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Abstract. Atmospheric lidars do not penetrate directly 
most boundary-layer clouds due to their large optical 
density. However, the lidar’s photons are not absorbed but 
scattered out of the beam. Typically, about half are actually 
transmitted through the cloud and the other half escape the 
cloud by reflection in extended diffuse patterns that evolve 
in time. For all practical purposes, these are the cloud’s 
space-time Green functions (GFs). In a Fourier-Laplace 
expansion of the space-time GF, the leading term is 
representative of solar remote-sensing (i.e., steady/uniform 
source) while higher-order terms correspond to active 
approaches with temporal- and/or spatial- resolution 
capabilities. Radiative GF theory is tractable within the 
limits of photon-diffusion theory and homogeneous clouds. 
Monte Carlo simulations with realistically variable cloud 
models are used to extend the range of validity of analytical 
GF theory with minor modifications. GF theory tells us 
that physical and optical cloud thicknesses can be retrieved 
from off-beam cloud lidar returns. 0 1999 Elsevier 
Science Ltd. All rights reserved. 

1 Introduction and Overview 

Traditional (“on-beam”) atmospheric lidar reveals little 
about boundary-layer clouds and this is due to their large 
opacity compared to the “clear” atmosphere. Even in 
presence of substantial aerosol and cirrus layers, the clear 
atmosphere is easily penetrated by the laser beam. On- 
beam lidar returns from a dense cloud of course enable its 
detection and ranging (cielometry from below, cloud-top 
height from an airborne platform) and, with some effort, 
information about the water phase can also be inferred 
(Platt et al., 1994). NASA’s 1994 Lidar In space 
Technology Experiment or “LITE’ (Winker et al., 1996), 
changed this situation radically. Indeed, pulses returned 
from marine stratocumulus (SC) to the shuttle-based lidar 
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system in a 260 km orbit were significantly stretched, to the 
point were they appear to originate from below sea-level! 
It was soon realized that this was not an instrumental 
artifact but a direct consequence of multiple scattering 
(Winker, 1996). Multiplyscattered radiance dominates the 
LITB signal because of the orbital geometry: the beam’s 
width at cloud-level was about 300 m and the (night-time) 
detector’s foot-print was over 900 m. So all orders-of- 
scattering (up to 1000’s) contribute. How to determine 
cloud properties from LITE-type data is currently being 
researched (Miller and Stephens, 1998); specific ideas are 
proposed here. Because of the critical importance of 
multiple scattering in its cloud observations, we consider 
LITB as a forerunner of “off-beam” lidar. 

We define off-beam lidar as any utilization of the portion 
of the lidar return nor modeled by the lidar equation nor the 
modifications thereof for multiple scatterings in the forward 
direction (Flesia and Schwendimann, 1995) before and/or 
after the “main event,” the quasi-backscatter. In other 
words, we are interested in the paths of photons that 
suffered at least one side-scatter. 

In this paper we present the theory of off-beam cloud 
lidar from the standpoint of Green functions (GFs) for 
radiative transfer. From this perspective (section 2). off- 
beam lidar is a straightforward generalization of passive 
solar-spectrum remote sensing of clouds in the sense that it 
exploits the strong time-dependence and/or localization of 
the photon source, the Sun being a steady and uniform 
source. This naturally gives access to more physical cloud 
properties than optical depth (and effective droplet radius if 
a second spectral channel is used). By making an 
assumption about the radiation transport -photon diffusion 
dominates- and another about the cloud’s structure -it is 
homogeneous- GF theory becomes tractable. We derive 
analytical results (section 3). apply them to cloud remote 
sensing (section 4), extend their validity numerically to 
realistic cloud models (section 5) and empirically to real- 
world clouds (section 6). and conclude with remarks on the 
practical problems of off-beam signal detection (section 7). 

177 



178 A. B. Davis et al.: Off-beam Lidar: an Emerging Technique In Cloud Remote Senhlng 

GF theory informs us that both physical and optical 
cloud thicknesses can be retrieved from the data. While 
optical thickness is routinely retrieved by passive solar and 
microwave remote-sensing, mm-radar is the only other 
remote-sensing technique for obtaining physical thickness; 
also quite new, its definition of cloud boundary often does 
not agree with standard cielometry (Clothiaux et al., 1995). 

2 Green Function (GF) Theory Applied to Lidar 

2.1 Definitions for Plane-Parallel Cloud Geometry 

2.1.1 GF for a Boundary Source 

Let I > 0 denote the time when and r =(x,y,~)~ E 9X3 the 
position where we measure the flux of photons flowing in 
direction a = (Q&Jy,~z)T, a unit 3-vector. (Superscript 
“T” means transpose.) This time-dependent radiation field 
results from a pulse of photons released instantaneously at 
t* = 0, in the direction R’ = (!$,$G)T, from r* = 0 
which is assumed to be on one of the cloud’s horizontal 
boundaries (z = 0, z = AZ). The z-axis is vertical, oriented 
either up or down, in such a way that &$ > 0. 

Mathematically, we seek G(f,r,&&*,r*,&) as solution of 
the non-stationary radiative transfer equation: 

[ c-‘2, + !&V ] G = -oto&)G (1) 
+crsca(r) j p(a’+a) G(r~,n’:.) d(2’. 

with boundary/initial conditions 

Gcrr,n;.,=s(r)s(~)sOs(s&s25, r>0, z=O, Q>O, 
G(y,n;.) = 0, r>O, z=Az, sz,<o, 
G(y,R;.) = 0, r=O, O<z<Az, Vn, 
where x = (.~,y)~ E 912. (2) 

Note that the cloud is assumed (geometrically) plane- 
parallel but not homogeneous (yet): (Ttot(r) and asca(r) are 
the possibly r-dependent total and scattering extinction 
coefficients, respectively; p(R’+Q) is the scattering phase 
function that we assume depends only on scattering angle 
8, = COS-l(sY*sQ 

G(rr,Qr*,r*,Q*) is the Green function (GF) for linear 
transport in a plane-parallel medium with boundary 
sources. Kornreich and Ganapol (1997) analytically 
computed the GF in the limit AZ -_) m without time- 
dependence for isotropic scattering @(es) = 1/4x) by 
reducing it to Chandrasekhar H-functions via (x,y)-Fourier 
and z-Lap&e transforms. Further on, we will see that the 
problem posed in Eqs. (l-2) must be considerably 
simplified to make analytical progress with more realistic 
cloud geometry and optical properties. 

The main utility of the GF is that it can be used to obtain 
the radiation field for arbitrary illumination conditions (at a 
boundary in this case) by direct summation of its space- 
time translates, i.e., convolution with a space-time source 
distribution. Marshak et al. (1998) use this linear 
convolution property to model nonlinear 3D radiative 

transfer effects on boundary fluxes (activation of horizontal 
fluxes by fluctuations of the optical density field) and apply 
their results to cloud remote sensing in the solar spectrum. 

Similarly, we can sum over sources in direction-space. 
For instance, 

G,,,(r,r,S2;r*,r*) = j Q*,G(r~,R;r*,r*,R*) dR* (3) 
R’,>O 

is the temporal-spatial-angular response (used extensively 
further on) to a directionally isotropic burst of photons 
emanating from a single boundary point. 

In the following, we consider the Dirac &source in Eq. 
(2) simply as a convenient mathematical model for a pulsed 
laser beam emitted from a lidar. The GF thus models the 
cloud’s response to the laser source; accordingly, we take 

Rf =z^ = (O.O,l)T 

since we consider zenith-pointing systems. 

(4) 

2.1.2 Remotely Observable GFs 

We are primarily interested in the part of the GF that can be 
observed remotely; this restricts us to z I 0 with 4 I 0 
(reflection) or z 2 AZ with && < 0 (transmission). With lidar 
applications in mind, we will concentrate on monostatic 
configurations: the source and the detector are collocated 
at a distance &,, from the cloud (-- < ~0~ = Aobs < 0). 
This leads to a function G,b,(r.n(x,y);r*,x*,y*) where (x,y) 
are the horizontal coordinates of the intercept of the 
(illuminated) boundary plane z = 0 with the ray of light 
arriving at r,+= (x’,y*. -&) from direction R. Figure 1 
illustrates two situations of practical interest: 600bs is a few 
times A, (ground-based observation) and S,,, >> AZ 
(satellite-based observation). Davis et al. (1998) report on 
the first laboratory measurements of G,(r,R(x,y);r*,x*,y*). 

Without loss of generality, we can set r* = 0 and, apart 
from a trivial increment in time involving hoobr and the slant 
viewing geometry, the remotely observable GF is equal to 
G(rx,y.O,n(x,y);O~*,y*,O;) in absence of extinction in the 
intervening region -S,, < z < 0. In contrast, we can not 
express this as a function of (x*-x.y*-y) as is customary in 
text-book GF theory because the extinction coefficients in 
Eq. (1) generally depend on the horizontal coordinates. 

cp &bs coo 

Ftg. 1. Schcmdc of off-beam lidar observationsfrom groundandspacc. 
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It is probably not feasible in practice to sample the 
remotely observable CF. G,&n(x.y);r*.y*), continuously 
in angle-space. Figure 2 shows a discretely-sampled spatial 
GF obtained in a numerical experiment using an internally 
homogeneous cloud at range 8obs = 1 km with: a realistic 
“Cl” phase function; physical thickness AZ = 0.3 km; and 
optical depth ‘T = oA, = 13 (all typical of a marine SC layer). 

Fig. 2. Discretired Observable CF. To keep time-integrated flux roughly 
constant in the various angular bins, their size increaaea exponentially (cf. 
solid angles on r.h. axis) with radial distance from the optical axis; see 
Davis and Cahalan (1998) for details. Bin-averaged radiance 0.h. axis) is 
computed in two ways: ate expct sum of local estimates in P forward 
Monte Carlo too with 10 htstorics, and an tsotropic (Lambertian) 
redistribution of surface flux for the area subtended by the solid-angle bin. 

2.1.3 GFs for Photon Escape 

Although this is not practical to do outside of a laboratory, 
it is of interest to measure as best we can the time- 
dependent flux field at the cloud boundaries. Namely, 

Ga(r,x,Y;x*,y*) = ( M ‘tlG(r.r,y,O,n;x*,y*) dR (Sa) 
fir& 

in reflection, and similarly in transmission, 

In absence of detailed information about the (space/time- 
dependent) bidirectional properties of the cloud’s GFs, we 
make a standard Lambertian hypotheses: 

G(tx,y.o,n;x’,y*) = Gx(f,x,YJ*,y*) / x, (6a) 
G(r.rx,y&R;x*,y*) = &~J,Y;x*,Y*) / x. (6b) 

This assumption proves reasonable in the case of dense 
clouds (cf. Fig. 2) and Ga(r,x,y;r*,y*) can thus be estimated 
from a remote measurement of G&r,Q(x,y);x*.y*), as 
introduced in sub-section 2.1.2, equivalently (in absence of 
out-of-cloud extinction), we have C(r~,y,OJl(x,y);**.y*) in 
Eq. (6a). More sophisticated radiance-to-flux conversions, 
akin to those used in satellite-based radiation budget 
studies, could be used if necessary. 

2.1.4 Azimuthally-, Spatially- and Ensemble-Averaged GFs 

As already mentioned, boundary-source GFs for a cloud 
with nontrivial horizontal structure will depend on both 
(x,y) and (x*,y*), not only their difference. This “2+1” 
dimensional dataset for every choice of (x*,y*), would be at 
best difficult to use for cloud remote sensing. However, in 
a field experiment we can average the GF azimuthally 
(assuming statistical isotropy) and/or spatially (assuming 
statistical homogeneity, sometimes called stationarity). In a 
numerical or analytical exercise using randomly variable 
cloud models, we can average over the “disorder.” Such 
ensemble-averaged GFs are reasonable surrogates for their 
observed counterparts (under an “ergodicity” assumption). 

We will deal here with either homogeneous clouds or 
average GFs. In the remainder, we therefore drop from the 
GF’ s arguments all those describing the source. 

2.2 GFs as a Unified Framework for Cloud Remote 
Sensing, Passive and Active 

2.2.1 Probabilistic Interpretation of GFs 

Photon-escape GFs have straightforward interpretations in 
terms of probability of a photon to escape from the cloud 
(into any direction) at position x = (~,y)~ and time t. 
conditional to be either reflected or transmitted: e.g., 

Ga(t,x,y)drdY& / R = Prob( escape during [t,t+dr), 
from [x,x+dx)@lyg+dy) I (7) 
in reflection (z = 0, R, < 0) ) , 

where the normalization constant, 

R = jjjGa(r,x,y)~dydr. (8) 

is simply the cloud’s albedo for normal incidence. Similar 
relations can be written for the event of transmission where, 
by conservation, T = 1-R. Normalized escape GFs can thus 
be treated as probability density functions (PDFs) and we 
can compute their moments. 

2.2.2 Low-Order Statistical Moments of GFs 

The simplest characteristics of a laser pulse’s propagation 
in a cloud are: mean photon pathlength (denoted h = cr), 

(h)a = c(r)R = #.+[jGW,y,dt3~Nf] / R; (94 

its Znd-order moment (used in path variance (h2)a-(h)x2), 

(h2)x = c2(& = cIktrdr[lr2G,(r,x,y)dr] / R; (9b) 

root-mean-square (rms) horizontal transport F (p )a, where 

(p2)a = tit[lkx2+y2)Ga(f,xs)drdr] / R (10) 

since (x)R = (Y)~ = 0 by symmetry. Similar quantities are 
defined for transmission. 
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The quantities in Eqs. (9a.b) can be measured directly 
form LITE data, using the radiance-to-flux conversion in 
Eq. (6a) or simply redefining the mean pathlength using 
radiance in lieu of flux. It can also be obtained indirectly, 
using oxygen A-band spectroradiometry at sufficiently high 
resolution and the “equivalence” theorem (van de Hulst, 
1980; Stephens and Heidinger, 1998). In the latter 
approach, the photon source is the Sun and the instrument 
is either below or above the atmosphere. Pfeilsticker et al. 
(1998) report on the first successful measurements from 
ground of(h), and the second moment (h2h. 

To date, the quantity in Eq. (10) has not been measured 
directly. It has been estimated indirectly using the small- 
scale properties of high-resolution LANDSAT cloud scenes 
(30-m pixels). Specifically, Davis et al. (1997b) used 
numerical simulations to show that the LANDSAT “scale- 
break” is a manifestation of 3D radiative transfer. [This 
scale-break is a well-documented deficit in the variability 
of nadir radiance at small scales with respect to the known 
variability of the clouds’ liquid water content.] This 
statistical phenomenon occurs at 200-300 m and is 
traceable to a radiative “smoothing” (Marshak et al., 1995) 
that affects scales smaller than a few (p2)Kln. 

2.2.3 Significance of the GF’s Fourier-Laplace Expansion 

Define the Fourier-Laplace transform of the R-escape GF: 

~a(s,k,,k,,) = Illexp[-sr+i(k~+k,y)lG~(~,x,y)drdxdy; (11) 

and similarly for transmission. We now expand this 
function in a multidimensional Taylor series: 

~(s,k& = ?;R(r.R) = UO,O) 

+ d~,~1(070) 
+ ~mGtl~w) (12) 
+ $s&mw 

+ f w:[v,v&1w) 
+ crossed and higher-order terms 

where ‘Y means a double contraction on the dyadic tensors. 
Interestingly, each coefficient in this expansion in s and k 

has a specific meaning in cloud remote sensing: 

?? G(O.0) = R (1%) 
in Eq. (8), i.e., passive solar-spectrum approaches; 

?? ~~,~ifalw-9 = 0% = wh@ (4 = 1 a, (13b) 
in Eqs. (9a,b), i.e., LITE or A-band (from above); 

?? TO’~V&lW) = b2h (13c) 
in Eq. (lo), no direct observations yet (out of the lab). 

The lst-order k-gradients in (12) and associated moments 
((x)a,(y)R) vanish by symmetry, as do off-diagonal terms in 
the 2nd-order tensor (associated with ory)R = (yx)n = 0). 

We now show that&(&) can be computed analytically 
under certain conditions. This means that the measurable 
quantities in Eqs. (8-10) can be expressed as closed-form 
functions of optical and structural cloud parameters. 

3 Analytical GF Theory 

3.1 The Diffusion Approximation in 3D Radiative Transfer 

Radiative transfer in clouds -at least dense boundary-layer 
stratus and cumulus- is dominated by multiple scattering. 
There is compelling evidence uncovered by King et al. 
(1990). using in situ radiometry, for the existence of an 
extensive “diffusion domain” for solar photon transport 
inside marine SC. From the modeling perspective, this 
means asymptotic (large optical depth) theory can be 
invoked for radiance (van de Hulst, 1980), photon diffusion 
for flux. We will put ourselves in the latter framework, 
equivalent to an Eddington approximation in 3D. 

A key quantity in diffusion theory is “scalar” flux: 

J&r) = j G0J.n) a (14a) 

a.k.a. 4n x mean-radiance or c x radiant-energy-density; 
the other important quantity is radiant energy flux vector: 

F(t,r) = j QG(tr,Q) dQ. (14b) 

Equations (14a.b) are actually the two first terms in a full 
spherical-harmonic expansion of the angular distribution of 
radiance at (t,r). A similarly truncated expansion is 
required for the differential cross-section (per unit of path) 
for scattering, namely, crsca(r)R(R’Q: 

r&a(r) J PWQW= %3t(WoV Wa) 

where CJo = osca(r)lomt(r) is the single-scattering albedo, 
the integral of p(SPC2) being normalized to unity; and 

OscaW j Q’Q@‘-fi)~ = OtotW$ = ~totWbg Wb) 

where g = ti~t/3& is the asymmetry factor. 
J(t,r) and F&r) obey two independent constraints. First, 

they enter the (exact) law of radiant energy conservation, 

&rJ + V-F = atot(r)( I-tiSe)J, (16) 

which follows from Eq. (1) and the definitions in Eqs. 
(14a,b) and (15a). Second, they are related by Fick’s law 
for photon diffusion, operating as a constitutive relation 
that “closes” the transport problem in Eq. (16). 

F&r) = -$ e,(r)VJ, (17) 

where l,(r) is the “transport” mean-free-path (mfp): 

[t(r) = W~g)~tot(~)l-l. (18) 

In essence, ft is the “effective” mfp for isotropic scattering 
in the sense following sense. After a single step, the photon 
propagates l/otot on average, then undergoes a scattering; 
after a large number of forward-peaked Mie scattetings. the 
photon has propagated (l-Qg)-I times further, and all but 
“forgotten” its original direction of propagation. 
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3.2 Diffusive GFs for Homogeneous Plane-Parallel Clouds 

In the remainder, we consider pure scattering (t$ = 1) 
which means a choice of laser wavelength where there is no 
absorption by droplets or interstitial gases. Whenever 
necessary, we will set g = 0.85, the canonical value for 
cloud droplet populations; this yields (I-& = 6.7. 

For r-independent extinction coefficients, Eqs. (16-l 7) 
can then be combined into the standard parabolic PDE: 

a,J = DV*J, (19) 

with constant radiative “diffusivity” 

D = cet/3 = c/[3(1-g)a]. (20) 

Following standard procedure in mathematical physics, this 
PDE can be (horizontal) Fourier- and (time) Laplace- 
transformed into an ODE where z is the only independent 
variable. The resulting ODE is formally equivalent to that 
of the homogeneous/steady-state 2-stream problem in ID 
with a radiant energy sink (absorption-like) term, 
-7. 
J -7/L*=o, (21) 

where the coefficient of the pseudo-sink term contains the 
Fourier-Laplace conjugate variables k = WI and s: 

l/L* = k* + s/D. (22) 

After angular integration, the collimated boundary source 
is indistinguishable from an isotropic one, so we are 
actually computing the GF in Eq. (3). The boundary/initial 
conditions in Eq. (2) are Fourier-Laplace transformed into 
the following ones for the ODE in Eq. (21): 

;[I-(xetj+-]S=l.atz=o, 

i [l + (xet&]j = 0, at z = AZ, 

(23a) 

(23b) 

where ~4~ is the extrapolation length (Case and Zweifel, 
1967). An O(1) numerical constant weakly dependent on T, 
x is essentially a free parameter determined by matching 
diffusion-based results to detailed numerical computations. 

Equations (21) and (23) define a 2-point boundary value 
problem for 7 that is easily solved although the expression 
for j(s,k,z) is quite involved. It depends on z and L.&k), 
that includes D(g,o)/c = I&,0)/3, and two other constant 
length scales: xf$(g,o), and AZ. Explicitly, we have 

(I +X.tt/L)e(*z-z)‘L - (l-~!~/L)&z-r)‘L 
j(L(s,k),z) = 2~ (24) 

(I+xPJL.)*eW - (l-xPt/L)2ed21L 

Fourier-Laplace transforms of the surface flux-fields in 
Eq. (5) are the formal counterparts of reflectance and 
transmittance in the associated 2-stream problem, hence 
(Case and Zweifel, 1967): 

&(s,k) = ; [ 1 + x!t$]jl,=t) = 7(s,k,O)-1, (2W 

&s,k) =; [I - xP&]~I,=q = J(s,k,Az). 

Substituting Eq. (24) into these leads respectively to: 

%(L(W = 
14xW2 

1 + 2(ZPtlL)coth(Az/L) + (xPdL)* ’ 

T;,Us.kN = 
2(X!t/L)cosech(Az/L) 

1 + 2(xPt/L)coth(Az/L) + (x&/L)* 

3.3 Expressions for Low-Order Moments of Reflected GFs 

Unfortunately, the above expressions can not be inverse- 
transformed back into physical (r,x,y)-space. This prevents 
us from having analytic PDFs for the photon escape events 
but we can still compute their moments. Indeed, since an 
analytic expression exists for Tit&k) in Eqs. (1 l-12) its 
low-order Taylor coefficients in Eq. (13) can be computed 
explicitly in terms of cloud parameters. 

Equivalently, we need a 4th-order (3-term) expansion in 
l/L of the (L-symmetric) expression (26a) to reach the 2nd- 
order moment in time in Eqs. (12-13). It is convenient to 
use here. a unit of length where et = 1. meaning that x is 
now the extrapolation length itself and that AZ is now the 
resealed optical depth (l-&c. Some algebra then leads to: 

&&,k) =&x [ 1 
Z 

(27) 

+ -x -!-A 
(Az+2x)2 65 ’ 

4+f$Az3+x2Az2&3Az+x4) /L4 

+ higher-order terms ] 

Davis and Marshak (1996) did a similar computation to 
order 2 in a 2D setting, where “3” becomes “2” in Eq. (20) 
for diffusivity D which, in turn, enters only via the Jacobian 

CL-*=;=j$(d= l,2,3) 
t 

required to compute temporal statistics; dimensionality d 

also affects trivially the horizontal transport term in Eq. 
(13~): the number of identical diagonal elements is d-1. 

Returning to the nondimensional definition of x, we find: 

R= 
AZ (l-g)7 

A,+2xPt = (I-g)7+2xPt 

for albedo; 

(VR =y xA,xtl+Ca($$z)l 

for mean pathlength in d = 1,2, or 3 dimensions; 

(~*)a = (d-l) +x&x L I+ Gt($$) 1 

Pa) 

(2%) 

and 

(29~) 
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for variance in horizontal transport. The two latter 
quantities contain a pre-asymptotic correction term: 

CR(E) = &( 1+3&)/( 1+2&); (30) 

this correction becomes small as (1+/x = l/& increases. 
We note that, apart from proportionality constants, leading 
terms in (29b,c) can be obtained from simpler arguments 
based on the fractal properties of photon random walks in 
the finite slab that defines the cloud (Davis et al., 1997a). 

The angular integration of the boundary/initial conditions 
in Eq. (2) has, in effect, forced us to use the “iso” fields 
defined as in Eq. (3). The 2-stream problem at the core of 
the above 1D computations can be recast for a collimated 
beam in 3D by reformulating Eq. (1) with an internal 
source term and accordingly homogeneous boundary- and 
initial-conditions in Eq. (2). This will lead to more accurate 
but also more complex expressions. We do not anticipate 
any qualitative difference in the leading terms. only in the 
(non-negligible) correction terms. 

4 Applications to Cloud Remote Sensing 

Returning to Eqs. (13a-c), the obvious remote-sensing 
intemretations of Ects. (29a-c) are: 
29a: _ 

29b: 

29a,b: 

29b,c: 

Figure 

_ 
single-wavelength passive approach with no access 
to physical thickness 4, only to T (for known g); 
pulse-shapes returned to LITE were primarily 
dependent on Az (with T-dependent corrections); 
calibrated active approaches (including LITE data), 
can be used to determine Az and 7 simultaneously; 
un-calibrated active approach with imaging (or at 
least radial profiling) capability can yield 4 and 7. 
3a conventionally illustrates this last technique: a 

curvilinear array of lines of constant Az and T plotted versus 
two observables: (h)R and (~~)R’~/(h)a. This choice of 
independent variables yields iso-parameter lines orthogonal 
enough to separate r and 4, at least in the domain where 
diffusion theory is accurate in its current status: (I-@ > 1. 
This bound can be lowered substantially by relaxing the 
isotropic source assumption implicit in Eqs. (21-23). 

An alternate approach to (A,,@-retrieval requiring neither 
absolute calibration nor imaging capability uses mean and 
variance of the pathlength distribution. Indeed, using the 
corresponding terms in Eq. (27) it can be shown that the 
lowest-order moments are independent functions of (4,~): 

(1)s = 2x4, and (h2)s =y Az2(1-g)~ 

in d = 3 (leading terms only, afte- restoring x to Xlt). So ‘T 
can in principle be inferred from 

(h2)R/(&2 = (1+/5x. 

For this technique to work, r needs to be large enough 
(and/or Pt small enough) that Az4/45 > (4/15)X!tAz3 in Eq. 
(27), hence ArzIxPt = (l-g)Q > 12, wherex = 0.7104,.. for 
large (I-g)z (Case and Zweifel, 1967) and g = 0.85; in 

summary, r > 56 -an extreme value for most cloud types. 
With the correction term (30) and a more complicated one 
for the 2nd-order moment, this bound on r can be lowered 
to (l-g)r/x > 1.596.,,. Below this value, the analytical 
model gives rise to negative k-variances as diffusion theory 
loses its accuracy, when Ar/Pt becomes O(1) and less: 
boundary effects (extending over a distance “et) are poorly 
treated. In the limit of optically thin media in d = 3 we 
have x = 4/3- (Case and Zweifel, 1967). leading to ‘5 > 14. 
Numerically generated look-up tables are required for 
lower values of 7. Figure 3b illustrates the general idea. 

(a) 

0 2 3 4 5 6 7 0 

Fig. 3. Two techniques for remote-sensing of cloud parameters and z 
% given 8, without calibration. (a) Space-time scheme uses mean pa length 

and mu spot-size (requires imaging capability). (b) Time-only (LITE- 
type) scheme using 1st and 2nd moments of the returned pulse shape. 

5 Numerical Validation and Extension of GF Theory 

To validate diffusive GF theory, we solve the nonstationary 
transfer problem in Eqs. (l-2) with Monte Carlo methods. 

5.1 Homogeneous cloud models 

Figure 4 compares numerical estimates of the low-order 
spatial- and temporal moments in Eqs. (9a), (9b) and (10) for 

Fig. 4. Numerical validation of analytical GF theory in 2D (d = 2). 
Space- and time-statistics are plotted versus resealed optical depth (I-gkT 
in units of thickness 4. Monte Carlo computations for a diffuse boundary 
point-source are in dose agreement with pndictionf in By. (27). (29b.c) 
and (30) for homogeneous plane-prrallcl c ouds If T IS large enough. 
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homogeneous clouds in d = 2 with analytical predictions 
from Bqs. (13) and (27). Both isotropic scattering and a 2D 
counterpart of the Heney-Greenstein phase-function: 

P(8s)=$s Prob(@+@+% I= (&) I+g;$_ (33) 

with g = 0.85, were used. Cloud thickness At was held 
constant while optical depth 7 was varied from 0.5 to 256 
for g = 0, 1024 for g = 0.85. Photon source was point-wise 
but isotropic to promote diffusion as close as possible to the 
boundary. Agreement is excellent for (I-g)z > 2. 

Figures 5a,b show results for mean pathleigth and rms 
spot-size for homogeneous clouds in d = 3. Illumination 
here is collimated, normal to the boundary and scattering is 
modeled with a standard Heney-Greenstein phase-function: 

d 1 
p(es)=s ProblR+n l= G ’ 0 

1-g* 
(l+g2_2gcosB,)3/2 (34) 

for g = 0.0 and 0.85. Agreement is still good, especially for 
spot-size in panel (b), in the asymptotic limit (large 7). At 
least for mean pathlength in panel (a), the pre-asymptotic 
results fail to collapse onto a universal function of (l-g)t; 
a refined diffusion theory can possibly account for this. 

T or (r), for g = 0.85 only (V) 

3.0 
10 

6 
. ..-.d . - .-.. 190 - - lal 1 

(1 -g)r or (l-g)(T) 

g = 0.0 0.85 
fractal: ?? . 

homogeneous: 0 V 

Fig. 5. Numaical gcncraliration of analytical GF theory in 3D (d = 3). 
Monte Carlo computations (by Dr. Alexander Marshok) for a pulse of 
photona in B collimated beam impinging on homogeneous and fractal 
cloud models, as iUustrated in Fig. 4. (a) Mesa psthtength in Eqs. (9a) and 
(29b). (b) Root-mean-square spot-size from Eqs. (IO) and (291~). 

5.2 Fractal cloud models 

To extend our key results (29b,c) to more realistic cloud 
models, we used “bounded cascades” to redistribute cloud 
liquid water inside an otherwise plane-parallel cloud; we 
thus simulate an extended stratus layer. The resulting PDF 

for optical depth is strongly skewed towards larger z’s 
(Cahalan, 1994) and its 2-point correlations are multifractal 
(Marshak et al., 1994); both properties are required to 
match those of real clouds (Ivanova and Ackerman, 1998). 
A few realizations were used and the GF was further 
averaged over space, as described in sub-section 2.1.4. 

Fig. 6. Typical mdtifractal model for optical depth variability. The cloud 
is still geometrically plane-parallel but extinction varies horizontally. 
Inset: GF for escape from a 3D cloud (isophotes at logarithmic intervals). 

Variability in optical depth 7 can unfold in the 
x-direction only (as exemplified by 1D r-field in Fig. 6) or 
in 2D (as exemplified by the GF inset in Fig. 6). The 
observed scaling range of 3 decades is more easily reached 
in ID: 12.8-km domain, i024Lpixels, 12.5-m pixels (for 
300 m thickness). However, conclusions are not changed 
by using a 2D grid to model the variability. Figures 5a,b 
show Monte Carlo results as a function of mean optical 
depth (7): 

Practal structure has little effect on the mean pathlength 
in panel (a); this is clearly related to the fact that the 
variable quantity, 7, appears only in the correction term 
in Eq. (29b). We anticipate stronger variability effects in 
the patblength’s variance, skewness, etc. 
Fractal structure only affects the proportionality constant 
in Eq. (29c), making larger rms-p’s in panel (b). This 
shift is consistent with Jensen’s inequality1 if one 
averages the r.h. side of Eq. (29~) over the variability in 
r, ignoring the correction term in Eq. (30). 
The natural resolution of an off-beam lidar system is 

roughly 2-3 times (p2)ntR from Eq. (29~) or Fig. 5b, which 
is expected to be ~0.5 km for marine SC ((7) = 13, AZ = 0.3 
km), somewhat more in continental boundary-layer clouds. 
There is enough horizontal variability on scales smaller 
than this to affect the obsetvables in Figs. 3a.b. 

6 Empirical Results for Real Clouds in CW Mode 

Measurement of off-beam lidar returns is a challenge, 
especially in day-time when there is fierce competition 
between laser and solar photons. Nevertheless, Davis et al. 
(1997c) used a relatively standard zenith-pointing research 
lidar system to see how far away from the vertical axis they 

tFor instance, (R(7)) 5 R((z)) using E$. (29a). cf. Cahalan (1994). 
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could track the off-beam signal. The Nd:YAG transmitter 
operated at 1.06 pm, delivering 15 W equivalent cw power. 
The detector, feed by a 40-cm Cassegrain telescope, had a 
quantum efficiency better than 50% and a narrow FOV (1.4 
mrad); this last characteristic is typical in on-beam lidar 
but unnecessarily small for the present application. 

The system was operated in time- and pulse-averaging 
mode while the laser beam was deflected away from zenith 
by an angle controlled by a pair of small mirrors. Optical 
reciprocity guarantees this is equivalent to leaving the beam 
at zenith and tilting the telescope, a more cumbersome 
operation. Data was collected for a few minutes on Sept. 
12, 1996; the sky was completely overcast (ceiling at = 1.5 
km) with an under-layer of broken cumulus (at =I km). 

The raw (uncalibrated) photo-diode output data is plotted 
versus angle 8 in Fig. 7; they are overlaid with numerical 
predictions of the r-integral of G(fx,y,O.n(x,y))lx,p(e),~o 
by Davis and Marshak (1996) for two homogeneous 
Heney-Greenstein clouds at 1 km range, extrapolated to 1.5 
km. The only requirement on the double-ordinate semi-log 
plot is that both ranges (normalized radiance and mV’s) be 
5 orders-of-magnitude. Agreement is remarkable, bearing 
in mind the complexity of the real cloud cover and the 
simplicity of the computational models. 

The important feature of this instrumental achievement is 
that, before the off-beam signal was lost in solar noise, a 
regime of exponential decay was reached and reasonably 
well sampled. Even the rms horizontal transport distance 
(p2)a”2 defined operationally in Eq. (10) was exceeded (see 
markers on upper axis in Fig. 7). This proves that the 
photons contributing to the data had penetrated deeply into 
the cloud’s diffusion domain before escaping; very many 
scatterings are required to do this. 

p (km), at 1.5 km range 

Fig. I. Offebeam lidar observations of a real cloud system in cw mode. 
The data supports diffusive Green-function theory that predicts an 
exponential decay in the far-field: for large wave-number + = i/L m2Eq. 
(26a). the Fourier transform of this field decays as a Lorentztan (In l/k ). 

7 Conclusion and Outlook 

We described how off-beam lidar can be used to measure 
cloud thickness and density from ground, aircraft. or space 
The two cornerstones of off-beam lidar theory are Green 
functions for the mathematics, and photon diffusion for the 
transport physics. Green function theory is analytically 
tractable for homogeneous plane-parallel cloud models and 
has been validated numerically. Monte Carlo simulations 
have also been used to extend the key theoretical results to 
more realistic cloud models with a fractal structure. 
Finally, path-integrated off-beam returns from real clouds 
were detected out to =0.3 km from the impact point of the 
laser beam on cloud base; these data follow the exponential 
trend predicted by diffusion theory. Both analytical and 
numerical modeling efforts needs refinement, including 
RayleighIaerosol scattering and in-cloud stratification. 

The prospect of building sensitive and reliable off-beam 
lidar instruments is extremely good, at least for night-time 
operation. Photon-counting technology familiar to on- 
beam lidar can be used with adapted optics and detectors. 
The unusual requirement for off-beam lidar is to have 
imaging or, at least, radial profiling capability. One option 
is to use a holographic optical element (McGill et al., 
1997); another is to use advanced low-light imaging/timing 
devices such as the one described by Preidhorsky et al. 
(1996). The main challenge is highlighted by Davis and 
Cahalan’s (1998) signal-to-noise ratio (SNR) estimation: 
presence of an intense solar background; the authors list 
ways the a priori unfavorable SNR for day-time can be 
boosted. Laboratory simulations of off-beam lidar 
observations are currently underway (Davis et al., 1998) 
and new field experiments are in the planning stages. 
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