Structure functions for MC radiance fields. The effects on
hrad of (a) multiplying ^t& by 4, (b) going from g 5 0 to g 5 0.85,
and (c) doubling Dz are illustrated.

2 2r 5 Ï(x 2 x ) 1 (y 2 y ) , (7)out in out in

for reflectance (zout 5 0) or transmittance (zout 5 Dz). In
the former case, the 2D probability density function
(PDF) of r can be obtained either from the albedo field
R(x, y) for escape in any direction, or from its radiance
counterpart I(x, y) for escape in direction of the zenith
(i.e., nadir-viewing radiance). We are primarily inter-
ested in low-order moments: ^r& and ^r2&. The cloud
model can be homogeneous, t(x, y) [ ^t&, or randomly
variable in either one or both horizontal directions, using
scale-invariant models. If the variability is 1D, t(x) is
piece-wise constant over a domain 0 # x , L on a grid
of pixel size , K L and considered periodic outside of
[0, L) with period L, similarly in 2D.

Composite Fig. 9 shows logarithmically spaced iso-
photes for the 2D albedo and transmittance fields ob-
tained from two normally illuminated cloud models,
fractal or not, with geometrical thickness Dz 5 300 m,
optical thickness ^t& 5 13, and Henyey–Greenstein scat-
tering with g 5 0.85. In the homogeneous case, re-
sponses are described by a series of concentric circles
that, as the distance to the beam increases, become equi-
distant; this implies an exponential decay. Responses
for the fractal case show a degree of anisotropy traceable
to the variability in t(x, y); also the root-mean-square
(rms) displacements ^r2& are larger here than in theÏ
homogeneous case.

b. Scaling properties of ^r&2

We have plotted ^r2&/ as a function of (1 2 g)^t&2Dz

for homogeneous and fractal models in Figs. 10a,b re-
spectively; results pertaining to albedo, nadir radiance,
and transmittance are shown. A total of 24 simulations
were used: ^t& 5 2, 4, 8, 16, 32, 64, for g 5 0 and g
5 0.85, in both cases. We see

1) good ‘‘collapse’’ of the results for albedo and trans-
mittance, with

21[(1 2 g)^t&] for albedo
2 2^r & ø D (8)z 5constant for transmittance

2) cloud-top ^r2&’s slightly larger for fractal models than
for homogeneous ones at given ^t&

3) radiance-based ^r2&’s slightly larger than their al-
bedo-based counterparts (and not quite as good col-
lapse).

This small discrepancy between radiance- and albedo-
based ^r2& reflects that flux is an integral over radiance
and, in this particular problem, the radiance is not ex-
pected to be isotropic: at a given point, there will be
many more photons coming from the general direction
of the localized source because of the exponential decay
with r. In other words, using albedo as a standard for
comparison, radiance in the zenith direction is not rep-
resentative of this particular value of r but of a some-
what larger one.



250 VOLUME 54J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 9. Spots for artificial 2D homogeneous and fractal clouds with anisotropic scattering. (a) Central 2
km 3 2 km portion (60 pixel 3 60 pixels) of a cloud model based on a 2D bounded cascade model (Davis
et al. 1996c) with ^t& 5 13 on a 128 3 128 grid (L 5 27, ø 4.3 km). In these MC simulations with 108

histories, the phase function was Henyey–Greenstein with g 5 0.85 and the illumination from zenith. (Note
the roughening effect of MC noise in the corners where the lowest light levels occur; typical errors go from
ø0.5% in the center to ø5%.) (b) Reflected spot, using flux (local albedo), for a homogeneous cloud with
t 5 13. (b9) Same as (b) for the fractal model in panel (a), overall transmittance T ø 0.5. (c, c9) Same as
(b, b9) for spots in transmittance. Isophotes are traced for integer values on a log10 scale; the flux units are
arbitrary but uniform, so the higher values and slower spread in panel (c9) compared to (c) lead to a
substantially larger overall transmittance T9 ø 0.7. The rms horizontal displacement ^r2& is shown forÏ
each plot.
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FIG. 10. Scaling properties of ^r2& for (a) homogeneous and (b)
fractal clouds. Transmittance, albedo, and nadir radiance are repre-
sented. The fractal variability was generated using the bounded cas-
cade in Fig. A2a but with different multipliers.

FIG. 11. Mean total path ^l& of reflected photons for homogeneous
and fractal clouds. We see that ^l& 5 ^ctR& ; Dz 3 {1 1 correction[(1
2 g)t]} for the same cloud models as in Fig. 10.

Finding 2) is a direct consequence of Jensen’s (1906)
inequality. To estimate ^r2&/ for the fractal model, we2Dz

compute, in the spirit of an IPA, the average of [(1 2
g)t]21 over the appropriate PDF for t. This will yield
more than the ‘‘mean field’’ result [(1 2 g)^t&]21 simply
because of the convexity of the function t21.

The first and most important numerical result is now
explained physically by photon diffusion processes,
summarizing Davis et al.’s (1996c) derivation from first
principles.

c. Diffusion theory for ^r2&

The results in Eq. (8) follow naturally from Davis
and Marshak’s (1996) exact analytical solution of the
Green function problem in the diffusion approximation.
This implies that the MC trajectories can be modeled
in this context as random walks. Following Davis et al.
(1996c), we make the heuristic assumption that, while
in the cloud, photons are in Brownian motion (BM).
Total displacement r(t) at time t will then obey

^r2(t)& 5 ^r(t)2& 1 ^z(t)2& 5 Dt, (9)

where diffusivity D is the velocity of light c times the
‘‘transport’’ mean free path lt (Case and Zweifel 1967).
The usual cloud parameters give

cD /tzD 5 . (10)
1 2 g

The nontrivial result from BM theory used by the au-
thors is that the mean time for a photon to escape the
cloud from above is

D z^t & ; , (11)R c

independently of D (hence t and g). As justification for
Eq.(11), Fig. 11 shows total in-cloud path ^l& 5 ^ctR&
obtained by MC; there is little difference between fractal
and homogeneous clouds here due to the insensitivity
of ^tR& to the variable quantity, namely, t. For a survey
of the radiative transfer literature pertaining to the result
in Eq. (11), we refer to Marshak et al. (1995).

Since z(t) [ 0 upon reflectance, we obtain ^r(tR)2& ø
^r(^tR&)2& 5 D^tR& ; /[(1 2 g)t] from Eqs. (9)–(11).2Dz

The result for spot size in transmittance follows from
geometry: a ‘‘wave’’ of diffusing photons is emanating
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FIG. 12. PDF for nadir-viewing radiance as a function of r from
a diffuse point source. This is a convenient representation of our MC
estimates the Green function (‘‘spot shape’’) in radiance: I(r) 5 PDF/
(2pr) increases very sharply at r 5 0. We used homogeneous and
fractal cloud models with ^t& 5 13, g 5 0.85 (Henyey–Greenstein
phase function), and Dz 5 300 m. In the fractal case, the variability
was simulated with a 10-step bounded cascade in 1D with H 5 1/3
and p 5 0.25, pixel size , 5 6.25 m (hence L 5 210, ø 6.4 km);
furthermore, the photons were injected at random points, meaning
that I(r) represents in this case a spatially averaged Green function
^I(r)&. Approximate PDFs using Gamma distributions with a , 2, as
obtained from Eqs. (13a,b), are also plotted.

from a point on the upper boundary and propagating
slowly but isotropically, therefore ^r2& 5 (2/3)^z2& 5
(2/3) at cloud bottom, irrespective of g and t.2Dz

For future considerations, it is important to note that
the PDF of tR is quite broad. To see why, we recall that
average radiance (photon density) in a nonabsorbing
scattering medium decreases only linearly with depth;
so it is not so rare that photons penetrate the cloud
deeply before eventually being reflected, rather than
transmitted. In contrast with the mean prediction in Eq.
(11), the return time for these highly scattered photons
is about twice the characteristic time for transmittance;
namely,

2D (1 2 g)tDz z^t & ; 5 ; (1 2 g)t^t &. (12)T RD c

5. Connection between the reflected Green
function and the smoothing scale

a. Parameteric representation of Green functions
with Gamma distributions

Figure 12 shows two PDFs for r associated with the
same homogeneous and fractal clouds as described in
the previous section except that in the latter case the
variability is now 1D, allowing more cascade steps; fur-
thermore, diffuse illumination conditions are applied.
These PDFs are related to the axisymmetric radiance
field by dP/dr } rI(r). For the fractal model, the photons
are injected at random in (0, L) to obtain ^I(r)&, the
symmetric spatially averaged Green function. The semi-
log axes emphasize the exponential decay in the far
field.

Davis and Marshak (1996) obtain closed-form ex-
pressions for the Fourier-cosine transforms of R(r) and
T(r) in the framework of homogeneous diffusion theory
in 2D. We note here the excellent approximation for all
values of r by a Gamma distribution:

`dP
5 rI(r) rI(r) drE@dr 0

a21
aa r

ø exp[2ar /^r&]/^r&. (13a)[ ]G(a) ^r&

This well-known PDF has only two parameters, ^r& and

21
2 2^r& ^r &

a 5 5 2 1 . (13b)
2[ ]var[r] ^r&

The radiance data in Fig. 12 for the homogeneous and
fractal cases yields ^r& ø 215 and 224 m, a ø 1.37 and
1.16, respectively; similar fits were obtained for albedo
and transmittance by Marshak et al. (1995). Note that,
when a , 2, the Green function itself, I(r) } (dP/dr)/r,
is highly concentrated at the origin (largely due to the
numerous low-order scatterings).

b. Going from ^r2& to hradÏ

Our results in Fig. 8 for hrad, based on the correlation
statistics of the radiance fields associated with scale-
invariance cloud models, have the same scaling prop-
erties as the rms horizontal transport ^r2& for albedoÏ
or nadir radiance. This means that the scale break is
traced to horizontal photon transport.

A closer examination tells us the proportionality fac-
tor between hrad and ^r2& or ^r&. The same fractal cloudÏ
model that yields the radiance field used to obtain Fig.
8b, with hrad ø 0.6–1.0 km, is used to obtain the (Green
function related) data in Fig. 12, for which we have ^r&
ø 0.2 km, ^r2& ø 0.3 km and hence a ø 1.16 fromÏ
Eq. (13b). We now recall that the Gamma distribution
reverts to an exponential one for a 5 1. For the ex-
ponential distribution, sr 5 ^r2& 2 ^r&2 5 ^r&, henceÏ

^r2& ø 2^r& if a ø 1. The ‘‘3s’’ rule (of GaussianÏ Ï
fame) can be adapted to this situation:

Prob{r $ 3s 5 3^r&} 5 e23 ø 0.05, (14)

meaning that ø95% of the reflected photons escape at
less than ø3^r&’s away from their entry point if a ø 1.
Some photons travel farther and backtrack before es-
caping; these carry information about cloud density be-
yond the 3s mark and cause further radiative smooth-
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FIG. 13. Average relative error in optical depth retrieval as a func-
tion of scale. (a) The plane-parallel optical depth–nadir radiance re-
lation from DISORT used to retrieve optical depth from the same
two realizations of the bounded cascade model used in Figs. 6 and
7. (b) Average retrieval dt(r) error vs scale r, averaging over position
and realizations. The radiative smoothing scale ^r2& indicatesÏ
roughly the inflection point of the decreasing retrieve-then-degrade
curve [Eq. (18b), open circles]. The degrade-then-retrieve curve [Eq.
(18a), bold diamonds] bifurcates from this one because the convexity
of the retrieval function in panel (a) plays an important role for scales
larger than ø 1 km. This is demonstrated by using the IPA fields
instead of their MC counterparts (open diamonds).

ing. In summary, we can say that hrad/^r& ø 3–4, equiv-
alently,

hrad ø 2–3. (15)
2Ï^r &

This is consistent with our findings in Figs. 8b and 12.
At present we have no quantitative way of empirically

validating the result in Eq. (8) for the scaling of the
Green function in transmittance, telling us that the size
of the transmitted spot is commensurate with cloud
thickness, independently of its density (^t&) and scat-
tering properties (g). This means that, for ^t& large
enough for photon diffusion to prevail, an inhomoge-
neous cloud will appear to be smoother from below than
from above, as is commonly observed for Sc. (Of
course, there can be even stronger reasons for this in
real clouds, in particular, the fact their inhomogeneity
increases with altitude.)

6. Implications for cloud remote sensing at visible
wavelengths

The success of diffusion theory in predicting ^r2& and
hrad can be justified after the fact by King et al.’s (1990)
utilization of in situ radiometry along 1D transects
through marine Sc to locate extensive ‘‘diffusion do-
mains.’’ These are regions where radiance sampled in
an azimuthal plane is approximately cosine in zenith
angle. Although diffusion theory is known to break
down at cloud boundaries, it seems to dominate the bulk
of the radiation flow in Sc and can therefore be applied
to a variety of cloud remote sensing techniques.

a. Passive methods

1) OPTIMAL SCALES AND METHODS FOR OPTICAL

DEPTH RETRIEVAL

An immediate consequence of the radiative smooth-
ing phenomenon is that, below the scale ^r2& (or evenÏ
hrad), a remote observer is completely blind to the
cloud’s internal variability and his operational IPA
breaks down.

This breakdown is now illustrated from the standpoint
of optical depth retrieval. First, a look-up table of t as
a function of nadir radiance Ipp for a homogeneous
plane-parallel cloud is compiled using DISORT with
the appropriate phase function and solar angle (i.e., a
Henyey–Greenstein model with g 5 0.85 and u0 5
22.58); this relationship tpp(I) is shown in Fig. 13a. Mon-
te Carlo radiances for every pixel at some scale r e [,,
L] are fed into this simple retrieval scheme and the
outcome tipa(r; x) is compared with the known value

x1r1
t (r; x) 5 t(x9) dx9. (16)true Er x

The relative retrieval error is then averaged over non-
overlapping r-sized pixels and realizations, yielding

zt (r; x) 2 t (r; x)zipa trued (r) 5 100 (%). (17)t 7 8t (r; x)true

At the smallest resolution (r 5 , 5 12.5 m), we use
the data in Fig. 5a as well as another realization of the
same model; this yields dt(,) ø 8%. The resolution is
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then degraded by a factor of 2 and the retrieval/aver-
aging procedure repeated in two ways:

1) ‘‘degrade-then-retrieve,’’ which is what would hap-
pen if the detector’s optics were different:

x1r1
t (r; x) 5 t I (x9) dx9 ; (18a)ipa pp E MC[ ]r x

2) ‘‘retrieve-then-degrade,’’ meaning that high-resolu-
tion radiance data is available but for some reason
we only seek optical depths representative of larger
scales:

x1r1
t (r; x) 5 t [I (x9)] dx9. (18b)ipa E pp MCr x

After 10 coarse-graining steps (r 5 L 5 12.6 km), a
single radiance value is left to be compared with the
average optical depth, ^t& 5 13. Results are shown in
Fig. 13b. Finally, the whole degrade-then-retrieve pro-
cedure is repeated with IPA radiances instead of MC
ones; this guarantees than dt(,) [ 0, followed by a
steady error growth due to the increasing role of the
concavity of Ipp(t), hence convexity of tpp(I) 5 ).21I (Ipp

Indeed, Jensen’s (1906) inequality ^tpp(I)& $ tpp(^I&) be-
comes stronger since, as r increases, so does the subgrid
variability.

As resolution is gradually degraded, there is no dif-
ference between the two methods at first when MC ra-
diances are used because pixel-to-pixel increments are
quite small (recall from Figs. 5b and 6 that this field is
effectively differentiable). Both methods lead to an im-
provement in average retrieval error but a bifurcation
occurs. The retrieve-then-degrade curve decreases
monotonically whereas its degrade-then-retrieve coun-
terpart starts increasing at ø2-km scale (dt ø 2%) and
eventually reaches dt(L) ø 12%, exceeding even the
original pixel-scale error of 8%. By comparison with
the results for IPA radiance, we see that the large-scale
component to the retrieve-then-degrade error curve is
traceable to the convexity of tpp(I). This large-scale error
is closely related to Cahalan et al.’s (1994a) ‘‘plane-
parallel bias,’’ found to be 15%–20% for the difference
between domain-averaged albedoes for homogeneous
and fractal clouds.

The radiative smoothing scale ^r2& ø 200 m in-Ï
dicates roughly the inflection point of the monotonically
decreasing retrieve-then-degrade error curve. Spatial av-
eraging must be done up to this scale at least to reduce
significantly the effects of pixel cross-talk. If plane-
parallel theory is used to interpret remotely sensed data,
there is no point in considering scales less than hrad

(ø600 m in this case). Ignoring this will, in particular,
lead to an underestimate of the small-scale variability
of cloud properties. The accuracy of the retrieve-then-
degrade method is excellent at the largest scale, achiev-
ing dt(L) ø 0.3%. Discussing albedo prediction rather
than optical depth retrieval, Cahalan et al. (1994b) refer

to this residual large-scale error due to horizontal fluxes
as ‘‘IPA biases.’’

In essence, we have used a one-point statistic of a
simple diagnostic tipa(r; x), showing that its accuracy is
contingent on the two-point statistic hrad. Marshak et al.
(1995) conduct a more detailed study of IPA breakdown
using two-point multifractal statistics and propose an
improved ‘‘nonlocal’’ IPA where the Gamma distribu-
tion in Eq. (13a) is interpreted as a smoothing (rough-
ening) kernel in a convolution (deconvolution) product
with the IPA prediction of I (retrieval of t).

2) MULTICHANNEL RETRIEVAL OF ^t&, Dz, AND

OTHER CLOUD PROPERTIES

Like any violation of a symmetry (in this case, scale
invariance) in a physical system, the Landsat scale break
can be used to extract information about the clouds.
With a single image at visible wavelengths, empirical
determination of hrad puts constraints on the average
optical thickness ^t& and the geometrical cloud thickness
Dz that prevail in the scene. To this effect, we can use
either the analytical relation in Eq. (8) or its numerical
counterpart in Fig. 10. For instance, in Figs. 1 and 2
we have hrad ø 0.2–0.3 km. Using the ratio in Eq. (15),
we infer that ^r2& ø 0.1–0.2 km; this value can beÏ
obtained by slightly decreasing Dz and/or increasing ^t&
with respect to our canonical values (respectively, 0.3
km and 13).

In conjunction with another TM channel, still dom-
inated by multiple scattering, for the same scene a sim-
ilar type of constraint is put on ^t9& and Dz. Using plau-
sible assumptions on the droplet-size distribution and
Mie computations, we can obtain t as a function of
wavelength to within a proportionality constant; so we
can solve for the three unknowns: ^t9&, ^t9&, and Dz.
With a third channel, and already knowing the propor-
tionality constant (hence ^t0&), we can access another
cloud parameter, for example, effective droplet radius.

b. Active methods

Lidar observations are based on time-resolved returns
from a pulsed laser on a ground-based, airborne, or sat-
ellite platform. In the simplest case, the signal is inter-
preted as a single scattering through 1808. The effects
of multiple scattering are often corrected for, and even
exploited to obtain, new information (cf. Flesia and
Schwendimann 1995). However, the multiple scattering
theory is generally developed in the small scattering-
angle approximation that is sufficient when the detec-
tor’s aperture is adjusted to the small linear size of the
laser beam at the cloud’s illuminated boundary. Focus
on a single backscatter means that attenuation before
and after the scattering event will limit penetration depth
to a couple of photon MFPs, enough to probe aerosol
and cirrus completely but only the first layers of clouds.
For all practical purposes, the main applications of cloud
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lidar are in cielometry and the retrieval of the phase
water is in at cloud base, or cloud top, depending on
the configuration.

1) LITE OBSERVATIONS OF MARINE SC

The era of space-based atmospheric probing with li-
dar was open by the 1994 shuttle-based lidar-in-space
technology experiment (LITE); its beam divergence and
detector field-of-view (FOV) were standard, on the order
of milliradians, leading to hundreds of meters at cloud
level (Winker et al. 1996). Specifically, the beam was
ø0.3 km in diameter with a nighttime footprint of about
0.9 km.

Remarkably long return times (tR 5 l/c) were ob-
served in the LITE data when low-altitude dense marine
Sc were present (R. Menzies 1995, personal commu-
nication; D. Winker 1995, personal communication).
More precisely, when the time-dependent return signal
is interpreted as resulting from a single backscattering
at a location determined by l/2, then it seemed to occur
sometimes from below sea level. For such clouds, we
have Dz ø 0.2–0.4 km and altitudes around 1 km. To
estimate the average (in-cloud) return time, we can use
the data in Fig. 11 because ^r2& fall entirely withinÏ
the detector’s FOV; this yields ^l&/Dz ø 1.5 (large t) to
ø 3 (small t). However, as previously mentioned, we
are dealing with rather broad l distributions where total
paths about 2(1 2 g)^t& times the mean ^l& will almost
surely occur. Given the tenfold (approximately lognor-
mal) natural variability of optical depth in marine Sc
studied by Cahalan and Snider (1989), we predict l/Dz

ratios of up to 6 for ^t& ø 10, 18 for ^t& ø 40. In this
case, l/2 is indeed commensurate with cloud-base al-
titude and the detected PDF of l/2 will certainly ‘‘un-
fold’’ into negative values.

The broad nature of the distribution of total in-cloud
path is a key ingredient in our physical explanation of
the expression for reflected spot size in Eq. (8). There-
fore, its empirical validation with LITE observations
provides an independent confirmation of the theoretical
explanation we propose for the Landsat scale break
based on horizontal photon diffusion.

2) NEW CONCEPTS IN CLOUD LIDAR

We see LITE as the forerunner of a whole new class
of cloud lidar systems. In these systems the emphasis
is shifted from single to multiple scattering, which
means going from milliradian to radian FOVs if the
cloud is at close range (i.e., ground based or airborne).
There is only one foreseeable way to defeat the limi-
tation imposed by the two-way exponential attenuation
dictated by Bouger–de Beer’s law in the standard lidar
equation: collect the radiance that is (conservatively)
scattered out of the laser beam wherever it reappears.

The basic theory of ‘‘wide-angle’’ lidar is the same
as that developed in this study to explain the idiosyn-

cratic Landsat and LITE phenomena that occur when
dense clouds are observed: scale breaks and long tails,
respectively. The idea is to remotely sample as best we
can the spatial and temporal Green functions of the
cloud to determine at least ^r2& and ^l&; in the former
case, this calls for some form of imaging of the weak,
highly scattered signal at relatively large distances from
the beam, at least ø ^r2&. Assuming this can beÏ
achieved, the relations in Eqs. (8) and (11) (or, better
still, Figs. 10–11) are then used to determine ^t& and
Dz at roughly 2 ^r2&, namely, 0.5-km resolution. TheÏ
technological challenge is, of course, the low-light im-
aging in potentially noisy environments; promising av-
enues are discussed by Davis et al. (1996c) for both
spaceborne and ground-based configurations.

Recent advances in medical imaging in 3D are being
based on ‘‘diffusing wave spectroscopy’’ (Yodh and
Chance 1995), which is used to determine the position
and size of pathological (IR-absorbing) entities such as
aneurysms embedded in healthy (IR-scattering) tissue.
It is noteworthy that wide-angle cloud lidar does a sim-
ilar task for meteorology: detecting the presence of the
cloud’s nonilluminated boundary (that is, indeed, ab-
sorbing about half the photons) by scrutinizing the
space–time return from a pulsed laser.

Finally, the differential between the Green functions
of actual clouds and their theoretical counterparts pre-
dicted by plane-parallel theory will inform us about
clouds’ internal variability at scales below the nominal
0.5-km resolution for the determination of bulk prop-
erties: the (mean) optical and physical thicknesses. We
recall that observational Green function analysis is stan-
dard procedure in the laboratory, primarily to determine
the structure of the sample; for instance, coherent X-ray
or neutron scattering patterns tell about the crystalline
or amorphous microstructure of a sample in materials
science. Wide-angle and spaceborne cloud lidar will
therefore be timely additions to this long-standing sci-
entific tradition.

7. Summary and discussion

We have addressed an ongoing issue concerning the
statistical properties of cloudy Landsat scenes: what is
the mechanism that produces the break observed in pow-
er law behavior for the spatial wavenumber spectra El(k)
of the reflected radiance field? Specifically, we have
El(k) ; k2b with b ; 5/3, as expected if the atmosphere’s
liquid water content is being advected by the turbulent
horizontal wind field. However, for the largest observ-
able k values corresponding to the smallest scales (r 5
1/k # hrad ø 0.2–0.4 km), we invariably see a transition
to smoother, even differentiable, fields with b . 3.

In previous explanations, the smoothing is either dis-
missed as an instrumental or statistical artifact (Lovejoy
et al. 1993), or predicted to occur at the scale of the
cloud’s physical thickness Dz or else at a scale com-
mensurate with the ‘‘transport’’ mean free path lt (Ca-
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halan and Snider 1989). We recall that photons, after
propagation over one transport mean free path, have
suffered enough scatterings to essentially ‘‘forget’’ their
original position and direction. We have presented nu-
merical and analytical arguments showing that the
smoothing is real and occurs at a scale commensurate
with the harmonic mean of Dz and lt. The smoothing
scale hrad automatically puts an absolute lower bound
on the domain of applicability of cloud parameter re-
trieval schemes that depend on standard plane-parallel
theory, in other words, an operational ‘‘independent pix-
el’’ approximation.

By invoking elementary Green function theory, we
have shown that the physical interpretation of the Land-
sat scale break is essentially the extent that solar photons
can diffuse horizontally (by way of multiple scattering)
from impact to escape at cloud top. By the same token,
we explain the recent observation of unexpectedly long
pulse stretching in returns from marine stratocumulus
during LITE, the first spaceborne lidar experiment, by
multiple scattering in the diffusion approximation.
Armed with a physical understanding of the scale break,
we sketched both passive and active cloud remote sens-
ing methodologies that yield both optical and geomet-
rical thicknesses of stratiform clouds.

Other forms of atmospheric radiative smoothing have
been investigated previously, generally of a milder kind
than discussed here. One well-explored line of research
in coherent optics is the distortion of a planar wave front
by atmospheric turbulence, leading to the spreading of
stellar images (e.g., Tatarski 1961). The community in-
vested in remote sensing of the earth’s surface (indeed
Landsat’s original application) is interested in another
type of radiative smoothing: observation of a variable
ground albedo field through a thin homogeneous at-
mosphere (Odell and Weinman 1975; Otterman and Fra-
ser 1979; Tanré et al. 1981; Royer et al. 1989; among
others). One of the most mathematically sophisticated
treatments of this problem is Diner and Martonchik’s
(1984a,b) use of horizontal Fourier transforms of the
radiance field. Their approach was generalized by Ste-
phens (1986) to include horizontal variability of the
optical properties of the atmosphere. Stephens (1988a)
uses this general full matrix solution of the discretized
3D radiative transfer equation to demonstrate how even
a single oscillation in the optical depth field excites all
the higher-frequency radiance modes, hence net hori-
zontal fluxes, through the coupling in the extinction
(sink) term and multiple scattering (source) term. From
Stephens’s standpoint, the Landsat scale break is a
damping of the highest Fourier radiance modes, trace-
able in all likelihood to the enhancement at a specific
scale of the matrix coefficients related to multiple scat-
tering.

Small-scale upwelling radiances are relevant primar-
ily to remote sensing, whereas large-scale vertical fluxes
are the important quantities in atmospheric radiative
budget computations; in particular, subgrid parameter-

izations of solar heating rates in GCMs depend on these
fluxes. Stephens (1988b) develops a simple parameter-
ization of his general Fourier-mode coupling scheme to
assess the overall effect of spatial variability on albedo,
transmittance, and absorptance. In a sequel to this study,
we also switch our attention from radiance to flux mea-
surements, in particular to predict the magnitude of net
horizontal fluxes in marine stratocumulus and assess the
impact they have on estimates of total absorption in the
atmospheric column.
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APPENDIX

Scale-Invariant Cloud Models Used in This Study

In this paper we use stochastic models to mimic the
natural fluctuations of cloud optical depth. The anal-
yses of Davis et al. (1994, 1996a) and Marshak et al.
(1996, manuscript submitted to J. Atmos. Sci.) of LWC
fluctuations inside marine Sc during FIRE and ASTEX
support the use of scale-invariant (or simply ‘‘fractal’’)
models that obey power law statistics over at least three
orders of magnitude in scale. For FIRE, scaling is ob-
served down to ø20–40 m, roughly the Landsat pixel
scale. In this appendix, we use multiplicative cascades
to obtain models with scale-invariant properties.

Starting with a homogeneous slab of length L, one
transfers a fraction f1 of the mass from one half to the
other in a randomly chosen direction. This is equivalent
to multiplying the originally uniform density field on
either side by factors W1

(6) 5 1 6 f1. The same pro-
cedure is repeated recursively at ever smaller scales
using fractions fi (i 5 2, 3, ··· ) on segments of length
ri-1, where

L
r 5 . (A1)n n2

a. Singular cascades

We now parameterize the multiplicative weights as
(6)W 5 1 6 (1 2 2p)i

2p
5 , 0 # p # 1/2, (A2)52(1 2 p)



15 JANUARY 1997 257D A V I S E T A L .

FIG. A1. Random singular cascade models and associated scale-invariant optical depth fields. Two multiplicative ‘‘p-model’’ cascades with
unit mean and using the same sequence of pseudo-random numbers, n 5 12 cascade steps, and respectively (a) p 5 0.25, (b) p 5 0.375 in
Eq. (A2). (a9) Twelve-step bounded cascade model modified from the case in panel (a) using Eq. (A5) with H 5 1/3. (b9) The singular
cascade model in panel (b) after fractional integration with H* 5 0.29 in Eq. (A7) and a linear transformation. Parameters were tuned so
that the data in both lower panels have the same mean ^t& 5 13, variance in log10t ø 0.2, and spectral exponent bt 5 1.5.

independently of i, with 50/50 probability for the signs.
This leads to multifractal ‘‘p models,’’ originally pro-
posed by Meneveau and Sreenivasan (1987) to simulate
the highly intermittent spatial fluctuations of the kinetic
energy dissipation in turbulence. In this primarily tu-
torial model, constant fields, Ee(k) } d(k), are retrieved
in the limit p → 1/22 and randomly positioned Dirac
d’s for p 5 0. So p directly controls the degree of con-
centration of the E-field at each cascade step. The spec-
tral exponent defined in Ee(k) ; 1/kbe, k . 0 is

0 # be(p) 5 1 2 log2[1 1 (1 2 2p)2] , 1. (A3)
Figures A1a,b show examples with p 5 0.250, 0.375
(hence be 5 0.68 ··· , 0.91 ···), respectively, for n 5 12,
hence a total of 4096 points.

The intense spikiness we see in Figs. A1a,b is witness
to the singularity of the model; in the limit n → `, we
do not even obtain a ‘‘function’’ of x ∈ [0, L) in the
traditional sense of the word. Indeed, the product e(x)
5 Wi vanishes with probability one, since, for n k`P1

1, we have
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n

ln e (x) 5 ln WPn i
1

n

5 ln WO i
1

n

5 ln[1 6 (1 2 2p)];O
1

hence

n
^ln e (x)& ø ln[1 6 (1 2 2p)] (A4)On 2 6

5 n ln[2Ïp(1 2 p) ] → 2`,

for 0 # p , 1/2, as n → `. Yet the spatial average is
maintained at unity by construction; so, en(x) → 1 `
just often and/or just fast enough to counteract the drift
in Eq. (A4). This type of model is best viewed as a
‘‘measure’’ or ‘‘generalized’’ function (in the sense of
Schwartz), namely, a mathematical entity defined only
under integrals. The prime examples are Dirac’s (gen-
eralized) d functions, obtained here for p 5 0, hence be

5 0 in Eq. (A3).
Since be , 1 in Eq. (A3), Davis et al. (1996a) would

classify e(x) as a stationary process: arbitrarily large
jumps are allowed, so that the process can have at once
large deviations, sometimes misleadingly associated
with stationarity violation, and resume modal (i.e., most
frequent) values very fast. In other words, spatial cor-
relations as defined by ^e(x)e(x 1 r)&, the Fourier dual
of Ee(k), are very short ranged.

In summary, singular cascade models have interesting
intermittency properties, but their spectra with be , 1
do not scale as observed optical depth fields that in-
variably have bt . 1.

b. Bounded cascades

A simple way to obtain bt . 1 is to reduce the vari-
ance of the multiplicative weights in Eq. (A2) at each
cascade step. Taking

5 1 6 (1 2 2p) ,(6) HW ri i 2 1

0 # p , 1/2, H . 0, (A5)

leads to Cahalan et al.’s (1990, 1994a) ‘‘bounded’’ cas-
cade models. Figure A1a9 shows the bounded version
of the p model in Fig. A1a. The limit H → ` yields a
single jump (Heaviside step) from 2p to 2(1 2 p) at x
5 L/2.

By reducing the size of the jumps as the scale de-
creases, we are obviously introducing a degree of con-
tinuity into the model. Consequently, it takes a relatively
long time to cumulate large deviations; in turn, this
means that the two-point correlations become long
ranged. Accordingly, these models are patently nonsta-
tionary, having

1 , bt(H) 5 min{2H, 1} 1 1 # 2, (A6)

independent of p (Marshak et al. 1994); this simple
theoretical result, however, applies strictly at n 5 `; for
n 5 12, H 5 1/3 and p 5 0.25 yield bt ø 1.5 rather
than 5/3. The more interesting function of p is to mod-
ulate the prefactor in the power law wavenumber spec-
trum; in other words, it controls the overall one-point
variance of the model (Cahalan et al. 1994a).

Marshak et al. (1994) investigated the higher-order
two-point statistics of these models that prove to be
multifractal in the sense that their characterization calls
for an infinite number of exponents. This adds to the
realism of bounded cascades as cloud models because
the fluctuations of liquid water density inside marine Sc
are multifractal (Davis et al. 1994, Marshak et al. 1997,
manuscript submitted to J. Atmos. Sci.). Stochastic cloud
models are frequently developed first in one spatial di-
mension, and bounded cascades are not an exception.
So extension into higher dimensions is another asset; in
this case, see Callahan (1994) and Davis et al. (1996b)
for the details in 2D.

c. Fractional integration

Another way of transforming the stationary situation
described in section Aa (singular cascades with be ,
1) into a more realistic nonstationary one (bt . 1) is
suggested by Schertzer and Lovejoy (1987): power law
filtering in Fourier space will bring the spectral exponent
to any prescribed value. In particular, we can have

bt(p, H*) 5 be(p) 1 2H*, (A7)

where H* describes the low-pass filter in 1/kH*. In phys-
ical space, this operation—also known as ‘‘fractional
integration’’ (e.g., Pearson 1990)—is a convolution with
a weakly singular kernel that brings measures into the
realm of functions, finite at almost every point. By now,
jumps are quite small because e(x) generally is vanish-
ingly small for most values of x. Here again, we have
introduced (stochastic) continuity; accordingly, two-
point correlations have become long ranged.

Figure A1b9 shows the result for e(x) in Fig. A1b (be

ø 0.9) when we require bt ø 1.5 by setting H* 5 0.3
in Eq. (A7). The proportionality factor in the power law
filter used to produce this particular optical depth field
was set to give the same mean t and variance in log10t
as in Fig. A1a. This means that the two t(x) fields will
have nearly the same st/^t& and hence, according to
Cahalan (1994), the same domain-average albedo.

Being multifractal with at least one more tunable pa-
rameter than bounded cascades, linearly transformed
fractionally integrated singular cascades are good can-
didates for simulating observed liquid water fluctuations
(Davis et al. 1996b). Furthermore, they generalize easily
to higher dimensions (Wilson et al. 1991).
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d. Universality with respect to radiative smoothing

Marshak et al. (1995) argue that the universality class
defined by the occurrence of small-scale radiative
smoothing is quite vast, including those discussed above
and many more. There seem to be only two important
conditions. One is structural and the other is radiative:

1) the cloud model is stochastically continuous and
2) photon transport is dominated by diffusion-type mul-

tiple scattering.

For scale-invariant fields, property 1) follows from
bt . 1 that is ubiquitous in cloud liquid water fluctu-
ations, starting with King et al. (1981) airborne prob-
ings. Furthermore, we believe that, given condition 1),
condition 2) is fulfilled as soon as the mean optical
thickness is large enough, and from there follows our
basic result in Eq. (8) of the main text. Whatever it is,
‘‘large enough’’ seems to be often the case in nature
since many of King et al. (1990) radiance measurements
inside marine stratocumulus display the characteristics
of diffusion.

Davis (1992) has documented a number of counter
examples, optically thick scale-invariant media where
diffusion and linear transport theory disagree, but they
all have bt , 1 and are more representative of broken
cloud than stratus.
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