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CHAPTER TWO
LAUNCH SYSTEMS

I ntroduction

Launch systems provide access to space, obviously a necessary com-
ponent of all spaceflights. The elements of launch systems include the
various vehicles, engines, boosters, and other propulsive and launch
devices that help propel a spacecraft into space and position it properly.
From 1979 through 1988, NASA used both expendable launch vehicles
(ELV s)—those that can be used only once—and reusable launch vehicles.
This chapter addresses both types of vehicles, aswell as other launch sys-
tem-related elements.

NASA used three families of ELV's (Scout, Delta, and Atlas) and one
reusable launch vehicle (Space Shuttle) from 1979 through 1988 (Figure
2-1). Each family of ELVs had severa models, which are described in
this chapter. For the Space Shuttle, or Space Transportation System
(STS), the solid rocket booster, external tank, and main engine elements
comprised the launch-related elements and are addressed. The orbital
maneuvering vehicle and the various types of upper stages that boosted
satellites into their desired orbit are aso described.

This chapter includes an overview of the management of NASA's
launch vehicle program and summarizes the agency’s launch vehicle bud-
get. In addition, this chapter addresses other launch vehicle devel opment,
such as certain elements of advanced programs.

Several trends that began earlier in NASA's history continued in this
decade (1979-1988). The trend toward acquiring launch vehicles and ser-
vices from the commercial sector continued, as did the use of NASA-
launched vehicles for commercial payloads. President Reagan’'s policy
directive of May 1983 reiterated U.S. government support for commercial
ELV activities and the resulting shift toward commercialization of ELV
activities. His directive stated that the “U.S. government fully endorses
and will facilitate commerciadization of U.S. Expendable Launch
Vehicles” His directive said that the United States would encourage use
of its national ranges for commercial ELV operations and would “make
available, on a reimbursable basis, facilities, equipment, tooling,
and services that are required to support the production and operation of
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Figure 2—1. NASA Space Transportation System (1988)

U.S. commercial ELVs” Use of these facilities would be priced to
encourage “viable commercial ELV launch activities.”*

The policy also stated the government’s intention of replacing ELVs
with the STS as the primary launch system for most spaceflights.
(Origina plans called for arate flight of up to fifty Space Shuttle flights
per year.) However, as early as FY 1984, Congress recognized that rely-
ing exclusively on the Shuttle for all types of launches might not be the
best policy. Congress stated in the 1984 appropriations bill that “the
Space Shuttle system should be used primarily as a launch vehicle for
government defense and civil payloads only” and “commercial customers
for communications satellites and other purposes should begin to look to
the commercialization of existing expendable launch vehicles”2 The
Challenger accident, which delayed the Space Shuttle program, also con-

*Announcement of U.S. Government Support for Commercial Operations by
the Private Sector, May 16, 1983, from National Archives and Records Service's
Weekly Compilation of Presidential Documents for May 16, 1983, pp. 721-23.

?House Committee on Appropriations, Department of Housing and Urban
Development-Independent Agencies Appropriation Bill, 1984, Report to
Accompany H.R. 3133, 98th Cong., 1st sess., 1983, H. Rept. 98— (unnumbered).
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tributed to the development of a “mixed fleet strategy,” which recom-
mended using both ELV s and the Shuttle.®

Management of the Launch Vehicle Program

Two NASA program offices shared management responsibility for
the launch vehicle program: Code M (at different times called the Office
of Space Transportation, the Office of Space Transportation Acquisition,
and the Office of Space Flight) and Code O (the Office of Space
Transportation Operations). Launch system management generally
resided in two or more divisions within these offices, depending on what
launch system elements were involved.

The organizational charts that follow illustrate the top-level structure
of Codes M and O during the period 1979-1988. Asin other parts of this
chapter, there is some overlap between the management-related material
presented in this chapter and the material in Chapter 3, “Space
Transportation and Human Spaceflight.”

Also during the period 1979 through 1988, two major reorganizations
in the launch vehicle area occurred (Figure 2-2): the split of the Office of
Space Transportation into Codes M and O in 1979 (Phase |) and the merg-
er of the two program officesinto Code M in 1982 (Phase 1). In addition,
the adoption of the mixed fleet strategy following the loss of the
Challenger reconfigured a number of divisions (Phase I11). These man-
agement reorganizations reflected NASA’s relative emphasis on the Space
Shuttle or on ELVsasNASA's primary launch vehicle, aswell asthetran-
sition of the Shuttle from developmental to operationa status.

Phase |: Split of Code M Into Space Transportation Acquisition
(Code M) and Space Transportation Operations (Code O)

John F. Yardley, the original associate administrator for the Office of
Space Transportation Systems since its establishment in 1977, continued
in that capacity, providing continuous assessment of STS development,
acquisition, and operations status. In October 1979, Charles R. Gunn
assumed the new position of deputy associate administrator for STS
(Operations) within Code M, a position designed to provide transition
management in anticipation of the formation of a new program office
planned for later that year (Figure 2-3).

3NASA Office of Space Flight, Mixed Fleet Study, January 12, 1987. The
NASA Advisory Council had also established a Task Force on Issues of a Mixed
Fleet in March 1987 to study the issues associated with the employment of a
mixed fleet of launch vehicles and endorsed the Office of Space Flight study
results in its Sudy of the Issues of a Mixed Fleet. Further references to a mixed
fleet are found in remarks made by NASA Administrator James C. Fletcher on
May 15, 1987.
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Figure 2-3. Office of Space Transportation (as of October 1979)

The formal establishment of the new Office of Space Operations
(Code O) occurred in November 1979, and Dr. Stanley |I. Weiss became
its first permanent associate administrator in July 1980. Code O was the
principa interface with al STS users and assumed responsibilities for
Space Shuittle operations and functions, including scheduling, manifest-
ing, pricing, launch service agreements, Spacelab, and ELV's, except for
the development of Space Shuttle upper stages. The ELV program—
Atlas, Centaur, Delta, Scout, and Atlas F—moved to Code O and was
managed by Joseph B. Mahon, who had played a significant role in
launch vehicle management during NASA’s second decade.

Yardley remained associate administrator for Code M until May 1981,
when L. Michagl Weeks assumed associate administrator responsibilities.



Two new divisions within Code M were established in May 1981. The
Upper Stage Division, with Frank Van Renssdaer as director, assumed
responsibility for managing the wide-body Centaur, the Inertial Upper Stage
(IUS), the Salid Spinning Upper Stage (SSUS), and the Solar-Electric
Propulsion System. The Solid Rocket Booster and External Tank Division,
with Jerry Fitts as director, was aso created. In November 1981, Magjor
Genera James A. Abrahamson, on assignment from the Air Force, assumed
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duties as permanent associate administrator of Code M (Figure 2-4).
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Figure 2-4. Code M/Code O Split (as of February 1980) (1 of 2)
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Phase I1: Merger of Codes M and O I nto the Office of Space Flight

In preparation for Space Shuttle operations, Codes M and O merged
in 1982 into the Office of Space Flight, Code M, with Abrahamson serv-
ing as associate administrator (Figure 2-5). Weiss became NASA's chief
engineer. Code M was responsible for the fourth and final developmental
Shuttle flight, the operational flights that would follow, future Shuttle
procurements, and ELVs. The new office structure included the Special
Programs Division (responsible for managing ELVs and upper stages),
with Mahon continuing to lead that division, the Spacelab Division, the
Customer Services Division, the Space Shuttle Operations Office, and the
Space Station Task Force. This task force, under the direction of John D.
Hodge, developed the programmatic aspects of a space station, including
mission analysis, requirements definition, and program management. In
April 1984, an interim Space Station Program Office superseded the
Space Station Task Force and, in August 1984, became the permanent
Office of Space Station (Code S), with Philip E. Culbertson serving as
associate administrator. In the second quarter of 1983, organizational
responsibility for ELVs moved from the Special Programs Division to the
newly formed Space Transportation Support Division, still under the lead-
ership of Joseph Mahon.

Jesse W. Moore took over as Code M associate administrator on
August 1, 1984, replacing Abrahamson, who accepted a new assignment

Office of Space Flight (Code M)
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____________ Task Force (a)
J. Hodge

Safety, Rel., & Customer Space Shuttle Advanced Resources & )
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(a) The Space Station Task Force became the Office of Space Station (Code S) in August 1984.
(b) In early 1983, the following changes took place in the Space Shutie Operations Division
Propulsion Branch added
- Flight & Turnaround Operations added
- Engine Programs eliminated
- SRB & external tank eliminated
- STS Systems Engineering and Integration eliminated and replaced by Integration Office
STS Operations eliminated
© Advanced Planning Division added Advanced Transportation, Platforms and Services, and Requirements Definition; efiminated Advanced Concepts and Advanced

@ rine 2atond quarter of 1983, organizational responsibility for ELVs moved from the Special Programs Division to the new Space Transportation Support Division,
also under the leadership of Joseph Mahon.
(€) In late 1983, the Shuttle Propulsion Division was added. Within it were the Productivity Operations Support office, the Engine Program office, the Solid Rocket Program
office, and the External Tank Program office.
() In early 1984, the Tether Satellite System office was added to the Space Transportation Support Division, and a Flight Demonstrations and Satellite Services and Crew
Services office were added to the Advanced Programs Division.
(9) 1n 1986, the Orbital Maneuvering Vehicle office was added to the Space Transportation Support Division.

Figure 2-5. Code M Merger (as of October 1982)
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in the Department of Defense (DOD). Moore was succeeded by Rear
Admiral Richard H. Truly, aformer astronaut, on February 20, 1986.

Phase I11: Post-Challenger Launch Vehicle Management

From the first Space Shuttle orbital test flight in April 1981 through
STS61-C on January 12, 1986, NASA flew twenty-four successful Shuttle
missions, and the agency waswell on its way to establishing the Shuttle as
its only launch vehicle. The loss of the Challenger (STS 51-L) on
January 26, 1986, grounded the Shuttle fleet for thirty-two months. When
flights resumed with STS-26 in September 1988, NASA planned a more
conservative launch rate of twelve launches per year. The reduction of the
planned flight rate forced many payloads to procure ELV launch services
and forced NASA to plan to limit Shuttle use to payloads that required a
crewed presence or the unique capabilities of the Shuttle. It also forced
NASA to recognize the inadvisability of relying totally on the Shuttle. The
resulting adoption of a “mixed fleet strategy” included increased NASA-
DOD callaboration for the acquisition of launch vehicles and the purchase
of ELV launch services. This acquisition strategy consisted of competitive
procurements of the vehicle, software, and engineering and logistical
work, except for an initia transitional period through 1991, when pro-
curements would be noncompetitive if it was shown that it was in the gov-
ernment’s best interest to match assured launch vehicle availability with
payloads and established mission requirements.

The mixed fleet strategy was aimed at a healthy and affordable launch
capability, assured access to space, the utilization of a mixed fleet to sup-
port NASA mission requirements, a dual-launch capability for critical
payloads, an expanded national launch capability, the protection of the
Shuttle fleet, and the fostering of ELV commercialization. This last goal
was in accordance with the Reagan administration’s policy of encourag-
ing the growth of the fledgling commercial launch business whenever
possible. The Office of Commercial Programs (established in 1984) was
designated to serve as an advocate to ensure that NASA's internal deci-
sion-making process encouraged and facilitated the development of a
domestic industrial base to provide access to space.

During this regrouping period, the ELV program continued to be man-
aged at Headquarters within the Office of Space Flight, through the Space
Transportation Support Division, with Joseph Mahon serving as division
director and Peter Eaton as chief of ELV's, until late 1986. During this peri-
od, the Tethered Satellite System and the Orbital Maneuvering Vehicle also
became responsibilities of this division. In late 1986, Code M reorganized
into the basic configuration that it would keep through 1988 (Figure 2-6).
Thisincluded anew management and operations structure for the National
Space Transportation System (NSTS). Arnold J. Aldrich was named direc-
tor of the NSTS at NASA Headquarters. A new Flight Systems Division,
still under the leadership of Mahon, consisted of divisions for ELV's and
upper stages, aswell asdivisionsfor advanced programs and Space Shuttle
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Figure 2-6. Office of Space Flight 1986 Reorganization

carrier systems. The Propulsion Division was eliminated as part of the
NSTS's move to clarify the points of authority and responsibility in the
Shuttle program and to establish clear lines of communication in theinfor-
mation transfer and decision-making processes.

Money for NASA’'s Launch Systems

From 1979 through 1983, all funds for NASA’s launch systems came
from the Research and Development (R& D) appropriation. Beginning in
FY 1984, Congress authorized a new appropriation, Space Flight,
Control, and Data Communications (SFC&DC), to segregate funds for
ongoing Space Shuttle-related activities. This appropriation was in
response to an October 1983 recommendation by the NASA Advisory
Council, which stated that the operating budgets, facilities, and personnel
reguired to support an operational Space Shuttle be “fenced” from the rest
of NASA's programs. The council maintained that such an action would
speed the transition to more efficient operations, help reduce costs, and
ease the transfer of STS operations to the private sector or some new gov-
ernment operating agency, should such a transfer be desired.* SFC&DC
was used for Space Shuttle production and capability devel opment, space
transportation operations (including ELVs), and space and ground net-
work communications and data systems activities.

Most datain this section came from two sources. Programmed (actu-
al) figures came from the yearly budget estimates prepared by NASA's
Budget Operations Division, Office of the Comptroller. Data on NASA's
submissions and congressional action came from the chronological histo-
ry budget submissions issued for each fiscal year.

*NASA, Fiscal Year 1985 Budget Submission, Chronological History, House
Authorization Committee Report, issued April 22, 1986, p. 15.
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Table 2—1 shows the total appropriated amounts for launch vehicles
and launch-related components. Tables 2-2 through 2-12 show the
requested amount that NASA submitted to Congress, the amount autho-
rized for each item or program, the final appropriation, and the pro-
grammed (or actual) amounts spent for each item or program. The
submission represented the amount agreed to by NASA and OMB, not
necessarily the initial request NASA made to the President’s budget offi-
cer. The authorized amount was the ceiling set by Congress for a particu-
lar purpose. The appropriated amount reflected the amount that Congress
actually allowed the Treasury to provide for specific purposes.®

As is obvious from examining the tables, funds for launch vehicles
and other launch-related components were often rolled up into the total
R&D or SFC&DC appropriation or other major budget category (“undis-
tributed” funds). This made tracking the funding levels specifically des-
ignated for launch systems difficult. However, supporting congressional
committee documentation clarified some of Congress's intentions. In the
late 1970s and early 1980s, Congress intended that most space launches
were to move from ELVs to the Space Shuttle as soon as the Shuttle
became operational. This goal was being rethought by 1984, and it was
replaced by a mixed fleet strategy after 1986. However, even though the
government returned to using ELVs for many missions, it never again
took prime responsibility for most launch system costs. From 1985
through 1987, Congress declared that the NASA ELV program would be
completely funded on a reimbursable basis. Launch costs would be paid
by the customer (for example, commercial entities, other government
agencies, or foreign governments). Not until 1988 did Congress provide
direct funding for two Delta Il launch vehicles that would be used for
NASA launches in the early 1990s. Although the federal government
funded the Shuttle to a much greater degree, it was also to be used, when
possible, for commercia or other government missions in which the cus-
tomer would pay part of the launch and payload costs.

In some fiscal years, ELV's, upper stages, Shuttle-related launch ele-
ments, and advanced programs had their own budget lines in the con-
gressional budget submissions. However, no element always had its own
budget line. To follow the changes that took place, readers should consult
the notes that follow each table as well as examine the datain each table.
Additional data relating to the major Space Shuttle budget categories can
be found in the budget tables in Chapter 3.

NASA's budget structure changed from one year to the next depending
on the status of various programs and budget priorities. From 1979 through
1983, al launch-related activities fell under the R&D appropriation.

SThe term “appropriation” is used in two ways. It names amajor budget cat-
egory (for instance, R&D or SFC&DC). It is also used to designate an amount
that Congress allows an agency to spend (for example, NASA's FY 1986 appro-
priation was $7,546.7 million).
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Launch elements were found in the Space Flight Operations program, the
Space Shuttle program, and the ELV program. The Space Flight
Operations program included the major categories of space transportation
systems operations capability development, space transportation system
operations, and advanced programs (among others not relevant here).
Upper stages were found in two areas: space transportation systems oper-
ations capability development included space transportation system upper
stages, and space transportation system operations included upper stage
operations.

The Space Shuttle program included design, development, test, and
evaluation (DDT&E), which encompassed budget items for the orbiter,
main engine, external tank, solid rocket booster (SRB), and launch and
landing. The DDT&E category was eliminated after FY 1982. The pro-
duction category also was incorporated into the Space Shuttle program.
Production included budget line items for the orbiter, main engine, and
launch and landing.

The ELV program included budget items for the Delta, Scout,
Centaur, and Atlas F. (FY 1982 wasthe last year that the Atlas F appeared
in the budget.)

FY 1984 was atransition year. Budget submissions (which were sub-
mitted to Congress as early as FY 1982) and authorizations were still part
of the R&D appropriation. By the time the congressional appropriations
committee acted, the SFC&DC appropriation was in place. Two major
categories, Shuttle production and operational capability and space trans-
portation operations, were in SFC&DC. Shuttle production and opera-
tional capability contained budget items for the orbiter, launch and
mission support, propulsion systems (including the main engine, solid
rocket booster, external tank, and systems support), and changes and sys-
tems upgrading. Space transportation operations included Shuttle opera-
tions and ELVs. Shuttle operations included flight operations, flight
hardware (encompassing the orbiter, solid rocket booster, and external
tank), and launch and landing. ELVs included the Delta and Scout. (FY
1984 wasthe last year that there was a separate ELV budget category until
the FY 1988 budget.) R&D’s Space Transportation Capability
Development program retained upper stages, advanced programs, and the
Tethered Satellite System.

Beginning in FY 1985, most launch-related activities moved to the
SFC& DC appropriation. In 1987, NASA initiated the Expendabl e Launch
VehiclessMixed Fleet program to provide launch services for selected
NASA payloads not requiring the Space Shuttle’s capabilities.

Space Shuttle Funding

Funds for the Space Shuttle Main Engine (SSME) were split into a
DDT&E line item and a production line item from 1979 through 1983.
Funds for the externa tank and SRB were al designated as DDT&E.
Beginning with FY 1984, SSME, externa tank, and SRB funds were
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located in the capability development/flight hardware category and in the
Propulsion System program. Capability development included continuing
capability development tasks for the orbiter, main engine, external tank,
and SRB and the devel opment of the filament wound case SRB. Congress
defined propulsion systems as systems that provided “for the production
of the SSME, the implementation of the capability to support operational
reguirements, and the anomaly resolution for the SSME, SRB, and exter-
nal tank.”

Some Space Shuttle funds were located in the flight hardware budget
category. Flight hardware provided for the procurement of the external
tank, the manufacturing and refurbishment of SRB hardware and motors,
and space components for the main engine; orbiter spares, including
external tank disconnects, sustaining engineering, and logistics support
for external tank, SRB, and main engine flight hardware elements; and
maintenance and operation of flight crew equipment.

Tables 2-1 through 2-9 provide data for the launch-related elements
of the Space Shuttle and other associated items. Budget data for addi-
tional Shuttle components and the major Shuttle budget categories are
found in the Chapter 3 budget tables.

Characteristics

The following sections describe the launch vehicles and launch-related
components used by NASA during the period 1979 through 1988. A chronol-
ogy of each vehicle' s use and its development is aso presented, aswell asthe
characterigtics of each launch vehicle and launch-related component.

In some cases, finding the “correct” figures for some characteristics
was difficult. The specified height, weight, or thrust of a launch vehicle
occasionally differed among NASA, contractor, and media sources.
Measurements, therefore, are approximate. Height or length was mea-
sured in several different ways, and sources varied on where a stage began
and ended for measuring purposes. The heights of individual stages were
generally without any payload. However, the overall height of the assem-
bled launch vehicle may include the payload. Source materia did not
always indicate whether the overal length included the payload, and
sometimes one mission operations report published two figures for the
height of alaunch vehicle within the same report.

Thrust was also expressed in more than one way. Source materia
referred to thrust “in avacuum,” “at sealevel,” “average,” “nominal,” and
“maximum.” Thrust levels vary during alaunch and were sometimes pre-
sented as a range of values or as a percentage of “rated thrust.”
Frequently, there was no indication of which definition of thrust was
being used.

This chapter uses the following abbreviations for propellants. LH: =
liquid hydrogen, LOX = liquid oxygen, N:H: = hydrazine, N:Os = nitro-
gen tetroxide, RF1 = liquid hydrocarbon, and RP-1 = kerosene.
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Expendable Launch Vehicles

From 1979 through 1988, NASA attempted seventy-four launches
with a 94.6-percent success rate using the expendable Atlas E/F, Atlas-
Centaur, Delta, or all-solid-fueled Scout vehicle—all vehicles that had
been used during NASA’s second decade. During this time, the agency
continued to built Deltas and maintained its capability to build Scouts and
Atlases on demand. It did not emphasize ELV development but rather
focused on Space Shuttle development and the start of STS operational
status. However, the adoption of the mixed fleet strategy returned some
attention to ELV development

The following section summarizes ELV activities during the decade
from 1979 through 1988. Figure 2—7 and Table 2—13 present the success
rate of each launch vehicle.
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Figure 2—7. Expendable Launch Vehicle Success Rate
1979

NASA conducted nine launches during 1979, al successful. These used
the Scout, the Atlas E/F, the Atlas-Centaur, and the Delta. Of the nine launch-
es, three launched NASA scientific and application payloads, and six sup-
ported other U.S. government and nongovernment reimbursing customers.®

A Scout vehicle launched the NASA Stratospheric Aerosol and Gas
Experiment (SAGE), a NASA magnetic satellite (Magsat), and a reim-
bursable United Kingdom scientific satellite (UK-6/Ariel). An Atlas-
Centaur launched a FItSatCom DOD communications satellite and a
NASA scientific satellite (HEAO-3). Three launches used the Delta: one
domestic communications satellite for Western Union, another for RCA,
and an experimental satdllite, called SCATHA, for DOD. A weather satel-
lite was launched on an Atlas F by the Air Force for NASA and the
National Oceanic and Atmospheric Administration (NOAA).

®Aeronautics and Space Report of the President, 1979 (Washington, DC:
U.S. Government Printing Office (GPO), 1980), p. 39.
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1980

Seven ELV launches took place in 1980: three on Deltas, three on
Atlas-Centaurs, and one on an Atlas F. Of the seven, one was for NASA;
the other six were reimbursable launches for other U.S. government,
international, and domestic commercial customers that paid NASA for
the launch and launch support costs.”

A Delta launched the Solar Maximum Mission, the single NASA
mission, with the goal of observing solar flares and other active Sun phe-
nomena and measuring total radiative output of the Sun over a six-month
period. A Delta also launched GOES 4 (Geostationary Operational
Environmental Satellite) for NOAA. The third Delta launch, for Satellite
Business Systems (SBS), provided integrated, all-digital, interference-
free transmission of telephone, computer, electronic mail, and videocon-
ferencing to clients.

An Atlas-Centaur launched FItSatCom 3 and 4 for the Navy and
DOD. AnAtlas-Centaur also launched Intelsat V F-2. Thiswasthefirstin
a series of nine satellites launched by NASA for Intelsat and was the first
three-axis stabilized Intelsat satellite. An Atlas F launched NOAA-B, the
third in a series of Sun-synchronous operational environmental monitor-
ing satellites launched by NASA for NOAA. A booster failed to place this
satellite in proper orhit, causing mission failure.

1981

During 1981, NASA launched missions on eleven ELVs: one on a
Scout, five using Deltas (two with dual payloads), four on Atlas-Centaurs,
and one using an Atlas F. All but two were reimbursable launches for
other agencies or commercial customers, and all were successful.®

A Scout vehicle launched the DOD navigation satellite, NOVA 1. In
five launches, the Delta, NASA's most-used launch vehicle, deployed
seven satellites. Two of these launches placed NASA's scientific Explorer
satellites into orbit: Dynamics Explorer 1 and 2 on one Delta and the
Solar Mesosphere Explorer (along with Uosat for the University of
Surrey, England) on the other. The other three Delta launches had paying
customers, including the GOES 5 weather satellite for NOAA and two
communications satellites, one for SBS and one for RCA.

An Atlas-Centaur, which was the largest ELV being used by NASA,
|launched four missions; Comstar D-4, a domestic communications satel -
lite for Comsat; two Intelsat V communications satellites for Intelsat; and
the last in the current series of FItSatCom communications satellites for
DOD. An Atlas F launched the NOAA 7 weather satellite for NOAA.

"Aeronautics and Space Report of the President, 1980 (Washington, DC:
GPO, 1981).

8Aeronautics and Space Report of the President, 1981 (Washington, DC:
GPO, 1982).
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In addition, ELVs continued to provide backup support to STS cus-
tomersduring the early devel opment and transition phase of the STS system.

1982

NASA launched nine missions on nine ELVs in 1982, using seven
Deltas and two Atlas-Centaurs. Of the nine, eight were reimbursable
launches for other agencies or commercial customers, and one was a
NASA applications mission.®

The Délta supported six commercia and international communications
missions for which NASA was fully reimbursed: RCA's Satcom 4 and 5,
Western Union’s Westar 4 and 5, India’s Insat 1A, and Canada's Telesat G
(Anik D-1). In addition, a Deltalaunched Landsat 4 for NASA. The Landsat
and Telesat launches used improved, more powerful Deltas. An Aergjet
engine and a tank with a larger diameter increased the Delta weight-carry-
ing capability into geostationary-transfer orbit by 140 kilograms. An Atlas-
Centaur launched two communications satellites for the Intel sat.

1983

During 1983, NASA launched eleven satellites on eleven ELV's, using
eight Deltas, one Atlas E, one Atlas-Centaur, and one Scout. A Delta
launch vehicle carried the European Space Agency’'s EXOSAT x-ray
observatory to a highly dliptical polar orbit. Other 1983 payloads
launched into orbit on NASA ELVs were the NASA-Netherlands Infrared
Astronomy Satdllite (IRAS), NOAA 8 and GOES 6 for NOAA, Hilat for
the Air Force, Intelsat VF-6 for Intelsat, Galaxy 1 and 2 for Hughes
Communications, Telstar 3A for AT& T, and Satcom 1R and 2R for RCA;
all except IRAS were reimbursable.®

Theincreased commercial use of NASA’'slaunch fleet and launch ser-
vices conformed to President Reagan’s policy statement on May 16,
1983, in which he announced that the U.S. government would facilitate
the commercia operation of the ELV program.

1984

During 1984, NASA's ELV's provided launch support to seven satel-
lite missions using four Deltas, one Scout, one Atlas-Centaur, and one
Atlas E. During this period, the Delta vehicle completed its forty-third
consecutive successful launch with the launching of the NATO-I1ID satel-
litein November 1984. In addition, a Delta successfully launched Landsat
5 for NOAA in March (Landsat program management had transferred to

°Aeronautics and Space Report of the President, 1982 (Washington, DC:
GPO, 1983), p. 19.

Aeronautics and Space Report of the President, 1983 (Washington, DC:
GPO, 1984), p. 17.
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NOAA in 1983); AMPTE, ajoint American, British, and German space
physics mission involving three satellites, in August; and Galaxy-C in
September. Other payloads launched during 1984 by NASA ELVsinclud-
ed a Navy navigation satellite by a Scout, an Intelsat communications
satellite by an Atlas-Centaur, and a NOAA weather satellite by an AtlasF
vehicle. The launch of the Intelsat satellite experienced an anomaly in the
launch vehicle that resulted in mission failure. All missions, except the
NASA scientific satellite AMPTE, were reimbursable launches for other
U.S. government, international, and domestic commercial missions that
paid NASA for launch and launch support.*

In accordance with President Reagan’s policy directive to encourage
commercialization of the launch vehicle program, Delta, Atlas-Centaur,
and Scout ELV swere under active consideration during thistime by com-
mercial operators for use by private industry. NASA and Transpace
Carriers, Inc. (TCl), signed an interim agreement for exclusive rights to
market the Delta vehicle, and negotiations took place with General
Dynamics on the Atlas-Centaur. A Commerce Business Daily announce-
ment, published August 8, 1984, solicited interest for the private use of
the Scout launch vehicle. Ten companies expressed interest in assuming a
total or partial takeover of this vehicle system.

Also in August 1984, President Reagan approved a National Space
Strategy intended to implement the 1983 National Space Palicy. This
strategy called for the United States to encourage and facilitate commer-
cial ELV operations and minimize government regulation of these opera-
tions. It also mandated that the U.S. national security sector pursue an
improved assured launch capability to satisfy the need for a launch sys-
tem that complemented the STS as a hedge against “ unforeseen technical
and operational problems’ and to use in case of crisis situations. To
accomplish this, the national security sector should “pursue the use of a
limited number of ELVS."*

1985

In 1985, NASA's ELV's continued to provide launch support during
the transition of payloads to the Space Shuttle. Five launches took place
using ELVs. Two of these were DOD satellites launched on Scouts—one
from the Western Space and Missile Center and the other from the
Wallops Flight Facility. Atlas-Centaurs launched the remaining three mis-
sions for Intelsat on a reimbursable basis.*®

“Aeronautics and Space Report of the President, 1984 (Washington, DC:
GPO, 1985), p. 23

2\White House Fact Sheet, “National Space Strategy,” August 15, 1984.

BAeronautics and Space Report of the President, 1985 (Washington, DC:
GPO, 1986).



28 NASA HISTORICAL DATA BOOK

1986

In 1986, NASA's ELVs launched five space application missions for
NOAA and DOD. A Scout launched the Polar Beacon Experiments and
Auroral Research satdllite (Polar Bear) from Vandenberg Air Force Base; an
Atlas-Centaur launched a FltSatCom satdlite in December; an Atlas E
launched a NOAA satdlite; and two Delta vehicles were used—one to
launch aNOAA GOES satellite and the other to launch aDOD mission. One
of the Delta vehiclesfailed during launch and was destroyed before boosting
the GOES satdllite into transfer orbit. An investigation concluded that the
failure was caused by an dectrical short in the vehicle wiring. Wiring modi-
fications were incorporated into all remaining Delta vehicles. In September,
the second Delta vehicle successfully launched a DOD mission.*

Partly as aresult of the Challenger accident, NASA initiated studiesin
1986 on the need to establish a Mixed Fleet Trangportation System, consist-
ing of the Space Shuttle and existing or new ELVs. This policy replaced the
earlier stated intention to make the Shuttle NASA's sole launch vehicle.

1987

In 1987, NASA launched four spacecraft missionsusing ELVs. Three
of these missions were successful: a Delta launch of GOES 7 for NOAA
into geostationary orbit in February; a Deltalaunch of Palapa B-2, a com-
munications satellite for the Indonesian government, in March; and a
Scout launch of aNavy Transit satellite in September. In March, an Atlas-
Centaur launch attempt of FltSatCom 6, a Navy communications satellite,
failed when lightning in the vicinity of the vehicle caused the engines to
malfunction. The range safety officer destroyed the vehicle approximate-
ly fifty-one seconds after launch.®

1988

The ELV program had a perfect launch record in 1988 with six success-
ful launches. In February, a Delta ELV lifted a classified DOD payload into
orbit. Thislaunch marked thefind east coast Deltalaunch by aNASA launch
team. A NASA-Air Force agreement, effective July 1, officialy transferred
custody of DeltaLaunch Complex 17 at Cape Canavera Air Force Station to
the Air Force. Over a twenty-eight-year period, NASA had launched 143
Ddtas from the two Complex 17 pads. A similar transaction transferred
accountability for Atlas/Centaur Launch Complex 36 to the Air Force®

“Aeronautics and Space Report of the President, 1986 (Washington, DC:
GPO, 1987).

BAeronautics and Space Report of the President, 1987 (Washington, DC:
GPO, 1988).

Aeronautics and Space Report of the President, 1988 (Washington, DC:
GPO, 1989).
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Also in 1988, a Scout launched San Marcos DL from the San
Marco launch facility in the Indian Ocean, a NASA-Italian scientific
mission, during March. Its goal was to explore the relationship
between solar activity and meteorological phenomena by studying the
dynamic processes that occur in the troposphere, stratosphere, and
thermosphere. In April, another Scout deployed the SOOS-3, a Navy
navigation satellite. In June, a third Scout carried the NOVA-II, the
third in a series of improved Navy Transit navigation satellites, into
space. The final Scout launch of the year deployed afourth SOOS mis-
sion in August. In September, an Atlas E launched NOAA H, a
National Weather Service meteorological satellite funded by NOAA,
into Sun-synchronous orbit. This satellite payload included on-board
search-and-rescue instruments.

In addition to arranging for the purchase of launch services from
the commercial sector, NASA took steps to divest itself of an adjunct
ELV capability and by making NASA-owned ELV property and ser-
vices available to the private sector. During 1988, NASA finalized a
barter agreement with General Dynamics that gave the company own-
ership of NASA’s Atlas-Centaur flight and nonflight assets. In
exchange, General Dynamics agreed to provide the agency with two
Atlas-Centaur launches at no charge. An agreement was signed for the
first launch service—supporting the FltSatCom F-8 Navy mission.
NASA and General Dynamics also completed a letter contract for a
second launch service to support the NASA-DOD Combined Release
and Radiation Effects Satellite (CRRES) mission. In addition, NASA
transferred its Delta vehicle program to the U.S. Air Force. Finally,
enabling agreements were completed to allow ELV companies to nego-
tiate directly with the appropriate NASA installation. During 1988,
NASA Headqguarters signed enabling agreements with McDonnell
Douglas, Martin Marietta, and LTV Corporation. The Kennedy Space
Center and General Dynamics signed a subagreement in March to
allow General Dynamics to take over maintenance and operations for
Launch Complex 36.

ELV Characteristics
The Atlas Family

The basic Atlas launch vehicle was a one-and-a-half stage stainless
stedl design built by the Space Systems Division of General Dynamics. It
was designed as an intercontinental ballistic missile (ICBM) and was con-
sidered an Air Force vehicle. However, the Atlas launch vehicle was also
used successfully in civilian space missions dating from NASA's early
days. The Atlas launched all three of the unmanned lunar exploration pro-
grams (Ranger, Lunar Orbiter, and Surveyor). Atlas vehicles also
launched the Mariner probes to Mars, Venus, and Mercury and the
Pioneer probes to Jupiter, Saturn, and Venus.
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NASA used two families of Atlas vehicles during the 1979-1988
period: the Atlas E/F series and the Atlas-Centaur series. The Atlas E/F
launched seven satellites during this time, six of them successful (Table
2-14). The Atlas E/F space booster was a refurbished ICBM. It burned
kerosene (RP-1) and liquid oxygen in its three main engines, two
Rocketdyne MA-3 booster engines, and one sustainer engine. The Atlas
E/F aso used two small vernier engines located at the base of the RP-1
tank for added stability during flight (Table 2-15). The Atlas E/F was
designed to deliver payloads directly into _ _
low-Earth orbit without the use of an upper /\ t

stage.

The Atlas-Centaur (Figure 2-8) was the
nation’s first high-energy launch vehicle pro-
pelled by liquid hydrogen and liquid oxygen.
Developed and launched under the direction f—
of the Lewis Research Center, it became g;';"_,
operational in 1966 with the launch of
Surveyor 1, the first U.S. spacecraft to soft-
land on the Moon's surface. Beginning in .
1979, the Centaur stage was used only in
combination with the Atlas booster, but it had
been successfully used earlier in combination
with the Titan |11 booster to launch payloads
into interplanetary trajectories, sending two
Helios spacecraft toward the Sun and tWo | s
Viking spacecraft toward Mars.” From 1979 | Stage
through 1988, the Atlas-Centaur launched 18
satellites with only two failures (Table 2-16).

The Centaur stage for the Atlas booster
was upgraded in 1973 and incorporated an ¥
integrated electronic system controlled by a
digital computer. This flight-proven “astrion- _
ics’ system checked itself and all other sys-  79ure 2-8. Atlas-Centaur
tems prior to and during the launch phase; Launch \ehicle
during flight, it controlled all events after the
liftoff. This system was located on the equipment module on the forward
end of the Centaur stage. The 16,000-word capacity computer replaced
the origina 4,800-word capacity computer and enabled it to take over
many of the functions previously handled by separate mechanical and
electrical systems. The new Centaur system handled navigation, guidance
tasks, control pressurization, propellant management, telemetry formats
and transmission, and initiation of vehicle events (Table 2-17).

408m

YFor details, see Linda Neuman Ezell, NASA Historical Data Book, Volume
I1I: Programs and Projects, 1969-1978 (Washington, DC: NASA SP-4012,
1988).
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The Delta Family

NASA has used the Deltalaunch vehicle since the agency’s inception.
In 1959, NASA's Goddard Space Flight Center awarded a contract to
Douglas Aircraft Company (later McDonnell Douglas) to produce and
integrate twelve launch vehicles. The Delta, using components from the
Air Force’'s Thor intermediate range ballistic missile (IRBM) program
and the Navy’s Vanguard launch program, was availabl e eighteen months
later. The Delta has evolved since that time to meet the increasing
demands of its payloads and has been the most widely used launch vehi-
cle in the U.S. space program, with thirty-five launches from 1979
through 1988 and thirty-four of them successful (Table 2—-18).

The Delta configurations of the late 1970s and early 1980s were des-
ignated the 3900 series. Figure 2-9 illustrates the 3914, and Figure 2-10
shows the 3920 with the Payload Assist Module (PAM) upper stage. The
3900 series resembled the earlier 2900 series (Table 2-19), except for the
replacement of the Castor Il solid strap-on motors with nine larger and
more powerful Castor IV solid motors (Tables 2-20 and 2-21).

The RS-27 engine, manufactured by the Rocketdyne Division of
Rockwell International, powered the first stage of the Delta. It wasasingle-
start power plant, gimbal-mounted and operated on a combination of liquid
oxygen and kerosene (RP-1). The thrust chamber was regeneratively

2.44 m dia.
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cooled, with the fuel circulating through 292 tubes that comprised the
inner wall of the chamber.

The following four-digit code designated the type of Delta launch
vehicle:
» lst digit designated the type of strap-on engines:

2 = Cadtor Il, extended long tank Thor with RS-27 main
engine

3 = Castor IV, extended long tank Thor with RS-27 main
engine

e 2nd digit designated the number of strap-on engines
» 3rd digit designated the type of second stage and manufacturer:

1 = ninety-six-inch manufactured by TRW (TR-201)
2 = ninety-six-inch stretched tank manufactured by Aerojet
(AJ10-118K)
e 4th digit designated the type of third stage:
0 = nothird stage
3 = TE-364-3
4 = TE-364-4

For example, a model desig-
nation of 3914 indicated the use of
Castor |V strap-on engines, and S
extended long tank with an RS-27
main engine, nine strap-ons, a —
ninety-six-inch second stage man- ) —— Antares IIA
ufactured by TRW; and a TE-364- Third Stage
4 third stage engine. A PAM
designation appended to the last
digit indicated the use of a
McDonnell-Douglas PAM. ~—Castor IIA

Second Stage

+——Spacecraft

<« Altair llIA

TES P

X

Scout Launch Vehicle

The standard Scout launch ———-%
vehicle (Scout is an acronym for
Solid Controlled Orbital Utility
Test) was a solid propellant four-
stage booster system. It was the ~—Algol A
world’s first al-solid propellant First Stage
launch vehicle and was one of
NASA’'s most reliable launch vehi-
cles. The Scout was the smallest of
the basic launch vehicles used by Z%&l
NASA and was used for orbit, -
probe, and reentry Earth missions Figure 2-11. Scout-D Launch Vehicle

(Figure 2-11). (Used in 1979)
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The first Scout launch took place in 1960. Since that time, forty-six
NASA Scout launches have taken place, including fourteen between 1979
and 1988, when every launch was successful (Table 2—22). In addition to
NASA payloads, Scout clients included DOD, the European Space
Research Organization, and several European governments. The Scout
was used for both orbital and suborbital missions and has participated in
research in navigation, astronomy, communications, meteorology, geo-
desy, meteoroids, reentry materials, biology, and Earth and atmospheric
sensing. It was the only U.S. ELV launched from three launch sites:
Wallops on the Atlantic Ocean, Vandenberg on the Pacific Ocean, and the
San Marco platform in the Indian Ocean. It could also inject satellitesinto
awider range of orbital inclinations than any other launch vehicle.

Unlike NASA's larger ELVs, the Scout was assembled and the pay-
load integrated and checked out in the horizontal position. The vehicle
was raised to the vertical orientation prior to launch. The propulsion
motors were arranged in tandem with transition sections between the
stages to tie the structure together and to provide space for instrumenta-
tion. A standard fifth stage was available for highly éliptical and solar
orbit missions.

Scout’s first-stage motor was based on an earlier version of the
Navy's Polaris missile motor; the second-stage motor was developed
from the Army’s Sergeant surface-to-surface missile; and the third- and
fourth-stage motors were adapted by NASA's Langley Research Center
from the Navy’'s Vanguard missile. The fourth-stage motor used on the
G model could carry almost four times as much payload to low-Earth
orhit as the origina model in 1960—that is, 225 kilograms versus fifty-
nine kilograms (Table 2-23).

Vought Corporation, asubsidiary of LTV Corporation, was the prime
contractor for the Scout launch vehicle. The Langley Research Center
managed the Scout program.

Space Shuttle

The reusable, multipurpose Space Shuttle was designed to replace the
ELVsthat NASA used to deliver commercial, scientific, and applications
spacecraft into Earth’s orbit. Because of its unique design, the Space
Shuttle served as a launch vehicle, a platform for scientific laboratories,
an orhiting service center for other satellites, and a return carrier for pre-
viously orbited spacecraft. Beginning with itsinaugural flight in 1981 and
through 1988, NASA flew twenty-seven Shuttle missions (Table 2-24).
This section focuses on the Shuttle's use as a launch vehicle. Chapter 3
discusses its use as a platform for scientific laboratories and servicing
functions.

The Space Shuttle system consisted of four primary elements. an
orbiter spacecraft, two solid rocket boosters (SRBs), an external tank to
house fuel and an oxidizer, and three main engines. Rockwell
International built the orbiter and the main engines; Thiokol Corporation
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produced the SRB moators; and the external tank was built by Martin
Marietta Corporation. The Johnson Space Center directed the orbiter and
integration contracts, while the Marshall Space Flight Center managed
the SRB, external tank, and main engine contracts.

The Shuttle could transport up to 29,500 kilograms of cargo into near-
Earth orbit (185.2t0 1,111.2 kilometers). This payload was carried in abay
about four and a half meters in diameter and eighteen meters long. Major
system requirements were that the orbiter and the two SRBs be reusable
and that the orbiter have a maximum 160-hour turnaround time after land-
ing from the previous mission. The orbiter vehicle carried personnel and
payloadsto orhit, provided a space base for performing their assigned tasks,
and returned personnel and payloads to Earth. The orbiter provided a hab-
itable environment for the crew and passengers, including scientists and
engineers. Additional orbiter characteristics are addressed in Chapter 3.

The Shuttle was launched in an upright position, with thrust provid-
ed by the three main engines and the two SRBs. After about two minutes,
at an altitude of about forty-four kilometers, the two boosters were spent
and were separated from the orbiter. They fell into the ocean at predeter-
mined points and were recovered for reuse.

The main engines continued firing for about eight minutes, cutting off
at about 109 kilometers atitude just before the spacecraft was inserted
into orbit. The external tank was separated, and it followed a ballistic tra-
jectory back into aremote area of the ocean but was not recovered.

Two smaller liquid rocket engines made up the orbital maneuvering
system (OMS). The OMS injected the orbiter into orbit, performed
maneuvers while in orbit, and slowed the vehicle for reentry. After reen-
try, the unpowered orbiter glided to Earth and landed on a runway.

The Shuttle used two launch sites: the Kennedy Space Center in
Florida and Vandenberg Air Force Base in California. Under optimum
conditions, the orbiter landed at the site from which it was launched.
However, as shown in the tables in Chapter 3 that describe the individual
Shuttle missions, weather conditions frequently forced the Shuttle to land
at Edwards Air Force Base in California, even though it had been
launched from Kennedy.

Main Propulsion System

The main propulsion system (MPS) consisted of three Space Shuttle
main engines (SSMEs), three SSME controllers, the externa tank, the
orbiter MPS propellant management subsystem and helium subsystem,
four ascent thrust vector control units, and six SSME hydraulic servo-actu-
ators. The MPS, assisted by the two SRBs during the initial phases of the
ascent trgjectory, provided the velocity increment from liftoff to a prede-
termined velocity increment before orbit insertion. The Shuttle jettisoned
the two SRBs after their fuel had been expended, but the MPS continued
to thrust until the predetermined velocity was achieved. At that time, main
engine cutoff (MECO) was initiated, the external tank was jettisoned, and
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the OMS was ignited to provide the fina velocity increment for orbital
insertion. The magnitude of the velocity increment supplied by the OMS
depended on payload weight, mission trgjectory, and system limitations.

Along with the start of the OM S thrusting maneuver (which settled the
MPS propellants), the remaining liquid oxygen propellant in the orbiter
feed system and SSMEs was dumped through the nozzles of the engines.
At the same time, the remaining liquid hydrogen propellant in the orbiter
feed system and SSM Es was dumped overboard through the hydrogen fill
and drain valves for six seconds. Then the hydrogen inboard fill and drain
valve closed, and the hydrogen recirculation valve opened, continuing the
dump. The hydrogen flowed through the engine hydrogen bleed valves to
the orbiter hydrogen MPS line between the inboard and outboard hydro-
gen fill and drain valves, and the remaining hydrogen was dumped through
the outboard fill and drain valve for approximately 120 seconds.

During on-orbit operations, the flight crew vacuum made the MPS
inert by opening the liquid oxygen and liquid hydrogen fill and drain
valves, which allowed the remaining propellants to be vented to space.
Before entry into the Earth’s atmosphere, the flight crew repressurized the
MPS propellant lines with helium to prevent contaminants from being
drawn into the lines during entry and to maintain internal positive pres-
sure. MPS helium also purged the spacecraft’s aft fuselage. The last activ-
ity involving the MPS occurred at the end of the landing rollout. At that
time, the helium remaining in on-board helium storage tanks was released
into the MPS to provide an inert atmosphere for safety.

Main Engine

The SSME represented a major advance in propulsion technology.
Each engine had an operating life of seven and a half hours and fifty-five
starts and the ability to throttle a thrust level that extended over a wide
range (65 percent to 109 percent of rated power level). The SSME wasthe
first large, liquid-fuel rocket engine designed to be reusable.

A cluster of three SSMEs housed in the orbiter’s aft fuselage provid-
ed the main propulsion for the orbiter. Ignited on the ground prior to
launch, the cluster of liquid hydrogen-iquid oxygen engines operated in
paralel with the SRBs during the initial ascent. After the boosters sepa-
rated, the main engines continued to operate. The nominal operating time
was approximately eight and a half minutes. The SSMEs devel oped thrust
by using high-energy propellants in a staged combustion cycle. The pro-
pellants were partially combusted in dual preburners to produce high-
pressure hot gas to drive the turbopumps. Combustion was completed in
the main combustion chamber. The cycle ensured maximum performance
because it eliminated parasitic losses. The various thrust levels provided
for high thrust during liftoff and theinitial ascent phase but allowed thrust
to be reduced to limit acceleration to three g's during the final ascent
phase. The engines were gimbaled to provide pitch, yaw, and roll control
during the orbiter boost phase.
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Key components of each engine included four turbopumps (two low-
and two high-pressure), two preburners, the main injector, the main com-
bustion chamber, the nozzle, and the hot-gas manifold. The manifold was
the structural backbone of the engine. It supported the two preburners, the
high-pressure pumps, the main injector, the pneumatic control assembly,
and the main combustion chamber with the nozzle. Table 2-25 summa-
rizes SSME characteristics.

The SSME was the first rocket engine to use a built-in electronic dig-
ital controller. The controller accepted commands from the orbiter for
engine start, shutdown, and change in throttle setting and also monitored
engine operation. In the event of a failure, the controller automatically
corrected the problem or shut down the engine safely.

Main Engine Margin I mprovement Program. Improvements to the
SSMEs for increased margin and durability began with aformal Phase |
program in 1983. Phase || focused on turbomachinery to extend the time
between high-pressure fuel turbopump (HPFT) overhauls by reducing the
operating temperature in the HPFT and by incorporating margin improve-
mentsto the HPFT rotor dynamics (whirl), turbine blade, and HPFT bear-
ings. Phase Il certification was completed in 1985, and all the changes
were incorporated into the SSMEs for the STS-26 mission.

In addition to the Phase Il improvements, NASA made additional
changes to the SSME to further extend the engine€'s margin and durability.
The main changes were to the high-pressure turbomachinery, main combus-
tion chamber, hydraulic actuators, and high-pressure turbine discharge tem-
perature sensors. Changes were dso made in the controller software to
improve engine control. Minor high-pressure turbomachinery design changes
resulted in margin improvements to the turbine blades, thereby extending the
operating life of the turbopumps. These changes included applying surface
texture to important parts of the fuel turbine blades to improve the materia
properties in the pressure of hydrogen and incorporating a damper into the
high-pressure oxidizer turbine blades to reduce vibration.

Plating awelded outlet manifold with nickel increased the main com-
bustion chamber’'s life. Margin improvements were also made to five
hydraulic actuators to preclude a loss in redundancy on the launch pad.
Improvementsin quality wereincorporated into the servo-component coil
design, along with modifications to increase margin. To address a tem-
perature sensor in-flight anomaly, the sensor was redesigned and exten-
sively tested without problems.

To certify the improvements to the SSMEs and demonstrate their reli-
ability through margin (or limit) testing, NASA initiated a ground test pro-
gram in December 1986. Its primary purposes were to certify the
improvements and demonstrate the engine's reliability and operating mar-
gin. From December 1986 to December 1987, 151 tests and 52,363 seconds
of operation (equivalent to 100 Shuttle missions) were performed. These
hot-fire ground tests were performed at the single-engine test stands at the
Stennis Space Center in Mississippi and at the Rockwell International
Rocketdyne Division's Santa Susana Field Laboratory in California.
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NASA also conducted checkout and acceptance tests of the three
main engines for the STS-26 mission. Those tests, also at Stennis, began
in August 1987, and all three STS-26 engines were delivered to the
Kennedy Space Center by January 1988.

Along with hardware improvements, NASA conducted several major
reviews of requirements and procedures. These reviews addressed such
topics as possible failure modes and effects, aswell asthe associated crit-
ical items list. Another review involved having a launch/abort reassess-
ment team examine all launch-commit criteria, engine redlines, and
software logic. NASA also performed a design certification review. Table
2-26 lists these improvements, as well as events that occurred earlier in
the development of the SSME.

A related effort involved Marshall Space Flight Center engineers
who, working with their counterparts at Kennedy, accomplished a com-
prehensive launch operations and maintenance review. This ensured that
engine processing activities at the launch site were consistent with the lat-
est operational requirements.

External Tank

The external tank contained the propellants (liquid hydrogen and lig-
uid oxygen) for the SSMEs and supplied them under pressure to the three
main engines in the orbiter during liftoff and ascent. Just prior to orbital
insertion, the main engines cut off, and the external tank separated from
the orbiter, descended through a ballistic trajectory over a predesignated
area, broke up, and impacted in a remote ocean area. The tank was not
recovered.

The largest and heaviest (when |oaded) element of the Space Shuttle,
the external tank had three major components. a forward liquid oxygen
tank; an unpressurized intertank, which contained most of the electrical
components; and an aft liquid hydrogen tank. Beginning with the STS-6
mission, NASA used a lightweight external tank (LWT). For each
kilogram of weight reduced from the original external tank, the cargo-
carrying capability of the Space Shuttle spacecraft increased one kilo-
gram. The weight reduction was accomplished by eliminating portions of
stringers (structural stiffeners running the length of the hydrogen tank),
using fewer stiffener rings, and by modifying major frames in the hydro-
gen tank. Also, significant portions of the tank were milled differently to
reduce thickness, and the weight of the external tank’s aft SRB attach-
ments was reduced by using a stronger, yet lighter and less expensive,
titanium alloy. Earlier, the use of the LWT reduced the total weight by
deleting the antigeyser line. The line paralleled the oxygen feed line and
provided a circulation path for liquid oxygen to reduce the accumulation
of gaseous oxygen in the feed line while the oxygen tank was being filled
before launch. After NASA assessed propellant loading data from ground
tests and the first four Space Shuttle missions, engineers removed the
antigeyser line for STS-5 and subsequent missions. The total length and
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diameter of the external tank remained unchanged (Figure 2-12). Table
2-27 summarizes the external tank characteristics, and Table 2—28 pre-
sents a chronology of external development.

Aswell as containing and delivering the propellant, the external tank
served asthe structural backbone of the Space Shuttle during launch oper-
ations. The external tank consisted of two primary tanks: a large hydro-
gen tank and a smaller oxygen tank, joined by an intertank to form one
large propellant-storage container. Superlight ablator (SLA-561) and
foam insulation sprayed on the forward part of the oxygen tank, the inter-
tank, and the sides of the hydrogen tank protected the outer surfaces. The
insulation reduced ice or frost formation during launch preparation, pro-
tecting the orbiter from free-falling ice during flight. This insulation aso
minimized heat leaks into the tank, avoided excessive boiling of the lig-
uid propellants, and prevented liquification and solidification of the air
next to the tank.

The external tank attached to the orbiter at one forward attachment
point and two aft points. In the aft attachment area, umbilicals carried flu-
ids, gases, electrical signals, and electrical power between the tank and
the orbiter. Electrical signals and controls between the orbiter and the two
SRBs a'so were routed through those umbilicals.

Liquid Oxygen Tank. The liquid oxygen tank was an auminum
monocoque structure composed of a fusion-welded assembly of pre-
formed, chem-milled gores, panels, machined fittings, and ring chords. It
operated in apressure range of 1,035 to 1,138 mmHg. The tank contained
antislosh and antivortex provisionsto minimize liquid residuals and damp
fluid motion. The tank fed into a 0.43-meter-diameter feedline that sent
the liquid oxygen through the intertank, then outside the external tank to
the aft righthand external tank/orbiter disconnect umbilical. The feedline
permitted liquid oxygen to flow at approximately 1,268 kilograms per
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second, with the SSMEs operating at 104 percent of rated thrust, or per-
mitted a maximum flow of 71,979 liters per minute. The liquid oxygen
tank’s double-wedge nose cone reduced drag and heating, contained the
vehicle's ascent air data system, and served as a lightning rod.

Intertank. The intertank was not a tank in itself but provided a
mechanical connection between the liquid oxygen and liquid hydrogen
tanks. The primary functions of the intertank were to provide structural
continuity to the propellant tanks, to serve as a protective compartment to
house instruments, and to receive and distribute thrust loads from the
SRBs. The intertank was a steel/aluminum semimonocogue cylindrical
structure with flanges on each end for joining the liquid oxygen and lig-
uid hydrogen tanks. It housed external tank instrumentation components
and provided an umbilical plate that interfaced with the ground facility
arm for purging the gas supply, hazardous gas detection, and hydrogen
gas boiloff during ground operations. It consisted of mechanically joined
skin, stringers, and machined panels of aluminum alloy. The intertank
was vented during flight. It contained the forward SRB-external tank
attach thrust beam and fittings that distributed the SRB loads to the liquid
oxygen and liquid hydrogen tanks.

Liquid Hydrogen Tank. The liquid hydrogen tank was an aluminum
semimonocogue structure of fusion-welded barrel sections, five major
ring frames, and forward and aft ellipsoidal domes. Its operating pressure
was 1,759 mmHg. The tank contained an antivortex baffle and siphon out-
let to transmit the liquid hydrogen from the tank through a 0.43-meter line
to the left aft umbilical. The liquid hydrogen feedline flow rate was
211.4 kilograms per second, with the SSMEs at 104 percent of rated
thrust, or a maximum flow of 184,420 liters per minute. At the forward
end of the liquid hydrogen tank was the external tank/orbiter forward
attachment pod strut, and at its aft end were the two external tank/orbiter
aft attachment ball fittings as well as the aft SRB-external tank stabiliz-
ing strut attachments.

External Tank Thermal Protection System. The external tank ther-
mal protection system consisted of sprayed-on foam insulation and pre-
molded ablator materials. The system also included the use of phenolic
thermal insulators to preclude air liquefaction. Thermal isolators were
required for liquid hydrogen tank attachmentsto preclude the liquefaction
of air-exposed metallic attachments and to reduce heat flow into the lig-
uid hydrogen. The thermal protection system weighed 2,192 kilograms.

External Tank Hardware. The external hardware, external
tank/orbiter attachment fittings, umbilical fittings, and electrical and
range safety system weighed 4,136.4 kilograms.

Each propellant tank had a vent and relief valve at its forward end.
This dual-function valve could be opened by ground support equipment
for the vent function during prelaunch and could open during flight when
the ullage (empty space) pressure of the liquid hydrogen tank reached
1,966 mmHg or the ullage pressure of the liquid oxygen tank reached
1,293 mmHg.
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The liguid oxygen tank contained a separate, pyrotechnically operat-
ed, propulsive tumble vent valve at its forward end. At separation, the lig-
uid oxygen tumble vent valve was opened, providing impulse to assist in
the separation maneuver and more positive control of the entry aerody-
namics of the external tank.

There were eight propellant-depl etion sensors, four each for fuel and
oxidizer. The fuel-depletion sensors were located in the bottom of the fuel
tank. The oxidizer sensors were mounted in the orbiter liquid oxygen
feedline manifold downstream of the feedline disconnect. During SSME
thrusting, the orbiter general purpose computers constantly computed the
instantaneous mass of the vehicle because of the usage of the propellants.
Normally, MECO was based on a predetermined velocity; however, if any
two of the fuel or oxidizer sensors sensed a dry condition, the engines
would be shut down.

The locations of the liquid oxygen sensors alowed the maximum
amount of oxidizer to be consumed in the engines, while alowing suffi-
cient time to shut down the engines before the oxidizer pumpsran dry. In
addition, 500 kilograms of liquid hydrogen were loaded over and above
that required by the six-to-one oxidizer/fuel engine mixture ratio. This
assured that MECO from the depletion sensors was fuel rich; oxidizer-
rich engine shutdowns could cause burning and severe erosion of engine
components.

Four pressure transducers located at the top of the liquid oxygen and
liquid hydrogen tanks monitored the ullage pressures. Each of the two aft
external tank umbilical plates mated with a corresponding plate on the
orbiter. The plates helped maintain aignment among the umbilicals.
Physical strength at the umbilical plates was provided by bolting corre-
sponding umbilical plates together. When the orbiter general purpose
computers commanded external tank separation, the bolts were severed
by pyrotechnic devices.

The external tank had five propellant umbilical valves that interfaced
with orbiter umbilicals—two for the liquid oxygen tank and three for the
liquid hydrogen tank. One of the liquid oxygen tank umbilical valves was
for liquid oxygen, the other for gaseous oxygen. The liquid hydrogen tank
umbilical had two valves for liquid and one for gas. The intermediate-
diameter liquid hydrogen umbilical was a recirculation umbilical used
only during the liquid hydrogen chill-down sequence during prelaunch.

The external tank also had two electrical umbilicals that carried elec-
trical power from the orbiter to the tank and the two SRBs and provided
information from the SRBs and external tank to the orbiter. A swing-arm-
mounted cap to the fixed service structure covered the oxygen tank vent
on top of the external tank during countdown and was retracted about two
minutes before liftoff. The cap siphoned off oxygen vapor that threatened
to form large ice on the external tank, thus protecting the orbiter’s ther-
mal protection system during launch.

External Tank Range Safety System. A range safety system, moni-
tored by the flight crew, provided for dispersing tank propellants if nec-
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essary. It included a battery power source, a receiver/decoder, antennas,
and ordnance.

Post-Challenger Modification. Prior to the launch of STS-26, NASA
modified the external tank by strengthening the hydrogen pressurization
line. In addition, freezer wrap was added to the hydrogen line. This per-
mitted the visual detection of a hydrogen fire (Table 2-28).

Solid Rocket Boosters

The two SRBs provided the main thrust to lift the Space Shuttle off
the pad and up to an altitude of about forty-four and a half kilometers. In
addition, the two SRBs carried the entire weight of the external tank and
orbiter and transmitted the weight load through their structure to the
mobile launcher platform. The SRBs were ignited after the three SSMES
thrust level was verified. The two SRBs provided 71.4 percent of the
thrust at liftoff and during first-stage ascent. Seventy-five seconds after
SRB separation, SRB apogee occurred at an atitude of approximately
sixty-five kilometers. SRB impact occurred in the ocean approximately
226 kilometers downrange, to be recovered and returned for refurbish-
ment and reuse.

The primary elements of each booster were the motor (including
case, propellant, igniter, and nozzle), structure, separation systems, oper-
ational flight instrumentation, recovery avionics, pyrotechnics, decelera-
tion system, thrust vector control system, and range safety destruct
system (Figure 2-13). Each booster attached to the external tank at the
SRB'’s aft frame with two lateral sway braces and a diagonal attachment.
The forward end of each SRB joined the external tank at the forward end
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of the SRB’s forward skirt. On the launch pad, each booster also con-
nected to the mobile launcher platform at the aft skirt with four bolts and
nuts that were severed by small explosives at liftoff.

The SRBs were used as matched pairs. Each consisted of four solid
rocket motor (SRM) segments. The pairs were matched by loading each
of the four motor segments in pairs from the same batches of propellant
ingredients to minimize any thrust imbalance. The exhaust nozzle in the
aft segment of each motor, in conjunction with the orbiter engines, steered
the Space Shuttle during the powered phase of launch. The segmented-
casing design assured maximum flexibility in fabrication and ease of
transportation and handling. Each segment was shipped to the launch site
on a heavy-duty rail car with a specially built cover.

The propellant mixture in each SRB motor consisted of an ammoni-
um perchlorate (oxidizer, 69.6 percent by weight), aluminum (fuel,
16 percent), iron oxide (a catalyst, 0.4 percent), a polymer (a binder that
held the mixture together, 12.04 percent), and an epoxy curing agent
(1.96 percent). The propellant was an eleven-point star-shaped perfora-
tion in the forward motor segment and a double-truncated-cone perfora-
tion in each of the aft segments and aft closure. This configuration
provided high thrust at ignition and then reduced the thrust by approxi-
mately one-third fifty seconds after liftoff to prevent overstressing the
vehicle during maximum dynamic pressure.

The cone-shaped aft skirt supported the four aft separation motors.
The aft section contained avionics, athrust vector control system that con-
sisted of two auxiliary power units and hydraulic pumps, hydraulic sys-
tems, and a nozzle extension jettison system. The forward section of each
booster contained avionics, a sequencer, forward separation motors, anose
cone separation system, drogue and main parachutes, a recovery beacon, a
recovery light, a parachute camera on selected flights, and a range safety
system. Each SRB incorporated a range safety system that included a bat-
tery power source, a receiver-decoder, antennas, and ordnance.

Each SRB had two integrated el ectronic assemblies, one forward and
one aft. After burnout, the forward assembly initiated the release of the
nose cap and frustum and turned on the recovery aids. The aft assembly,
mounted in the external tank-SRB attach ring, connected with the forward
assembly and the orbiter avionics systems for SRB ignition commands
and nozzle thrust vector control. Each integrated electronic assembly had
a multiplexer-demultiplexer, which sent or received more than one mes-
sage, signal, or unit of information on a single communications channel.

Eight booster separation motors (four in the nose frustum and four in
the aft skirt) of each SRB thrust for 1.02 seconds at SRB separation from
the external tank. SRB separation from the external tank was electrically
initiated. Each solid rocket separation motor was 0.8 meter long and
32.5 centimeters in diameter (Table 2—29).

Location aids were provided for each SRB, frustum-drogue chutes,
and main parachutes. These included a transmitter, antenna, strobe/con-
verter, battery, and saltwater switch electronics. The recovery crew
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retrieved the SRBs, frustum/drogue chutes, and main parachutes. The
nozzles were plugged, the solid rocket motors were dewatered, and the
crew towed the SRBs back to the launch site. Each booster was removed
from the water, and its components disassembled and washed with fresh
and de-ionized water to limit saltwater corrosion. The motor segments,
igniter, and nozzle were shipped back to Thiokol for refurbishment. The
SRB nose caps and nozzle extensions were not recovered.

Testing and production of the SRB were well under way in 1979. The
booster performed well until the Challenger accident revealed flaws that
had very likely existed for several missions but had resulted in little reme-
dial action. The 1986 Challenger accident forced major modifications to
the SRB and SRM.

Post-Challenger Moadifications. On June 13, 1986, President Reagan
directed NASA to implement, as soon as possible, the recommendations
of the Presidential Commission on the Space Shuttle Challenger
Accident. During the downtime following the Challenger accident,
NASA anayzed critica structural elements of the SRB, primarily
focused in areas where anomalies had been noted during postflight
inspection of recovered hardware.

Anomalies had been noted in the attach ring where the SRBs joined
the external tank. Some of the fasteners showed distress where the ring
attached to the SRB motor case. Tests attributed this to the high loads
encountered during water impact. To correct the situation and ensure
higher strength margins during ascent, the attach ring was redesigned to
encircle the motor case completely (360 degrees). Previously, the attach
ring formed a“C” and encircled the motor case 270 degrees.

In addition, NASA performed special structural tests on the aft skirt.
During this test program, an anomaly occurred in acritical weld between
the hold-down post and skin of the skirt. A redesign added reinforcement
brackets and fittings in the aft ring of the skirt. These modifications added
approximately 200 kilograms to the weight of each SRB.

Solid Rocket Motor Redesign. The Presidential Commission deter-
mined that the cause of the loss of the Challenger was “a failure in the
joint between the two lower segments of the right solid rocket motor. The
specific failure was the destruction of the seals that are intended to pre-
vent hot gases from leaking through the joint during the propellant burn
of the rocket motor.”

Consequently, NASA developed a plan for a redesigned solid rocket
motor (RSRM). Safety in flight was the primary objective of the SRM
redesign. Minimizing schedule impact by using existing hardware, to the
extent practical, without compromising safety was ancther objective.

Report at a Glance, report to the President by the Presidential Commission
on the Space Shuttle Challenger Accident, Chapter IV, “The Cause of the
Accident,” Finding (no pg. number).
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NASA established a joint redesign team with participants from the
Marshall Space Flight Center, other NASA centers, Morton Thiokol, and
outside NASA. The team developed an “SRM Redesign Project Plan” to
formalize the methodology for SRM redesign and requalification. The
plan provided an overview of the organizational responsibilities and rela-
tionships; the design objectives, criteria, and process; the verification
approach and process; and a master schedule. Figure 2-14 shows the
SRM Project Schedule as of August 1986. The companion “ Devel opment
and Verification Plan” defined the test program and analyses required to
verify the redesign and unchanged components of the SRM. The SRM
was carefully and extensively redesigned. The RSRM received intense
scrutiny and was subjected to a thorough certification process to verify
that it worked properly and to qualify the motor for human spaceflight.

NASA assessed all aspects of the existing SRM and required design
changes in the field joint, case-to-nozzle joint, nozzle, factory joint, pro-
pellant grain shape, ignition system, and ground support equipment. The
propellant, liner, and castable inhibitor formulations did not require
changes. Design criteria were established for each component to ensure a
safe design with an adequate margin of safety. These criteria focused on
loads, environments, performance, redundancy, margins of safety, and
verification philosophy.

The team converted the criteriainto specific design requirements dur-
ing the Preliminary Requirements Reviews held in July and August 1986.
NASA assessed the design developed from these requirements at the
Preliminary Design Review held in September 1986 and baselined in
October 1986. NASA approved the final design at the Critical Design
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Review held in October 1987. Manufacture of the RSRM test hardware
and the first flight hardware began prior to the Preliminary Design
Review and continued in parallel with the hardware certification program.
The Design Certification Review considered the analyses and test results
versus the program and design requirementsto certify that the RSRM was
ready to fly.

Specific Modifications. The SRM field-joint metal parts, internal
case insulation, and seals were redesigned, and a weather protection sys-
tem was added. The major change in the motor case was the new tang
capture feature to provide a positive metal-to-metal interference fit
around the circumference of the tang and clevis ends of the mating seg-
ments. The interference fit limited the deflection between the tang and
clevis O-ring sealing surfaces caused by motor pressure and structural
loads. The joints were designed so that the seals would not leak under
twice the expected structural deflection and rate.

The new design, with the tang capture feature, the interference fit,
and the use of custom shims between the outer surface of the tang and
inner surface of the outer clevis leg, controlled the O-ring sealing gap
dimension. The sealing gap and the O-ring seals were designed so that a
positive compression (squeeze) was aways on the O-rings. The minimum
and maximum squeeze requirements included the effects of temperature,
O-ring resiliency and compression set, and pressure. The redesign
increased the clevis O-ring groove dimension so that the O-ring never
filled more than 90 percent of the O-ring groove, and pressure actuation
was enhanced.

The new field-joint design also included a new O-ring in the capture
feature and an additional leak check port to ensure that the primary O-ring
was positioned in the proper sealing direction at ignition. This new or
third O-ring also served as a thermal barrier in case the sealed insulation
was breached. The field-joint internal case insulation was modified to be
sealed with a pressure-actuated flap called a j-seal, rather than with putty
asin the STS51-L (Challenger) configuration.

The redesign added longer field-joint-case mating pins, with arecon-
figured retainer band, to improve the shear strength of the pins and
increase the metal parts’ joint margin of safety. The joint safety margins,
both thermal and structural, were demonstrated over the full ranges of
ambient temperature, storage compression, grease effect, assembly stress-
es, and other environments. The redesign incorporated external heaters
with integral weather seals to maintain the joint and O-ring temperature
at a minimum of 23.9 degrees Celsius. The weather seal also prevented
water intrusion into the joint.

Original Versus Redesigned SRM Case-to-Nozzle Joint. The SRM
case-to-nozzle joint, which experienced several instances of O-ring ero-
sion in flight, was redesigned to satisfy the same requirements imposed
on the casefield joint. Similar to the field joint, case-to-nozzle joint mod-
ifications were made in the metal parts, internal insulation, and O-rings.
The redesign added radia bolts with Stato-O-Seals to minimize the joint
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sealing gap opening. The internal insulation was modified to be sealed
adhesively, and a third O-ring was included. The third O-ring served as a
dam or wiper in front of the primary O-ring to prevent the polysulfide
adhesive from being extruded in the primary O-ring groove. It also served
as a thermal barrier in case the polysulfide adhesive was breached. The
polysulfide adhesive replaced the putty used in the STS 51-L joint. Also,
the redesign added an another leak check port to reduce the amount of
trapped air in the joint during the nozzle installation process and to aid in
the leak check procedure.

Nozzle. Redesigned interna joints of the nozzle metal parts incorpo-
rated redundant and verifiable O-rings at each joint. The modified nozzle
sted fixed housing part permitted the incorporation of the 100 radial bolts
that attached the fixed housing to the case's aft dome. The new nozzle
nose inlet, cowl/boot, and aft exit cone assemblies used improved bond-
ing techniques. Increasing the thickness of the aluminum nose inlet hous-
ing and improving the bonding process eliminated the distortion of the
nose inlet assembly’s metal -part-to-abl ative-parts bond line. The changed
tape-wrap angle of the carbon cloth fabric in the areas of the nose inlet
and throat assembly parts improved the ablative insulation erosion toler-
ance. Some of these ply-angle changes had been in progress prior to STS
51-L. Additional structural support with increased thickness and contour
changes to the cowl and outer boot ring increased their margins of safety.
In addition, the outer boot ring ply configuration was altered.

Factory Joint. The redesign incorporated minor modifications in the
case factory joints by increasing the insulation thickness and layup to
increase the margin of safety on theinternal insulation. Longer pins were
also added, along with areconfigured retainer band and new weather seal
to improve factory joint performance and increase the margin of safety. In
addition, the redesign changed the O-ring and O-ring groove size to be
consistent with the field joint.

Propellant. The motor propellant forward transition region was
recontoured to reduce the stress fields between the star and cylindrical
portions of the propellant grain.

Ignition System. The redesign incorporated several minor modifica
tions into the ignition system. The aft end of the igniter steel case, which
contained the igniter nozzle insert, was thickened to eliminate alocalized
weakness. The igniter internal case insulation was tapered to improve the
manufacturing process. Finally, although vacuum putty was still used at
the joint of the igniter and case forward dome, it eliminated asbestos as
one of its constituents.

Ground Support Equipment. Redesigned ground support equipment
(1) minimized the case distortion during handling at the launch site,
(2) improved the segment tang and clevis joint measurement system for
more accurate reading of case diameters to facilitate stacking, (3) mini-
mized the risk of O-ring damage during joint mating, and (4) improved
leak testing of the igniter, case, and nozzle field joints. A ground support
equipment assembly aid guided the segment tang into the clevis and
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rounded the two parts with each other. Other ground support equipment
maodifications included transportation monitoring equipment and the lift-
ing beam.

Testing. Tests of the redesigned motor were carried out in a horizon-
tal attitude, providing a more accurate ssimulation of actual conditions of
thefield joint that failed during the STS 51-L mission. In conjunction with
the horizontal attitude for the RSRM full-scale testing, NASA incorporat-
ed externally applied loads. Morton Thiokol constructed a second hori-
zontal test stand for certification of the redesigned SRM. The contractor
used this new stand to ssimulate environmental stresses, loads, and tem-
peratures experienced during an actual Space Shuttle launch and ascent.
The new test stand also provided redundancy for the original stand.

The testing program included five full-scale firings of the RSRM
prior to STS-26 to verify the RSRM performance. These included two
development motor tests, two qualification motor tests, and a production
verification motor test. The production verification motor test in August
1988 intentionally introduced severe artificial flaws into the test motor to
make sure that the redundant safety features implemented during the
redesign effort worked as planned. Laboratory and component tests were
used to determine component properties and characteristics. Subscale
motor tests simulated gas dynamics and thermal conditions for compo-
nents and subsystem design. Simulator tests, consisting of motors using
full-size flight-type segments, verified joint design under full flight loads,
pressure, and temperature.

Full-scale tests verified analytical models and determined hardware
assembly characteristics; joint deflection characteristics; joint perfor-
mance under short duration, hot-gastests, including joint flaws and flight
loads; and redesigned hardware structural characteristics. Table 2-30 lists
the events involved in the redesign of the SRB and SRM as well as earli-
er eventsin their development.®

Upper Stages

The upper stages boost payloads from the Space Shuttle's parking
orbit or low-Earth orhit to geostationary-transfer orbit or geosynchronous
orbit. They are also used on ELV missions to boost payloads from an
early stage of the orbit maneuver into geostationary-transfer orbit or geo-
synchronous orbit. The development of the upper stages used by NASA
began prior to 1979 and continued throughout the 1980s (Table 2-31).

The upper stages could be grouped into three categories, according to
their weight delivery capacity:

» Low capacity: 453- to 1,360-kilogram capacity to geosynchronous
orbit

See Ezell, NASA Historical Data Book, Volume Ill, for earlier events in
SRB development.
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e Medium capacity: 1,360- to 3,175-kilogram capacity to geosynchro-
nous orbit

» High capacity: 3,175- to 5,443-kilogram capacity to geosynchronous
orbit

Inertial Upper Stages

DOD designed and developed the Inertial Upper Stage (IUS)
medium-capacity system for integration with both the Space Shuttle and
Titan launch vehicle. It was used to deliver spacecraft into a wide range
of Earth orbits beyond the Space Shuttle’s capability. When used with the
Shuttle, the solid-propellant IUS and its payload were deployed from the
orbiter in low-Earth orbit. The lUS was then ignited to boost its payload
to ahigher energy orbit. NASA used atwo-stage configuration of the lUS
primarily to achieve geosynchronous orbit and a three-stage version for
planetary orbits.

The IUS was 5.18 meters long and 2.8 meters in diameter and
weighed approximately 14,772 kilograms. It consisted of an aft skirt, an
aft stage SRM with 9,707 kilograms of solid propellant generating
202,828.8 newtons of thrust, an interstage, a forward stage SRM with
2,727.3 kilograms of propellant generating 82,288 newtons of thrust and
using an extendible exit cone, and an equipment support section. The
equipment support section contained the avionics that provided guidance,
navigation, telemetry, command and data management, reaction control,
and electrical power. All mission-critical components of the avionics sys-
tem and thrust vector actuators, reaction control thrusters, motor igniter,
and pyrotechnic stage separation equipment were redundant to ensure
better than 98-percent reliability (Figure 2-15).
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Figure 2-15. Inertial Upper Stage
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The spacecraft was attached to the lUS at a maximum of eight attach-
ment points. These points provided substantial load-carrying capability
while minimizing thermal transfer. Several |US interface connectors pro-
vided power and data transmission to the spacecraft. Access to these con-
nectors could be provided on the spacecraft side of the interface plane or
through the access door on the IUS equipment bay.

The 1US provided a multilayer insulation blanket of aluminized
Kapton with polyester net spacers and an aluminized beta cloth outer
layer across the IUS and spacecraft interface. All 1US thermal blankets
vented toward and into the IUS cavity. All gases within the IUS cavity
vented to the orbiter payload bay. There was no gas flow between the
spacecraft and the IUS. The thermal blankets were grounded to the IUS
structure to prevent electrostatic charge buildup.

Beginning with STS-26, the IUS incorporated a number of advanced
features. It had the first completely redundant avionics system developed
for an uncrewed space vehicle. This system could correct in-flight fea
tures within milliseconds. Other advanced features included a carbon
composite nozzle throat that made possible the high-temperature, long-
duration firing of the IUS motor and a redundant computer system in
which the second computer could take over functions from the primary
computer, if necessary.

Payload Assist Module

The Payload Assist Module (PAM), which was originally caled the
Spinning Stage Upper Stage, was developed by McDonnell Douglas at its
own expense for launching smaller spacecraft to geostationary-transfer
orhit. It was designed as a higher altitude booster of satellites deployed in
near-Earth orbit but operationally destined for higher altitudes. The
PAM-D could launch satellites weighing up to 1,247 kilograms. It was
originally configured for satellites that used the Delta ELV but was used
on both ELVs and the Space Shuttle. The PAM-DII (used on STS 61-B
and STS 61-C) could launch satellites weighing up to 1,882 kilograms. A
third PAM, the PAM-A, had been intended for satellites weighing up to
1,995 kilograms and was configured for missions using the Atlas-Centaur.
NASA halted its development in 1982, pending definition of spacecraft
needs. Commercia users acquired the PAM-D and PAM-DII directly
from the manufacturer.

The PAM consisted of a deployable (expendable) stage and reusable
airborne support equipment. The deployable stage consisted of a spin-
stabilized SRM, a payload attach fitting to mate with the unmanned
spacecraft, and the necessary timing, sequencing, power, and control
assemblies.

The PAM’s airborne support equipment consisted of the reusable hard-
ware elements required to mount, support, control, monitor, protect, and
operate the PAM’s expendable hardware and untended spacecraft from
liftoff to deployment from the Space Shuttle or ELV. It also provided these
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functions for the safing and return of the stage and spacecraft in case of an
aborted mission. The airborne support equipment was designed to be as
salf-contained as possible. The major airborne support equipment elements
included the cradle for structural mounting and support, the spin table and
drive system, the avionics system to control and monitor the airborne sup-
port equipment and the PAM vehicle, and the thermal control system.

The PAM stages were supported through the spin table at the base of
the motor and through restraints at the PAF. The forward restraints were
retracted before deployment. The sunshield of the PAM-D and DIl pro-
vided thermal protection of the PAM/untended spacecraft when the Space
Shuttle orbiter payload bay doors were open on orbit.

Transfer Orbit Sage

The development of the Transfer Orbit Stage (TOS) began in April
1983 when NASA signed a Space System Development Agreement with
Orbital Sciences Corporation (OSC) to develop anew upper stage. Under
the agreement, OSC provided technical direction, systems engineering,
mission integration, and program management of the design, production,
and testing of the TOS. NASA, with participation by the Johnson and
Kennedy Space Centers, provided technical assistance during TOS devel-
opment and agreed to provide technical monitoring and advice during
TOS development and operations to assure its acceptability for use with
major national launch systems, including the STS and Titan vehicles.
NASA also established a TOS Program Office at the Marshall Space
Flight Center. OSC provided all funding for the development and manu-
facturing of TOS (Figure 2-16).

In June 1985, Marshall awarded a 16-month contract to OSC for a
laser initial navigation system (LINS) developed for the TOS. Marshall
would use the LINS for guidance system research, testing, and other pur-
poses related to the TOS program.

Production of the TOS began in mid-
1986. It was scheduled to be used on the
Advanced Communications Technology e NP
Satellite (ACTS) and the Planetary S/ — Y
Observer series of scientific exploration ' - =
spacecraft, beginning with the Mars
Observer mission in the early 1990s.

The TOS could place 2,490 to
6,080 kilograms payloads into geosta-
tionary-transfer orbit from the STS and
up to 5,227 kilograms from the Titan
Il and IV and could also deliver space-
craft to planetary and other high-ener-
gy trajectories. The TOS allowed
smaller satellites to be placed into geo-
stationary-transfer orbit in groups of

Figure 2-16.
Transfer Orbit Sage
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two or three. Two payloads of the Atlas class (1,136 kilograms) or three
payloads of the Delta class (636 kilograms) could be launched on a sin-
gle TOS mission. Besides ddlivery of commercial communications satel-
lites, its primary market, the TOS would be used for NASA and DOD
missions.

The TOS system consisted of flight vehicle hardware and software
and associated airborne and ground support equipment required for
buildup. Table 3-32 lists its characteristics. Performance capabilities of
the TOS included:

e Earth escape transfer capability
Geosynchronous transfer orbit capability
Orbit inclination change capability
Low-altitude transfer capability
Intermediate transfer orbit capability
De-orbit maneuver

Satellite repair and retrieval

Apogee and Maneuvering System

Theliquid bipropellant Apogee and Maneuvering System (AMS) was
designed to be used both with and independently of the TOS. The AMS
would boost the spacecraft into a circular orbit and alow on-orbit maneu-
vering. Martin Marietta Denver Aerospace worked to develop the AMS
with Rockwell International’s Rocketdyne Division, providing the AMS
RS-51 bipropellant rocket engine, and Honeywell, Inc., supplied the
TOS/AMS LINS avionics system.

When it became operational, the TOS/AMS combination would
deliver up to approximately 2,950 kilograms into geosynchronous orbit
from the orbiter’'s parking orbit into final geosynchronous orbit. The
TOS/AMS would have a delivery capability 30 percent greater than the
IUS and would reduce stage and STS user costs. The main propulsion,
reaction control, avionics, and airborne support equipment systems would
be essentially the same as those used on the TOS. In particular, the avion-
ics would be based on a redundant, fault-tolerant LINS.

Operating aone, the AMS would be able to place communications
satellites weighing up to approximately 2,500 kilograms into geostation-
ary-transfer orbit after deployment in the standard Space Shuttle parking
orbit. Other missions would include low-orbit maneuvering between the
Shuttle and the planned space station, delivery of payloads to Sun-
synchronous and polar orbits, and military on-demand maneuvering capa-
bility. The AM S was planned to be available for launch in early 1989 and
would provide an aternative to the PAM-DII.

The avionics, reaction control system, and airborne support equip-
ment designs of the AMS would use most of the standard TOS compo-
nents. Main propulsion would be provided by the 2,650-pound thrust
Rocketdyne RS-51 engine. This engine was restartable and operable over
extended periods. A low-thrust engine option that provided 400 pounds of
thrust would also be available for the AMS.
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Centaur Upper Stage

NASA studied and began production in the early 1980s of a modified
Centaur upper stage for use with the STS for planetary and heavier geo-
synchronous mission applications. The proposed modifications would
increase the size of the propellant tanks to add about 50 percent more pro-
pellant capacity and make the stage compatible with the Space Shuittle.
This wide-body version would use the same propulsion system and about
85 percent of the existing Centaur's avionics systems. Contracts were
negotiated with General Dynamics, Honeywell, Pratt & Whitney, and
Teledyne for the design, development, and procurement of Centaur upper
stages for the Galileo and International Solar Polar missions that were
scheduled for 1986.

However, following the Challenger accident, NASA determined that
even with modifications, the Centaur could not comply with necessary
safety requirements for use on the Shuttle. The Centaur upper stage ini-
tiative was then dropped.

Advanced Programs

Advanced programs focused on future space transportation activi-
ties, including improving space transportation operations through the
introduction of more advanced technologies and processes, and on ser-
vicing and protecting U.S. space assets. The following sections
describe NASA’'s mgjor advanced program initiatives. Several of the
efforts progressed from advanced program status to operational status
during this decade.

Orbital Transfer Vehicle

NASA's Advanced Planning/Programs Division of the Office of
Space Transportation identified the need for an Orbital Transfer Vehicle
(OTV) in the early 1980s, when it became obvious that a way was need-
ed to transport payloads from the Space Shuttle's low-Earth orbit to a
higher orbit and to retrieve and return payloads to the Shuttle or future
space station. The Marshall Space Flight Center was designated as the
lead center for the development effort, and the Lewis Research Center led
the propulsion system studies. An untended OTV was proposed for afirst
flight in the early 1990s.

NASA believed that the use of aerobraking was necessary to makethe
OTV affordable. Studies beginning in 1981 conducted at Marshall by def-
inition phase contractors Boeing Aerospace Company and General
Electric Reentry Systems determined that aerodynamic braking was an
efficient fuel-saving technique for the OTV, perhaps doubling payload
capacity. This technique would use the Earth’s atmosphere as a braking
mechanism for return trips, possibly supplemented by the use of aballute,
an inflatable drag device. When the transfer vehicle passed through the
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atmosphere, the friction of the air against the vehicle would provide
enough drag to slow the vehicle. Otherwise, arocket engine firing would
be required to brake the vehicle. Aeroassist braking would save one burn,
and the extra fuel could be used to transport a larger payload to a high
orhit. The aeroassisted braking could result in about atwofold increasein
the amount of payload that could be ferried to high altitudes.

Boeing's studies emphasized low lifting-body designs—“low lift-to-
drag ratio”—designs with arelatively low capability of lift to enable them
to fly, but ones that weigh less. General Electric Reentry Systems focused
on moderate lift-to-drag ratio designs—rel atively moderate lift capability
and somewhat heavier weight.

In 1981, NASA designated the Lewis Research Center the lead cen-
ter for OTV propulsion technology. This program supported technology
for three advanced engine concepts that were developed by Aerojet
TechSystems, Pratt & Whitney, and Rocketdyne to satisfy a NASA-
supplied set of goals. The proposed engines would be used to transfer
|loads—both personnel and cargo—between low-Earth orbit and geosyn-
chronous orbit, and beyond. In addition, because OTVs would face
requirements ranging from high-acceleration round-trip transfers for
resupply to very low-acceleration one-way transfers of large, flexible
structures, NASA investigated variable thrust propulsion systems, which
would provide high performance over a broad throttling range.

In 1983, NASA chose the same three contractors to begin a program
leading to the design, development, test, and engineering of the OTV.
These contracts expired in 1986. NASA sponsored another competitive
procurement to continue the OTV propulsion program. Funding was
reduced, and only Rocketdyne and Aerojet continued the advanced
engine technology development. Component testing began in 1988, and
further investigations into aerobraking continued into the 1990s.

The OTV would be used primarily to place NASA, DOD, and com-
mercial satellites and space platforms into geosynchronous orbit. The
OTV could also deliver large payloads into other orbits and boost plane-
tary exploration spacecraft into high-velocity orbits approaching their
mission trajectory. The vehicle was expected to use liquid oxygen-iquid
hydrogen propellants.

The OTV's reusable design provided for twenty flights before it had
to be refurbished or replaced. Because of its reusability, the OTV would
significantly reduce payload transportation costs.

At the same time, that Lewis was leading propulsion studies,
Marshall initiated studies in 1984 to define OTV concepts and chose
Boeing Aerospace and Martin Marietta to conduct the conceptual studies.
The studies examined the possibilities of both a space-based and an
Earth-based OTV. Both would initially be uncrewed upper stages. The
ultimate goal, however, was to develop a crewed vehicle capable of fer-
rying a crew capsule to geosynchronous orbit. The vehicle would then
return the crew and capsule for other missions. The development of a
crew capsule for the OTV was planned for the 1990s.
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The Space Shuttle would carry the Earth-based OTV into space. It
would be launched from the Shuttle's payload bay or from an aft cargo
carrier attached to the aft end of the Shuttle's external tank. The OTV
would transfer payloads from a low orbit to a higher one. It would also
retrieve payloads in high orbits and return them to the Shuttle. The OTV
would then return to Earth in the Shuttle's payload bay. The OTV would
separate from the Shuttle's external tank at about the same time that the
payload was deployed from the orbiter’s cargo bay. The two components
would then join together and begin to travel to a higher orbit. This Earth-
based OTV offered the advantage of performing vehicle maintenance and
refueling on the ground with the help of gravity, ground facilities, and
workers who do not have to wear spacesuits.

A space-based OTV would be based at the future space station. It
would move payloads into higher orbit from the space station and then
return to its home there. It would be refueled and maintained at the space
station. Studies showed cost savings for space-based OTVs. This type of
OTV could be assembled in orbit rather than on the ground so it could be
larger than a ground-based unit and capable of carrying more payload.
Initial studies of an OTV that would be based at the space station were
completed in 1985.

A single-stage OTV could boost payloads of up to 7,272 kilogramsto
high-Earth or geosynchronous orbit. A multistage OTV could provide up
to 36,363 kilograms to lunar orbit with 6,818.2 kilograms returned to
low-Earth orbit. After completing its delivery or servicing mission, the
OTV would use its rocket engines to start a descent. Skimming through
the thin upper atmosphere (above sixty kilometers), the OTV's aerobrake
would slow the OTV without consuming extra propellant. Then, because
of orbital dynamics, the OTV would navigate back to a low-Earth orbit.
When the OTV reached the desired orbital atitude, its rocket engines
would again fire, circularizing its orbit until it was retrieved by the Space
Shuttle or an orbital maneuvering vehicle (OMV) dispatched from the
space station.

NASA Administrator James M. Beggs stated in June 1985 that the
OTV would complement the proposed OMV. The OTV would transport
payloads from low-Earth orbit to destinations much higher than the OMV
could reach. The mgjority of the payloads transported by the OTV would
be delivered to geostationary orbit. Beggs envisioned that most OTVs
would be based at the space station, where they would be maintained,
fueled, and joined to payloads. In time, the OTV would also be used to
transport people to geostationary orbit.

Orbital Maneuvering Vehicle
The OMV (Figure 2-17) was designed to aid satellite servicing and

retrieval. This uncrewed vehicle could be characterized as a “ space tug,”
which would move satellites and other orbiting objects from place to
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place above the Earth. A reusable,
remotely operated unmanned propulsive
vehicle to increase the range of the STS,
the OMV was designed to be used pri-
marily for spacecraft delivery, retrieval,
boost, deboost, and close proximity visu-
al observation beyond the operating
range of the Space Shuttle. The vehicle
would extend the reach of the Shuttle up
to approximately 2,400 kilometers.

Concept definition studies were com-
pleted in 1983, and development began
toward aflight demonstration of the abil-
ity to refuel propellant tanks of an orbit-
ing satellite. In 1984, an in-flight
demonstration of hydrazine fuel transfer
took place successfully on STS 41-G.
System definition studies were compl et-

Figure 2-17. ed in 1985, and in June 1986, TRW was

Orbital Maneuvering Vehicle selected by NASA for negotiations lead-

ing to the award of a contract to develop

the OMV. The Preliminary Requirements Review took placein 1987, and

the Preliminary Design Review was held in 1988, with the Marshall
Space Flight Center managing the effort.

NASA planned for the OMV to be available for its first mission in
1993, when it would be remotely controlled from Earth. In the early years
of use, NASA envisioned that the OMV would be deployed from the
Space Shuttle for each short-duration mission and returned to Earth for
servicing. Later, the vehicle would be left parked in orbit for extended
periods, for use with both the Shuttle and the space station. However, the
OMYV was the victim of budget cuts, and the contract with TRW was can-
celed in June 1990.

Tethered Satellite System

The Tethered Satellite System (TSS) program was a cooperative
effort between the government of Italy and NASA to provide the capabil-
ity to perform science in areas of space outside the reach of the Space
Shuttle. The TSS would enable scientists to conduct experiments in the
upper atmosphere and ionosphere while tethered to the Space Shuttle as
its operating base. The system consisted of a satellite anchored to the
Space Shuttle by a tether up to 100 kilometers long. (Tethers are long,
superstrong tow lines joining orbiting objects together.)

The advanced development stage of the program was completed in
1983, and management for the TSS moved to the Space Transportation
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and Capability Development Division. In 1984, a study and laboratory
program was initiated to define and evaluate several applications of teth-
ers in space. Possible applications included power generation, orbit rais-
ing in the absence of propellants, artificial gravity, and space vehicle
constellations. In 1986, the Critical Design and Manufacturing Reviews
were conducted on the satellite and the deployer. In 1988, manufacture
and qualification of the flight subsystems continued. The twelve-meter
deployer boom, reel motor, and on-board computer were all qualified and
delivered. Also, manufacture of the deployer structure was initiated, and
the tether control mechanisms were functionally tested. A test program
was completed for the satellite structural and engineering models. The
flight satellite structure was due for delivery in early 1989. The develop-
ment of the scientific instruments continued, with delivery of flight satel-
lite instruments scheduled for early 1989. The first TSS mission was
scheduled for 1991.

Advanced Launch System

The Advanced Launch System, ajoint NASA-DOD effort, was asys-
tems definition and technology advanced development program aimed at
defining a new family of launchers for use after 2000, including a new
heavy-lift vehicle. President Reagan signed a report to Congress in
January 1988 that officially created the program. Within this DOD-
funded program, NASA managed the liquid engine system and advanced
development efforts.

Next Manned Launch Vehicle

In 1988, attention was focused on examining various next-generation
manned launch vehicle concepts. Three possible directions were consid-
ered: Space Shuttle evolution, a personnel launch system, and an
advanced manned launch system. The evolution concept referred to the
option of improving the current Shuttle design through the incorporation
of upgraded technologies and capabilities. The personnel launch system
would be a people carrier and have no capability to launch payloads into
space. The advanced manned launch system represented an innovative
crewed transportation system. Preliminary studies on al three possibili-
ties progressed during 1988.

Shuttle-C

Shuttle-C (cargo) was a concept for alarge, uncrewed launch vehicle
that would make maximum use of existing Space Shuttle systems with a
cargo canister in place of the orbiter. This proposed cargo-carrying launch
vehicle would be able to lift 45,454.5 to 68,181.8 kilograms to low-Earth
orbit. This payload capacity is two to three times greater than the Space
Shuttle payload capability.
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In October 1987, NASA selected three contractors to perform the
first of a two-phase systems definition study for Shuttle-C. The efforts
focused on vehicle configuration details, including the cargo element’s
length and diameter, the number of liquid-fueled main engines, and an
operations concept evaluation that included ground and flight support
systems. A major purpose of the study was to determine whether Shuttle-
C would be cost effective in supporting the space station. Using Shuttle-
C could free the Space Shuttle for STS-unigue missions, such as solar
system exploration, astronomy, life sciences, space station crew rotation,
and logistics and materials processing experiments. Shuttle-C also would
be used to launch planetary missions and serve as a test bed for new
Shuttle boosters.

The results of the Shuttle-C efforts were to be coordinated with other
ongoing advanced launch systems studies to enable ajoint steering group,
composed of DOD and NASA senior managers. The purpose of the steer-
ing group was to formulate a national heavy-lift vehicle strategy that best
accommodated both near-term requirements and longer term objectives
for reducing space transportation operational costs.

Advanced Upper Sages

Advanced missions in the future would require even greater capabil-
ities to move from low- to high-Earth orbit and beyond. During 1988,
activity in the advanced upper stages area focused on the space transfer
vehicle (STV) and the possibility of upgrading the existing Centaur upper
stage. The STV concept involved a cryogenic hydrogen-oxygen vehicle
that could transport payloads weighing from 909.1 to 8,636 kilograms
from low-Earth orhit to geosynchronous orbit or the lunar surface, aswell
as for unmanned planetary missions. The STV concept could potentialy
lead to avehicle capabl e of supporting human exploration missionsto the
Moon or Mars.

Advanced Solid Rocket Motor

The Advanced Solid Rocket Motor (ASRM) was an STS improve-
ment intended to replace the RSRM that was used on STS-26. The ASRM
would be based on a better design than the former rocket motor, contain
more reliable safety margins, and use automated manufacturing tech-
niques. The ASRM would also enhance Space Shuttle performance by
offering a potential increase of payload mass to orbit from 5454.5 kilo-
gramsto 9090.9 kilograms for the Shuittle. In addition, anew study on lig-
uid rocket boosters was conducted that examined the feasibility of
replacing SRMs with liquid engines.

In March 1988, NASA submitted the “ Space Shuttle Advanced Solid
Rocket Motor Acquisition Plan” to Congress. This plan reviewed pro-
curement strategy for the ASRM and discussed implementation plans
and schedules. Facilitiesin Mississippi would be used for production and
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testing of the new rocket motor. In August 1988, NASA issued an request
for proposals to design, develop, test, and evaluate the ASRM. Contract
award was anticipated for early 1989, and the first flight using the new
motor was targeted for 1994.
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Table 2-25. Space Shuttle Main Engine Characteristics
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Number of Engines Three on each Shuttle

Thrust 2,000,000 newtons each
Operating Life 7.5 hours and 55 starts

Range of Thrust Level 65%—-109% of rated power level
Propellant LOX/LH:

Nominal Burn Time 522 sec.

Prime Contractor Rockwell International




NASA HISTORICAL DATA BOOK

94

o113 Joj Apeai sem WRISAS 8 [INUS S11LB 3} L) PaILBA Bulbus ulew s ABA0DSIQ Jo Bulily ssauipesd b1} puodss-gz e pejonpuod 886T ‘0T bny
"A1anods1q uo uonsod sa1y-sguinu Ut pa|eisul 8Z0z aubug pue uonisod omi-isguinu Ut pa|[esul ¢zog auibus 8861 ‘v'Z "Uer
"Apeuua| e paALLie 8Z0g auibus 886T TZ 'Uer
"Apeuua| e paALLie 2zog auibus 886T ‘ST "Uer
A1510251Q U0 uonIS0d BUO JBqINU Ul Pa|eIsul 90TZ dulbug 8861 ‘0T 'Uer
"ApauLey e paALle 9TOg auibul 886T ‘9 "Uer
‘weJlboud 1591 Bulobuo ‘aAsUBI® Ue JO 1nsal e Se saulbud ay) uo
apew a/M sjusweoidwl JO Jequunu W " TISN T 92-S1S Uo pash ag 0} saulbus ufew Jo Aunsal aoueldsade Jo buluuibeg /86T 1des

‘(1SN Ajjowioy) Jeus) adeds SIuuslS e S1S9) 90Ue1daddy

886T "Uer—/86T Ony

"(e1uio}1[eD) UOSIAIQ BUADPBYD0Y S, [eUO ITeURIU| | PO
pue (1ddssssiN) 1SN e pewlolied a/em (SUOKSSIW 3MNUS 00T 01 U eAINkS) uoifesedo JO SPUCJSS £9€°2S PUe SISO TST

/86T "©0-986T "©d

‘perenul welboud 159] punoio 986T 90Q
'sulbrew ApJfes adoueyus pue Aljiceded a4l
papue® apincid pinom yaiym ‘13euod wswdo prsp dwndogin) areulelfe 1o} Auliym 7 1RId JO UONDSBS padunoule WSVN 986T ‘€T Py
"dwndoquny »zIpixo ainssaid-ybiy s suibus ay) uo Sape|q auIqun] JO a41] 3dIAIBS [euoiresedo ayy
pus1xe 0] paubissp uo eI Ipow e AJLIBA 01 SSISS B Ul 1511} 81 Sem 1591 8U L 1SN e A||njSS300ns pa1onpuod 1Sa) PUodss-0SZ 986T ‘oT AInc
*A]INJSS300NS P1dNPUOD 4-TG SIS S86T ‘62 AInr
"9A A 1UR|00D Joquieyd
Z JINSS o (V fpuueyo) Aouepunpal JO SSO| JO 8SMedad ST INGS JO UMOPINUS pue SPuodss g~ 18 paganios youre| 4-T15 S1S §86T ‘2T AIne
*A1INJSS300NS PRIdNPUOd A-TF S1S ¥86T ‘0€ Bny
"PUBLLILLIOD 1Jels e PaAIBdal JoAsu T JINSS OARA PN} ukW € JINSS
Buiuedo mots Aq pasreo spuodss -1 1 g pue € S3INSS JO UMOPINUS 4o asmesaq Apiiuiepul psuodisod g-T SIS 40 youne ¥86T ‘9g aung
‘uoiresedo Bulily 217e1S JO SPUOIBS 0000 eyl 810w JO S1S31 00 papn|oul ssaooid
uoirealeD el Jemod |y 01 pre| emod pate. Juesaid Jo Jusosed GOT e SSUIBUS UL JO Lo 11180 pale|dwio) €861 %20
‘Al1j1ceJnp pue uibfew pasealdul Joj STIASS 01 siuawisAoidwi Joy uebeq welboud || aseud €86T
"iddssissiN “(71SN) Selioreioce ] ABojouyos] 8Jeds feuoieN ‘weJfo.d 181 uosndo.d urew pae|dwod Z86T ‘82 Tpd
"RIUa) 80eds Apsuusy e (Z0T-AO) BIWN|0D (SIINSS 9341 |[e Jo Bulily puodss-0z) Bulily sssuipes 1ybi-H T86T ‘02 Ged
‘Y611 [B1GI0 111 Y 8J0eq B} 1581 BUIBUS JO SpU0das 00°08 PuleIyZe Jo eob eulblio pesseding 086T aunt
Y| areq

S)UeAT pe1os oS pue Jualdopre@ suibuT ureiN "9z— a1qeL



LAUNCH SYSTEMS

Table 2-27. Space Shuttle External Tank Characteristics

95

Propellants

Length

Diameter

Weight of Propellant

Gross Liftoff Weight

Inert Weight of Lightweight Tank
Liquid Oxygen Max. Weight
Liquid Oxygen Tank Volume
Liquid Oxygen Tank Diameter
Liquid Oxygen Tank Length
Liquid Oxygen Tank Weight
Liquid Hydrogen Max. Weight
Liquid Hydrogen Tank Diameter
Liquid Hydrogen Tank Length
Liquid Hydrogen Tank Volume
Liquid Hydrogen Tank Weight (Empty)
Intertank Length

Intertank Diameter

Intertank Weight

Prime Contractor

LHz LOX

46.8 m

84m

700,000 kg
750,980 kg

30, 096 kg
617,774 kg
542,583 liters
84m

15m

5,454.5 kg empty
103, 257 kg
84m

29.46 m
1,458,228 liters
13,181.8 kg
6.9m

84m

5,500 kg

Martin Marietta Aerospace
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Table 2-32. Transfer Orbit Sage Characteristics

Length

Weight With Full Propellant L oad

Airborne Support Equipment Weight

Payload to Geotransfer Orbit

Payload to Planetary and High-Energy Orbits
Propulsion System

Capacity

3.3m

10,886 kg

1,450 kg

6,080 kg from Shuttle

5,227 kg from Titan 111 and IV
Orbis 21 solid rocket motor
and attitude control system
1,360 kg to 3,175 kg capacity




