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We give a simple prescription for explicitly constructing a class of planar diagrams and we discuss their
physical relevance. All diagrams are generated from what we call the maximal ones, which are constructed
iteratively. The prescription is proved in detail and examples are given.

I. INTRODUCTION

Asymptotic properties of non-Abelian gauge the-
ories in perturbation theory have received much
attention recently. The analysis is more compli-
cated than the Abelian case (QED) because each
Feynman graph involves products of the usual
momentum-space factor and a (new) group-space
factor. Higher-order graphs involve higher-order
Casimir invariants. Delicate cancellations must
take place if the higher-order graphs are to be re-
lated to the lower-order graphs by some iteration.
Explicit calculations in the first few orders show
that this may occur in a way that does not depend
on the particular gauge group.!** Such cancella-
tions may well indicate the inappropriateness of
perturbation theory in factorizing the momentum
space and group space. However, in the absence
of any nonperturbative approach, one can only hope
to go beyond low orders by some convenient choice
of the group and/or the representation.

One method of drastically simplifying such cal-
culations is well known.®> One considers the funda-
mental (quark) representation of Uy and keeps only
the leading power of N in each order of the coupling
constant. Then, only a well-defined subset of
graphs contribute and the group factor is deter-
mined by the number of loops, so that the momen-
tum integrals may be directly compared (as in
QED). Such situations provide a much simplified
context in which to check results which are ex-
pected to apply to any gauge group.

As an explicit example, we may consider the
elastic form factor in the limit of very large mo-
mentum transfer, keeping only the leading terms
in a given order of the coupling constant.? In QED
the leading graphs are generated from rainbow
(ladder) graphs by permuting vertices on one side
of the current insertion. For a non-Abelian group
all single-boson corrections to these graphs in-
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volving the three-point self-interactions must be
included, excluding boson self-energies. In the
particular case of the Uy or SUy scalar quark form
factor, only the planar subset of these graphs will
contribute to the leading power of N* 1t is this
class of planar graphs on which we concentrate in
this paper.

In Sec. II we give a prescription for constructing
a set of planar diagrams which we call simple dia-
grams. We also generalize to include planar dia-
grams with both three- and four-line vertices.
Sec. III gives the construction of the form-factor
diagrams from the simple diagrams and concludes
the paper. Finally, technical aspects of a proof of
the prescription (given in Sec. II) are relegated to
three appendixes.

1. CONSTRUCTION OF DIAGRAMSS-8

This section is divided into seven parts. In part
A we define two classes of planar diagrams. In
part B we define two maps connecting the two
classes; one map turns out to be the inverse of
the other. In part C we use these maps to give a
prescription for constructing all diagrams of either
class. Part D is devoted to examples. Part E is a
proof that we get all the simple diagrams from the
prescription. Part F discusses a technique for de-
termining when two simple diagrams are topologi-
cally distinct. Part G gives the prescription for
including self-energies, and comments on the con-
struction of all planar diagrams.

A. Properties of the diagrams

Here we define simple diagrams and simple
duals to be diagrams with the properties listed
below:
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simple diagrams

simple duals

(1) planar
(2) one-particle irreducible® (1PI)
(3) three lines® per vertex®
(4) no internal self-energies
and no more than three boundary
self-energies

Neither simple diagrams nor simple duals con-
tain a vertex directly connected to itself.'° The
reason for introducing simple duals is that it is
easier to work with » vertices of a simple dual
than to work with » loops of a simple diagram.
The reason for “no more than three boundary self-
energies” is that one can destroy up to three by
the attachment of three incident lines or three legs
(see Appendix C, paragraph 5, line 15).

In the next section we introduce the dual opera-
tion and the antidual operation. Appendixes A and
B show that the dual is a bijective map (1-to-1 and
onto) from the set of simple diagrams onto the set
of simple duals, and the antidual is its inverse.

B. Dual and antidual operations

Definition. The dual of a simple diagram is a
diagram constructed from the simple diagram by

(1) placing a vertex in the interior of each loop
of the simple diagram,

(2) comnecting the vertices of (1) whose corre-
sponding loops share a line, and

(3) erasing the simple diagram.

For examples see Fig. 1.

Definition. The antidual of a simple dual is a
diagram constructed from the simple dual by

(1) replacing the simple dual by its maze,™
that is

(i) placing the simple dual inside a loop,

(ii) inserting a loop inside each loop of the
simple dual, and

(iii) erasing the simple dual;

(2) blocking the roads in the maze (a road has
replaced each line of the simple dual in the maze
construction); and

(3) shrinking the inserted loops of (1) (ii) to
vertices.

For examples see Fig. 2.

C. Prescriptions

The purpose of this section is to give the pre-
scription for generating all z-loop simple dia-
grams, prescription B. First we introduce two
definitions and prescription A.

Definition. Maximal simple dual: a simple dual
which is no longer a simple dual if we attach the

(1) planar
(2) connected
(3) all interiors® are loop®
interiors; three vertices per loop
(4) two vertices are directly
connected® at most once;
no more than three lobes®

TABLE I, Dictionary of graphical terminology.

boundary line: a line whose every point touches
points of the exterior of a diagram.

boundary vevtex: a vertex which touches points of
the exterior of a diagram.

diagvam (planar): a finite set of lines and/or ver-
tices in a plane. Also, a loop with no vertices is a dia-
gram.

divectly connected: two vertices are directly con-
nected if there is a single line connecting them. A ver-
tex is directly connected to itself if the end points of
some line coincide at that vertex.

extevior (of a diagram): the connected region in the
plane containing no lines or vertices which extends ar-
bitrarily far away from the diagram.

interior: a connected region in a plane containing
no vertices or lines, bounded by lines (and vertices) of
a planar diagram. The topological interior of a loop
with no vertices is also an interior; the exterior of a
diagram is not an interior.

line: any topological distortion of a closed line seg-
ment in a plane, nonzero and finite in length and whose
end points are defined to be vertices.

lobe: a portion of a diagram which is connected to
another portion (not necessarily the remainder of the
diagram) by only a vertex. The other portion is called
a body (with respect to that lobe). We say a diagram has
n lobes if there are » distinct portions commected to the
same body, each by a single vertex. (The same vertex
of attachment may be used by many or all of the lobes,
and the body may be only this vertex.) The form of Fig.
14(a) shows four lobes.

loop: an interior plus its boundary is called a loop
if it is topologically equivalent to a circle. (The bound-
ary may contain vertices.)

1PI (one particle irreducible): a diagram is 1PI if
it is connected and cannot be made disconnected by cut-
ting a line (not at a vertex) in the diagram. For example,
the hourglass diagram in Fig. 8 is 1PI.

topologically distinct: two planar diagrams are top-
ologically distinct if one cannot be elastically deformed
(in the plane) into the other without passing through or
identifying lines and/or vertices. This definition re-
duces to the definitions given in the text for topological
distinction of simple duals and simple diagrams. Two
diagrams are said to be topologically equivalent if they
are not topologically distinct.

vertex: (i) any point of incidence of three or more
lines; (ii) the end points of any line are vertices; (iii)
vertices of zero or two lines are defined where indicated
by a dot on the diagram.
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FIG. 1. Examples of the dual operation.

ends of a new line to two of its vertices.

Definition. Maximal simple diagram: a simple
diagram whose dual is a maximal simple dual;
equivalently (see Appendix B), the antidual of a
maximal simple dual.

Prescription A. Construction of all n-vertex
maximal simple duals:

(1) Forn=1, 2, and 3 they are easily construc-
ted directly from their definition. We show them
in Fig. 3.

(2) For n>3, we first construct all n-loop max-
imal simple diagrams; that is, draw all diagrams
of the form of Fig. 4, in which the hatched circle
is filled with all (» — 3)-loop simple diagrams in all
topologically distinct® ways which

(i) maintain three lines per vertex, that is, do
not allow any of the three lines incident on the
hatched circle to hit a vertex, and

(ii) avoid self-energies, that is, if the (z - 3)-
loop simple diagram has boundary self-energies,
they must be destroyed by attaching incident lines
to them. See Fig. 5 for examples.

Taking the dual gives the n-vertex maximal simple
duals.

Prescription B. Generation of all n-loop simple
diagrams:

(1) Construct all n-vertex maximal simple duals
by prescription A.

(2) From each n-vertex maximal simple dual,
remove lines from the consecutive boundaries'? in
all topologically distinct ways which leave the re-
sulting diagrams connected. In removing a line,
its end-point vertices remain with the diagram.

(3) Discard diagrams with more than three
lobes.

(4) Take the antidual of the diagrams resulting
from (1), (2), and (3).

The result of (4) is the set of all n-loop simple dia-
grams. Note that the same diagram may be gen-

erated from two different maximal simple duals.!?

D. Construction of the 3-, 4-, and 5-loop simple diagrams

n=3. The maximal simple dual is given in Fig.
3. The removal process generates the duals of
Fig. 6(a). We were allowed to remove at most one
line in preserving connectedness, and there is only
one way to remove one line because of the symme-
try. The corresponding antiduals are in Fig. 6(b).

n=4. We must fill in the hatched circle with all
one-loop simple diagrams; there is only one (the
single loop with no vertices, which comes from
the maximal simple dual composed of a single ver-
tex) and there is only one topological way to do it
[see Fig. 7(a)]. The duals of the removal process
and their antiduals are shown in Figs. 7(b) and (c).

n=>5. We must fill in the hatched circle with all
two-loop simple diagrams [in general, prescrip-
tion B requires us to know all (z — 3)-loop simple
diagrams in order to construct all of the n-loop
maximal simple diagrams]. It is obvious from the
two-vertex maximal simple dual that there is only
one two-loop simple diagram, and there is only
one topological way to attach the three incident
lines if we are to avoid internal self-energies and
four lines per vertex. This is shown in Fig. 8
along with the removal process, the duals gener-
ated, and their corresponding antiduals.

E. Proof that prescription B generates all and
only n-loop simple diagrams

Structure of the proof. Show that steps (1), (2),
and (3) of prescription B generate only the set of
all n-vertex simple duals (lemma 1), and show the
antidual operation on this set is the set of all n-
loop simple diagrams (lemma 2).

Lemma 1. Steps (1), (2), and (3) of prescription
B generate only the set of all n-vertex simple
duals.

Only n-vertex simple duals are generated: step
(1) begins the prescription with simple duals, step
(3) maintains the lobes property, and step (2)
maintains the remaining properties. Removing a

MAZE BLOCK TOPOLOGY @
- ~C__ OO — 1D ———-
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FIG. 2. Examples of the antidual operation.
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FIG. 3. Maximal simple duals for »=1,2,3.

line from the boundary neither creates nor alters
interiors (it can only destroy them) or the number
of vertices on their boundaries; also, it does not
create new direct connections, it maintains planar-
ity, and connectedness is specifically required.
When one removes a line its end-point vertices re-
main with the diagram, so the number of vertices
is unchanged.

All n-vertex simple duals are generated: We
prove here that all n-vertex simple duals are sub-
diagrams of some n-vertex maximal simple dual,
and are generated by the removal process. Ap-
pendix C shows that prescription A generates all
and only n-vertex maximal simple duals.

Given an n-vertex simple dual, add lines so as
to maintain the n-vertex simple-dual properties
until this is no longer possible. The number of
lines added will be finite because no vertex is di-
rectly connected to itself, two vertices are direct-
ly connected at most once, and the number of ver-
tices is finite. The diagram thus reached is by
definition an #-vertex maximal simple dual. All of
the lines must have been added to consecutive
boundaries. Thus the reverse of this addition of
lines must be an element of the removal process,
that is, a removing of lines from consecutive
boundaries, which maintains connectedness.

Lemma 2. The antidual operation with domain
being the set of all #» -vertex simple duals has the
set of all n-loop simple diagrams as its range.

Given an n-loop simple diagram not in the range,
we know its dual is an n-vertex simple dual by Ap-
pendix A. The antidual of this n-vertex simple
dual is the original n-loop simple diagram, as the
antidual-of -the-dual operation is the identity oper-
ation when the domain is the set of simple dia-
grams (Appendix B); thus we are led to a contra-
diction.

We know there can be only n-loop simple dia-
grams in the range by Appendix A.

®

FIG. 4. The form of the maximal simple diagrams
(n> 3); the hatched circle is to be filled with all (z — 3)-
loop simple diagrams. :

o— & o X~ @

FIG. 5. Examples of constructing maximal simple dia-
grams; in particular, avoiding self-energies.

F. Distinguishing the diagrams

When one is not able to immediately tell if two
simple diagrams are topologically distinct, it is
often easier to look at the corresponding simple
duals. Before giving some simple checks, we de-
velop a picture of the topology of simple duals and
we define topological equivalence of simple duals.
Of course, if two simple duals are topologically
equivalent (or distinct), the corresponding simple
diagrams are topologically equivalent (distinct),
and vice versa.

From Ref. 14 we know thatan internal vertexof a
simple dual is the center of a wheel. One caneasily
see that a boundary vertex of a simple dual is the cen-
ter of a wheel which has lost some or all of its rim con-
nections (where we allow wheels with any non-negative
number of spokes). Where a rim connectionis miss-
ing, we say the boundary vertex is open to the exterior
on that side. We define a wheel which has lost
some or all of its rim connections to be an almost
wheel. Thus a simple dual is made up of wheels
and almost wheels much as a puzzle is made of its
pieces (the big difference being that you have some
freedom to decide the shape of the pieces of a sim-
ple dual).

Topological equivalence of two simple duals re-
quires there exist a 1-to-1 correspondence be-
tween the vertices of one and the vertices of the
other, with the following properties:

(i) Given a vertex in one simple dual, write
down in clockwise order the vertices it is directly
connected to. The corresponding vertex of the
second simple dual must have direct connections
with the corresponding vertices in the same clock-
wise order. For example, if vertex 1 is directly
connected to vertices 2, 3, and 4 in clockwise or-
der, then vertex 1’ must be directly connected to
2’, 3’, and 4’ in clockwise order (where vertex m
of the first simple dual corresponds to vertex »/
of the second simple dual).

(ii) In the case of boundary vertices, the open-
ings to the exterior must also correspond. For

(a)AL(b)@@

FIG. 6. (a) All three-vertex simple duals, (b) all
three-loop simple diagrams [the antiduals of (a)].
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FIG. 7. (a) Construction of the three-loop maximal simple diagram, and its dual, (b) all four-vertex simple duals,
(c) all four-loop simple diagrams [the antiduals of (b)].
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FIG. 8. Schematic of the removal process on the five-vertex maximal simple dual; the box contains the five-vertex
simple duals and their antiduals, the five-loop simple diagrams.
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FIG. 9. The form of the maximal semisimple diagrams
(n>2); the hatched circle is to be filled with all (z — 2)-
loop chains.

example, in obvious notation, where O indicates
an opening, vertex 1 (2,3, 0,4, 0, 5) must corre-
spond to vertex 1/ (27,3, 0,4',0,5').

Some simple things that can be quickly checked
between two simple duals are:

(1) Is the number of lines the same?

(2) Is the number of boundary vertices the same?
Is the number of internal vertices the same?

(3) Since internal vertices are at the center of
wheels and boundary vertices are at the center of
almost wheels, we can pull wheels and almost
wheels apart as units, like taking apart a puzzle.
Try to pull both simple duals apart in the same
way. It is often best to do this check first.

G. Construction of a larger set of diagrams

We briefly mention how to construct a larger set
of diagrams, a subset of which we will call semisimple
diagrams. Semisimple diagrams are defined to be
diagrams having all the properties of simple dia-
grams except that property (4) is not a require-
ment, that is, self-energies are allowed (thus the
simple diagrams are a subset of the set of semi-
simple diagrams). The maximal n-loop semisim-
ple diagrams are constructed by filling the hatched
circle of Fig. 9 (which certainly looks like a self-
energy) with all topologically distinct “chains” of
semisimple diagrams, where each chain contains
exactly (» —2)-loops. We show all three-loop
chains in Fig. 10. The two lines incident on the
hatched circle in Fig. 9 must attach one to each
end of the chain (to maintain 1PI) in all topolog-
ically distinct ways which maintain three lines per
vertex (for example we can construct 14 different
five-loop maximal semisimple diagrams from the
three-loop chains, if one includes reflections).
Then one takes the duals to get the maximal semi-
simple duals, and the rules of removal are as be-
fore. Ignore the discarding of duals with lobes,
and construct all antiduals to get all of the n-loop
semisimple diagrams. (We have not yet proved
this rigorously.)

Finally, it is easy to further enlarge the set of

© 0O @ OG-0 OO0

FIG. 10. The three-loop chains.

planar diagrams to include n-line vertices. By
generalizing the removal process to include re-
moval of lines from the énferior of the duals, the
antiduals will contain diagrams with internal ver-
tices which have more than three lines per vertex.
If no adjacent interior lines are removed, we ob-
tain only three- or four-line vertices, which are
the vertices of renormalizable field theories. The
antidual operation always produces diagrams whose
boundary vertices have exactly three lines. The
simplest way to get around this is to construct dia-
grams with only one boundary vertex [as in Fig. 11(c)],
and then remove that vertex and the lines attached to
it. Thus we are led to the third method of gen-
erating diagrams, this time by attaching only one
line to a hatched circle.

IV. CONCLUSION

Having in hand the iterative method for explicitly
constructing the n-loop simple diagrams, it is now
straightforward to construct the leading scalar
form-factor graphs, mentioned in the Introduction,
by attaching the three external legs. One attaches
the three legs in all topologically distinct ways
(exactly as in the construction of the (n +3)-loop
maximal simple diagrams, Sec. IIC). If one leg
is then chosen to be the photon leg (in all topolog-
ically distinct ways) then the other two are the
quark legs, which are part of the continuous quark
line running from the incoming quark leg along the
boundary through the photon vertex and out the
other quark leg. All other lines are gluon lines.

These form-factor graphs represent momentum
integrals which may be expressed in parametric
form by functions directly determined from the
simple diagrams.'®* What is needed to proceed be-
yond low orders is a way of associating the asymp-
totic values of such integrals with the topology of
the graphs. So far this problem is unsolved.

In summary, we have solved the problem of con-
struction of a ganeral class of planar diagrams.
We feel that such constructions are of interest a-
part from the form-factor problem. For example,
graphical analysis appears to be useful in reducing
products of generators of the gauge group. In addi-
tion, much work has been done to associate partic-
ular dynamical behaviors with given classes of
Feynman diagrams. We feel the closer one is to
understanding the topology of the diagrams, the
more physics one can draw from them.

(a) O (b) @ (c)@

FIG. 11. An interior of a diagram can be circular,
as in (a), or have any combination of the appendages
shown in (b) and (c).
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APPENDIX A

Here we show

(1) the set of duals of simple diagrams is (a sub-
set of) the set of simple duals, and

(2) the set of antiduals of simple duals is (a sub-
set of) the set of simple diagrams.

The results of Appendix B allow us to ignore “(a
subset of)”. See lemma 2 for this argument.

We prove (1) by showing that simple-diagram
properties are converted into simple-dual proper-
ties by the dual operation; we prove (2) by showing
that simple-dual properties are converted into
simple-diagram properties by the antidual opera-
tion. We leave the proof that in both cases the re-
sult is a planar diagram to the reader.

To facilitate the proof of (1), we now show that
for simple diagrams

(i) every vertex and every line is part of a loop
(therefore the loop is a basis element), and

(ii) a loop never shares isolated points with
another loop or the exterior,® that is, every point
shared by two loops (or a loop and the exterior)
belongs to some line which they also share.

Thus we can picture simple diagrams as loops
shoved together, always sharing lines with other
loops or the exterior, wherever sharing occurs.

(i) We know that every line mustbe part of the boun-
dary of some interior; otherwise we could cut the
line and separate the result into two pieces, that
is, the diagram would not be 1PI. Thus we can
start on an appropriate side of a given line and ex-
pand a topological circle until it meets the bounda-
ry of the interior. In this way we see that the only
topological possibilities for this boundary are that
it is topologically circular, or, that it comes back
on itself at a point or along a line (or combinations
of points and/or lines). See Fig. 11. The latter
two are ruled out by three lines per vertex and
1PI, respectively. Thus every line and every ver-
tex (because if the diagram is connected, every
vertex is the endpoint of some line except in the
case of the single-vertex diagram) is part of a
loop. Now it is clear the boundary vertices must
be shared by exactly two loops (by boundary ver-
tex, three lines per vertex, all interiors are
loops, and 1PI) and all internal vertices are
shared by exactly three loops (by internal vertex,

three lines per vertex, and all interiors are loops).

Thus all vertices can be thought of as being cre-
ated in the shoving of the loops together, and these
basis loops need have no vertices before being
shoved together. With this picture of simple dia-
grams it is clear that the one-loop simple dia-
gram (which did not really conform to our defini-
tion of a planar diagram because it is not made of
a finite number of lines and/or vertices) fits in.
(ii) There can never be a sharing between two

loops, or a loop and the exterior, of an isolated
point (which would have to be a vertex) by three
lines per vertex. Keeping this picture in mind,

we move to the proof of (1).

The dual of a simple diagram is connected: If
there are at least two pieces in the dual, none of
the loops of the simple diagram that correspond to
one piece share a line with any of the loops that
correspond to the second piece. Since this is the
only possible type of connection, this contradicts
connectedness (1PI) of the simple diagram.

All interiors in the dual of a simple diagram are
loop interiors, and the loops have exactly three
vertices: Given any interior in the dual, there is
a vertex and two adjacent lines emanating from it
that are part of the boundary of that interior. This
is because there must be at least one line in the
boundary, and at least one of its end-point vertices
must have at least two lines emanating from it if
the dual is to be connected as we have just proven
(of course no line in the dual of a simple diagram
can have its end points coincide); thus by moving
around the vertex with at least two lines, we find
two adjacent lines that are in the boundary of the
given interior. The loop of the simple diagram
which leads to this dual vertex must have had a
vertex on its boundary separating two shared lines
that lead to the two dual lines leaving the dual ver-
tex (see Fig. 12). The separating vertex, on the
boundary of the loop in the simple diagram, must
be an internal vertex, and thus gives rise to a
three-vertex loop in the dual, and the interior of
this loop must be the very interior we are investi-
gating.

Two vertices in the dual of a simple diagram are
directly connected at most once: If two vertices
are directly connected more than once, there must
have been at least two lines shared between the
corresponding loops of the simple diagram (see
Fig. 13). This requires an internal self-energy in
the simple diagram, which is a contradiction.

There are not more than three lobes (attached
to the same body) in the dual of a simple diagram:
We show that more than three lobes with the same
body of attachment [Fig. 14(a)] requires more than
three boundary self-energies in the simple dia-

{ A
X
FIG. 12. This figure is an aid in the proof that all
interiors of the dual of a simple diagram are loop in-
teriors with exactly three boundary vertices. The dotted
circle is the loop which led to the vertex in its center as
a result of the dual operation. The vertex on the dotted

boundary is a vertex in the simple diagram which sepa-
rates the two adjacent dual lines of the dual operation.
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FIG. 13. Two loops which share at least two lines
and thus create a self-energy.

gram [Fig. 14(b)], which contradicts the definition
of a simple diagram [Fig. 14(a) is necessarily the
dual of Fig. 14(b)]. Consider a dual which has
more than three lobes attached to the same body,
and focus on one lobe. The vertex of attachment
of that lobe corresponds to a loop in the simple
diagram. We now show that that loop has two lines
shared with the exterior, one on either side of
what corresponds to the lobe. This is sufficient to
prove our hypothesis, as it shows a separate boun-
dary self-energy is required in a simple diagram
for each lobe in the dual attached to the same body.
The loop in the simple diagram which corresponds
to the vertex of attachment is really a loop of at-
tachment, that is, it connects two sets of loops
which are otherwise unconnected: the loops corre-
sponding to vertices of the lobe and the loops not
corresponding to vertices of the lobe. The loop of
attachment must have a line shared with the ex-
terior on either side of the lines shared with loops
corresponding to the lobe. This is because the
loops corresponding to the lobe must be a nonzero
length away from the loops corresponding to the
body (excluding the loop of attachment), since they
do not share a line and cannot share only a point.
To facilitate the proof of (2), we look more
closely at the antidual operation. First consider
the maze and blocking portions of the antidual oper-
ation on an arbitrary vertex of a simple dual (see
Fig. 15). It is clear that (i) each vertex is trans-
formed into a loop, and (ii) each line is trans-
formed into a blocked road connecting the two
loops that correspond to the endpoint vertices of
that line. The sides of the roads result from the
inserted loops or the surrounding boundary of the
maze. Now shrink all inserted loops (which have
three lines incident on them as a result of the
blocking portion) to vertices. These are the in-
ternal vertices; each one belongs to the three
loops that have arisen from the three vertices of

MAZE &

REGIONA ———>
BLOCK
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(a)

(b)%

FIG. 14. (a) A simple dual with at least four lobes,
(b) a simple diagram with at least four boundary self-
energies. The antidual maps form (a) into form (b), the
dual maps form (b) into form (a).

the loop in the simple dual in which the inserted
loop was inserted. All internal lines come from
the lines of the blocking portion and are shared by
two loops. All boundary lines are shared between
a loop and the exterior and arise from vertices
created by the blocking of roads which have a side
provided by the surrounding boundary of the maze.
This means that a loop of the antidual shares a line
with the exterior if and only if the corresponding
vertex of the simple dual touches the exterior on
the corresponding side (e.g., assume region A in
Fig. 15 is the exterior).

Just before the shrinking portion it is clear that
the diagram is connected; one follows a path indi-
cated by the corresponding connection in the sim-
ple dual, traversing loops or the lines of the
blocking portion where necessary. The shrinking
process cannot disconnect the diagram. Also the
antidual is 1PI; cutting a line cannot disconnect
the diagram because every line is part of a loop.

There must be exactly three lines per vertex be-
cause vertices arise only from blocking and shrink-
ing. Blocking clearly leads to three lines per ver-
tex; shrinking does also because the loops of the
simple dual have three vertices (see Fig. 16).

Suppose the antidual of a simple dual leads to an
internal self-energy (see Fig. 13). This is merely
two loops which share at least two lines; thus the
corresponding vertices of the simple dual must
have been directly connected at least twice, which
is a contradiction.

There are no more than three boundary self-en-
ergies in the antidual of a simple dual: [Fig. 14(b)
is necessarily the antidual of Fig. 14(a)]. From
the discussion above, a loop of the antidual shares
a line with the exterior only if the corresponding
vertex of the simple dual touches the exterior on

SHRINK
REGION A _—
ASSUMING THAT ) ?

ONLY REGIONA ~ *°
IS THE EXTERIOR

REGION A

FIG. 15. The maze and blocking portions and the shrinking portion of the antidual process on an “arbitrary” simple-

dual vertex.
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MAZE SHRINK
—_— —_
& BLOCK

FIG. 16. A diagrammatic illustration that internal
vertices in the antidual of a simple dual have three lines
per vertex.

the corresponding side. Thus the loop which
houses the self-energy must correspond to a ver-
tex of attachment, and for each boundary self-en-
ergy in the antidual there must be one lobe in the
simple dual. Therefore, if the antidual has more
than three boundary self-energies, it must have
come from a simple dual with more than three
lobes (attached to the same body), which is a con-
tradiction.

APPENDIX B

Here we show

(1) the antidual-of-the-dual operation on simple
diagrams is the identity operation, and

(2) the dual-of-the-antidual operation on simple
duals is the identity operation.

(1). We know that the antidual-of-the-dual oper-
ation on an n-loop simple diagram is an n-loop
simple diagram by Appendix A. We say two n-loop
simple diagrams are equal (topologically equiv-
alent) if there exists a 1-to-1 correspondence be-
tween the loops of each diagram such that for any
loop of the first diagram, the line sharing with the
exterior and with other loops and the order of the
sharing correspond to the line sharing of the corre-
sponding loop of the second diagram.

We define the 1-to-1 correspondence between the
loops of a given n-lobp simple diagram and its
image under the antidual of the dual operation as
follows: A loop in the given diagram corresponds
to the loop it leads to in the image diagram; that
is, the loop of the given diagram leads to a vertex
in the dual operation, which leads to the corre-
sponding loop in the antidual operation. From the
discussions of Appendix A it is clear that this
correspondence ensures the correspondence, in
content and order, of the line sharing.

(2). Proven analogously.

o0 —
5O - OV — OO

FIG. 17. Two types of boundaries not possible in a
maximal simple dual, as one can add lines as indicated.

() 222

2 3
.

FIG. 18. A form used to show a maximal simple
dual must have no more than three boundary vertices.

APPENDIX C

Here we prove prescription A generates all and
only n-vertex maximal simple duals for n>3. The
cases n=1, 2, and 3 are easily proven by con-
struction from the definition.

We first show that the boundary of a maximal
simple dual (z>2) must be topologically equivalent
to the boundary of a circle. The only possible dif-
ferences are (combinations of) pinches and lines
[see Figs. 17(a) and (b)]. These cannot occur be-
cause one can add lines and still maintain z-vertex
simple-dual properties in these cases. The equal
signs in Fig. 17 come from the property that no vertex
isdirectly connected to itself, the end points of a line
are vertices, andn>2.

We now prove there are exactly three vertices on
the boundary of a maximal simple dual when n>2.
First we show there are no more than three, then
we rule out 2, 1, and 0. Suppose there are at least
four vertices on the boundary (see Fig. 18; we have
used the topological equivalence to a circle proven
above). If vertex 1 is directly connected to vertex
3, 2 cannot be directly connected to 4; thus we can
connect them from the outside by adding a line,
while maintaining the n-vertex simple-dual proper-
ties. If 1 is not directly connected to 3, we can
again add a line. In either case this could not have
been a maximal simple dual; this shows there can
be no more than three boundary vertices. Two
boundary vertices is ruled out by the topologically
circular boundary (z>2) and no more than one di-
rect connection between two vertices of a simple
dual. One boundary vertex is ruled out by the cir-
cular boundary (n>2) and that no vertex is directly
connected to itself. Zero is ruled out by the defini-
tion of a simple dual. Thus for »>2, maximal
simple duals have exactly three boundary vertices.

The antidual of a simple dual with three boundary
vertices is a diagram of the form of Fig. 4, where
we are sure the boundary of the hatched region is
continuous because of the nature of the antidual

&9

FIG. 19. A diagrammatic form used to argue that the
hatched circle of Fig. 4 must be filled with a diagram
whose boundary is topologically circular.
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POOO®

FIG. 20. The five different six-loop maximal simple
diagrams.

operation. We can use the simple-diagram prop-
erties to show it must be topologically circular
(n>3). The only possible differences are again
(combinations of) pinches and lines. The pinch is
ruled out by three lines per vertex. The line of
the second possibility must have its end-point ver-
tices. We must attach two of the incident lines to
the two blobs (see Fig. 19), which contain at least
the end-point vertices of the line, to make the dia-
gram 1PI. Any attachment of the third line leads
to a self-energy, ruling out this case.

The central circle must have all the properties
of an (n — 3)-loop simple diagram except for an ac-
ademic exception: two-line vertices may be al-
lowed on the boundary which are then converted
into three-line vertices by the incident lines. The
resulting maximal simple diagram could be ob-
tained by the same central circle without the two-
line vertices, because hitting a two-line vertex is
equivalent to hitting no vertex, just hitting a boun-
dary line. We have proven that the boundary of the
central circle must be 1PI, and this must be true
for internal lines also, if the maximal simple dia-
gram is to be 1PI. It is clear that three lines per
vertex is necessary inside and sufficient on the
boundary of the central circle, and there can be no
more than three boundary self-energies if we are
to avoid internal self-energies, although as many
as three are allowed, as we can destroy them with
the incident lines. Finally, it is clear that the cen-
tral circle can have no internal self-energies and

®

FIG. 21. A diagram used to argue that internal lines
cannot be added to a simple dual if the result is to be a
simple dual.

must be planar (and it must be a diagram). If the
rules for attaching the incident lines as given in
prescription A are followed, the central circle
filled with an (» — 3)-loop simple diagram will be a
simple diagram. Also, filling the central circle
with each simple diagram in all topological ways
according to prescription A will generate all sim-
ple diagrams with three boundary loops (z>3), be-
cause we have seen that, except for an academic
qualification, the central circle must be filled with
a simple diagram if the whole diagram is to be
simple. The duals of simple diagrams with three
boundary loops must be maximal simple duals
because Appendix A tells us they are simple duals
(and thus by lemma 1 no internal line can be added
if the result is to be a simple dual) and they have
three boundary vertices on a topologically circular
boundary (three boundary vertices ona topologically
circular boundary implies no boundary; one may be
added if the result is to be a simple dual). By Ap-
pendix B, the duals of all of the #z-loop maximal simple
diagrams are all of the z-vertex maximal simple
duals (they are only maximal simple duals by defi-
nition), and we have seen that prescription A gen-
erates all and only maximal simple diagrams; thus
prescription A generates all and only n-vertex
maximal simple duals.
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Oguppose there exists a vertex in a simple dual which
is directly connected to itself. Then, if the shaded
area of Fig. 1(b) is empty, there would be a loop with
one vertex in the simple dual. If it is not empty, there
is an interior which is not a loop interior in the simple
dual. In either case, we have a contradiction. For
simple diagrams, one uses the same figure and the
properties of three lines per vertex and 1PI to disprove
the presence of such vertices.

Roughly, we are blowing up the simple dual like a two-
dimensional balloon.

L2After a line is removed, some interior lines may be-
come boundary lines® and thus become candidates for
the removal process.

13, -6 is the first case of more than one maximal simple
dual. It is also the first case in which some of the

simple diagrams are not reflection symmetric. We
show the six-loop maximal simple diagrams in Fig. 20;
the last two are reflections of each other.
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simple-dual properties if one of the vertices to which
the line is attached is an internal vertex. This is be-
cause an internal vertex must be at the center of a
wheel (as we show in the next paragraph). The other
vertex of attachment cannot be on the boundary of the
wheel, as we would have two direct connections be-
tween the two vertices (see Fig. 21). Since both ends
of a line cannot be attached to a single vertex, the
only remaining alternative is a vertex outside the
wheel, but this would lead to a nonplanar diagram.

To see that an internal vertex of a simple dual must
be the center of a wheel, consider the lines emanating
from the internal vertex. There must be at least
three lines, as

(i) zero lines is ruled out by connectedness,

(ii) one is not possible for internal vertices of a
planar diagram if all interiors are to be loops, and

(iii) two is not possible for internal vertices of a
planar diagram if all interiors are to be loops with
three vertices, and there is to be no more than one
direct connection between any two vertices.

The outer end points of any two adjacent lines emanating
from the internal vertex must be directly connected if
the vertex is to be internal and all interiors are to be
loops with three vertices. Thus an internal vertex of a
simple dual is at the center of a wheel.
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