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SUMMARY

A multi-layer, 1D solar radiative transfer algorithm that accounts for subgrid-scale cloud variability is pre-
sented. This algorithm is efficient and suitable for use in large-scale models such as global climate and weather
prediction models. While it is built on the same principles as standard multi-layer 1D codes, there are two major
differences. First, it is assumed that for all cloudy layers all the time, frequency distributions of optical depth t
are described by gamma probability density functions pr(t) and characterized by mean optical depth 7 and a
variance-related parameter v. Albedos and transmittances for individual layers are estimated by integrals over all
t of the plane-parallel, homogeneous two-stream approximation equations weighted by pr (7). Thus, the model
is referred to as the gamma-weighted two-stream approximation. Second, in an attempt to counteract the use of
horizontally homogeneous fluxes, a method was devised that often reduces layer values of 7.

The gamma-weighted two-stream approximation was implemented in a well known broadband column model
and the parametrizations upon which it is built were tested using 2D and 3D inhomogeneous cloud fields gen-
erated by a bounded cascade model and cloud-resolving models. All fields resolved the lowest 20 km of the
atmosphere into at least 30 layers. Reference calculations were obtained by: (i) applying the 1D-plane-parallel,
homogeneous model to each column and averaging (the independent column approximation); and (i) a 3D Monte
Carlo algorithm. The gamma-weighted two-stream approximation, the regular plane-parallel, homogeneous, and
two other 1D models operated on horizontally-averaged versions of the fields (i.e. 1D vectors of cloud fraction,
%, and v). For several demanding cases, the gamma-weighted two-stream approximation reduced plane-parallel,
homogeneous-biases for TOA albedo and surface irradiance by typically more than 85%. Moreover, its estimates of
atmospheric heating rates usually differed from the independent column approximation and Monte Carlo values by
less than 10%. This translates into heating rate errors that are four to eight times smaller than those associated with
conventional 1D plane-parallel, homogeneous algorithms. In a large-scale model, a multi-layer solar code with the
gamma-weighted two-stream approximation should require about twice as much CPU time as its plane-parallel,
homogeneous counterpart.

Keyworps: Inhomogeneity Parametrization Solar radiation

1. INTRODUCTION

Large-scale models (LSMs) of the atmosphere used to study climate and weather
operate with horizontal grid-spacings of typically ~50 km to ~500 km. For most cases,
therefore, itis adequate to assume that grid-averaged solar radiative fluxes can be computed
accurately by treating multi-layer columns in isolation. Hence, much work went, and
continues to go, into development of 1D plane-parallel, homogeneous (PPH) algorithms
(e.g. Wiscombe 1977; Fouquart and Bonnel 1980; Chou 1992; Briegleb 1992; Edwards
and Slingo 1996). At these grid-spacings, however, it is inadequate to assume, as do 1D-
PPH models, that subgrid-scale cloud optical properties lack horizontal variability. For
example, it has long been recognized that fractional cloud amounts are important for
making accurate flux estimates (Schneider and Dickinson 1976), but accounting for this
in multi-layer 1D models has ambiguities (Morcrette and Fouquart 1986). More generally,
several studies have demonstrated that neglect of horizontal variations in cloud optical
depth T imparts sizable biases on estimated solar fluxes (e.g. Stephens 1988a,b; Cahalan
et al. 1994a; Barker 1996; Barker et al. 1998; Oreopoulos and Davies 1998a). Since 1D
models represent the only viable means of computing solar fluxes and heating rates in
LSMs, there is a need to develop tractable and accurate algorithms capable of handling
descriptions of subgrid-scale cloud variability.
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Most, if not all, LSMs employ a two-stream approximation of the radiative transfer
equation (Meador and Weaver 1980) to account for multiple-scattering of solar radiation
by cloudy atmospheres. In an attempt to address subgrid-scale cloud variability in an LSM,
Tiedtke (1996) utilized Cahalan et al.’s (1994a) effective thickness approximation (ETA)
by passing 0.7t, where 7 is LSM-generated optical depth, to the LSM’s delta-Eddington
(Joseph et al. 1976) subroutine. This approach is similar to Yu ef al.’s (1997) use of 0.287
and McFarlane et al.’s (1992) use of t°® (Davis er al. 1990). However, as discussed by
Cahalan et al. (1994a) and Barker (1996), simply reducing optical depth passed to a PPH
model holds only for a rather narrow range of optical depths and solar zenith angles and
could have undesirable effects on estimates of cloud absorptance.

A second, more versatile, approach is to weight the two-stream response functions
by a density function p(r) and integrate over all T (Stephens et al. 1991). This is es-
sentially an independent column approximation (ICA)*. Use of the gamma distribution
to represent p(7) is supported by evidence from Landsat imagery of marine boundary
layer (MBL) clouds (Barker et al. 1996), Advanced Very High Resolution Radiometer
(AVHRR) imagery of numerous cloud types (Oreopoulos and Davies 1998b), and cloud-
resolving model simulations of both MBL clouds (personal communication, B. Stevens
and S. Krueger 1996) and mesoscale convective systems (see Barker et al. 1998). The
resulting model is referred to hereinafter as the gamma-weighted two-stream approxima-
tion (GWTSA). While the GWTSA equations are more tractable than one might expect,
they require ~four times more computational effort than the standard two-stream (Barker
1996) as well as an additional variable not provided by current LSMs: mean logarithm or
variance of t.

The objective of the current study was to develop a multi-layer 1D solar radiative
transfer code for use in LSMs that uses the GWTSA to account for subgrid-scale cloud
variability. This algorithm is developed in the second section. The third section describes
models whose results were used to either contrast or assess GWTSA results. In the fourth
section, the GWTSA’s performance is compared with that of other column models using
both idealized 2D fractal-like clouds and 2D and 3D cloud fields derived from cloud-
resolving models. Benchmark calculations are provided by the explicit ICA and a 3D
Monte Carlo photon transport analog of the 1D column models. A short discussion and
concluding comments are made in section five.

2. MODEL DEVELOPMENT

(a) Basic framework

The new model is applicable to all 1D algorithms that are based on two-stream approx-
imations of the radiative transfer equation. Before discussing its parametrizations, some
basic PPH axioms are recapitulated because the new model is built on them. Following
Liou’s development of the principles of invariance (Liou 1992), albedo and transmittance
for a system consisting of two PPH layers irradiated by a collimated beam (onto the top
of layer 1) are

t{[T1 (o) — T ry + T Ry (o)}
1 — i

(1a)

Ry 2(po) = Ri(po) +

* The term independent column approximation (ICA) is synonymous with the term independent pixel approximation
(IPA). Though IPA has been used much in the past (e.g. Cahalan et al. 1994b; Barker 1996; Gabriel and Evans 1996),
we prefer ICA and feel that IPA should be reserved for satellite imagery and ICA for radiative transfer calculations.
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and ‘ '
BT (o) — T3] + T Ry (o) }

l—r1r2

(1b)

Ty (po) = T T (o) +

where R; (i0) and 7T} (o) are layer albedos and transmittance for direct-beam incident at a
solar zenith angle of f, (= cos™! 1), and r; and 1; are corresponding solutions for a diffuse
source. For homogeneous layers, transmittance for direct-beam only is

T]dif = g~ T1/Ho )

where 7, is mean optical depth of the upper layer (scaled for forward-scattering (Wiscombe
1977)). If the source is diffuse irradiance, overall albedo and transmittance are

tr
Fip =1+ ———. (3a)
1 — Fir;
and
it
hop=—12, (3b)
].‘“7‘11"2

For a multi-layered atmosphere, passes are made from top-to-bottom and bottom-to-
top to build matrices of albedos and transmittances for collections of layers. Then, up and
down fluxes at the i™" level are computed as

T Riv (o) + [Thi1 (ko) — T Triw

1—riciarin

(4a)

F,:T = [oS

and ‘ .
T Ry (o)ryimt + [Thi-1(po) — T ]

I —ri_iarin

B} = oS | T8, + @)

where the top and bottom layers are numbered 1 and N, § is incident solar flux at the TOA,

i—1

Tgi'r—l = H e/ &)
n=1

and the subscript convention means that, for example ;_; ; and r; y are reflectances for
groups of layers between the (i — 1)™ layer, and the top layer and the i % Jayer and the
bottom layer to upwelling and downwelling diffuse beams, respectively. The usual practice
is to compute R;, T;, r;, and #; by a standard PPH flux solution to the equation of transfer [see
Meador and Weaver (1980) for standardized equations]. This is where the new 1D model
diverges from existing models as it attempts to address subgrid-scale cloud variability.
Parametrizations used in the new model are presented in the following subsections.

(b) Individual layers

This subsection describes how R;, T;, r;, and t; are computed. Most LSMs attempt
to diagnose the fraction of a layer occupied by cloud.* Therefore, overall layer values for

* Assume that clouds extend through the depth of layers and that the term cloud fraction means vertically-projected
cloud fraction (Barker and Wielicki 1997).
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use in (4) and (5) are computed as simple linear combinations of clear- and cloudy-sky
quantities weighted by their respective fractions (Morcrette and Fouquart 1986). Thus,

R; = (1 — C) Ry + CiRuy,i (6a)
Ii=0-C)Tu; + CiTaa,i (6b)
ri=1—=Crari + Ciraai (6¢)
ti = (1 — Citer; + Citag,i (6d)
T8 = (1 - C)TS, + CiTay, (6e)

where C; is cloud fraction in the i™ layer, and subscripts clr and cld correspond to clear-
and cloudy-sky albedos and transmittances. This represents a type of random overlap-
ping of clouds which carries the assumption of zero correlation between cloud extinction
and radiation (see Stephens 1988b). It is easy to show that this differs from the formal
random overlap method as used, for example, by Stubenrauch ez al. (1997). Ideally, the
clear-sky components are computed by a PPH two-stream suitable for optically thin layers
(e.g. Coakley and Chylek 1975) using effective values of optical depth 7, single-scattering
albedo wy, and asymmetry parameter g for mixtures of air molecules (i.e. Rayleigh scat-
tering), absorbing gases, and aerosols:

Telr = Tray + Tgas + Taero (7a)
Tray + Waero Taero (7b)
Teir

8aeroWaero Taero
gor = ——. (7c)

Wely =

Welr Telr

The main point of this section, however, is cloud contributions in (6).

Cahalan et al. (1994b) showed that albedo for planar marine boundary layer (MBL)
clouds (with horizontal variability of liquid water path & only) can be computed very
accurately by applying a standard PPH two-stream approximation to N columns of optical
depth 7, in a domain % and averaging. This is the explicit ICA method in which ug

dependent values are defined as

Rica(t0) } 1 & Rpph (105 To)
= 8
Tica (ﬂO) N Z { Tpph (U/O» .Cn) } ( )

where Ry, and T, are PPH two-stream estimates. Solutions for a diffuse source are

defined similarly using ry;(7,) and fypm (7,).
If p(7) is an idealized, normalized, probability density function for  in R, (8) could

be approximated (e.g. Stephens et al. 1991) as
R[uo; o R )
[10 p(r)]} Y { oon (140 r)} i ©)

n=1

T'[po; p(1)] Topn (1o, T)

As mentioned in the Introduction, there is some evidence suggesting that the gamma distri-
bution pr(7) is often a suitable form for p(t). Moreover, Barker et al. (1996) demonstrated
that even when pr(7) is only a moderately good approximation to p(t), compensating
errors usually result in excellent agreement between (8) and (9). Thus, writing

0

T

__1_ LAY v—~1 ~vt/T, =
prt) = O ( ) Ve ;o [v>0,7>0] (10)
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where I"(v) is the gamma function and 7 is mean optical depth, it is recommended that v
be determined by maximum likelihood estimation (MLE) by solving

L) +1n (f)mmzo an
dv v
This method of deducing v is preferred over the method of moments because of its relative
insensitivity to outliers (Oreopoulos and Davies 1998b). Substituting (10), Ryph, and Tppp
into (9) yields Barker’s (1996) gamma-weighted two-stream approximation (GWTSA).
Expressions for collimated and diffuse sources are presented in appendix A. Throughout
this study, the only PPH model used was the delta-Eddington (Joseph ef al. 1976). As the
GWTSA is used in the new 1D model, this implies that cloud layers are variable in the
horizontal only. This simplification is made routinely in studies of radiative transfer for
inhomogeneous clouds (e.g. Stephens 1988a; Cahalan et al. 1994a,b; Barker et al. 1996).
In practice, GWTSA quantities are computed using T = Tyq + T in Which 74 and
7.1 are for clouds and homogeneous clear-sky (effective values of @, and g are computed
as in (7b) and (7c) with the addition of values for clouds). This makes the lower limit on
the integral in (9) 7., instead of 0. To include this would ruin the efficiency of the analytic
solutions presented in appendix A. Therefore a simple adjustment is proposed. Since the
standard deviation of total optical depth (i.e. clear + cloud) equals that for cloud only,
if it is assumed that (10) describes the distribution of cloud t perfectly, then based on
the method of moments in which vyg = (44/0)* where o is standard deviation of cloud
optical depth, v to be used in the GWTSA equations is roughly

= 2
Teld + Telr
V= ——
o

= 2
= Vg (rcld —+ Tclr) (12)

where vq is for clouds only and diagnosed by the LSM. Thus, for example, in spectral
bands with strong gaseous absorption it may be that 7, > Tqq and so v > vyq4. This signifies
that despite variable cloud, the overall response could be dominated by the uniform gas.
Using aerosol-free standard atmospheres, it was found here (not shown) that use of (12),
as opposed to v 4, had very little effect on broadband flux estimates. Barker et al. (1996)
discussed a similar situation in which v and 7 were based on Landsat-inferred cloud optical
depths (Wielicki and Parker 1994). The non-zero lower bound on integration arose from
the discretized satellite sensor. They found this to be a significant issue only for v <€ 1 and
low sun (see their Fig. 3).

(c) Overcast cloudy layers

In general, one can expect layered clouds within LSMs to be sliced arbitrarily into
multiple contiguous layers. Hence, radiation calculations must be performed on adjacent
layers of horizontally variable clouds; not just on entire clouds as in previous studies (e.g.
Stephens 1988b; Cahalan et al. 1994a; Barker 1996). This section presents an approxima-
tion for this condition for use with the multi-layer GWTSA.

Consider an overcast planar cloud that has horizontally variable t, yet the extinction
field is highly correlated in the vertical. Though irradiated uniformly from above, all
other radiation fields associated with this cloud lack horizontal homogeneity. Therefore,
if this cloud were sliced into several layers and if mean albedos and transmittances were
computed for each cloud layer and radiative linking was achieved via (4a) and (4b), overall
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Figure 1. Single-layer cloud with horizontal variability that has been sliced into two layers with mean optical
depths 7; and 7,, and equal values of v. Length of arrows denote flux (uniform onto cloudtop). Top panel shows
mean transmittance through the upper layer onto the lower layer as a 1D model would predict; horizontal uniformity.
Bottom panel shows that the flux onto the lower layer is variable but with a mean value equal to the corresponding
value in the top panel. The perfect vertical correlation for these layers is like that for the contiguous multi-layer
cascade clouds when clouds in all layers are generated with the same sequence of random numbers (see section 4(b)).

mean albedos and transmittances would be between the true values (computed for the
cloud as a single layer) and corresponding PPH values. This is because (4a) and (4b)
implicitly homogenize internal fluxes and for this to be enforced on horizontal variable
clouds represents a discrete step towards the PPH solution. Figure 1 shows a schematic
cloud sliced in two. If 7; is the proper mean transmittance for the first layer but it is
assumed that the top layer does not give rise to a variable radiation field exiting its base,
too much radiation will impinge dense regions of the lower layer while too little radiation
will impinge tenuous regions. Hence, the lower layer is irradiated improperly: too much
weight is given to thick regions and too little to thin regions.

A parametrization for the GWTSA to utilize (4) yet deal with this correlation between
radiation and extinction (cf. Stephens 1988b) is now presented. For clarity, it is illustrated
for normal direct-beam transmittance, where it is exact, and then extended to diffuse fluxes,
where it is approximate. Assuming that the distribution of t for the entire cloud in Fig. 1
follows pr(r), domain-averaged direct-beam transmittance is

= [ e ar= () (13)

V+T

where 7 is again transformed for forward-scattering [note that for the GWTSA this expres-
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sion replaces (2)]. Subdivide the cloud into N equal layers each with mean optical depth
7/N and v equal to the original v (which follows from perfect vertical correlation). In the
spirit of (5), if layer mean transmittances are multiplied, domain-averaged transmittance

is
g N v v
roo=11(57)

N vN
_ (—-‘i—-——) (14)
vN +7
which can be shown by induction to be less than 7. Moreover,
N vN R
lim (L—) = (15)
{(Norvl-»o00o \ UN +T

shows that N going to infinity is tantamount to v going to infinity (i.e. homogeneity) and
that the standard 1D methodology fails.

Now, relax the constraint that sublayers be of equal thickness, and denote the n™ layer’s
density function as pr,(t) which is defined by v and 7, (Z,’Ll 7, = T). Then, by virtue of
perfect vertical correlation, weighting pr,(t) by incident energy and renormalizing yields

] n—1 = n—1 =
pr(1) = V2o % r”“l exp | —t V2o T
" ') T, 7,
1 p* v *_1 %o Tk
= o Vi1 —v¥r/T] 16
ron\z) = ¢ (16)

which is an altered distribution for the n™ layer in which 7, = 0 implies that prf(r) =
pr, (t) (unaltered top layer). From (16) it can be shown (see appendix B) that the new
optical properties of the layers are

. (17a)
and _
AL S (17b)
v+ Zk:o Ty

Now, when direct-beam transmittances are computed for N layers using (17) and multiplied
(i.e. working with horizontally homogeneous internal radiation fields), domain-averaged
transmittance is

TH(N) = ( : )( — )V v+ Y
v+ 1 v+ 4+ D U+Z/]:]:1%k
N times
__( v ) (18)
B v+T

which equals 77" in (13). In addition to this, downward reduction of 7, yields correct
direct-beam flux profiles too. As long as independent columns are assumed, this applies
to pug < 1 also. For real clouds, however, minor deviations for po < 1 can be expected
(Gabriel and Evans 1996; Barker and Wielicki 1997).
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The same type of correction is proposed for use with diffuse radiation fields. Ideally,
therefore, pr, (7) should be weighted by T, (1o, T) instead of the exponential function
used above. Use of the exponential function, however, has the convenient property of
leaving pr+(7) as a gamma distribution. Hence, the following parametrization was derived:

e~ DT/ ny Tpph(ﬂo, T) (19)

where 9 forces T, into the Beer—Bouger-Lambert law and the left side of (19) is used
to generate prx(t). For a fairly wide range of 7, asymmetry parameter near 0.85, and
single-scattering albedo greater than 0.9,

D(po) = 0.063140(2 — 10) (20)

satisfies (19) well enough for our purposes (as it gets integrated over all 7 in the end).*
Hence, downward adjusted 7, are approximated as
- Vn T

= ——— 21)
Y + D (o) Zk:kmp T/ 1o

where ki, is the cloudtop layer, which is the same as (16) except there @ = 1.

In the derivation and application of (21), it was assumed that contiguous layers above
the n™ layer have v equal to v,, despite their likely uniqueness. As shown later, this may
be neither too severe nor unreasonable. Also, when applying this algorithm, (21) is used
to adjust the optical depth for both direct-and diffuse-beams. This was found to have
little effect on fluxes and saved on computation of a separate adjusted optical depth for
direct-beam.

Note that a column will have more than one value of ki, when two or more blocks
of contiguous cloudy layers are separated by cloudless layers. The assumption used here
is that 7, for the top layer of all contiguous blocks of clouds is unaltered. This implies no
correlation between incident radiation and extinction fluctuations of the uppermost layer of
ablock of cloudy layers (Stephens 1988b). In a domain-averaged sense, this is equivalent to
saying that incident radiation is uniform; which is the case only for the extreme uppermost
layer of cloud, but need not, and almost certainly never would, be true for the top layer of
lower cloud blocks. This is simply an extension of the concept of randomly overlapping
partly cloudy layers except it pertains to fluctuations within overcast layers.

(d) Partly cloudy layers

Following from the argument just made, when partly cloudy layers are separated by
a clear layer, it is assumed again that there is no correlation between incident radiation
and extinction fluctuations of the uppermost layer of a block of cloudy layers. Hence, the
GWTSA solutions with unaltered 7 for the uppermost layer in a block of cloudy layers
are used in (4a) and (4b), which in turn are used in (6).

As already discussed in the context of optical depth, contiguous cloudy layers can be
expected to possess a fairly high degree of vertical correlation and this extends naturally
to cloud fraction (Tian and Curry 1989): thus the rationale behind the standard assump-
tion of maximal overlap of contiguous partly cloudy layers (Geleyn and Hollingsworth
1979). The simple approach taken here of reducing 7, assumes that clouds in layer n are
maximally overlapped with clouds immediately above in layer n — 1 and if C,_; < C,,

* By no means are we implying that (19) and (20) can substitute safely for regular application of the two-stream
approximation.
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the excess cloud in layer # is, in essence, randomly overlapped with clouds above layer
n — 1. Therefore, following the approach used to transform 7, into T (see Eq. (21)), mean
optical depths passed to the radiation model are

Cn-lf:* + (Cn - Cn—l)fn

- G, O =G (222)
f:*’ an] = Cn
where
- Vp frL
T = I _ (22b)
Uy + D (o) Zk:kmp Ay T/ 1o
in which .
_Ja-cot, Ci=05
Ay = { c;, C, > 0.5. (22¢)

For computational economy, both the overlapped and non-overlapped portions of a cloudy
layer use the same 7** and v, (which stems from the assumption that both portions are
statistically identical). Moreover, the empirical function s, was found to improve results
relative to s, = 1 for a wide variety of experiments. In a crude way, this mimics the effects
of maximal/random cloud overlap by counteracting errors introduced by (6).

3. MODEL ROSTER

This section describes briefly the models whose results are presented in the following
section. All the column models used here have been implemented in two 1D broadband
algorithms: one resembling very closely that used in the NCAR general circulation models
(GCMs) (Briegleb 1992); and that used in the Canadian GCM (McFarlane et al. 1992;
Barker and Li 1995). Though the algorithms used in these GCMs are quite different,
the impact of the GWTSA was almost identical. Results presented in this paper are for
the NCAR model which divides the solar spectrum into four bands (18 pseudo-bands)
with cloud optics defined by Slingo’s (1989) parametrization. See Briegleb (1992) for
performance details.

The multi-layer version of the GWTSA that uses T*** is referred to hereinafter as the
corrected-GWTSA (c-GWTSA). Since the c-GWTSA is the primary model presented in
this paper, it is contrasted with three other 1D approximations. First is its counterpart that
utilizes simply 7. This model is referred to as the uncorrected-GWTSA (uc-GWTSA).
Second is the regular PPH two-stream approximation which uses Rypn, Tpphs 7pphs and
topn. Third is Cahalan et al.’s (1994a) effective thickness approximation (ETA). For the
ETA, layer fluxes are computed by the zero®-order term of the PPH model’s Taylor series
expansion about In 7. The ETA uses the PPH solutions, but instead of operating on 7, it

operates on 7 where

eln T

<1. (23)

n=-—=z
T

Clearly, n depends on p(r) and for pr(7),

¥r(v)
¢ 24)

]’}:
v

where v is from the MLE method (see Eq. 11).
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The column models were assessed as follows. Beginning with either 2D (vertical and
one horizontal direction) or 3D domains containing inhomogeneous clouds, create profiles
of the necessary horizontally-averaged optical properties needed to drive the column mod-
els (i.e. layer values of C, 7, wy, g, v, 1, and T***). Benchmark calculations were computed,
for the most part, with the ICA model (see Eq. (8)). As with single-layers, multi-layer ICA
results are obtained by applying a regular ID-PPH model to each column in a domain and
then averaging fluxes horizontally. In the ICA, cells in each column are either full or free
of cloud. Layer reflectances and transmittances (clear and cloudy portions) for all models
mentioned so far are based on the delta-Eddington approximation (Joseph er al. 1976).
Also, layer fluxes are linked according to Eqgs. (1) through (6).

When cloud-resolving model (CRM) data were used, geometric sizes of grid-cells
were defined thus enabling straightforward application of a Monte Carlo (MC) photon
transport algorithm (Barker ez al. 1998). This provides an indication of the importance
of neglecting finite cloud effects. As in the column models, scattering and absorption
occur in the MC simulations at scattering events. Effective single-scattering properties are
exactly those in the column models though the Henyey—Greenstein (1941) scattering phase
function is used. The number of photons injected per band is proportional to incident flux
density at the TOA. Hence, absorption and spectral integration are treated identically in all
models. Underlying surfaces are Lambertian, and cyclic horizontal boundary conditions
are used. For multi-layered atmospheres containing overcast PPH clouds, the MC and the
column model agree typically to within ~1% for boundary fluxes and ~3% for heating
rates. The exception being very oblique sun where the delta-Eddington is known to be
deficient (King and Harshvardhan 1986). Also, results presented are integrations over
solar azimuth angle.

4. RESULTS AND DISCUSSION

This section consists of three main subsections. First, the single-layer GWTSA is
assessed using idealized p(t) from a phenomenological fractal generator. Second, results
for the multi-layer c-GWTSA are compared with results for the other column models using,
again, model fractal clouds. Third, data from CRMs are used to conduct more definitive
tests of the multi-layer c-GWTSA.

(a) Single-layer bounded cascade clouds

To give an idea of the capabilities of the GWTSA, fluxes were computed for single-
layer cloud-forms generated by Cahalan e al.’s (1994a) 1D bounded cascade model.
This method of generating horizontally inhomogeneous clouds was used because of its
simplicity and because its (discrete) density functions of T are not gamma distributions.
Actually, liquid water paths & (g m~2) were simulated and optical depths for four spectral
intervals were computed as

€

b
rj:.g(ajJr_’); j=1....4 (25)

where a and b are coefficients (Slingo 1989), and r. is effective radius of cloud droplets.
Spectral values of wy and g were also computed with Slingo’s four-band parametrization.
Aslong asr, is constant across a cloud field, and this was the case throughout this study with
re = 10 pm unless stated otherwise, histograms for & and t have the same v (which does
not vary spectrally). Two parameters govern clouds produced by this model: 0 < f <1
which controls var(¥); and 0 < ¢ < 2 which controls autocorrelation in £. All results
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presented here used ¢ = 0.794 which yields fields whose power spectra have slopes near
—1.5 when plotted on log-log scales. This model was extended to generate partly cloudy
conditions (Barker and Davies 1992; Marshak er al. 1998). Appendix C gives a brief
description of the bounded cascade model, assesses its behaviour for partly cloudy cases,
and compares it to results from Landsat imagery.

Figure 2 shows PPH, ETA, GWTSA, and ICA albedos and absorptances for a range
of overcast conditions. These are broadband values for droplets only. For small f, cloud
variability is sufficiently weak that all models, including the PPH compare well
with the ICA. When 7/, is small (< 10), the ETA increasingly under-reflects and
under-absorbs as f increases. This is due to neglect of the second-order term in the
Taylor expansion of Rpph(ﬂl—?) which is positive and increases monotonically with f.
As T/uo becomes larger, this term eventually becomes negative and is responsible for
the slight overestimation at small f for & of 120 gm™. The GWTSA has a clear
tendency to overestimate albedo and absorptance relative to the ICA. For the most part,
however, its curves are closer to the ICA curve than are the ETA curves. As can be seen
in appendix C, truncated cascade fields with C < 1 are described by pr(7) much better
than untruncated fields. Thus, for C < 1, the GWTSA will perform much better than as
shown in Fig. 2.

(b) Multi-layer atmospheres with bounded cascade clouds

The parametrizations presented in section 2(a) are now demonstrated with bounded
cascade clouds. Throughout this subsection, clouds that are in contiguous layers were cre-
ated with the same random number sequence, which produces perfect vertical correlation
(see Fig. 1), whereas non-contiguous clouds were created with different random sequences.

As discussed above, a cloud’s albedo should be independent of the number of layers
it is sliced into. Figure 3 shows contours of GWTSA albedo differences, weighted by o,
between single-layer cloud albedos and albedos computed for the same clouds after they
have been sliced in two. These are for overcast cascade clouds generated with f =0.5
and no atmosphere aside from cloud droplets. The column of plots labelled uncorrected
correspond to differences when two-layer albedos were computed without downward ad-
justment of 7 (i.e. the uc-GWTSA model). The column of plots labelled corrected is for
downward reduced 7 according to (22) (i.e. the c-GWTSA model). When the fraction of
the cloud in the upper layer is either 0 or 1, differences are zero as these limiting cases
are single layers. The uncorrected plots have the largest errors and are almost symmetric
about slicing the cloud in half. These overestimates of albedo by the two-layer system
arise because the thick portions of the lower clouds have effectively received too much
irradiance and thus reflect too much radiation. The panels for the c-GWTSA show that
when T of the lower layer is reduced according to (22), errors associated with two-layer
systems are generally two to ten times smaller than for the uc-GWTSA.

Figure 4 demonstrates further the impact of adjusting 7 for the lower layer as it shows
overall GWTSA albedos for the same cloud used in Fig. 3 (£ = 120 g m™2) as a function
of number of equal layers into which the cloud is partitioned (ranging from 1 single layer
to 30 layers each having £ =4 g m™2). Just as for direct-beam (see Egs. (14) and (15)),
as the number of layers increases, uc-GWTSA albedo approaches the PPH value. When
the correction is applied, however, albedo is much less sensitive to the number of layers.
Perfect insensitivity was not expected since 7 were adjusted based on the primary stream of
radiation only; not for multiply reflected internal beams. This explains in part the sudden
dip in going from one to two layers: the upper half of the cloud, with unadjusted 7, is not
transmissive enough to radiation reflected by the lower layer.
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the lower layer is reduced according to Eq. (22).

313

Contours are differences, multiplied by 1o, between broadband albedos (cloud droplets only) for
overcast, single-layer bounded cascade clouds (f = 0.5) and the same clouds when they are partitioned into two
layers (see Fig. 1). Differences are zero when the fraction of cloud in the upper layer is either O or 1. Results are
shown as a function of g for three values of mean liquid water path &. Column labelled uncorrected is for the
GWTSA when the mean optical depth 7 of the lower layer is unadjusted. Column labelled corrected is when 7 of
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Figure 4. Broadband albedos for overcast, bounded cascade clouds (f = 0.5) with £ = 120 g m~? as functions

of number of equal layers into which the cloud was partitioned. Circles represent values for the GWTSA when

mean layer optical depths T are unadjusted. Squares are the same but T were reduced according to Eq. (22). The
PPH value, which is independent of number of layers, is shown for reference.

Like the PPH model, ETA albedos and transmittances are independent of the number
of layers a cloud is broken into. This may seem odd given that the ETA does not apply to
thin layers (see Cahalan et al. 1994a; and Fig. 2 of this paper). By effectively irradiating
internal layers incorrectly (i.e. homogeneously), this counteracts the ETA’s inappropriate-
ness for each layer and rescues it (when it applies) with respect to diffuse fluxes. Problems
can, however, be expected to arise with heating rate profiles. Also, when higher-order
Taylor expansion terms are retained (Cahalan et al. 1994a; Barker 1996), the ETA’s lack
of dependence on number of layers vanishes.
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TABLE 1. CLOUD CHARACTERISTICS FOR THE EXPERIMENTS WITH
MULTI-LAYERED BOUNDED CASCADE CLOUDS.

case 1 case 2 case 3
o C N v C £ v C £ v
0.50 0 — — 0 — — 0 — —
055 0 — — 0 - — 0 — —
0.60 O — — 0 - — 1.0 1.50
065 0 — — 0 — — 1.0 27 1.50
070 0 — — 0 — — 0 —
075 0 — — 0 — — 0 — —
079 0 — - 0 o - 1.0 1.50
083 0 — — 0.3 35 1.10 1.0 35 1.50
087 1.0 55 15005 42 1.12 0 —
090 1.0 40 15007 30 1.17 0 — —
093 1.0 40 15005 30 1.12 1.0 1.50
095 1.0 25 15003 16 1.10 1.0 30 1.50
097 0 — — 0 — — 0 — -—
099 0 — — 0 — — 0 — —
1.0 0 — — 0 — — 0 — —

C and & denote layer cloud fraction and mean liquid water path (g m™2)
and v is defined by (11). o is p/pyr Where p is pressure at the base
of a layer and pgy is surface pressure. The 15 layers above those listed
here were devoid of clouds. Gaseous and temperature profiles followed
the midlatitude summer standard; surface albedo was 0.1 across the
spectrum.

The following experiments included fractal clouds imbedded in midlatitude summer
profiles of temperature and gas concentrations (McClatchey et al. 1972). Table 1 lists
cloud and other boundary conditions used for these experiments. Figure 5 shows TOA
albedo «,,, atmospheric transmittance 7,, and heating rate (HR) differences between the
ICA and four models: PPH, ETA, uc-GWTSA and ¢c-GWTSA for the cases listed in
Table 1. Case 1 is similar to clouds used so far: a single overcast cloud split into four
layers. Both the ETA and c-GWTSA have closed the PPH-biases for «, and 7, by more
than 75% typically. HR differences show that the ETA has pronounced under- and over-
absorption in the uppermost layer and in lower layers, respectively. In fact, its error tracks
that of the uc-GWTSA, primarily because both lack an adjustment to lower layer 7. The
¢-GWTSA, however, under-absorbs only slightly throughout most of the cloud. The PPH
model exhibits anomalous heating near cloudtop and much reduced heating below (cf.,
Barker et al. 1998).

Case 2 has a vertically-projected cloud fraction of 0.7 and maximal overlap is as-
sumed. Typically, PPH-biases are about £0.1 for o, and 7, which correspond to relative
errors of roughly 30%. The biases have increased relative to the previous case because the
truncated cascade fields yield smaller v (see Table 1 and appendix C). The uc-GWTSA
has closed these biases by only ~25%. Just as in case 1, HR errors for the PPH model
show excessive heating in the upper reaches of the clouds and weak heating near cloudbase
and beneath cloud. The uc-GWTSA’s HR errors track PPH errors closely but are shifted
towards cloudbase, due to larger transmittances, with little error near cloudtop.

While the ETA has almost closed the PPH-biased at high sun, at mid to low sun it does
only marginally better than the uc-GWTSA. This is because for the cloud on the whole,
the ETA is beyond its ideal range; i.e. neglect of higher-order terms (which are negative
because T/ is large) make the ETA overestimate albedo. The c-GWTSA, on the other
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Figure5. Broadband TOA albedo and atmospheric transmittance as a function of uq for the three cases of bounded

cascade clouds documented in Table 1. Results are for five models as indicated on the plot. For case 3, the ICA

model has error bars on albedo and transmittance. These indicate the standard deviation for ten realizations. Also

shown are heating rate differences between the listed models and the ICA model which was assumed to be the
standard.

hand, closed the PPH-biases by more than 85% for most wy. Moreover, the c-GWTSA’s
HR errors are typically three times smaller than those for other models.

Case 3 has three non-contiguous groups of overcast clouds, each consisting of two
overcast layers. Therefore, this experiment tests the c-GWTSA hypothesis that 7 for the
top layer of the middle and lower blocks of clouds should not be adjusted (the lower layer
for these cloud blocks, however, are adjusted). In order to realize better the notion that
non-contiguous clouds have randomly overlapping fluctuations, ICA quantities presented
here are ensemble-averages for 10 simulations each of which used unique sequences of
random numbers to generate the cascade clouds. As expected, Fig. 5 shows that, because
of the randomization of 7, PPH-biases for «, and T, are small compared to the contiguous
cloud cases. Had all the clouds been generated by the same random sequence, PPH-biases
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would have been comparable to those in the previous cases because ICA values of «, and
T, would have been respectively smaller and larger than those shown in Fig. 5 (PPH, ETA,
and uc-GWTS values are insensitive to these correlations). The ETA slightly over-corrects
the PPH-biases as does the c-GWTSA for low sun, though for high sun the c-GWTSA
performs well. The uc-GWTSA performs almost perfectly (i.e. well within the standard
deviation of ICA values), but its HR errors are significantly larger than those for the c-
GWTSA. Again, the PPH displays excessive heating in the upper cloud, and too little
heating below due to too little transmittance through the upper cloud.

These experiments were also run using surface albedo of 0.8. With respect to boundary
fluxes, the c-GWTSA performed slightly worse than as shown in Fig. 5 but the PPH-biases
were small. When surface albedos are this large, however, i1 is usually small (i.e. high
latitudes). Thus, transmittances are reduced which mitigate the importance of adjustments
to 7. Also, in cold climates, clouds may resemble PPH conditions well, thus ameliorating
the need to invoke the GWTSA. As for heating rates, profiles for the c-GWTSA were still
the most superior by far.

(¢) Cloud-resolving model (CRM) atmospheres

Thus, far, the c-GWTSA has been applied to idealized atmospheres. The ultimate
intention is that it work well for real atmospheres (which can be assumed to exist at scales
unresolved by LSMs). At this stage, the best descriptions of realistic, multi-dimensional
cloudy atmospheres come from CRMs with horizontal grid-spacings preferably less than
2 km. Therefore, the c-GWTSA is now assessed using atmospheres generated by 2D and
3D CRMs. In all cases, surface albedo is 0.1 across the entire solar spectrum.

The 2D field is from Fu et al.’s (1995) simulation of a tropical convective system.
Horizontal grid-spacing is 1 km and domain size is 512 km. There are 34 layers of variable
thickness. In addition to standard profiles for ozone and the uniformly mixed gases, only
model-generated water vapour and cloud liquid water were used; graupel, snow, rain,
and ice were neglected because of ambiguities setting single-scattering properties and
determining v. Figure 6 shows total £ as a function of distance. Clearly this field is very
inhomogeneous as v for &£ is just 0.48. Figures 7(a) and 7(b) show layer values of C, v,
and 7. These profiles are the only information passed to 1D models. While most layers
have C near 0.12, vertically-projected cloud fraction is 0.5. This indicates that clouds
in contiguous layers are neither maximally nor randomly overlapped. Most layers have
v ~ 1 which is small but still much larger than that for total t (i.e. 0.48) Figure 7(b) shows
layer values of total T (all constituents) and 7°** as used by the c-GWTSA at uo = 0.5.
For almost all layers T*** < 7. If the curve for T is multiplied by ~0.57, one obtains the
approximate optical depth profile that would be used by the ETA.

Figures 8(a) and 8(b) show domain-averaged «, and 7, for the 2D field. Agreement
between the MC and ICA for 1 = 0.5 is almost perfect. For smaller 144, the MC reflects
more and transmits less than the ICA. This is because the MC experiences direct irradiance
onto cloud sides (Welch and Wielicki 1984) and the ICA uses the delta-Eddington (King
and Harshvardhan 1986). The c-GWTSA performs almost as well as the ICA, whereas the
PPH model performs terribly committing albedo and transmittance errors that are typically
about £60%.

Domain-averaged HR profiles for the 2D field are shown in Figs. 8(c) and 8(d).
As expected, the ICA and MC profiles are in excellent agreement throughout the entire
atmosphere. The c-GWTSA underestimates slightly near 600 mb. This is most likely
due to an over-reduction in optical depth. Otherwise, at /1o = 1, agreement with the ICA is
excellent while for o = 0.5, itis equally good above most of the clouds but underestimates
below 700 mb. As with the cascade clouds and in Barker et al. (1998), the PPH HR profile




318 L. OREOPOULOS and H. W. BARKER

7000 p——mb
6000 - -
5000 i
w00 | i

L(gm?)

3000 - L
2000 ~ L

1000: =
OA‘\ [\jmlh | I, /\/

T T T T T y T

0 128 256 384 512
distance (km)

Figure 6. Liquid water path & for the domain of a 2D cloud-resolving model simulation (Fu et al. 1995).

is characterized by anomalously large heating near cloudtops and too little heating beneath.
This is because in the PPH model, moderately thick clouds are spread over the entire cloudy
portion of a layer and not confined, as in the 3D and ICA cases, to convective cores where
they would be shielded greatly from radiation.

The 3D cloud field was generated by the Regional Atmospheric Modeling System’s
(Pielke et al. 1992) simulation of the mesoscale convective system EMEX9 (Alexander
1995). Horizontal grid-spacing is 1.5 km and domain size is 120 x 144 km. There are 34
layers of variable thickness. Again, only cloud water and vapour were used along with
standard profiles of ozone and the uniformly mixed gases. Figure 9 shows the horizontal
distribution of total &£ whose mean value is ~800 g m~2 (visible 7 ~ 80). In this case, r.
was set to 15 um. Figure 7(c) shows that most clouds were at altitudes between 800 mb
and 500 mb and that C < 0.26 for all layers. But, since clouds in adjacent layers overlap
by typically ~75%, total vertically-projected C is ~0.45. Similar to the 2D field, layer
values of v are typically near 1.0 but v for overall 7 is just ~ 0.4. Figure 7(d) shows layer
values of total 7 (all constituents) and 7***. Above ~600 mb, 7*** are greater than about
7/2. Below ~600 mb, the parametrization in section 2 has virtually eliminated the lower
third of the cloud field!

Figure 10 shows that EMEX9’s PPH-biases for albedo are typically 0.15. On the other
hand relative to the ICA, the c-GWTSA performs extremely well for all 1, closing PPH-
biases by more than 90% in general. Differences between the MC and ICA are virtually
identical to those shown by Barker ez al. (1998). Note that in this case, the rapid increase
in MC albedo for 119 < 0.5 is not tracked by either the ICA or the c-GWTSA.

Figures 10(c) and 10(d) show HR profiles for the various models. As expected (see
Barker et al. 1998), profiles for the MC and ICA agree very well. The fact that the c-
GWTSA profiles follow those of the MC almost as well as the ICA justifies the huge
differences between 7 and 7*** shown in Fig. 7(d). At and below cloud levels, heating
anomalies for the c-GWTSA are generally four to eight times smaller than those for the
PPH and ETA (not shown).
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PPH and uncorrected GWTSA (uc-GWTSA) models. Dashed line represents reduced optical depths (according to

Eq. (22) using po = 0.5) as used by the corrected GWTSA (c-GWTSA). (c) and (d) are the same as (a) and (b) but
they are for a 3D cloud field (see Fig. 9).

5. SUMMARY AND CONCLUSION

This paper presented a new 1D solar radiative transfer model for use in LSMs such
as GCMs and NWP models. The code differs from standard multi-layer column models in
two ways. First, it addresses subgrid-scale cloud variability by assuming that within each
grid-cell, frequency distributions for cloud optical depth 7 are described well by gamma
density functions pr(t) (Barker et al. 1996; Oreopoulos 1996). While regular column
models use PPH two-stream approximations to compute layer albedos and transmittances,
the new model computes them with analytic solutions to the integral over all t of the PPH
two-stream functions weighted by pr(t) (Barker 1996). Hence, the new model was referred
to as the gamma-weighted two-stream approximation (GWTSA). In order to operate this
model, one needs estimates of not only mean optical depth 7, as required by PPH models,
but some indication of cloud variability. The second difference is an attempt to counteract
the implicit 1D condition that fluxes at internal levels are homogeneous. This is done by
reducing 7 for layers beneath cloudtop by amounts that depend on cloud variability and
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Figure 8. Broadband TOA albedo and atmospheric transmittance as a function of pg for the 2D cloud field

documented in Figs. 6, 7(a), and 7(b). Results are for a Monte Carlo algorithm (MC); the ICA; the ID-PPH model;

and the c-GWTSA (i.e. using 7°** similar to that shown in Fig. 7(b)). Also shown are heating rate profiles for the
four models at uy = 1.0 and 0.5.

cloud amount aloft. Moreover, investigations using CRM data are underway to incorporate
a better treatment of overlapping cloud (e.g. Ritter and Geleyn 1992).

This algorithm has been implemented in two well known 1D codes; results were
presented for a code that resembles very closely those used in the NCAR GCMs (Briegleb
1992). Assuming that on average, about 25% of all atmospheric cells in a 30 layer LSM
contain some cloud, the vectorized multi-layer GWTSA will likely require about twice
as much CPU time as its PPH counterpart. Given the magnitude of the PPH-biases often
corrected by the GWTSA, doubling the CPU time devoted to solar radiative transfer seems
justified.

The GWTSA was tested using 2D and 3D inhomogeneous clouds generated by a
bounded cascade model and by CRMs. It operated on profiles of layer cloud fraction, 7,
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and v [a variance-related parameter that defines pr(7)]. Boundary fluxes and heating rate
profiles predicted by the GWTSA were compared to benchmark values determined by the
ICA and a 3D Monte Carlo photon transport algorithm. It was shown that the GWTSA
reduces PPH flux biases by typically more than 85% and predicts heating rates that are
almost always within 40.1 K day™" of the benchmark values.

As in Barker et al. (1998), these results suggest that the effects of 3D cloud geom-
etry are of secondary importance for fluxes averaged over grids the size of those used in
conventional LSMs. Rather, it is of primary importance to convey to 1D codes informa-
tion about both horizontal variability of 7 in each layer and the nature of cloud overlap.
Evidently, the combined effects of assuming a gamma distribution for t and reductions
to T by the method proposed here (which loosely considers cloud overlap effects) capture
much of the required information needed to obtain satisfactory flux profiles.

The main deterrent to using the GWTSA, or any similar parametrization, in a LSM
is estimation of subgrid-scale variability of 7; v in this case. It may be helpful for post-
simulation diagnostic purposes that global distributions of the effective vertical integral
of v are being developed from International Satellite Cloud Climatology Project (ISCCP)
satellite data (personal communication, B. Cairns 1997) and AVHRR data (Oreopoulos
and Davies 1998b), however, this knowledge is of little value in the midst of an LSM
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Figure 10. As in Fig. 8 except these are for the 3D field documented in Figs. 7(c), 7(d), and 9.

simulation. Evidence was presented here suggesting that for grid-spacings of (~100 km)?,
a reasonable first-order estimate of the impact on global climate due to unresolved cloud
fluctuations may be achieved by making layer values of v a diagnostic function of cloud
fraction C only. A credible description, for typical LSM horizontal and vertical grid-
spacings, may be as simple as: v & 4 for C = 1; decreasing to ~1 by C ~ 0.9; and holding
at ~1 for C < 0.9 (see Fig. 7 and appendix C). On the other hand, if for radiative transfer
purposes the atmosphere is reduced to only a few vertical layers as in Stubenrauch et al.
(1997), these values of v would have to be smaller in general.

The next steps beyond this study are: (i) to test the sensitivity of an LSM to inclu-
sion of the multi-layer version of the GWTSA; (ii) develop parametrizations that convey
more information about unresolved cloud fluctuations and cloud overlap; (iii) test the new
algorithm with observational data; and (iv) extend the GWTSA approach to 1D infrared
radiative transfer models (Barker and Wielicki 1997). Fulfillment of the last step would
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enable a consistent treatment of feedbacks between subgrid-scale cloud variability, the
hydrologic cycle, and both solar and terrestrial radiation.

ACKNOWLEDGEMENTS

We are very grateful to P. M. Gabriel (Colorado State U.), K. P. Shine (Assoc. Editor),
and the anonymous reviewers for several constructive comments. Also, we thank Q. Fu
(Dalhousie U.) and G. D. Alexander (NASA-GSFC) for providing 2D and 3D cloud-
resolving model data, and R. Schemenauer (AES-ARMP) and J. D. Steenbergen (AES-
ARMA) for financial support.

APPENDIX A

The gamma-weighted two-stream approximation (GWTSA)

The essence of the GWTSA is the assumption that probability density functions for
cloud t can often be approximated by the normalized gamma distribution pr(t) (see
Eqg. (10)). Barker (1996) showed that when the standard, non-conservative scattering two-
stream approximation equations for collimated irradiance (Meador and Weaver 1980) are
weighted by (10) and then integrated over all T (see Eq. (9)), GWTSA transmittance albedo
are defined as

T = (—--—”—--—) — /UG, v, 60 — L FB, v, 69) — 1F(, v, 90 (A1)

v+ T/1o
and
W
Re =/ —1rsF (B, v, $1) = r-F (B, v, 1) = rF(B. v. ¢)] (A.1b)
where
Fhv.0) =3 —L . [pI=1.p%1v>0] (A.2a)
= (@+n)y
T
YT kT T ke
r=¢1+1; Ps=¢s+1 (A.2b)
bs=¢st+ 3 Pe=¢1+;
and
re =0 Fkpo)nys — vavakys);  r=2klys — (niys — vavaiel - (A20)
te = (L kpo)iva — v2vs £hya); 1 =2klys — (iva — v2va)ivel - (A2d)
, k—»
=1 — (kuo)*1(k s k=.\y:— v =t A2
a=| (ko) 1k + 1) Yi Vs B k+ 7, ( e)
in which wy is single-scattering albedo. The coefficients y1, . . ., ¥4 depend on the choice

of two-stream approximation, droplet single-scattering parameters, and cosine of solar
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zenith angle p. For the delta-Eddington solution, as used throughout this study,

k=330 = 0p)(1 = wg)
7 — wy(4 +3g")
V= wfm
vy = _L—“’ﬁ‘_ﬂ (A3)
_ 2= 3pg’
V3 7
va=1-ys

where w, and g’ are scaled values of wy and asymmetry parameter. When the source is an
isotropic diffuse-beam, corresponding GWTSA transmittance and albedo are

L%
fr =@, md"(ﬁ, v, ¥6) (A.da)

and
re= ¢¥@}/—2)—5[@(6, v, 1) — F(B. v, ). (A.4b)

In addition, Barker (1996) showed that GWTSA transmittance and albedo for a con-
servative scattering layer irradiated by a collimated source are

vy v Vikg + T
Tr = (—_) [(Vlllvo + v4)% (1 -V, ——_) — (Y10 — ¥3)%G (1 -V, —0“_—)]
nt nt YiMoT

=1—Rp (A.5a)

where
Y1 —v,x)=eT(l —v, x) (A.5b)

in which I'(1 — v, x) is the incomplete gamma function. For a diffuse source, these ex-

pressions become
vy v
nt nt

=1-—rr (A.6a)

Thus, once Tt and Ry have been computed, negligible effort is spent computing #r and rr,
just as with regular two-stream approximations.

APPENDIX B

Derivation of (16) and (17)

This appendix furnishes a derivation of (16) and (17) for a cloud split into two layers
(extension to multiple layers is straightforward). Consider a cloud like that in Fig. 1 in
which both layers are characterized by v with the upper and lower layers having mean
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optical depths of 7, and 7,. The normalized probability density function of 7 for the lower
portion is

1 vY Ly /%
— v ve/a B.1
=15 () e ®b

Now, irradiance onto the lower portion depends on overlying cloud extinction. Thus, as-
suming perfect vertical correlation of optical depth, when (B.1) is weighted by direct-beam
irradiance, it becomes

pre (1) = (;) A PRty (B.2)
2 )

'(v)

which is not normalized. The normalization factor for (B.2) is

o0 v v
[ = () ®3)

which when applied to (B.2) results in

I (v+u ) 1 =t/
« — - v T{V+T T . B'4
pr; (1) O ( 5 )T e (B.4)
This is (16) for n = 2. By forcing (B.4) into the form of (B.1), it becomes
1 v\ -
pri(t) = =— (:;) VTl R (B.5)
2 L) \7;
which requires that
vVi=v (B.6a)
and -
V1Ts
T = — =<7 B.6b
2 v+ f] : ( )

and this is (17) for n = 2.
Figure B1 shows an example of the impact that the transformation in (B.6) has on the

density function of the lower layer.

AprpeNDIX C

Bounded cascade clouds

The cascade begins with a homogeneous slab with liquid water path £. Then, the slab
is halved and with equal probability, one half is selected at random and an amount f & is
shifted from it to the other half making two slabs with (1 & f)&. These slabs are halved
again and the shifting process is repeated but this time fractions fc are shifted. By the m™
cascade, fractions fc™~! are being shifted among 2" cells. On a log-log plot, the slope of
the power spectrum of &£ approaches, from above, 2 log, ¢ — 1 as m — oco. For details,
see Cahalan er al. (1994a).

For given values of f and c, the normalized discrete density function p,, (&) produced
on the m™ cascade is identical for all realizations though the same cannot be said for the
sequence {&; [i=1,...,2"}. This means that for the approximate radiative transfer
models used here, all realizations for a particular f and ¢ yield the same fluxes, but fluxes
based on full 3D radiative transfer will differ slightly from one realization to the next.
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Figure B.1. Tllustration of how the density function of optical depth of the lower portion of a two layer cloud is
modified for normal incident direct-beam. The top layer has 7; = 4 and the lower portion has 7, = 5; both have
v = 3. Curve (1) shows the inherent distribution for the lower layer; curve (2) is relative transmittance through the
top layer; curve (3) is the product of (1) and (2) (i.e. Eq. B.2); and curve (4) is the renormalized effective density
function for the second layer which is to be used when flux out the base of the top layer is assumed to be uniform.

The cascade model generates overcast clouds but non-overcast fields were produced
as follows. Vertically-projected cloud fraction C is defined as

C= > pul&). (C.1)

Li>Ferit

Once &£ is found, ¥, are reassigned as
A = Lord), L > Lorie
P« { 0, < (C.2)
where A is a constant which forces the new mean of ¥; to a desired value. Barker and
Davies (1992) argued that this method may be credible if the original cascade is meant to
represent some thermodynamic field related to the potential for cloud to exist and Lorit 18
a threshold above which conditions are conducive for cloud formation.

Figure C1 shows four histograms of & generated by the cascade model for ¢ = 0.794,
m =12 and £ =50 g m~? along with corresponding pr (%) (discrete form; see Eq. (8)
in Barker et al. 1996). For overcast conditions (£.; = 0), pr(¥) capture the cascade
distributions quite well. When C = 0.5, however, the modes that were present for overcast
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Figure C.1. Histograms of liquid water path £ as predicted by the 1D bounded cascade model and the corre-

sponding gamma distribution based on % and In & from the cascade model (see Egs. (10) and (11)). Histograms
are for two values of the cascade parameter f and two values of cloud fraction C.

pn () are truncated leaving just the tails which are described almost perfectly by pr(£)
whose values of v are smaller than those for the overcast cases. Truncating the fields at
some £, as described in (C.1) effectively shifts the original p,, () to the left and stretches
it horizontally. The fact that v for the truncated fields are almost always near 1.0 indicates
that their tails are close to exponential.

Figure C2(a) shows v (computed by Eq. (11)) for f = 0.3 and 0.5 as functions of C.
Figure C2(b) shows the corresponding curves

vC

I+v(1-0) ©3)

Verr =

which are approximately the value v would take if the clear-sky portion was used in its
determination (this follows from the method of moments not MLE). Also plotted on both
graphs are MLE estimates of v and v, for 42 of the 45 Landsat scenes used by Barker
et al. (1996). The agreements between the Landsat-inferred values of v and v, and those
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Figure C.2. (a) Dots represent MLE-based values of v for the Landsat scenes of MBL clouds used by Barker et al.
(1996) as a function of cloud fraction. The dot enclosed in a circle corresponds to a scene that had ~18% clear-sky
confined to one corner. Thus, this field’s value of v is more suited to overcast conditions. Lines correspond to v for
the cascade model at different values of f (fields truncated as described in the text). (b) As in (a) except this is for
verr @s defined in (C.3). To facilitate plotting, several values of v = vy, > 5 for overcast scenes were not shown.

from the truncated bounded cascade model are surprisingly good; particularly for f = 0.3
where even the rapid reduction from v ~ 4.2 at C = 1.0to v ~ 1.8 at C = 0.99 is captured
well.
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