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ABSTRACT 

The sensitivity of constrained linear inversions to the selection of the Lagrange multiplier is demonstrated 
for the case of inferring columnar aerosol size distributions from spectral aerosol optical depth measurements. 
Since negative values of the aerosol size distribution constitute an unphysical solution, the Lagrange mul- 
tiplier is varied within a restricted range until a range of values is reached for which all elements of the 
solution vector are positive. In addition to the constraint that the solution vector be positive, it is necessary 
for the final solution to be a smooth function and to satisfy the original integral equation to within the noise 
level of the measurements. An iterative method is presented whereby an initial estimate of the size distribution 
is modified until the final solution satisfies both the positivity constraint and the requirement that the 
regression fit to the data using the inverted size distribution be consistent with the measurement errors. A 
formula for calculating the variances and covariances in the inversion solution is derived and applied to 
optical depth measurements obtained at the University of Arizona and at Goddard Space Flight Center. 
In the former case an estimate of the measurement errors is available and thus the inversion formula and 
error analysis explicitly includes the magnitudes of the measurement variances. In the latter case the 
measurement errors are not known and the analysis assumes the errors in the measurements are equal and 
uncorrelated. Results of the error analysis show that the variances in the solution vector are large for radii 
where the information content of the measurements is small. 

1. Introduction 

Inversion methods for solving Fredholm integral 
equations of the first kind have existed for some 20 
years. The earliest method for solving these indirect 
sensing problems in which due consideration was 
given to the estimation problem was the linear in- 
version technique developed by Phillips (1962) and 
Twomey (1963). This inversion method, which was 
arrived at independently by Tikhonov ( 1963), is com- 
monly referred to as constrained linear inversion be- 
cause it relies on the introduction of an additional 
condition or constraint, not deriving from the mea- 
surements, which enables one of the set of possible 
solution vectors to be selected. Many applications of 
constrained linear inversion can be found in the lit- 
erature. These include the inference of atmospheric 
temperature profiles from satellite-borne radiometers 
(Wark and Fleming, 1966; Glasko and Timofeyev, 
1968a,b), inference of the vertical distribution of 
ozone from scattered sunlight (Yarger, 1970), and 
the inference of aerosol size distributions from spec- 
tral attenuation (Yamamoto and Tanaka, 1969; 
King et al., 1978; Walters, 1980) or angular light 
scattering (Dave, 1971; Byrne, 1978; Reagan et al., 
1980) measurements. 

In each of these problems, as in any physics or 
engineering problem involving Fredholm integral 
equations of the first kind, the measurements and 

frequently the kernel functions are known with only 
finite accuracy. In addition, there is often a high 
degree of interdependence among some of the kernel 
functions which leads to highly oscillatory and un- 
satisfactory solutions in the absence of a suitable 
constraint. In a Bayesian sense this arises from a 
vague prior knowledge of the solution vector f(x) 
in that least-squares assumes only that -cc < f(x) 
< cc for all values of X. For most problems likely to 
be encountered in the atmospheric sciences, such as 
those outlined above, this range for f(x) is unnec- 
essarily broad since physical necessity dictates that 
the solution vector must at the very least be positive. 

In addition to the constraint that the solution vec- 
tor be positive, it is normal to seek the solution among 
the set of possible solutions which is the smoothest 
in some sense. Phillips (1962) introduced a smooth- 
ing constraint such that the sum of the squares of 
the second derivatives of the solution points is min- 
imized. Twomey (1977) discusses many possible con- 
straints that can be applied in constrained linear in- 
version problems, but Phillips’ second derivative 
smoothing constraint remains one of the most pop- 
ular in the atmospheric sciences. Among mathema- 
ticians the most popular constraint is that the sum 
of the squares of the solution points is minimized. 
This leads to the constraint matrix being the identity 
matrix and is referred to by Hoer1 and Kennard 
(1970a,b) as ridge regression, rather than con- 
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strained linear inversion. The formulation of the 
problem as one in which a non-negative Lagrange 
multiplier is introduced as a means of varying the 
relative contribution of the kernel matrix and the 
constraint matrix remains the same. 

The intent of this paper is to demonstrate the sen- 
sitivity of constrained linear inversions to the selec- 
tion of the Lagrange multiplier and to demonstrate 
how one can obtain useful solutions in inversion 
problems by appropriately selecting the proper value 
(or values) of the Lagrange multiplier. The problem 
of inferring columnar aerosol size distributions from 
spectral optical depth measurements has been chosen 
as an example, though the methods to be presented 
are applicable to a much larger class of problems. 
A formula for calculating variances and covariances 
in the inversion solution is derived and applied to 
optical depth measurements obtained at the Univer- 
sity of Arizona and at Goddard Space Flight Center. 

2. Constrained linear inversion 

Many remote sensing problems can be expressed 
in the form 

g(Y) = Lb ax, YMXMX, (1) 

where the function g(y) is measured and the indicial 
function f(x) is to be inferred. In very few inversion 
problems can an expression for f(x) be written an- 
alytically as a function of g(y), and thus a numerical 
approach must be followed. Phillips ( 1962) argued 
that in any practical problem the Fredholm integral 
equation of the first kind should be rewritten as 

dY) = s.” a, YMXMX + 4Y), (2) 

where the function c(y) arises from measurement 
errors as well as any uncertainties as to the exact 
form of the kernel function K(x, y). If we measure 
g(y) at p discrete values of y, and wish to infer f(x) 
at q discrete values of x, a system of linear equations 
results which may be written as 

g = Af + 6. (3) 

In this expression A is a p X q matrix representation 
of the kernel function which contains weighting fac- 
tors whose values depend on the quadrature formula 
used. Although quadrature errors can contribute to 
the magnitude of the unknown error vector t, the 
difficulties encountered in inversion problems are sel- 
dom caused by a loss of accuracy in going from an 
integral to a finite sum (Twomey, 1977). 

It is well known that the inverse problem in which 
the Fredholm integral equation expressing radiation 
g(y) as a function of the atmospheric state f(x) is 
inverted to express the atmospheric state in terms of 
radiation is ill-posed, i.e., there is no mathematically 

unique solution. This led Phillips (1962) to the es- 
timation problem in which a set of appropriate cri- 
teria are introduced in order to determine the best 
and most physical solution among the family of sol- 
utions which satisfy (3). Twomey (1977) showed that 
Phillips’ constraint in which the sum of the squares 
of the second derivatives of the solution points is 
minimized is only one of many measures of smooth- 
ness which can be selected, and that the measure of 
smoothness can in general be written as FHf, where 
H is usually a simple near-diagonal matrix and where‘ 
superscript T denotes matrix transposition. The so- 
lution vector f is then obtained by minimizing a per- 
formance function Q, defined as 

where 
Q = Q, + YQ~ 9 

P P 

(4) 

Q2 = f Hf = 5 5 fiHijfj e 
i=* j=l 

In these expressions y is a non-negative Lagrange 
multiplier and S, the measurement covariance ma- 
trix. This follows from the Gauss-Markov theorem 
(see, e.g., Liebelt, 1967) and thus the minimum value 
of Q represents the statistically optimum estimate 
of f. 

The solution vector f for which (4) is a minimum 
is readily shown to be 

f = (A=S;‘A + yH)-lATS;‘g. (7) 

For the case in which the statistical errors in the 
measurements are assumed equal and uncorrelated, 
S, reduces to s21, where s2 represents the sample 
variance for the regression fit and I is the identity 
matrix. With this assumption, Eq. (7) reduces to the 
familiar form derived by Twomey (1963), given by 

f = (A=A + yH)-‘A=g, (8) 

where s2 has been incorporated into the magnitude 
of y. 

Equations equivalent to (7) have been derived or 
applied by Liebelt (1967) Strand and Westwater 
(1968), Westwater and Strand (1968) Rodgers 
(1970, 197 1) and DeLuisi and Mateer (197 1) in the 
context of statistical estimation theory, and King et 
al. (1978) and Twomey (1977) in the context of con- 
strained linear inversion. In the former case yH is 
replaced by the inverse of an a priori estimate of the 
solution covariance matrix, and in this sense serves 
the same purpose as the constraint matrix and the 
undetermined Lagrange multiplier (Rodgers, 1976). 

In applying either (7) or (8) to the solution of the 
inverse problem it is necessary to select a value for 
y. Many different methods have been used for de- 
termining the Lagrange multiplier. Yarger (1970) 
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and Dave (1971) based their selection of 7 on the 
magnitude of the maximum eigenvalue of ATA since, 
for the special case where H equals the identity ma- 
trix I, the eigenvalues of ATA + yl are simply the 
eigenvalues of ATA incremented by y. This is a useful 
method for understanding the nature of the con- 
straint but it does not guarantee either positive so- 
lutions or permit easy extension to other forms of the 
H matrix. Twomey ( 1977) recommends selecting the 
smallest value of y which leads to a residual fit 
Z,Ei2 which is a safe upper estimate of the overall 
error in g due to all causes (experimental error, quad- 
rature error, etc.). Though this criterion is useful for 
isolating the approximate magnitude of y, it is in- 
sufficient to guarantee finding a solution or that the 
solution once found is positive definite. Other inves- 
tigators (e.g., Yamamoto and Tanaka, 1969) have 
done simulation studies from which a “best” value 
of y was determined, a value which was kept fixed 
for all subsequent analyses of experimental data. 
Since y enters (7) in a manner such that ele- 
ments of yH are to be added to ATS;‘A to produce 
the desired smoothing, King et al. (1978) based 
their selection of y on the magnitude of 
yHk,/(ATS;’ A),,, rather than the magnitude of y 
alone. The sensitivity of constrained linear inversions 
to the selection of the Lagrange multiplier will be 
demonstrated in the following sections for the case 
of inferring columnar aerosol size distributions from 
spectral aerosol optical depth measurements. It will 
be shown that it is convenient to vary yrcl 
=~HII/(ATS;‘A)I, in the range low3 to 5 until a 
range of values of yrcl is reached for which all ele- 
ments of f are positive (i.e., negative values of the 
elements off constitute an unphysical solution). This 
represents the addition of an additional constraint 
which, like the smoothness constraint, is necessary 
to select a physical solution among the family of 
solutions which satisfy (3). In the sections which fol- 
low an iterative method will be described whereby 
an initial estimate of the solution is modified until 
the final solution satisfies both the positivity con- 
straint and the constraint that the solution satisfy 
(3) to within the expected noise level of the mea- 
surements. 

Once an appropriate value of y has been deter- 
mined, the solution covariance matrix can readily be 
obtained. Bevington (1969) shows that uncertainties 
in multiple regression problems are related to the 
symmetric matrix 01, whose elements are given by 

1 a2Q 
ak’ = !i afkaft ’ (9) 

The matrix cy is called the curvature matrix because 
of its relationship to the curvature of the Q hyper- 
surface in coefficient space. The solution covariance 
matrix S is then obtained from the a-’ matrix, i.e., 

s = a-‘, (10) 

which, for constrained linear inversion, leads to 

a = A=S;‘A + yH, (11) 

S = (A=S;‘A + ?H)-‘. (12) 

When yH is replaced by the inverse of an a priori 
estimate of the solution covariance matrix, this equa- 
tion becomes equivalent to the maximum likelihood 
solution obtained by Liebelt (1967) and Strand and 
Westwater (1968) and discussed in detail by Rodgers 
(1976). 

If the uncertainties in the measurements are not 
known, they can be approximated from the data by 

(13) 

where s2 is the sample variance for the regression 
fit and p - q is a lower limit for the number of 
degrees of freedom after fitting p data points with 
q parameters. For this case the solution covariance 
matrix is given by 

S = s2(ATA + yH)-‘. (14) 

Eqs. ( 12) and ( 14) are the equations for estimating 
the uncertainties in the inversion solution for con- 
strained linear inversion problems. Eqs. (7) and ( 12) 
have been applied to spectral aerosol optical depth 
measurements obtained at the University of Arizona, 
since it is known that some of the optical depth meas- 
urements are more precise than others. For the case 
of aerosol optical depth measurements obtained at 
Goddard Space Flight Center the measurement er- 
rors are not known and thus inversions were per- 
formed using Eqs. (8), ( 13) and ( 14). Results of this 
analysis are presented and discussed in Section 4. 

3. Determination of aerosol size distributions from 
spectrat attenuation measurements 

Under the assumption that atmospheric particu- 
lates can be modeled as a polydisperse collection of 
spherical particles with a single refractive index, the 
integral equation which relates the aerosol optical 
depths 7,(X) to an aerosol size distribution can be 
written in the form 

7aO) = s 

00 
rr 2Qexl(r, A, mMr)dr. (15) 

0 

In this expression r is the particle radius, X the wave- 
length of incident illumination, m the complex re- 
fractive index of the aerosol particles, Q&r, X, m) 
the extinction efficiency factor from Mie theory, and 
n,(r) the columnar aerosol size distribution, that is, 
the number of particles per unit area per unit radius 
interval in a vertical column through the atmosphere. 
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In order to determine n,(r) from spectral meas- 
urements of r,(X), King et al. (1978) let n,(r) 
= h(r)f(r), where h(r) is a rapidly varying function 
of r, while f(r) is more slowly varying. With this 
substitution, Eq. (15) becomes 

where the limits of integration have been made finite 
with r, = r, and rq+l = rb. If f(r) is assumed constant 
within each coarse interval, a system of linear equa- 
tions of the form of (3) results, where the elements 
are given by 

gi = 7a(xi), i= 1,2,...,p 

s 

‘j+ I 
A, = rr2Qext(r, L mN(rW, 

‘j 

j= 1,2,...,q 

fj = f(rj G r 5 rj+l) 

Initially a zeroth-order weighting function h(O)(r) 
is assumed in (17) from which first-order fi’) values 
are computed with the aid of (7) or (8). The first- 
order solution vector components fi” are assumed 
to be valid at the geometric mean radius of each of 
the coarse intervals [viz., 5 = (rirj+l)“*], from 
which the first-order indicial function f”‘(r) is ob- 
tained by connecting straight line segments on an 
f”‘(r) vs logr scale. Since f”‘(r) represents a mod- 
ifying factor to the assumed form of h”‘(r), the f(‘)(r) 
values are then used to calculate a first-order weight- 
ing function, h”‘(r) = h(‘)(r)f(‘)(r), which better rep- 
resents the size distribution than the initially as- 
sumed weighting function. The first-order weighting 
function is then substituted back into (17) from 
which a second-order fi2) is obtained through (7) or 
(8). This iterative procedure is continued until a sta- 
ble result is obtained (Herman et al., 1971; King et 
al., 1978) but in no instance are more than eight 
iterations performed. 

For the results presented in this paper, the initial 
weighting functions were assumed to have the form 
of a Junge (1955) size distribution, given by 

ho(r) = r-(v’+l)m (18) 

Several different values of Y* are used to calculate 
the zeroth-order weighting function and the final re- 
sults after successive iterations are intercompared. 
King et al. (1978) showed that the final results are 
usually insensitive to the initial estimates of the size 
distribution, even when the size distribution deviates 
markedly from a Junge distribution. The only dif- 
ficulty which normally arises is in selecting the radius 
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range having the major contribution to the mea- 
surements. 

The sensitivity of spectral attenuation measure- 
ments to the radii limits and refractive index assumed 
in the inversion has previously been discussed (King 
er al., 1978). There it was shown that the refractive 
index sensitivity is quite weak, affecting the inverted 
size distribution slightly by shifting its magnitude 
and radii while maintaining its overall shape. As a 
consequence, all inversions were performed assuming 
the complex refractive index of the aerosol particles 
was wavelength and size independent and given by 
m = 1.45 - O.OOi. 

Phillips’ (1962) second derivative smoothing con- 
straint has been adopted in the present investigation. 
For a quadrature of equal division, the corresponding 
smoothing matrix H is given by (Twomey, 1963) 

H=f’+; k-). (19) 

Since this matrix is singular no corresponding inverse 
exists. Eqs. (7) and (12) are therefore consistent with 
the optimal estimation equations of Strand and 
Westwater (1968) and Rodgers (1976) where no a 
priori information exists on either the solution vector 
or its covariance matrix. Unlike the temperature 
sounding problem in which a vast quantity of infor- 
mation exists from past data, aerosol size distribu- 
tions are more uncertain and variable. This neces- 
sitates the use of constrained linear inversions where 
an appropriate value of y must be selected. 

4. Selection of the Lagrange multiplier 

The method for determining the columnar aerosol 
size distribution described in the preceding sections 
has been carried out at the University of Arizona 
since August 1975 and at Goddard Space Flight 
Center since July 1980. At the University of Arizona 
the relative irradiance of the directly transmitted 
sunlight was measured at selected wavelengths dur- 
ing the course of each cloud-free day from which the 
total optical depth of the atmosphere was determined 
using the Bouguer-Langley method (see, e.g., Shaw 
et al., 1973). From the spectral variation of total 
optical depth the ozone absorption optical depths, 
and hence total ozone content of the atmosphere, 
have been derived by the method of King and Byrne 
(1976). The aerosol optical depth for each day and 
wavelength was determined by subtracting the mo- 
lecular scattering and estimated ozone absorption 
contributions from the total optical depth. The vari- 
ance in the daily aerosol optical depth for each wave- 
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FIG. 1. Aerosol optical depth as a function of wavelength for 
Tucson, Arizona on 13 November 1975 and 15 May 1977. The 
smooth curves represent the regression fit to the data using the 
inverted size distributions. 

length was obtained from the sum of the variances 
in the total optical depth and the ozone optical depth, 
both of which were estimated by the method of prop- 
agation of errors (see King and Byrne, 1976). A rep- 
resentative selection of aerosol size distribution re- 
sults obtained at the University of Arizona has 
previously been presented and discussed (King et al., 
1978), together with a discussion of the relative fre- 
quency of occurrence of various types of distribu- 
tions. In that article we discussed the sensitivity of 
spectral attenuation measurements to the radii limits 
of maximum sensitivity and to the refractive index 
of the aerosol particles assumed in the inversion. In 
the present paper emphasis will be placed on the 
sensitivity of constrained linear inversions to the se- 
lection of y, the necessity of weighting the kernel by 
a modifying function h(r), and the resulting uncer- 
tainties in the inversion solution. 

Fig. I illustrates the observed aerosol optical 
depths and corresponding standard deviations for 13 
November 1975 and 15 May 1977. The solid curves 
represent the regression fit to the r,(X) measurements 
using the inverted size distributions presented below 
(i.e., the direct problem g = Af). In performing the 
inversions on these data the statistical errors in the 
measurements are assumed uncorrelated but known 
to be unequal. As a consequence, the measurement 
covariance matrix S, becomes diagonal with elements 
given by SC,, = d#(hi)&ij, where 6, is the Kronecker 
delta function. With S, defined in this manner, Eq. 
(7) is equivalent to making a weighted least-squares 
fit to the data subject to a constraint. 

In applying the inversion procedure described in 
the preceding section, several different initial Junge 
distribution parameters Y* are assumed in formulat- 

ing the zeroth-order weighting functions h”‘(r) so 
that the results after subsequent iterations can be 
intercompared. A best-fit value for the Angstrom 
wavelength exponent CY is determined from the ob- 
served values of 7,(X) by making a linear least- 
squares fit to Angstrom’s ( 1929) empirical formula 
given by 7,(X) = @X-l. Inversions are then performed 
for three different values of the Junge distribution 
parameter Y* (viz., a + 1.5, cy + 2.0, cr + 2.5). 

For the 13 November 1975 data case (see Fig. 1) 
CY = 0.07, and thus inversions were performed using 
the initial values u* = 1.57, 2.07 and 2.57. Fig. 2 
illustrates the inverted size distribution as a function 
of iteration for the case where the initial value of 
Y* = 2.57. In lieu of n,(r) or, equivalently, dN,/dr, 
the size distributions are presented in terms of dN,/ 
d logr, representing the number of particles per unit 
area per unit log radius interval in a vertical column 
through the atmosphere. The curve marked with the 
open circles represents the initial guess for the size 
distribution while all remaining curves represent the 
inversion results after subsequent iterations. The 
curves labeled L (or R) should be referred to the 
ordinate scale on the left (or right) side of the figure. 

Having selected the zeroth-order weighting func- 
tion h(‘)(r) to be a Junge distribution with Y* = 2.57, 
we computed the A matrix elements using ( 17), from 
which first-order fi’) values were computed with the 
aid of (7). Fig. 3a illustrates the solution vector ele- 
ments f(/‘) as a function of -yrel, where the various j 

10'0 I , I ' 104 

13NOV1975 
O.lO<r<4.@m 

RADIUS (pm) 

FIG. 2. Inverted size distribution as a function of iteration for 
13 November 1975, where an initial guess of Y* = 2.57 was as- 
sumed. The curve labeled R applies to the right-hand scale and 
all other curves apply to the left-hand scale. 
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FIG. 3. Solution vector elements f, as a function of ~~1 for measurements collected on 13 November 1975. The solution vector 
elements represent modifying factors to the assumed form of the size distribution, and the various j values correspond to radii at the 
midpoints of the jth log radius interval in Fig. 2. Part (a) corresponds to iteration 1, (b) to iteration 2, (c) to iteration 3 and (d) to 
iteration 4. 
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values correspond to radii 6 at the midpoints of the 
jth equal log radius interval in Fig. 2. Since HI1 
= 1 for the second derivative smoothing constraint, 
the relative Lagrange multiplier yrsl is given by 

Y~CI = Y/(A’S;‘A),, . (20) 

As ylcl - co all solution vector elements approach 
asymptotic limits. The j = 1 radius point approaches 
within 5% of its asymptotic limit of 1.268 X lo3 at 
Yrel = 300, while all remaining solution vector ele- 
ments approach within 5% of their asymptotic limits 
by arcs = 3. At yrel = 0, on the other hand, the least- 
squares solution exhibits large oscillations with fi’) 
values which are negative for j = 1, 3, 6 and 7. This 
undesirable (and unphysical) characteristic of least- 
squares solutions to Fredholm integral equations is 
well known. It is apparent from Fig. 3a that inter- 
mediate values of y,produce a different kind of so- 
lution than those at either very large or very small 
values and thus the more oscillatory solutions which 
occur when yrcl = 0 have been eliminated. Of those 
values of fi” which were negative at yrCl = 0, only 
the j = 3 value remains negative by the time yrcl 
= 10m3, not becoming positive until rrel = 1.8 X 10-l. 
The j = 2 solution, though positive at yrel = 0, be- 
comes negative as yrcl is increased until yrel = 4.7 
X 10m3, after which point it becomes positive. 

After examining numerous examples like Fig. 3a, 
not only for spectral attenuation measurements but 
also for angular light scattering (bistatic lidar) meas- 
urements, it has been determined that the important 
range for the Lagrange multiplier is the restricted 
range 10e3 d yrcl d 5. By doubling yrel through- 
out this range the solution vector elements can be 
examined by solving (7) for only 13 values of yrcl. 
In Fig. 3a the smallest of these discrete values of 
yEl for which all elements of f(I) are positive is -yrcl 
= 0.256. 

In addition to being a positive function it is nec- 
essary for the inversion solution to satisfy (3) to 
within the expected noise level of the measurements. 
This is equivalent to requiring that the final solution 
simultaneously satisfy Twomey’s (1977) criterion 

QI =S E(QA (21) 

where E denotes the expectation operator. For the 
University of Arizona cases in which it is assumed 
that St,, = u&(X&, Rq. (21) is equivalent to requir- 
ing Q, d p, where p = 8 for both examples presented 
in Fig. 1. Since Q1 >, 31.4 for yrela 0.256, Eq. (21) 
and the positivity constraint cannot both be satisfied 
after only one iteration. This is largely due to the 
initial guess being far from the final solution. Mul- 
tiplying the fi” values obtained for rrcl = 0.256 by 
the initial Junge size distribution h(‘)(e) leads to the 
inversion solution illustrated in Fig. 2 for iteration 
1. Note from Fig. 3a that the solutions for j = 5, 6 

and 7 are virtually insensitive to 7rrl in the range 
1O-3 d yrCl < 5, but that f$” < f$l) < f$‘)* This ten- 
dency to decrease the Junge slope below the value 
u* = 2.57 is clearly evident in Fig. 2 for iteration 1. 
It is also apparent from Fig. 3a that the major in- 
stability in the solution vector was associated with 
j = 2 and 3. Th e reason for this is that the meas- 
urements contain sufficient information to construct 
a bimodal size distribution from an initial Junge dis- 
tribution. This form of the size distribution is at odds 
with the smoothness constraint. 

Since the new inversion better represents the size 
distribution than the initially assumed Junge distrib- 
ution, the first-order weighting function h”‘(r) is sub- 
stituted back into (17) from which a second-order 
CC’) is obtained through (7). Fig. 3b illustrates the 
new solution vector elements fi*) as a function of 
7rrl. Since the absolute magnitude of h”‘(r) deviates 
markedly from h”‘(r), as noted in Fig. 2, the mag- 
nitude of (ATS;‘A),,, and hence y, deviates by 5.0 
X lo9 between iterations 1 and 2. This emphasizes 
the need to scale y according to (20). As yrcl - co 
all elements of f (2) approach unity, representing a 
perfectly smooth (and over constrained) solution 
wherein the inversion solution would remain unal- 
tered from that of the previous iteration. At yccl 
= 1 all fit) values are within 5% of their asymptotic 
limit of unity. For the second iteration the major 
instability still remains with j = 2 and 3 since the 
inversion is trying to deepen the minimum between 
the two modes in the size distribution. For all re- 
maining radii the inversion is relatively insensitive 
to the value of yrel. After selecting the minimum 
value (among the 13 discrete values) for which all 
elements of A*’ are positive (viz., yEl = 0.128) and 
multiplying these values by the size distribution ob- 
tained from the previous iteration, the inversion sol- 
ution illustrated in Fig. 2 for iteration 2 is obtained. 
Once again the regression fit to the data using the 
inverted size distribution lies outside the limits of the 
expected measurement errors (i.e., Q, = 20.1 > p). 
Therefore the inversion solution represented by it- 
eration 2 in Fig. 2 represents a temporary solution 
(new first guess) and not an acceptable final solution. 

This procedure is then repeated for iterations 3- 
8, where Figs. 3c and 3d illustrate the solution vector 
elements fj as a function of- yrel for iterations 3 and 
4, respectively. The variations of fj with yIcl for it- 
erations 5-8 (not illustrated) appear similar to those 
of iteration 4 (Fig. 3d). By the completion of iteration 
2 the bimodal structure of the size distribution has 
clearly been established (cf. Fig. 2) and thus itera- 
tions 3-8 exhibit less instability in j = 2 and 3, con- 
centrating instead on better defining the large par- 
ticle end of the size distribution (viz., j = 6 and 7). 

Fig. 4 illustrates the magnitude of quadratics Q,, 
Q2 and Q as a function of yrel for iterations 1 and 6 
on 13 November 1975. The curve labeled R applies 
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to the right-hand scale while all other curves apply 
to the left-hand scale. As rrcl is increased, the value 
of Q, increases while Q2 decreases, indicating that 
the requirement of smoothness is accomplished at the 
expense of the residual fit of the inversion solution 
to the measurements. Even though the least-squares 
solution (y = 0) has an extremely small residual ( Q1) 
of 4.158 X lo-* for iteration 1 and 6.275 X lo-* for 
iteration 6, the solution vector f deviates markedly 
from the true solution f’. For iteration 1 it is nec- 
essary for yrcl b 0.181 before all elements of the in- 
verted solution vector are positive (r,, >, 0.027 for 
iteration 6). Twomey (1965) has shown that the 
closeness off to the true solution f ’ cannot be inferred 
by the closeness of the corresponding integral trans- 
form Af to g, measured by Qr. Hoer1 and Kennard 
(1970a) further showed that the minimum value of 
If’ - fl is obtained at a value of y f 0, and that the 
minimum value may be smaller than the least- 
squares solution for a wide range of y values. In spite 
of this fact many investigators have chosen to find 
parameters of an assumed size distribution by min- 
imizing Q,. This is a more stringent approach than 
solving (7) or (8), for one is minimizing Q = Qr 
subject to the constraint that f(r) has a predeter- 
mined functional form which may or may not be 
correct. Walters (1980) recently compared three 
methods of deriving an aerosol size distribution from 
spectral attenuation measurements, including con- 
strained linear inversion [Eq. (S)] and parameter 
estimation, and concluded that constrained linear 
inversion offers the best chance of obtaining solutions 
in the absence of a priori information. It is important 
to recall that the quality that distinguishes inverse 
theory from the parameter estimation problem of 
statistics is that the unknowns are functions, not 
merely a handful of real numbers (Parker, 1977). 

Returning to Fig. 4, one can see that if y is chosen 
based on the criterion that Q, d p, equivalent to 
Twomey’s (1977) suggestion that Q, be a safe upper 
estimate of all errors in g, one would require that 
yrcl 6 0.05 1 for iteration 1 and yrcl G 0.152 for it- 
eration 6. The values of yrCl necessary to assure pos- 
itive solutions are yrcl b 0.18 1 for iteration 1 and 
71elb 0.027 for iteration 6. Iteration 6 therefore con- 
stitutes an acceptable final solution if yrCl is selected 
within the range 0.027 =Z -yrel G 0.152. If Q, -C p, then 
some of the noise in g is being used in determining 
f. On the other hand, if QI > p, then not all the 
information in g is being used to determine the sol- 
ution vector f. Since yrcl has been doubled within the 
range 10e3 < yrcl G 5, the maximum discrete value 
of -yrcl within the acceptable range 0.027 G -rrel 
=S 0.152 is 7rel = 0.128. The residual in the solution 
for iteration 6 (yrel = 0.128, Q, = 7.9) has been re- 
duced by a factor of 4.0 over that obtained for it- 
eration 1 (yrel = 0.256, Q, = 31.4). This suggests that 
the solution has been improved through iteration, as 

l@k ..,,.,, , ,.,,.., ,....,, . ..,..j10'3 

13 NOV 1975 
INITIAL Y*= 2.57 
- ITERATION 1 
---- ITERATION 6 

1oZ: SCALE ; lo’* 
L : 

FIG. 4. Magnitude of quadratics Q,, Q2 and Q as a function of 
yrcl for 13 November 1975. The curve labeled R applies to the 
right-hand scale and ail other curves apply to the left-hand scale. 

previously described, and that quadrature errors 
which contribute to Q, have also been reduced. 

Fig. 2 presents the inversion solutions for iterations 
l-6, where iteration 6 is the first iteration which 
simultaneously satisfies the positivity constraint and 
the criterion Q, d p. Iterations 7 and 8 had little 
difficulty satisfying both constraints and thus the 
largest value of yrcl was selected (viz., yrel = 4.096). 
The inversion solutions for these iterations as well 
as the final results obtained after successive iterations 
with Y* = 1.57 and 2.07 are virtually identical with 
those presented in Fig. 2 (iteration 6). 

Once the optimum estimate of yrel has been de- 
termined, the covariances S,, = u$, are obtained 
from the elements of the solution covariance matrix 
S, given by (12). Fig. 5 illustrates the inverted size 
distribution and estimated standard deviations for 13 
November 1975, where the corresponding regression 
fit to the T,(X) measurements is shown as a solid 
curve in Fig. 1. As one would expect the uncertainties 
in the inverted size distribution become large as the 
particle radius becomes large since the information 
content of the measurements becomes small. In the 
minimum between the accumulation (r Q 0.37 pm) 
and coarse particle (r 2 0.37 pm) modes the error 
bars are often large for the same reason [see Fig. 9b 
of King et al. (1978) for an illustration of the kernel 
functions for a comparable bimodal size distribution 
case]. On many days with data similar to the present 
example, error bars in the intramodal region are 



1364 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 39 

I 13 NOV 1975 
O.lO<r<4.Ofdm 

109 

0.06 0.1 1.0 5.0 

RADlUStpml 

FIG. 5. Inverted size distribution and estimated standard devia- 
tions for 13 November 1975. The regression fit to the data using 
the inverted size distribution is illustrated in Fig. 1. 

larger than in Fig. 5. For the smallest radii the rel- 
atively small error bars in Fig. 5 reflect the existence 
of sufficient information content that it would have 
been possible to perform the inversion using a small 
minimum radius r,. Had the inversion been per- 
formed using an upper radius which is too large (or 
occasionally too small), instabilities develop such 
that subsequent iterations produce more and more 
particles at the larger radii (King et al., 1978). All 
cases having initial weighting functions with Y* 
= 1.57 and 2.07 are similar to the one presented in 
Fig. 5 (with V* = 2.57), where all three solutions lie 
within the error bars presented in Fig. 5. 

On 15 May 1977 the spectral dependence of the 
aerosol optical depth was decidedly different than in 
the preceding example (cf. Fig. 1). In a similar man- 
ner to the method described above, an Angstrom 
wavelength exponent was estimated from the data 
to be CY = -0.21, and thus inversions were performed 
using weighting functions having initial Junge par- 
ameters V* = 1.29, 1.79 and 2.29. Fig. 6 illustrates 
the inverted size distribution as a function of iteration 
while Fig. 7 presents corresponding illustrations of 
the solution vector elements fj as a function of yrCl. 
Figs. 6 and 7 apply to the case where the initial value 
of Y* = 1.79. 

Days for which the aerosol optical depths increase 
with wavelength invariably produce inverted size 
distributions which are relatively monodisperse, as 
is the case with the data on 15 May 1977. The most 

difficult type of aerosol optical depth data to invert 
are those which lead to relatively monodisperse size 
distributions since the radii which contribute to the 
spectral aerosol optical depth measurements are re- 
stricted to lie within a very narrow range. The data 
on 15 May 1977 were specifically selected because 
they clearly demonstrate that the inversion proce- 
dure is capable of dramatically perturbing the initial 
guess as required, and of obtaining a stable solution. 
The inversion of the 15 May 1977 data was per- 
formed at eight radii (i.e., q = 8) within the range 
0.50 < r G 1.9 pm, rather than 0.10 < r 6 4.0 pm 
as in the previous example. 

At yrel = 0 the least-squares solution for iteration 
1 again exhibits large oscillations with fj’) values 
which are negative for j = 1, 3, 5, 7 and 8. Not only 
are the coefficients incorrect with respect to sign but 
they are too large in absolute value. This is funda- 
mentally due to the fact that the ATS;‘A matrix has 
small eigenvalues, which in turn is a manifestation 
of a high degree of interdependence (nonorthogo- 
nality) of the kernels. As ycc1 is increased the small 
eigenvalues of ATS;‘A are effectively increased by 
A’S;‘A + yH, whereas the large eigenvalues remain 
essentially unaltered. Of the five values of fj” which 
were negative at yrcl = 0, only the end points j = 1 
and 8 remain negative by the time yrcl = 10e3, not 
becoming positive until yrel = 7.2 X 10-l and 9.5 
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FIG. 6. Inverted size distribution as a function of iteration for 
15 May 1977, where an initial guess of Y* = 1.79 was assumed. 
The curve labeled R applies to the right-hand scale and all other 
curves apply to the left-hand scale. 
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FIG. 7. As in Fig. 3 except for measurements collected on 15 May 1977. 
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FIG. 8. As in Fig. 4 except for measurements collected 
on 15 May 1977. 

X 10V3, respectively. As the Lagrange multiplier is 
further increased the constraint increasingly domi- 
nates the solution. Since yrcl has been doubled within 
the range 10V3 < yti G 5, the minimum value of 
7rrl for which all elements of f(l) are positive is yrcl 
= 1.024. Since 

4 
, = 31.8 > p for yrrl =. 1.024 the 

solution vector f I) represents a temporary solution, 
not an acceptable final solution. Multiplying the 
f(‘)(e) values obtained for yrel = 1.024 by the initial 
Junge size distribution leads to the inversion illus- 
trated in Fig. 6 for iteration 1. 

After substituting the first-order weighting func- 
tion h”‘(r) back into ( 17) a second-order solution 
vector ft2’is obtained through (7). Unlike any of the 
previous examples the inversion was unable to obtain 
a positive solution for all elements of fy’ as y=i was 
varied. Since the j = 8 coefficient was still negative 
at yrrl = 4.096, thej = 6 and 7 coefficients were used 
to extrapolate to j = 8 linearly on a lo f, vs j scale. 
In this way the unphysical value of A 2, was artifi- 
cially made positive, leading to the solution presented 
in Fig. 6 for iteration 2. This procedure is then re- 
peated for iterations 3 and 4, presented in Figs. 7c 
and 7d, except now it is possible to obtain positive 
values for all elements of f at several values of ylel 
within the range 10e3 < ylcl d 5. Fig. 6 presents the 
inversion solution for iterations 3 and 4, where yrcl 
= 2.048 and 0.5 12 were selected, respectively. In this 
example iteration 4 is the first iteration for which 
both the positivity constraint and the condition of 

Eq. (21) are simultaneously satisfied. Further iter- 
ations produce results essentially identical to Fig. 6 
(iteration 4). 

The quadratics Q,, Q2 and Q are presented in Fig. 
8 as a function of ylel for iterations 1 and 4 on 15 
May 1977. The residual in the solution for iteration 
4 (Yre, = 0.512, Qi = 7.7) has been reduced by a 
factor of 4.1 over that obtained for iteration 1 (-rrc, 
= 1.024, Qi = 31.8). For iteration 4 the value of Q, 
at rrcl = 0 is 4.415 and thus the residual has not been 
inflated to an unreasonable value at yrcl = 0.5 12. The 
smoothness quadratic Q2, on the other hand, has been 
reduced by over two orders of magnitude such that 
(f’ - 21 is smaller than in the least-squares case. Hoer1 
and Kennard (1970a) have proven that, at least when 
H = I, there alwuys exists a y > 0 such that If’ 
- fj is smaller than in the least-squares case. They 
further showed that this effect quite often exists over 
a wide range of y values. If we had chosen y based 
solely on the criterion that Q, = p, the value of yrel 
for iteration 1 would have been yIcl = 4.7 X 10e3, a 
value for which f\” and fs” are negative (cf. Fig. 
7a). By iterating and thereby reducing the quadra- 
ture errors associated with assuming f(r) a constant 
within each coarse interval, the value of Q1 for it- 
eration 4 has been reduced to Q, = p. Although it 
has been our experience that the magnitude of qua- 
dratic Ql decreases with subsequent iterations due 
to a reduction in quadrature errors and errors as- 
sociated with a smoothness constraint initially at 
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FIG. 9. Inverted size distribution and estimated standard devia- 
tions for 15 May 1977. The regression fit to the data using the 
inverted size distribution is illustrated in Fig. 1. 



JUNE 1982 MICHAEL D. KING 1367 

0.1 

10’0 

109 

108 

67 

‘E 10’ 
s 
EJ 
-0 

1 106 

105 

104 

103 
0.35 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1 .l 0.06 0.1 1.0 

WAVELENGTH (pm) RADIUS (pm) 

- 30 JUL 1980 
w-9 2 AUG 1980 

‘\ ‘\ \ 
I 

5.0 

FIG. 10. Observed aerosol optical depths and estimated size distributions for measurements collected at Goddard Space 
Flight Center on 30 July 1980 and 2 August 1980. The curves on the left indicate the regression fit to the data using the 
inverted size distributions. 

odds with the data, it is not always the case that Q1 
approaches p after repeated iterations. We have ob- 
served many instances in which Q, < p for all values 
of y. This is at least partly due to measurement cor- 
relations which contribute to the magnitude of Q, 
[cf. Eq. (5)] but which have been neglected in our 
analysis. 

Fig. 9 illustrates the inverted size distribution and 
estimated standard deviations for 15 May 1977, 
where the corresponding fit to the 7,(X) measure- 
ments is shown as a solid curve in Fig. 1. The un- 
certainties in the inverted size distribution are large 
at both the upper and lower ends of the radius range. 
This is to be expected from the kernel function for 
cases where the inverted size distribution is relatively 
monodisperse (King et al., 1978). Had the inversion 
been performed using a wider radius range than the 
one used here it would have been impossible to obtain 
a solution which was everywhere positive. All cases 
having initial weighting functions with v* = 1.29 and 
2.29 are similar to the result presented in Fig. 9 
(where V* = 1.79). All three solutions lie well within 
the error bars presented in Fig. 9. 

At Goddard Space Flight Center the relative ir- 
radiance of the directly transmitted solar radiation 
was measured during the course of selected cloud- 

free days with a portable multi-wavelength solar ra- 
diometer. The time-dependent total optical depth of 
the atmosphere was determined with repeated ap- 
plication of the Lambert-Beer law, where the inter- 
cept voltage level (proportional to the extraterrestrial 
solar irradiance) was determined using the Bouguer- 
Langley method at Mauna Loa Observatory. The 
aerosol optical depth for each time and wavelength 
was subsequently determined by subtracting the 
molecular scattering and ozone absorption contri- 
butions from the total optical depth. Although a con- 
stant, climatological value for total ozone content 
was assumed, the error introduced by this assumption 
is small since the aerosol optical depths thus obtained 
are large compared to any uncertainty in the ozone 
optical depths. 

Fig. 10 illustrates the spectral optical depth mea- 
surements and corresponding size distributions for 
30 July 1980 and 2 August 1980. Since uncertainties 
and correlations in the measurements were not 
known, the measurement errors were assumed equal 
and uncorrelated and thus inversions were performed 
using Eqs. (8), (13) and (14). In all instances the 
sensitivity to the initial weighting function h”‘(r) was 
negligible. The negative curvature in the size dis- 
tribution on 30 July 1980 is associated with the ne- 
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gative curvature in the input data, whereas the subtle solution is very far from the final solution, then this 
bimodal characteristics of the 2 August 1980 size criterion and the requirement of positivity cannot 
distribution are due to the positive curvature in the simultaneously be satisfied. Through iterative ad- 
input data, particularly at the longer wavelengths. justment of the first guess we demonstrate how both 
The increasingly large standard deviations in the size criteria can ultimately be satisfied, thereby narrow- 
distribution at r B 2.0 pm are to be expected from ing the domain of nonuniqueness in the solution. If 
the decreasing information content of the kernel the uncertainties in the measurements are unusually 
functions for these radii. However, inversions per- large, then it is relatively easy to obtain inversion 
formed Only out to rb = 2.0 pm Often lead to unsat- solutions which satisfy both criteria but the uncer- 
isfactory and unstable solutions (King et al., 1978). tainties in the solution are large. On the other hand, 
The selection of the Lagrange multiplier and the measurement errors which are estimated unrealisti- 
updating of the initial size distribution estimate cally small may preclude being able to obtain a final 
through iteration were accomplished in the same solution which satisfies both constraints. It is there- 
manner as previously described, except now Eq. (2 1) 
takes the form Q1 6 E( Ci t;) = e2. 

fore important that realistic uncertainties be assigned 
to the data before performing an inversion. 

5. Summary and conclusions 

Results have been presented which demonstrate 
,the sensitivity of constrained linear inversions to the 
selection of the Lagrange multiplier. Since y enters 
(7) in a manner such that elements of yH are to be 
added to ATS;‘A to produce the desired smoothing, 
a relative Lagrange multiplier yrcl is introduced since 
the magnitude of yn, is of importance and not the 
magnitude of y alone. Inversion formulas (7) and 
(8) have been applied to the problem of determining 
the columnar aerosol size distribution from spectral 
aerosol optical depth measurements. An iterative 
method of solution is presented whereby an estimate 
of the size distribution is included in the elements 
of the A matrix. With this procedure, the inverted 
solution vector f amounts to a modifying function to 
the assumed form of the size distribution. 

Once an appropriate value of y has been deter- 
mined, the variance and covariance in the solution 
can be estimated from the elements of the solution 
covariance matrix S. Eq. (12) has been applied to 
spectral aerosol optical depth measurements ob- 
tained at the University of Arizona, since it is known 
that some of the measurements are more precise than 
others. At Goddard Space Flight Center the mea- 
surement errors are unknown and thus inversions and 
error analyses were performed using Eqs. (8), (13) 
and (14). Results of this analysis, presented in Figs. 
5 and 9 for the University of Arizona and Fig. 10 
for Goddard Space Flight Center, show that the vari- 
ances in the solution vector are large for radii where 
the information content of the measurements is 
small. Results further indicate that as y increases 
the correlation between various values of fj increases. 

As demonstrated in Figs. 3 and 7 there are fre- 
quently regions of the Lagrange multiplier where all 
of the solution values fj are positive and other regions 
where one or more fj values are negative. The values 
of -fj for some radii values may periodically go ne- 
gative and become positive again at larger values of 
-yrel. After selecting a value for yrcl in a region where 
all elements of the solution vector are positive and 
recomputing the A matrix elements, the solution vec- 
tor for subsequent iterations becomes less sensitive 
to yrel. If the radii limits are very far from the op- 
timum ones, however, it may not be possible to obtain 
a solution where all elements of f are positive. By 
doubling yrel in the range 10e3 to 5 until a range of 
values of yrel is reached for which all elements of f 
are positive, it is necessary to perform at most 13 
matrix inversions per iteration per initial size dis- 
tribution estimate. The inversion method is therefore 
quite rapid, requiring only about 1.0 s of execution 
time on an IBM 3081 computer. 

Various automatic procedures which have been 
used in the literature for selecting the “best” value 
for the Lagrange multiplier give little insight into the 
structure of the solution and its sensitivity to the data 
being analyzed. By computing f, Q, and Q2 as a func- 
tion of y and displaying the results, considerable in- 
sight into the solution can be obtained. For physical 
problems in which additional a priori information 
exists on the solution (such as the requirement that 
the size distribution be positive or that the absolute 
temperature exceed some minimum temperature 
such as 160K) such information should be incorpo- 
rated in the inversion to help restrict the possible 
domain of the solution. Complete elimination of the 
nonuniqueness of the solution is of course not pos- 
sible. 

In addition to the positivity constraint it is nec- 
essary for the final solution to satisfy the original 
integral equation to within the expected noise level 
of the measurements. If the initial estimate of the 
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