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Horizontal structure of marine boundary layer clouds
from centimeter to kilometer scales

Anthony B. Davis, ! Alexander Marshak, > * H. Gerber, * and Warren J. Wiscombe*

Abstract. Horizontal transects of cloud liquid water content (LWC) measured at unprecedented
4-cm resolution are statistically analyzed scale-by-scale. The data were collected with a Particulate
Volume Monitor (PVM) probe during the winter Southern Ocean Cloud EXperiment (SOCEX) on
July 26, 1993, in a broken-stratocumulus/towering-cumulus cloud complex. Two scaling regimes
are found in the sense that two distinct power laws, k‘B, are needed to represent the wavenumber
spectrum E(k) over the full range of scales r = 1/k. Detailed numerical simulations show that the
scale break at 2—5 m is not traceable to the normal variability of LWC in the PVM’s instanta-
neous sampling volume (1.25 cm?) driven by Poissonian fluctuations of droplet number and size.
The two regimes therefore differ physically. The non-Poissonian character of the small-scale LWC
variability is consistent with a similar finding by Baker [1992] for droplet number concentration
obtained from Forward Scattering Spectrometer Probe (FSSP) data: at scales of a few centimeters,
spatial droplet distributions do not always follow a uniform Poisson law. With .= 0.9£0.1, the
small-scale (8—12 cm < r < 2-5 m) regime is stationary: jumps in LWC are highly variable in
size and rapidly cancel each other, leading to short-range correlations. By contrast, the large-scale
(5 m <7< 2 km) variability with f = 1.6+0.1 is nonstationary: jumps are generally quite small,
conveying a degree of pixel-to-pixel eontinuity and thus building up long-range correlations in the
low-pass filtered signal. The large-scale structure of the complex SOCEX cloud system proves to

be multifractal, meaning that large jufnps do occur on an intermittent basis, that is, on a sparse
fractal subset of space. Low-order, hence more robust, multifractal properties of the SOCEX
clouds are remarkably similar to those of their First ISCCP Regional Experiment (FIRE) and
Atlantic Stratocumulus Transition EXperiment (ASTEX) counterparts, and also to those of passive
scalars in fully developed turbulence. This is indicative of a remarkable similarity in the micro-
physical and macrophysical processes that determine cloud structure in the marine boundary layer
at very remote locales, especially since the particular SOCEX cloud system investigated here was
rather atypical. Interesting differences are also found: in the scaling ranges on the one hand, and in
higher-order moments on the other hand, Finally, we discuss cloud-radiative effects of the large-

and small-scale variabilities.

1. Introduction and Overview

Internal variability of stratiform'clouds has a first-order ef-
fect on the Earth’s radiation budget [Cahalan, 1994] and on the
remote sensing of cloud properties [Davis et al., 1997a]. This
variability affects scales ranging from the size of a high-reso-
lution satellite footprint to that of a general circulation model
(GCM) grid box. To better understand cloud microphysics and
cloud-radiation interactions, vast amounts of data on the dis-
tribution of atmospheric liquid water from a variety of sources
have been collected during the last decade. In situ measure-
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ments of cloud liquid water content (LWC) have been obtained
during many intensive field programs among which we will
take a particular interest in (1) the First ISCCP Regional
Experiment (FIRE) in June—July 1987 [Cox et al., 1987], (2)
the Atlantic Stratocumulus Transition EXperiment (ASTEX) in
summer 1992 [Albrecht et al., 1995], and (3) the Southern
Ocean Cloud EXperiment in July 1993 for its winter phase
(SOCEX 1) ‘[Boers et al., 1996]. In Table 1 we list selected
characteristics of these three experiments. Another, less di-
rect, source of information on cloud structure is column-inte-
grated LWC, or liquid water path (LWP), retrieved from passive
microwave radiometry during FIRE, ASTEX, and SOCEX. LWP
is also recorded continuously at the Atmospheric Radiation
Measurement (ARM) Southern Great Plains facility and else-
where. All these data contain information on spatial and/or
temporal correlations in cloudiness, enabling scale-by-scale
analyses over a range from a few centimeters to hundreds of
kilometers.

Cahalan and Snider [1989] found excellent scaling in
wavenumber spectra in day-long time series of 1-min averages
of LWP recorded during FIRE. Using LWP data from ASTEX at
a similar resolution, Gollmer et al. [1995] find scale-invari-
ance in wavelet coefficients. Wiscombe et al.’s [1995] analy-
sis of LWP data from the ARM archive reveals multifractal be-
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Table 1. Comparison of LWC Measurements and Basic Variability Parameters From Three Field Programs

ASTEX FIRE

SOCEX
When? July 26, 1993
Where? Tasmania
Cloud type? broken Sc, embedded towering Cu
LWC Probe (type) PVM (optical)
Frequency 2 kHz
Aircraft velocity 80 m/s
Resolution 4 cm
Points/segment 60,000-650,000
Longest segment 26 km

Number of segments 6 (see Table 2)

Scaling range

From 8-16 cm” =5 m'

To 2-5m" 5-10 km'
Exponents

Spectral (B) 0.9+0.1" 1.6+0.1%

Roughness (H;) N/A* 0.31%

Sparseness (Cy) . N/AT 0.12f

June 1992
Azores
marine Sc-to-Cu transition

June-July 1987
Southern California
marine Sc

PVM (optical) King (hot wire)

10 Hz 20 Hz

80 mv/s 100 m/s
8m Sm
16,348 8,192-65,536
131 km 328 km

5 5

=60 m 2040 m
=60 km =20 km
1.43+0.08 1.36£0.06
0.29 0.28

0.08 0.10

For graphical illustration of LWC data sets observed during FIRE, see Davis et al. [1996a] or Marshak et al. [1997a], and Davis et al. [1994a] for
ASTEX. The first 10 rows contain instrumental specifications and ancillary information. Note the 107 ratio between the smallest pixel and the
longest flight. The last five rows are devoted to three fundamental exponents and the associated range of scales; further discussion in sections 4—6.

N/A, not applicable.
*

Small scales.
fLarge scales.

havior in a scaling regime spanning 3 decades, comparable in
extent to those of in situ LWC data sets. (At this point,
“multifractal” simply means that scaling exponents for differ-
ent statistical moments are not linearly related, as predicted by
a straightforward dimensional analysis; a more useful defini-
tion for data processing is given later.)

In situ measurements of LWC have been collected and ana-
lyzed on a continuous scale-by-scale basis in many ways. To
the best of our knowledge, this activity started with King et
al.’s [1981] spectral analyses of data from a hot-wire probe;
they found scaling (power-law behavior) in the wavenumber
spectrum of LWC from =3 m to over 30 m scales. Duroure and
Guillemet [1990], as well as Malinowski and Zawadzki [1993],
find power-law distributions of (almost) droplet-free air in
Forward Scattering Spectrometer Probe (FSSP) data at =10 m
resolution; these laws were found to hold over at least 2
decades in scale for both droplet concentration and LWC. Also
using FSSP data at 10-m resolution (or better), Korolev and
Mazin [1993] investigate the variability of droplet concentra-
tion and size distribution over a broad range of scales (10 m to
10 km), finding strong positive and negative fluctuations in
number density at scales that rarely exceed 10-20 m; they in-
terpret these observations in terms of turbulent mixing pro-
cesses and entrainment instabilities. Recently, Davis et al.’s
[1994a] studies of ASTEX data at 8-m resolution and Marshak
et al’s [1997a] for FIRE at 5-m resolution show that internal
marine stratocumulus (Sc) structure is multifractal over at least
3 decades in scale, from tens of meters to tens of kilometers.

At much finer scales, of the order of a few centimeters,
Baker [1992] has found, at least in some areas, surprisingly
strong variability (gradients) in droplet concentration. His
finding largely confirmed by Brenguier [1993] and
Malinowski et al. [1994] using different instrumentation
and/or analysis methodology. Ts this small-scale variability
just what we expect by extrapolating the large-scale properties
to such fine scales? If not, scale-by-scale statistical analyses

of LWC data should reveal a transition between two physically
distinct regimes, providing the spatial resolution is sufficient.
We show here that this is indeed the case.

This paper focuses primarily on data obtained during
SOCEX (phase 1) from the PVM-100A probe [Gerber et al.,
1994] carried by CSIRO’s Fokker F-27 aircraft flying off the
coast of Tasmania. This instrument samples LWC and Particle
Surface Area (PSA, not used in this study) at 2 kHz, that is, 4
cm resolution for a nominal air speed of 80 m/s. The impor-
tant characteristics of the SOCEX database are entered in the
first 10 rows of Table 1 and compared to their FIRE and ASTEX
counterparts; Table 2 describes in more detail the six data sets
used in the present study. They were all collected during the
July 26, 1993, flight which was not considered by Boers et al.
[1996] primarily because of the complexity of the cloud cover.
The cloudiness was indeed rather atypical that day: boundary
layer over 2 km deep, no uniform cloud layer per se yet consid-
erable drizzle/shower activity; cloud top was generally less
than 1.5 km but strong convective cores and outflow at the top
were “mushrooming” through stretches of broken Sc (R.
Boers, private communication, 1997). We selected the six
data sets for being contiguous in time and “in-cloud” at least
60% of the time, as defined by LWC > 0.02 g/m3; overall,
about 2/3 of the data described in Table 2 are in-cloud, with
mean 0.290 g/m? and standard deviation 0.167 g/m3.

In section 2, spectral analysis is used to separate the two
scaling regimes in the SOCEX data. On the basis of this sepa-
ration of scales at 2-5 m, we visualize separately the large- and
small-scale variabilities in section 3 and briefly discuss the
physical processes that dominate in each regime. The sim-
plest hypothesis is that the scale break is caused by the natural
Poisson noise that contaminates the PVM’s LWC channel due
to its finite sampling volume; this eventuality is ruled out (in
appendix A) by detailed numerical simulations of PVM opera-
tion in a variable LWC environment. Section 4 calls on
gth-order structure functions to revisit the scale break, investi-



DAVIS ET AL.: HORIZONTAL STRUCTURE OF MARINE BOUNDARY LAYER CLOUDS 6125
Table 2. Characteristics of the High-Resolution LWC Data Sets From SOCEX
Seg-  Fig.2 Start,  End, Niot logyNio; L, km L* km Neeart  Ns finr Meanp s.do maxﬁ, max., Bs Be
ment  (panel) UT uT (pts) (pts) % g/m3 g/m3 g/m g/m
1 c 1017 1018 180,000 17.5 7.2 5.1 5 1,406 72 0213 0.128 054 1.23 1.59 1.11
2 d 1026 1027 150,000 17.2 6.0 5.1 4 1,171 60  0.387 0.208 073 1.15 1.66 1.07
3 e 1030 1031 120,000 16.9 4.8 2.6 3 937 68  0.248 0.125 0.52 0.63 1.59 1.29
4 b 1047 1049 190,000 17.5 7.6 5.2 5 1,484 79 0455 0.275 1.05 127 170 0.94
5 a 1109 1117 650,000 193 260 205 19 5078 59 0201 0.132 058 - 127" 153 081
6 f 1151 1152 60,000 159 24 1.3 1 468 64 0.661 0.174 (<) 1.22 0.58
0.162 (>) 1.04 1.74
Total 1,350,000 590 3938 37 10,544
In-cloud average 0.290 0.167

Measurements were made on July 26, 1993, off the coast of Tasmania (Australia). A nominal air speed of 80 m/s was used for time-to-space
conversion under Taylor’s (frozen turbulence) hypothesis, the sampling rate being 2 kHz. The integer part of log,N,,, indicates the number of points
in the various double-log plots (note that there is one less datum for wavenumber spectra). L denotes the largest scale correspondlng to an integer
power-of-two number of pixels, and le is the number of mdependent segments of length min{L;", i = 1,...,6} = Ls" = 1.3 km (2'° pixels) used in the
ensemble averages. The parameter f;; is the percentaoe of “in-cloud” data-points, as defined by LWC> 0.02 g/m3. The number of “large-scale”
points on a 5.12-m grid for each segment is N, [Nm/Z ]. Mean u and standard deviation o refer to in-cloud data only; differences between 4-cm
and 5-m resolution are in the third decimal, except for 65. Maximum values, of course, depend strongly on the resolution. The last two columns give
the large- and small-scale spectral exponents, as defined by the regressions shown in the right hand side of Figure 2; in Table 1, we entered
exponents for the average spectrum, not the average of the exponents, and we note that segments 4—6 clearly dominate this average.

*Maximum pixel values correspond to instrumental saturation (only at 218 of the 840,000 points in segments 4-5 are involved).

gate nonstationarity in the large-scale regime, and compare
LWC to passive scalars in fully developed turbulence.
Similarly for section 5 where singularity analysis is used to
characterize the large-scale intermittency. In section 6, we
compare the most robust statistical properties of SOCEX,
FIRE, and ASTEX clouds at large scales in the “bifractal plane” scale r = 1/k (m)

(defined and illustrated in appendix B); we also compare their 10000 1000 100 10 1 0.1
higher-order statistics and ask how many parameters are re- . ! L ' ‘ '
quired to model statistics at all orders. In section 7, we discuss e © longest data set (5 in Table 2)
the main effects of the large- and small-scale variabilities on 287 °
solar radiative: transfer in clouds. We summarize our findings
in section 8.

Figure 1 shows two wavenumber spectra. The longest data
set (5 in Table 2), containing 650,000 points, gives us an un-
precedented range of scales in LWC analysis: 8 cm (Nyquist
scale) to 21 km (largest power-of-2 number of pixels). We

ensenble average (37 sub-segments)|—

%
¥
t K} | g
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2. Spectral Evidence for the Scale Break at 2-5 m

‘ﬁ '<} K}
Consider a signal @(x) where x represents time or a spatial = 1.62:0. 07 e
coordinate. To study correlations, or “structures,” in the data,
we use statistical properties of @(x) that depend parametrically
on scale, denoted r. Alternatively, one can use wavenumber
k = 1/r. If the statistics of @(x) follow power laws in r or k
over some reasonably large range, we say that @(x) is
(statistically) “scale-invariant.” If there are several ranges of
scales over which different power laws prevail, we call them . 1 3 [
“scaling regimes,” and the special scales that separate two 1 ¢ L 5= 27x(4 cm) = 21x10" m r
scaling regimes define “scale breaks.” Baring instrumental ar- ! — — . —
tifacts, the occurrence of a scale break suggests that different 0 4 8 . 12 16
physical processes dominate on either side. log, (kL )

Assume that @(x), 0 <x <L, is sampled on a grid of

] 7
16 B) %‘
¢
&§%§ -

0.94+0.10 I&

log, E(k) (arbitrary units)
¢

B, = ey

Figure 1. Energy spectra for the longest flight segment 5

constant £ << L. This random process certainly has a scale
break if its wavenumber spectrum E(k) follows power laws with
spectral exponents B. # B, for two separate scaling regimes
[re,r land [ ry, ry,’ ] with a scale break somewhere in the
interval ( r.’  r.). Explicitly,

k
E() ~ { L

B> (re <r=1k<ry” <L)
P <

r=1/k<r’)’

re<Kr <ra<kry’.

1

and the ensemble-average. The spectral exponent { for each
scaling regime is estimated by fitting the ensemble-average
E(k) to a power law. This is done by linear regression of logE
versus logk weighted with variances along both axes within
octave-wide wavenumber bins [cf. Davis et al., 1996a]. For
clarity, the spectra are offset vertically. The ensemble-aver-
age is obtained from 37 nonoverlapping realizations, as de-
scribed in Table 2 (each flight segment contributes at least one
realization); see right hand side of Figure 2 for a breakdown of
this ensemble. Only the longest data set S gives an idea of the
full extent of the large-scale regime: from 2-5 m to 5-10 km.
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clearly see two scaling regimes: from 8 cm, to 2-5 m and from
there to 5-10 km. The ensemble-average spectrum is also
shown, yielding

Bs=1.6%0.1 (rs
Bo=0.940.1 (re

n

Sm<r<l1l3km=r,’)

@

n

8cm<r<2m=r.’)

in equation (1) since the break occurs apparently at the 12th
wavenumber-octave bin (r = 1/k is between 2.5 m and 5.1)
starting at k = 1/Ls* (Ls* = 21 km). The statistical ensemble is
defined here by 37 independent intervals of length 1.3 km that
can be extracted from the database (compare Table 2). This
choice of scale for spectral averaging corresponds to the min-
imum of the largest integer power-of-two number of pixels
(which is determined by segment 6). As indicated by the data
from the longest segment (5), the large-scale scaling goes be-
yond this operational limit; further on we estimate it to be at
least 3 decades. In contrast, it is hardly justified to talk about
scaling when the range is hardly more than a single decade
[Hamburger et al., 1996; Malcai et al., 1997]; the small-scale
exponent is therefore to be interpreted as a clear indication of
the break. For the make up of the average spectrum in Figure
1, refer to the segment-wise averages shown in Figure 2.

Note that B, < 1 and 1 < B, < 3, indicating that LWC fluctua-
tions are (broad-sense statistically) stationary at small scales
and nonstationarity, but with stationary increments, for large
ones. The practical utility of this classification is discussed at
length by Davis et al. [1996a]. Important properties used fur-
ther on are, on the one hand, that spatial averages are only
meaningful in stationary regimes for LWC (§3.1) or related
quantities (§5.1) and, on the other hand, that cumulating in-
cremental statistics by spatial averaging is fully justified
(§4.1).

As seen in Table 1, the large-scale spectral exponent B, is
in reasonable agreement with other spectral analyses of LWC.
Since B. < 1, the small scales show far more variability than
expected by extrapolating spectrally the large-scale behavior
(small k) to small scales (large k). This is consistent with
-Gerber’s [1991] conclusion that surfaces formed between mix-
ing cloud elements have a significant effect on droplet distri-
butions. Baker [1992] shows compelling evidence of strong
centimeter-scale variability in droplet concentration using a
customized statistical analysis of the arrival times of cloud
droplets in the laser beam of an FSSP. Brenguier [1993] comes
to similar conclusions using data from a “fast” FSSP equipped
with new electronics. Malinowski et al. [1994] also confirmed
the main points in Baker’s study by applying fractal methods
to the same data.

3. Dynamical Nature of LWC Variability

3.1. Large Scales

To visualize the large-scale behavior of LWC, we need a
coarse-grained representation: each point corresponds to a
spatial average of the raw (4-cm) data at a scale close to where
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the break occurs, in the range r.’ =2 mto r, = 5 m. Setting the
new grid-constant at

£y =128x¢ =5.12 m, (3a)
we have plotted
X+,
(_p(x)=€1— J- O(x)dx’, 0<x<L-1,. 3b)
>
X

Figure 2 shows this field for all six flight segments in Table 2,
from the one with the largest outer scale (Ls = 26 km) to that
with the smallest (Lg = Ls/10). Segment 5 is not only the
longest data set but also the most variable in the sense of the
o/u ratio; Figure 3a shows the newly observed small-scale
fluctuations for a typical subsegment. The converse can be
said about segment 6 where LWC is higher and somewhat more
constant, at least according to the o/u ratio; this is actually a
rather questionable statement in view of the subset of small-
scale fluctuations extracted from this segment in Figure 3e.
The LWC traces in Figure 2 are visually similar to those
seen in Davis et al. [1994a)] and Gerber [1996] who analyzed
LWC data from the PVM-100A probe at 8 m resolution during
ASTEX. That measurement program targeted Sc-to-Cu transi-
tion in the marine boundary layer, a complex situation closer
to the present one than when only marine Sc are present (as,
e.g., during FIRE). However, similar spectral exponents are
found in all three cases (compare Table 1). These exponents,
in the range 1.4-1.7, are not far from the “5/3” prediction for
the density fluctuations of velocity [Kolmogorov, 1941] and
passive scalars [Obukhov, 1949; Corrsin, 1951] in fully de-
veloped 3-D turbulence. In 2-D turbulence, the prediction is
also 5/3 but for somewhat different reasons [Kraichnan, 1967].
We conclude that, one way or another, this regime .is domi-
nated by inertial-range turbulent dynamics. For turbulent ve-
locity however, the inertial sub-range goes down to the much
smaller (mm-cm) Kolmogorov dissipation scales. It is worth
mentioning that identifying water, in any phase, with a pas-
sive tracer in atmospheric dynamics offers limited insight into
cloud structure. Indeed, by definition, clouds are in near-satura-
tion conditions and latent/sensible heat production affects
buoyancy, hence dynamical forcing. So cloud microphysical
processes interact with the circulation at some, if not all,
scales [Moeng et al., 1996; and references therein]; the scale
break in Figure 1 is a tangible manifestation of this poorly un-
derstood interaction. Further on we will qualify the similarity
between LWC in boundary layer clouds and passive scalars in
turbulence, and identify the source of their differences.

3.2.  Small Scales

Typical small-scale fluctuations are illustrated in Figure 3.
Each panel contains 12,500 points, covering scales from 4 cm
to 0.5 km. The obvious difference between Figures 3a—3b and
3d-3f is that up-spikes tend to occur when LWC is low on av-
erage and, if it is high, deviations from the mean seem have a

Figure 2. LWC data at 5.1-m resolution, showing large-scale variability. Each point is an independent 128-
point average of the raw (4-cm resolution) data. From longest to shortest flight segment: (a) 5, (b) 4, (c) 1, (d)
2, (e) 3, and (f) 6 in Table 2. On the right hand side of the figure, we show the average wavenumber spectrum
for the sub-ensemble contained in each segment (bold symbols) along with the overall ensemble-average spec-

trum for reference (open symbols).
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Figure 3. Sampler of LWC data at 4-cm resolution, showing small-scale variability. The various x-values
can be used to find in Figure 2 the positions where these 0.5-km details (12,500 points) where extracted. The
white curves consist of 97 points reproduced from Figure 2. Low LWC values on average (note dominance of
up-spikes): (a) 5, Figure 2a; (b) 4, Figure 2b. Intermediate-average LWC: (c) 3, Figure 2e (note conspicuous
lack of spikes); (d) 4, Figure 2b. High-average LWC: (e) 6, Figure 2f; (f) 4, Figure 2b (note saturation, fortu-
nately, an infrequent occurrence). The right hand side (Figures 3b, 3d, and 3f) were taken from the same seg-

ment 4.

random sign. (Note that, throughout this paper, we use the
word “spike” without any insinuation that it describes some
kind of artificial glitch in the instrumentation.) A priori all
this small-scale activity could simply be Poisson noise result-
ing from the natural fluctuation of the number of droplets pre-
sent in the PVM’s sampling volume. '

To quantify the contribution of Poisson noise to the small-
scale variability, we simulated numerically each step of the
PVM-100A’s operation when collecting cloud LWC data.

These simulations are described in full detail in appendix A.
We conclude that Poisson noise alone is insufficient to ex-
plain the scale break at 2-5 m. Specifically, the excess vari-
ance is contained in the strong up-spikes in Figures 3a-3b
(compare Figures A2a and A2f) and the largest jumps in Figures
3d-3f (compare Figures A2a’ and A2f’). The scale break un-
covered in Figure 1 is therefore likely to be physical. This in-
terpretation is reinforced by the fact that an absence of spikes
(Figure 3c) is associated with a lesser scale break (Figure 2e
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and Table 2) in flight segment 3. These strong events are
therefore responsible for the scale break even though they are
at most a few 4-cm pixels wide. Indeed, isolated & functions
(even at finite resolution) excite variance (equally) at all scales
larger than their width, at least in the Fourier representation
used here. Furthermore, the spikes appear to come in clusters
of variable extension. '

At present, we have no definitive hydrodynamical or ther-
modynamical explanation to advance for the anomalous spikes
that raise above the Poissonian noise in the sampling volume;
however, we note that these events unfold are on the same
scale as the deviations from spatial Poissonian behavior de-
tected by Baker [1992] and Brenguier [1993] in records of
droplet arrival times in an FSSP’s laser beam. In further
agreement with the analyses of these authors, the strong fea-
tures (and associated non-Poissonian behavior) is not ob-
served. everywhere: see Figure 3c. A common cause is there-
fore very likely for the FSSP-based results and for our findings.
Both Shaw et al.’s [1998] direct numerical simulations of pref-
erential droplet concentration by small-scale turbulence and
Liu and Hallett’s [1998] new conceptual model for turbulence-
microphysics interaction are likely to bear on our statistical
findings. In modeling rain measurements, non-Poissonian
models have also proven useful for drop-count statistics
[Kostinski and Jameson, 1997] and radar reflectivities
[Lovejoy et al., 1996]. Discussion of our data and spectral
analyses in more cloud-microphysical detail will be pursued
elsewhere (H. Gerber et al., Spectral density of cloud liquid wa-
ter content at high frequencies, submitted to Journal of the
Atmospheric Sciences, 1999).

4. Structure-Function Analysis

Until now, we have used only wavenumber spectra to estab-
lish that cloud structure exhibits a scale break at a few meters.
This marks the transition from a large-scale turbulence-domi-
nated regime to a poorly understood small-scale regime where
the variability exceeds the natural Poissonian fluctuations in
the sampling volume. However, we are unable to distinguish
Gaussian-like signals from more strongly variable ones, scal-
ing or not, with spectral analysis alone; see Davis et al.
[1996b], Marshak et al. [1997a)], and Appendix B. By
“Gaussian-like,” we mean statistics determined largely by low-
order moments, typically first-order (means) and/or second-or-
der (variances and autocorrelations). To overcome this intrin-
sic limitation of spectral analysis, which is second-order, we
turn to more sophisticated scale-by-scale analyses based on a
broader choice of moments, starting with gth-order structure
functions.

4.1. Background and Definitions

The earliest application of higher-order. structure-function
analysis was to turbulent velocity signals [Monin and
Yaglom, 19775, and references therein]. In this approach, we
consider gth-order statistical moments of the absolute incre-
ments across scale r:

AQ(rix) = |@(x+r)-(x)|- 4

In a scaling range where 1 < 8 < 3 (nonstationary process with
stationary increments), the statistical properties of A@(r;x) are
independent of position x, so (AQ(r;x)?) = (Ap(r)7). Because
of the scale invariance, we anticipate
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(Ae(n?) ~r*D, g >0, (5)

where (-) denotes, in theory, an ensemble average. In prac-
tice, we use spatial averaging as a substitute and/or comple-
ment for its ensemble counterpart (incremental stationarity
justifies this). As long as the proportionality factors in equa-
tion (5), commonly called “prefactors,” depend only weakly
on g, then {(g) is necessarily concave (i.e., {’(q) < 0) [Frisch
and Parisi, 1985]. Furthermore, due to the normalization, we
have £(0) = 0.

The (global) Holder exponent, also known as (Hurst’s)
roughness exponent,

Hy={I)e (O1), ©6)

characterizes the “smoothness” of the signal. Indeed, we will
have typically A@(r;x)/r ~ r171, so the signal’s derivative
(obtained when r — 0) exists only in the limit H; — 1; other-
wise, the signal is singular. ' The opposite limit, H; — 0, leads
to stationary ( < 1) random processes. Indeed, scale-invariant
processes that are stationary per se, statistically invariant un-
der translation in x, have not only scale-invariant but scale-
independent increments: (g) = 0 in equation (5) and, in par-
ticular, H; = 0 in equation (6). This results ultimately from the
inherent discontinuity or “jumpiness” of stationary scale-in-
variant processes associated with short-range decorrelation
[Davis et al., 1994b, 1996a].

In short, H; quantifies nonstationarity whereas the remain-
der of the {(q) essentially qualify the prevailing nonstationar-
ity: Is it “monofractal,” with {(q) = Hq, in Mandelbrot’s
[1977] well-known “fractional” Brownian motion (fBm)? Or
is it “multifractal,” with a nonlinear {(g) as in the “bounded
cascade” model [Cahalan et al., 1994; Marshak et al., 1994]
where {(q) = min{Hgq,1}? Davis et al. [1994b, 1996a, b] dis-
cuss this analysis in more detail, providing numerous illustra-
tions with data and models.

4.2. Results for LWC During SOCEX, Comparison
With Turbulence at All Orders

We can now re-visit the 2-5 m scale break with structure
functions. Figure 4a is a log-log plot of {(A@(r)?) versus r for
g =1,...,4 obtained by spatial and ensemble averaging, as for
E(k), over the 37 segments of data 21° pixels long (the largest
power-of-2 number of pixels in shortest flight segment, 6).
For all g’s we have two distinct regimes with the same transi-
tion around 2-5 m as seen in the Fourier-space representation
(Figure 1). The range of scales used in Figure 4a is the same as
for the average energy spectrum in Figure 1.

For large scales, we find {(2) = 0.51£0.02 using equation
(5) which agrees reasonably well with $,~1 where B, is ob-
tained from equation (2). (See Monin and Yaglom [1975] for
proof that B = {(2)+1 in regimes where 1 < B < 3.)
Furthermore, we find

H,=0.31%£0.01 @)

in equation (6).

The nonlinearity of {(q) versus g in Figure 4b tells us that
the large-scale behavior of LWC during SOCEX is a multifrac-
tal nonstationary process from 5 m up to at least 2 km. We
note that B = 1.6 ({(2) = 0.6) and H; = 0.3 are not far from the
Obukhov [1949]-Corrsin [1951] prediction for a passive
scalar in fully developed 3-D turbulence: § = 5/3 (equivalently,
€(2) = 2/3), and generalized to {(gq) = g/3 as for velocity
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Figure 4. Ensemble-averaged structure functions. (a)

Structure functions (AQ(r)?) (¢ = 1,...,4) versus scale r on a
log-log plot for the (37 segment) ensemble average; the range
of scales used for the regressions is highlighted. Judging by
the spectral data for segment 5 in Figure 1, we see that the
actual scaling range goes far beyond the maximum scale
sampled here, namely, L¢*/2 = 0.6 km; a conservative
estimate is 5-10 km. (b) Large-scale exponent function {(q)
obtained from 5 m to 0.6 km; two important exponents are
emphasized at g = 1,2. The standard model for passive scalars
in turbulence is indicated, {(g) = g/3, along with selected
empirical results collected by Antonia et al. [1984].

[Frisch, 1995]. In Figure 4b, our {(q) results for LWC are
compared with that standard —that is, pre-intermittency cor-
rected— prediction (bold line) and the empirical results of
Antonia et al. [1984] (bold symbols). The low-q behaviors of
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LWC and scalars such as temperature or an admixture of light
particles or molecules are close enough to justify thinking of
LWC as passively advected by the turbulence in clouds in a
first approximation. However, our data does not support this
conceptual model in the details, specifically, with respect to
the large jumps that dominate the higher-order moments at all
scales. :

The small-scale regime has been diagnosed spectrally as
stationary so, in principle, we should have {(g) = 0, that is,
structure functions independent of scale r. This is not contra-
dicted by residual r dependence observed at small scales in
Figure 4a because the weak dependence is compatible with fi-
nite-size effects; see Davis et al. [1996b] for details on how to
show this. Since structure functions are ‘spuriously scale-de-
pendent anyway in a stationary regime, the range of scales in-
volved here, hardly a decade, is insufficient to do a meaningful
structure-function analysis. Conversely, Davis et al.’s [op.
cit.] analysis of finite-size effects certifies that the multifrac-
tality of the large-scale behavior is “real” in the following
sense: it is stronger than the spurious multifractality likely to
be found operationally for (a single realization of) a monoscal-
ing model over the same finite range of scales.

5. Singularity Analysis

It has been argued that (higher-order) structure-function and
singularity analyses are redundant; we differ our discussion of
this issue to §6.2 and Appendix B. The above remark for struc-
ture-function analysis applies to singularity analysis as well:
the range of scales is insufficient in the small-scale regime.
We therefore restrict our attention in this and the following
sections only to the large-scale variability, as illustrated ex-
haustively (for July 26, 1993) in Figure 2.

5.1. Background and Definitions

To further study LWC variability in a way that emphasizes
the intermittent occurrence of larger-than-average jumps, we
compute a nonnegative field, a “measure,” from the r,-scale
gradient fields, recalling that r is the lower bound of power-
law regime for large scales in Figure 1. In the remainder of this
section, we will therefore interest ourselves in the statistical
properties of

£(x) = [prtr,)—p()|" ®)
on a scale-by-scale basis, mostly with m = 1. On the basis of
spectral and structure-function analyses, we take the grid con-
stant as /5, = r = 5.12 m in this study. A sample of the result-
ing field, obtained from flight segment 5, is plotted in Figure
5.

We now focus on “coarse-grained” versions of the measure
in equation (8), parameterized by the scale r over which the lo-
cal average is computed:

X+r

e(r;x) =lr _[ e(xNdx’,0<x<L~-r, 9)
X

where x’ is sampled on the new 5.12-m grid and x on an even
coarser grid of constant r 2 r, = 5.12 m. Being obtained from
an increment of @(x) in equation (8), the &(r;x) fields are sta-
tionary for any r, hence their statistical properties are station-
ary (a priori independent of x ) which enables us to use spatial
averaging over x as well as ensemble-averaging, that is, over
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Flight segment 5 (L = 26

km, (¢) = 0.0155)
0.5 N

| B U B

e(x) (g/m®)

10 15
x (km)
Figure 5. Example of absolute LWC gradient fields at 5-m

resolution used in singularity analysis. This “measure”
(nonnegative field) is derived from the data in the top panel of
Figure 2 for the large-scale LWC variability with equation (8).
It makes more manifest the intermittency in the patently non-
"stationary signal in Figure 2; “intermittency” here describes
the rare-but-important occurrence of large jumps.

flight segments, to estimate (€(r;x)7) = (e(r)7). We now seek
the exponents K(g) in

(e(nT) ~ y K@, q=0.

Equation (9) is actually just a running average, starting ‘at
different positions; if &(r;x) field does not vary much with r (at
given x), then K(q) =0. Generally speaking, K(g) is convex
@(.e., K”(q) 2 0) [Scherizer and Lovejoy, 1987], and there are
two predetermined values in this approach, K(0) = K(1) = 0,
rather a single one as structure functions. This follows from
the simple fact that the coarse-graining and spatial-averaging
operations, equations (9) and (10), respectively, commute
only for ¢ =0 and g = 1. (We assume that £(x) > 0 almost ev-
erywhere in the g = 0 case.)

In essence, what we have done here is to remove the nonsta-
tionarity that dominates the (large-scale, large-amplitude)
LWC fluctuations in @(x). What is left better defines the in-
termittent occurrence of large jumps in LWC embedded in the
far more frequent small ones. This statistical “mixture” is what
makes LWC multifractal rather than monofractal. Having de-
fined H, in equation (6) as an index of nonstationarity, we need
one for intermittency. Because there is no information in K(1)
itself, we will use

Ci=K'(1)20 (11)

to quantify the degree of intermittency in the measure €(x),
hence in the associated LWC field @; see appendix B for a ge-
ometrical interpretation of Ci. (Note that D| = 1-C; is the
well-known “information” dimension of the measure [Halsey
et al., 1986, and references therein].)

As for {(g) and the nonstationarity, the other K(g) provide a
way of qualifying the intermittency: Is it monofractal (K(g)
linear), as in the “beta” model where K(g) = C;(g-1), g >0? Or
is it multifractal (K(q) nonlinear), as in the lognormal model
where K(q) = Ci(q>—q)? (We refer here to once-competing mul-
tiplicative cascade models for the kinetic energy dissipation
field in fully developed turbulence; see Frisch [1995] for a
comprehensive survey of this topic with a focus on scaling and
phenomenology. We also note that other cascade models have
been proposed, for example, the log-Lévy model in equation
(19) below which are intermediate between the beta and log-
normal cases.)

(10)
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5.2. Results for LWC During SOCEX, Comparison
With Turbulence at Low Order.

We plot logy(e(r)) versus log,r in Figure 6a, using selected
integer values of ¢g; we then seek the straight lines that define
scaling regimes. Equation (10) can be used for (g(r)7) for
scales over the full range of scales relevant to this measure,
nammely, 5 m to 1.3 km; this leads to the function K(g) plotted
in Figure 6b. By numerical differentiation at g = 1 we find:

C; = 0.12+0.01. (12)
12
5.12m (a)
|
q=4 o
8 - AN
— AN
- ~
~— »
S 6 AN .
g;,, q=3 o A
~ N
- 4 4 \o\ a N
&)\ AN
3. a N
= S ~ N\
2 =2 g RN A
o~ o ow .\
T~ O - 0 o
o ~
T~-go_n
0 - =1 6 0 0 0 0 o o o ©
T T T
5 10 15
Iogzr (cm)
1.0—
1 (b)
0.8+
_ 0.6
o |
A
b3 ]
0.4
0.24
0.09.—- - -
‘-‘e@@@@ég(
0
Figure 6. Ensemble-averaged moments of coarse-grained
measures. (a) We plot logs(e(r)?) (for g = 1,...,4) versus log,r

associated with the large-scale (resolution /., = 5.12 m) signal
in Figure 2. Averaging is over all 37 sub-segments obtained
from the six flight segments (compare N, and N, in Table 2)
and regressions apply to scales from 5 m to 21 km. (b) Large-
scale exponent functions K(q); the C; exponent is high-
lighted.
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Prasad et al. [1988] analyzed the intermittency properties of
small-scale gradients in the fluctuations of passive scalar
concentration in a high Reynolds number flow with a 2-D
imaging technique using a fluorescing dye in a water jet; they
also used the more standard 1-D technique for temperature
fluctuations recorded in an air jet. Following normal usage in
turbulence, the authors used the square rather than the absolute
value of the small scale gradient to define the measure, that is,
m = 2 rather than m = 1 in equation (8). As expected from the
phenomenology, the multifractal properties of temperature and
scalar concentration fluctuations are indistinguishable and
remarkably universal. According to the “f(a)” data in Figure 6
of Prasad et al. [1988] and the well-known Legendre transform
relation between f(a) and (g-1)D, = (g-1)-K(g) here, we find
C,(m=2) = 1-p,(m=2) = 0.22 where g = df/da = 1; following
Marshak et al. [1997a], this translates to C;(™=1) = 0.11*.
Comparison of this outcome with equation (12) reinforces our
above conclusion about the compatibility of the low-order
statistical behavior of LWC and passive scalars.

5.3.  An Alternative Estimation of C;

Consider the “refined” similarity formula:

8(q) = g/a — K(g/b)

that links the structure-function exponents to the singularity
properties of the small-scale gradients in equation (8).
Following Schertzer and Lovejoy [1987], we view a and b as
arbitrary constants, thus generalizing the prototypical turbu-
lence case where we know that a = b = 3 [Kolmogorov, 1962].
Note how K(gq) appears in equation (13) as a (so-called
“intermittency”) correction term in an otherwise linear model
for {(g); for turbulence, this linear model is identified with the
standard [Kolmogorov, 1941] phenomenology that leads to
prediction {(2) = 2/3 (B = 5/3), hence {(q) = ¢/3.
Equations (11) and (13) yield

Cy = L(b) - bL(b)

which enables us to estimate Cy, as well as Hj, from structure-
function analysis alone. For simplicity, we can take b = 1 in
equation (14) and, accordingly, a = 1/H; in equation (13). The
data in Figure 4b then yield

13)

(14)

Cy=H, - (1) =0.07. (15)

The significant difference between the estimates of C; in
equations (11)—(12) and (14)-(15) casts doubt on the general
applicability of equation (13), bearing in mind that another
choice of b in equation (14) could possibly reconcile the two
estimation techniques (we return to this issue in the following
section). In turbulence, however, where b is a given quantity,
there is a similar discrepancy between the intermittency
parameter for passive scalars, Pyp = K=2)(2), estimated by
Antonia et al. [1984] from structure-function analysis, Weurb =
0.25, and estimated by Prasad et al. [1988] from singularity
analysis, Wy,p = 0.38+0.08. (The debate on how the statistics
of absolute small (=Kolomogorov) scale fluctuations in equa-
tion (8) influence those of the inertial-range quantities in equa-
tion (4) is still ongoing [e.g., Vainshtein et al., 1994].)
Using arguments similar to those used by Marshak et al.
[1997a] for turbulent velocity, we can convert “m = 2” results
to “m = 17 results and then py,y, values (at g = 2) into C; values
(at ¢ = 1). Although uncertainty increases in this process, the
outcome is a lower-bound for C;™=1) given by we,,/4; this
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yields the following: C;™=D = 0.06" for structure functions
(compare equation (15)); and C;(™=D = 0.10* for singularity
analysis (compare equation (12)), in good agreement with the
more direct estimate obtained in section 5.2. Again, we con-
clude (adopting either definition of C)), that the scaling be-
havior of low-order statistics for passive scalars and LWC are
similar. From the consistency of our results, we also conclude
that either definition of C; can be used in an intercomparison
study, even though they may be hard to reconcile with each
other.

6. Marine Sc Structure from 100-1 to 1034 m,
Using Various LWC Data Sets

It is of interest to systemtically compare results from our
three-fold analysis (spectral, structure functions, and singulari-
ties) of SOCEX data with corresponding scale-by-scale results
for ASTEX data [Davis et al., 1994a] and FIRE data [Davis et
al., 1996a; Marshak et al., 1997a]. This exercise can be
viewed as an attempt at using scale-invariance to establish a
climatology of internal cloud structure, a counterpart of the ex-
tensive satellite-based investigation of broken cloud fields by
Cahalan and Joseph [1989] and Joseph and Cahalan [1990].
Values of 8, Hy, and C, are entered for all three experiments in
Table 1 along with the associated scaling ranges that are
graphically illustrated in Figure 7 (with wavenumber spectra).
For H; and Cy, only the large-scale regime is considered in
SOCEX. We start with these low-order statistics (§6.1), before
moving on to higher-orders (§6.2).

6.1. TFirst- and Second-Order Statistical Properties
of LWC
6.1.1. Bi-fractal properties of cloud structure.

We show in appendix B that, by using a pair of judiciously
chosen exponents, one can avoid at once the well-documented
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Figure 7. Wavenumber spectra for three field experiments.
ASTEX results from Davis et al. [1994a] and FIRE results from
Davis et al. [1996a]. Note the relatively small differences in
the scaling exponents and the notable differences in scaling
range (compare Table 1). Recent instrumental development
has enabled observation of the scale break at 2-5 m in the
SOCEX data, but it is likely to be present in other types of
cloud.
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shortcoming of a monofractal approach (its ambiguity), the
potential pitfalls in a multifractal approach (spurious high-or-
der scaling due to finite data sets), and the possible redundancy
between structure functions and singularity analysis. We work
with H; and Cy, defined in equations (6) and (11), respectively,
and call this “bifractal” analysis.

Figure 8 is an (H;,C;) scatterplot for LWC fluctuations, for
scales ranging from a few tens of meters to a few tens of kilo-
meters enhanced with LWP and passive scalars. All presently
studied cases are illustrated, as follows: the bold dot represents
SOCEX (large scales) while other symbols represent FIRE
(squares) and ASTEX (diamonds). Some remarks are in order:

1. The three LWC points for ensemble-averages are very close
in the bifractal plane: '

(16)

This suggests that the physical processes that shape the inter-
nal structure of Sc-type clouds are essentially “universal,”
meaning that the local climate seems to determine primarily
the range of scales (compare Table 1) and the prefactors
(overall amplitudes), but not these two important scaling ex-
ponents. Davis et al. [1996a] note that, for the FIRE and

ASTEX case studies of marine Sc (representative of more typi- -
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Figure 8. Cloud liquid water, turbulence and scale-invariant
stochastic models in the bifractal plane. The index of nonsta-
tionarity (smoothness of data) H; increases horizontally, and
the index of intermittency (sparseness of large jumps in data)
C, increases vertically. For 1-D signals, the range is zero to
unity in both cases. The corners of the accessible domain are
occupied by well-known cases: Gaussian scale-invariant sta-
tionary processes, for example, white noise and 1/f noise, at
(H,Cy) = (0,0); random Dirac 8’s at (H{,C;) = (0,1); random
Heaviside steps at (H;,Cy) = (1,1); everywhere continuous and
almost everywhere differentiable random functions at (H,C;)
='(1,0). The horizontal axis is host to fractional Brownian
motions (additive models) and the vertical axis to multiplica-
tive cascade models. Cloud LWC and LWP live inside the unit
square, along with turbulent signals (the approximate location
of passive scalars is indicated) and multifractal functions.
Further discussion in main text and appendix B.
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cal conditions than those that prevailed when our SOCEX data
were collected), the scaling range is displaced roughly in pro-
portion to the boundary layer’s thickness.

2. Because of their proximity in the bifractal plane, the low-
order statistical similarity between LWC and a passive scalar
in a turbulent flow established in the previous sections for
SOCEX carries over to FIRE and ASTEX.

3. As expected, the vertically integrated quantity LWP (stars
in figure) is somewhat smoother than LWC. Using the results
of Wiscombe et al. [1995] collected at the ARM Central Great
Plains Site in Oklahoma and based on all types of cloud cover,
we find H;(LWP) = 0.37 > H;(LWC). Spectral exponents occur
in the same order: Brwp = 1.7 > Brwc > 1.5. However, there is
no significant difference between LWC and LWP in the sense
of intermittency, the two fields having almost identical C;
values.

4. We have indicated in Figure 8 the loci of the better-known
scale-invariant models. None of them fall inside the bifractal
domain, where the data lives. Indeed, fractional Brownian mo-
tion (fBm) is not intermittent enough (C; = 0), multiplicative
cascades are too stationary (H; = 0), Devil’s staircases are too
smooth (H; = 1), and isolated singularities are too intermittent
(Cy =1). This underscores the need for a new class of stochas-
tic models to simulate properly the nonstationary and inter-
mittent behavior we observe in LWC signals. An example of
such a model is a “fractionally integrated” multiplicative cas-
cade [Schertzer and Lovejoy, 1987]; the list of models that
live inside the unit square is still quite short but steadily grow-
ing [cf. Davis et al., 1996b; Marshak et al., 1997a].

Finally, we note that the counterparts for the two other field
programs of equation (15) for SOCEX are C; = 0.08 from the
ASTEX data of Davis et al. [1994a], and C; = 0.11 from the
FIRE data of Marshak et al. [1997a]. In comparison with equa-
tion (16), these estimates, based only on structure function
analyses, rearrange and slightly shift downward the LWC clus-
ter in Figure 8. However, this alternate choice of definition for
C; does not change the LWC cluster’s dispersion in the bifrac-
tal plane.

6.1.2. Challenges to cloud probing and model-
ing efforts. Until now, the emphasis is on the apparent ro-
bustness of (H,C;) for LWC in boundary-layer clouds under a
broad range of meteorological conditions. This is not to be
taken as a prediction that every time we measure H, and C; for
LWC we will find numbers compatible with equation (16), on
the contrary. In their comprehensive study of LWC records
from FIRE’87, Marshak et al. [1997a] actually obtain a “cloud”
of (H,,Cy) points quite broadly scattered around the position of
the ensemble-average used in Figure 8, especially in the C; di-
rection. This underscores the need for vast amounts of data to
defeat the blatant violation of “ergodicity” by each individual
data set (i.e., there is no convergence to the ensemble mean).
Even an apparently well-defined dynamical regime such as the
recurrent/persistent marine Sc investigated during FIRE’87, as
many samples as possible are required to obtain meaningful
averages.

We have demonstrated the current lack of good empirical
(i.e., stochastic) models for the internal structure of marine
boundary layer clouds. In Figures 7-8 there is also a challenge
to the current thrust in dynamical cloud modeling. As the reso-
lution of Large Eddy Simulation (LES) and Cloud-Resolving
Models (CRMs) increases, statistics sensitive to spatial corre-
lations will sooner (simple “scale-by-scale” approaches) or
later (“power law scaling” approaches) become necessary to -
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test their verisimilitude with respect to observations. Yano et
al. [1996] have taken steps in this direction for CRMs, al-
though their comparison is only between different parameteri-
zations. The current status of LES-based numerical cloud mod-
eling is surveyed by Moeng et al. [1996], again with an em-
phasis on intermodel rather than model/data comparison.
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6.2. Higher-Order Statistical Properties of LWC

6.2.1. Dynamical meanings of lower- and
higher-order statistics. Using first-order exponents
only, we have uncovered in Figure 8 a remarkable statistical
similarity in the structure of various types of marine Sc; this
carries over, more approximately, to second-order statistics.
Notably, multifractal analysis recognizes that the basic
physics of marine boundary layers are the same everywhere and
that there is a rather well-defined class of (top-cooled) strati-
form clouds that occur there. There are also remarkable differ-
ences in the first- and second-order statistics: the scaling
range (compare Figure 7 here) and the prefactors [cf. Figure 7
in Davis et al., 1996a].

There is another significant difference between the various
sources of LWC data for higher-order statistics. The bold sym-
bols in Figure 9 represent the {(g) scaling exponents for gth-
order structure functions obtained from FIRE, ASTEX, and
SOCEX: the higher-order moments diverge significantly (see
Figure 4b for typical error bars). We see, however, that the
scaling exponents for ASTEX and SOCEX are in better agree-
ment between each other than with those of FIRE. This is not
surprising: we have already commented on the visual similar-
ity between the (coarse-grained) SOCEX data in Figure 2 and
the ASTEX data of Davis et al. [1994a, Figure 10] (at 8-m reso-
lution); the FIRE data of Marshak et al.’s [1997a, Figure 1] (at
5-m resolution) is strikingly different. It is noteworthy that
comparative multifractal analysis corroborates visual exami-
nation. Moreover, this is a multifractal reminder that FIRE
was designed to study “pure” marine Sc, whereas ASTEX was
targeting Sc-to-Cu “transition” regimes and that the SOCEX
data analyzed here was captured in a “mixed” cloud system.

In summary, the events, hence the “dynamics,” that domi-
nate the means (g = 1) are similar from one locale to another;
the stronger/rarer events that determine moments of order ¢ > 1
are not found to be similar from one locale/experiment to an-
other.

6.2.2. Do we need more parameters? Pursuing the
idea of two-parameter characterizations of multifractal data in
section 6.1, Pierrehumbert [1996] devised a scheme using
structure functions alone that highlights the' extreme values of
g- In this respect, it is complementary to bifractal analysis
where the focus is on ¢ = 1. Pierrehumbert proposes to fit the
empirical {(g) curve with a hyperbola branch:

Figure 9. Scaling exponents {(g) of gth-order structure func-
tions for LWC from three field programs with analytical repre-
sentations. The ASTEX, FIRE and SOCEX {(gq) functions are
plotted with symbols (same as in Figure 8) in all three panels:
low-order moments agree, and higher-order moments differ.
(a) Numerical (H;,Cy) values from Table 1 were used in equa-
tion (18b) to infer the two parameters, {’y and (.., of
Pierrehumbert’s [1996] model in equation (17); because of the
(H,Cy) clustering in Figure 8, the high-g predictions. are simi-
lar and fall in the middle of the data rather than follow {(gq) for
any particular experiment. (b) £’ and {,, are now determined
by a nonlinear least squares fit for 0 < g < 4; because of the
weight given to the high ¢ values in this procedure, these val-
ues lead via equation (18a) to more dispersion of (H;,C;)
points than seen in Figure 8. (c) Here the four-parameter
model for {(g) in equation (13), with equation (19) for K(g), is
used in the nonlinear regression; goodness of fit (as measured
by the regression coefficient R) is generally improved, as ex-
pected (in view of the smoothness of the {(g) data).
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where the two parameters have simple geometrical (and statis-
tical) meanings: £’ ={’(0) € [0,e] is the slope at ¢ = 0
(dominated by low g values); and £, = {(e) € (0,0°] is the hori-
zontal asymptote (dominated by the highest g’s available).
Figure 9b shows the results of nonlinear least squares fits to
the {(q) data for LWC from the three field programs using equa-
tion (17).

Equations (6) and (14), with b = 1, connect ours and
Pierrehumbert’s parameterizations:

{Hl =000/ (80+Cs0)

a7

Cy = Lol [(CulC o) +1]12 7 (18a)
and conversely,

Co=H/[1-(Cy/H})]

{Cw =H,%/C, : (18b)

Note how the latter quantity controls explicitly the multiscal-
ing since {,, — = (C; — 0) leads to {(g) = {’pg (i.e., monoscal-
ing).

In Figure 9a, we have overlaid the predictions of equations

(17) and (18b) using (Hy,C;) values from Table 1 or Figure 8.
The disagreement between models and data is large at high ¢
values, especially for the FIRE data. This is not a failing of
the model in equation (17) because better parameter values were
obtained (ccompare Figure 9b) by going back to the {(g) data
rather than using equation (18b). Rather, we consider this as a
shortcoming of equation (13) viewed as a means of predicting
high-g behavior from a low-g anchor, at least with the chosen
(a,b) values. Conversely, if we insert into equation (18a) the
" parameters (£’0,C.) from the nonlinear fits in Figure 9b, we
find a larger dispersion of the (H;,C;) points than seen in
Figure 8, especially along the C axis. This is traceable to the
uniform weight given to all the values of g in the nonlinear re-
gression and therefore does not change our conclusions about
the remarkable clustering of the bone fide first-order expo-
nents in equation (16).
There are several closed-form one- and two-parameter repre-
sentations of K(q) in the literature that we can use in equation

(13). For illustrative purposes, we will use Schertzer and
Lovejoy’s [1987] model:
(o}
44w (0,)u(1,2)
K(g)=Cixqy o-1 ,q20.  (19)
glng, o =1

Letting @ and b in equation (13) vary along with C; and o here,
we have a four-parameter model for {(g). Given the smooth-
ness of the {(q) data sets, we expect and obtain good agreement
(compare Figure 9¢) when this model is used in the nonlinear
regression; this proves little about the inherent validity of
equations (13) and/or equation (19). Notwithstanding, we no-
tice that (1) 1/a is numerically close to the new estimates of
Hj = la — K(1/b) because K(1/b) = C1x(1/b-1) is small; in-
deed, (2) 1/b is quite close to unity, justifying a posteriori the
assumption of b = 1 used in deriving equations (15) and (18a,
b); (3) C; values are similar to those in Figure 9b and more
dispersed than in Figure 8, again due to the influence of the
large g values; and (4) o is found well within the range (0,2)
prescribed in equation (19) which is associated with “log-
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Lévy” or “log-stable” statistics for the small-scale increments.
In summary, we draw the following conclusions about cloud
LWC data processing: (1) model-assisted extrapolation from

‘low- to high-order exponents using equation (13) is risky; (2)

being outside of pure turbulence (where a and b are known), it
is not recommended to use equation (13) to do away with either
structure functions or singularity analysis; (3) a wide variety
of {(g) functions can be well approximated analytically with a
relatively small number of parameters. However, this last
point has more to do with the inherent smoothness and the
concavity of empirical {(g) functions than with the validity of
the analytical model. Moreover, parameters of the analytical
model can often be mapped to a specific value of g, but they are
determined numerically by all values of g (through nonlinear
regression), and the uncertainty in the data for large g is not
easy to estimate. The above conclusions are likely to carry
over to many other atmospheric and geophysical signals.

All things considered, it is our opinion that a simple low-
order two-exponent characterization such (as in bifractal anal-
ysis) is a safe strategy when the limitations of a one-exponent
method (such as in spectral analysis) become problematic.

7. Discussion: Radiative Consequences of LWC
Variability

7.1. Large Scales and the “Independent Pixel
Approximation”

Cahalan et al. [1994] developed a random fractal cloud
model to emulate fluctuations of LWP in marine Sc, which is
proportional to optical depth T. The targeted scales range from
tens of meters to tens of kilometers and Cahalan and Snider’s
[1989] LWP data were used to assign numerical values to the
model’s three parameters, essentially Uy wp, Opwp, and Brwp.
The authors found dramatically reduced domain-average albe-
does at nonabsorbing solar wavelengths for their internally
variable cloud models with respect to the standard
(homogeneous plane-parallel) model that uses only the mean
optical depth (t), dependent only on ppwp. The correspond-
ing enhancement of transmittance, (T(1)) > T({t)), is ex-
plained by the averaging over many pixel values of T(t), as
obtained from plane-parallel theory; indeed, 7(t) is a nonlin-
ear function, with (d?/dt2)T > 0, at least in the two-flux ap-
proximation. This independent pixel approximation (or
“IPA”) to 3-D radiative transfer is now being used to capture
cloud variability effects in large-scale atmospheric energetics.
For instance, Tiedke [1996] does a GCM impact study that ac-
counts for the systematic effects of subgrid scale variability in
Sc using Cahalan et al.’s [1994] parameterization of
“effective” optical depth 7., that is, the unique solution of
T(t,) = {T(t)); see Barker [1996] for another semianalytic
approach with two variability parameters. IPAs are also
applied deterministically (i.e., on a single-pixel basis) in
cloud remote sensing applications as well as radiation budget
computations.

As a general approach, IPA is currently under close scrutiny
[e.g., Marshak et al., 19952, Chambers et al., 1997; Davis et
al., 1997a; Marshak et al., 1998; Zuidema and Evans, 1998].
In the special case of single-layer stratus however, the theory
of IPA break down is well-developed:

1. For remote sensing, where only reflected photons are used,
Marshak et al. [1995b] and Davis et al. [1997a] advance theo-
retical and empirical evidence that, for stratiform clouds, the
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IPA is only valid for pixel sizes several times the radiative
“smoothing scale,” equal to the harmonic mean of physical
cloud thickness and the photon transport mean-free-path, typ-
ically 0.2-0.3 km.

2. Empirical estimation of solar absorbtance in the atmo-
spheric column call for both reflected and transmitted fluxes.
Recent efforts in this area [Cess et al., 1996; Imre et al., 1996;
and references therein] have encountered considerable spatial-
averaging problems due to IPA breakdown, as documented by
Marshak et al. [1997b], Titov [1998], Davis er al. [1997b],
and Barker and Li [1997].

7.2.  Small Scales and Sub-Mean-Free-Path
Variability Effects

Small-scale variations in cloud LWC also affect the flow of
solar radiation through the atmosphere, but in a rather different
way than their large-scale counterparts. If LWC fluctuates at
scales smaller than a typical photon mean-free-path, the dis-
tribution of photon free paths between scatterings can no
longer be exponential, even locally. As far as we know, this
break down of a basic tenet of standard radiative transfer theory
was first documented by Romanova [1975] in the framework of
atmospheric optics as a general consequence of 3-D cloud ge-
ometry. Nonexponential photon free-path distributions are
actually a recurring theme in the radiation transport literature
at large; see Knyazikhin et al. [1998] for a statement on the
same issue in plant canopies. The effect of sub-mean-free-path
LWC variability on large-scale cloud radiative properties is
unknown at present. Because the perturbation is systematic in
the sense of promoting longer paths between scatterings
[Davis, 1992], it may have a significant role in resolving the
current issue of enhancement by clouds of shortwave column
absorption [Stephens and Tsay, 1990; Cess et al., 1996, and
references therein].

Marshak et al.’s [1998] numerical case studies of sub-mean-
free-path variability in stratus layers are based on the same
SOCEX PVM data as used here; they show small bulk effects in
albedo, transmittance, and absorbtance, somewhat larger ones
in the satellite radiance field. In contrast, an analytic study of
sub-mean-free-path variability by Davis and Marshak [1997],
more representative of broken cloudiness than stratiform cloud
cover— suggests that rather strong effects should occur in
transmission and the pathlength distribution (at conservative
wavelengths), hence absorption (at nonconservative ones).
This model, which uses power-law free path distributions in-
stead of the standard exponential ones, has received support
from recent oxygen A-band observations [Pfeilsticker, 1999].
We note however that, in presence of extensive brokeness, the
intercloud gaps dominate the mean in the overall (not just “in-
cloud”) photon free-path distribution so the mean-free-path is
commensurate with cloud size, possibly even larger.

8. Conclusions

Liquid water content data captured at 4-cm resolution with a
PVM-100A probe during SOCEX in 1993 exhibit two distinct
regimes for different scales (denoted by r). One regime goes
from r = § cm to r = 2-5 m, and the other goes from r = 5 m to
at least 2 km. See section 2.

Conclusions concerning scales r > 2-5 m are as folloaws:

1. Nonstationarity and intermittency of cloud LWC data are
quantified and qualified in this large-scale regime which is
clearly dominated by turbulent dynamics. See sections 3-5.

- ample, higher-order structure functions.
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2. The “bifractal” properties (H,C;) of large-scale SOCEX
fields are remarkably similar to those of other nonstationary
LWC signals measured during FIRE and ASTEX, as well as
those of passive scalar density fluctuations in fully developed
turbulence. This reminds us that passive advection is a reason-
able first-order model for cloud LWC and suggests that there is
a degree of universality in the turbulent dynamics that deter-
mines the horizontal structure of Sc in three remote locales
(California, Azores, Tasmania). See appendix B and sections
4-6.

3. Interesting differences between the three field programs
arise in the scaling ranges, prefactors, and higher-order multi-
fractal properties. This is also how the similarity of LWC and
passive scalars in turbulence breaks down. At least one more
parameter than used in bifractal analysis is needed to describe
the multifractal behavior, but sampling of the strong events
that dominate higher-order statistical moments is generically
poor; so caution is required. See sections 4—6.

4. Neither of the standard classes of scale-invariant stochastic
model, intermittent multiplicative cascades and Gaussian addi-
tive processes, are adequate to simulate the internal structure of
boundary layer clouds; a new kind of hybrid (multiplica-
tive/additive) models is needed. See section 6.

Conlcusions concerning scales r < 2-5 m are as follows:

1. The small-scale LWC fields from SOCEX, and probably
elsewhere, are stationary and show enhanced variance with re-
spect to the level ‘expected by (fractally) interpolating the

large-scale field, meaning that we assume the spectral scaling

law obeyed by the large-scale fluctuations can be prolonged
down to mm-scales. This conclusion holds even after account-
ing for Poissonian noise resulting from the finite instanta-
neous sampling volume of the PVM-100A. See appendix A.

2. The existence of this component in the LWC fluctuations
that exceeds the natural Poissonian variability at scales of a
few cm’s confirms similar findings by Baker [1992] and
Brenguier [1993] based on FSSP data. See section 3.

This last point implies that the (large) scales deemed
“homogeneous” by Baker’s [1992] standard are still highly
variable from the standpoint of multifractal analysis, for ex-
The effects of this
large-scale variability on radiation transport in stratocumulus
have been studied extensively (this research is briefly surveyed
in section 7). In contrast, radiative consequences of the small-
scale, essentially sub-photon-mean-free-path, variability are
an open question that is partially addressed elsewhere for stra-
tus layers [Marshak et al., 1998] and for broken cloud fields
[Davis and Marshak, 1997].

Appendix A: Simulation of PVM Operation in a
Non-Poissonian Environment

The goal of this simulation is to answer the following ques-
tion. Suppose the structure of SOCEX (and other) clouds is in
reality scale-invariant down to the 4-5 mm scales, roughly the
Kolmogorov dissipation scale for turbulent velocity. If so,
can the scale break at 2-5 m in the 4-cm (2 kHz) PVM-100A
data be traced to the finite size of the sampling volume and/or
instrumental filtering? (An aircraft speed of 80 m/s is used
throughout this appendix.) If the answer is “yes,” the scale
break is an instrumental artifact (and we have in essence devel-
oped a way of statistically removing the uninteresting Poisson
noise superimposed on the actual liquid water fluctuations). If
it is “no,” Poissonian fluctuations of droplet number and size
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in the sampling volume do not explain the observed small-
scale variability; consequently, the scale break is real, and
another physical explanation must be sought.

Al. Instrument Description

The optical PVM-100A probe [Gerber et al., 1994] has an
instantaneous sampling volume V, defined by a diode laser
beam of circular section (0.37 cm in diameter, 11.43 cm long)
oriented at a right angle to the direction of flight. In the fol-
lowing simulations, the PVM is viewed as a device operating
in two stages:

1. It samples the second and third moments of the droplet-size
distribution analogically in a long cylindrical volume defined
by a laser beam aligned perpendicular to the flight direction;
the volume is Vi = (n/4)x(0.37)2x11.43 .= 1.25 cm?. The
sampling rate 20 kHz, that is, every 0.4 cm (so there is no
volumetric intersection from one observation to the next).

2. It then filters out the highest frequencies in that datastream
with an analog low-pass filter, and samples the output at an
A/D conversion rate of 2kHz. Digitization uses 13 bits over
an output in the range 0-5 V; after calibration, the LWC sensi-
tivity is 1.6X10™4 g/m3.

For typical densities of CCN (cloud concentration nuclei), the

number and sizes of droplets present in Vg, about one cubic

centimeter of cloudy air, will fluctuate according to Poissonian
statistics.

There will be no correlations in this noise because there is
no volume overlap (i.e., the cloud droplets irradiated by the
laser are always new). However, the sampling volume is
weakly dependent on droplet size, due to “vignetting.”
Droplets have size-dependent diffraction patterns (measured at
a random distance from the scattering center), so slightly dif-
ferent “effective” sampling volumes need to be assigned to
droplets of different sizes. Figure Ala shows measured values
of f(d) = V; s(d)/V versus droplet diameter d. For future refer-
ence, the empirical frequency attenuation function a(f) of the
A/D converter is plotted in Figure Alb.

A2. Droplet-Size Distribution

We need to assume some droplet-size distribution n(x;d),
not necessarily uniform in space (x denotes position). In the
following, we use a lognormal distribution for simplicity;
however, experimentation showed this assumption to be
unimportant for the outcome of the simulation. We therefore
write the number of droplets with diameter between d and d+8d
in a unit volume as

—u)? d
dn(x;d) = n(x) exp[—@%&]%,d>0, (Ala)
o\2m

where, apart from finite sampling effects, the spatial variabil-
ity is assumed to be carried entirely by (total) droplet density
or concentration

oo

n(x) = Jn(x;d) dd. (Alb)
0
The normalized droplet distribution
dn  n(x;d)
8a P n) (Ale)

has parameters
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oo

w=Ind2) = |1n(d2) n(d)sd, (A24)
0

oo

o2= [in(d/z)—m2 = J.[ln(d/2) - u]? nb(d)Bd. (A2b)
0

The quantities of interest in the following are particle sur-
face area (PSA) and liquid water content (LWC). Letting

:1; = J.d” n(d)dd,
o

(A3)
we have
PSA(x) = ;—‘:ﬁ n(x), (Ada)
and
LWC() = % pw & nx), (Adb)

. being the density of water. Instead of W and 6?2, it is con-
ventional to parameterize the droplet distribution with effec-
tive droplet radius,

o= (@) ] (@) =5 (55).

and (dimensionless) effective variance [Hansen and Travis,
1974],

(ASa)

ve=(@)(@) [ (#)2-1.

(A5b)
For the lognormal distribution, we have
= expl un + (6%/2)n2] (A6)
with 62 = In(1+v,) and W = Inre—2.5In(1+v,); therefore
o= Q2re)" (14ve)"=5)2, (A7)

We use r, = 14.8 um and v, = 0.015, but varying these parame-
ters within the observed range does not change our results.

A3. PVM Operation in a Variable Environment

On the basis of the above instrumental and microphysical
characteristics, we describe the five steps of our simulation and
illustrate them with figures in physical and Fourier spaces. As
a starting point, we use the LWC data collected and archived at
2 kHz. A 41-m long sample is presented in Figure A2a, ex-
tracted from the long flight segment 5 in Table 2 with typi-
cally low LWC values but high variability, including the in-
triguing up-spikes. We denote this field

©;=0x), x;=il (i=1,...,N) (A8)
where: / =4 cm is the grid constant (pixel size); N = L/ is the
total number of points (N = 6.5x10° here), L being the overall
length of the record (L = 26 km in this case).

A3.1. First step: Coarse-graining to a scale
L., roughly where the scale break occurs. We know
that @(x) is scale-invariant at least down to the scale break at
£, = 2-5 m (see Figures 1 and 4a in the main text). To describe
the LWC at this relatively coarse scale, we need to degrade the
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Figure Al. PVM-100A characteristics used in the simulations. (a) Vignetting effect. Because of the way a
droplet’s particular diffraction pattern is detected at a random distance, only a fraction £, of them present in the
sampling volume are actually detected. We have plotted here empirical f, values versus droplet diameter d, and
a 4th-order polynomial approximation. Equivalently, we can say that the sampling volume is droplet-size de-
pendent in the same ratio. (b) Smoothing effect. Laboratory measurements of the frequency response of the

equivalent low-pass filter at the output stage (A/D conversion) of the PVM, and an empirical  approximation by
a fourth-order polynomial.

high-resolution LWC data in equation (A8) by averaging over ing field ¢, displayed in Figure A2b, obeys equation (2) in the

ms, = £,/f =28 = 64 points if we take £, = 2.56 m: main text:
j - ' ,
i o LN *9) (JAG(PFy o< 159, g 20, 1, < r<L, (A10)
= ),
> i=(j- 1)m>+ll

with, in particular, a spectral exponent § = {(2)+1 in theory
where N, = [N/m], [] denoting integer part. Using m. = 128, (Weiner-Khinchin theorem); in practice, we find f§ = 1.620.1
hence £, = 5.12 m, yields very similar end results: The result- and {(2) = 1.5340.02.
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A3.2 Second step: Fractal interpolation, down
to a very small scale /. We now assume that the scaling
prevails down to a scale #* = 0.005 m, at least for ¢ = 2. (This
means we are now dealing with N* = 512N, = 8N points in all,
corresponding to the 16 kHz collection rate used further on,
close to the actual 20 kHz but in a convenient power-of-2 ratio
with 2 kHz.) How do we restore the nonarchived data? We used
fractal interpolation [Barnsley, 1988] with, as an interpolator,
a nine-step bounded cascade model [Marshak et al., 1994].
This multifractal model was actually developed and used else-
where [Cahalan et al., 1994] to reproduce cloud liquid water
path fluctuations at much larger scales (10 m to 10 km). This
choice of model is not critical for the outcome: fractionally
integrated singular cascades [Schertzer and Lovejoy, 1987], a

linear spline, or even a constant, work just as well. At any
rate, we now have
nC
6i=mKQJQW%U0n (i =1,...N", (A11)

where j(i) = [i/2"]+1 = 1,...,N, and n. = logy(N*/Ns) = 9 is re-
quired the number of (discrete, two-fold) cascade steps. We use
mass-conserving bounded cascades, so that averaging @ over
scale £, gives exactly @y

The two parameters that control the random (unit mean)
multiplicative weights W were chosen so that the scaling in
equation (A10) remains valid, at least for ¢ = 2; in other words,

the field @ is guaranteed to be scale-invariant down to i = /*:

(ABDP o< 1, 1" <r < L. (A12)

A sample of the field @ at 5 mm resolution is plotted in Figure
A2c.

A3.3 Third step: Generating the Poisson noise
present in the PVM’s internal 16 kHz datastream.
We now simulate the PVM~100A’s actual estimate §*(x) of the
physical LWC value ®(x) for x = i/* (i = 1,...,N”), subject to
its finite sampling volume. We first need to evaluate the en-
semble-average droplet density from equation (A4b), with
LWC(x) = ¢(x), and equation (A7):

- T 3(14+ve)>
n(x) = ¢(x) / (gpw d3) = (&) o(x). (A13)

4Anpyre’

Next, we obtain the expected number of droplets Ny(x) in vol-
ume Vj at position x from

Ng= Ve, (A14)
dropping the explicit dependence on position.

The actual number of droplets v is then generated from the
discrete Poisson distribution of mean Ng:

NE :
Prob{v=X}= X exp(-Ng), X = 0,1,2,... (A1)

Op'erationally, we generate the Poissonian deviate v exactly if
N < 16 by answering the following question: given dn arbi-
trarily long sequence of pseudorandom numbers uniformly
distributed on the unit interval, how many do we need to
sequentially multiply before crossing the threshold exp(-Ng)?
For Ng2> 16 (i.e., 4 standard deviations o, = Y Ny), we use a
Gaussian approximation.

For each of the v droplets, we assign a diameter drawn ran-
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domly from a population that follows the (normalized) log-
normal distribution in equation (Alc): d; (i = 1,...,v); explic-
itly, we take d; = 2 X exp[u+0oN(0,1)] (i = 1,...,v) where N(0,1)
is a zero-mean, unit-variance normal deviate. We can then
compute @, the actual 16 kHz LWC measurement, fromi first

principles:
V.
~ 1\
w= () 5o
i=1

with theé understanding that v = 0 means no sum, hence o =0.
Finally, we use the rejection method to simulate the effect of
vignetting, as described in Figure Ala. A sample of this noisy
@" data is plotted in Figure A2d.

A3.4 Fourth step: Low-pass filtering of the
simulated 16 kHz datastream. The frequency response
a(k) = a(f)lfzw (U = 80 m/s) in Figure A1b is now used, to filter
©" in Fourier space. As a result, we have

(Al6)

6 =F [ at x F§"10) ]

where F['] is the Fourier transform. A fragment of filtered ('f)l-
(i=1,...,N") is plotted in Figure A2e.

A3.5 Fifth and last step: Resampling of the
filtered 16 kHz datastream at 2 kHz. Figure A2f
shows ¢; (i= 1,9,17,...,N"), one of eight possibilities, with
the original 4-cm spatial resolution. The background noise is
comparable to that in the original data in Figure A2a; how-
ever, all of the up-spikes hva been obliterated. The whole
simulation process was repeated for the short flight segment 6
(L = 2.4 km, N = 6x10%), with high LWC-values and relatively
small variability, intermittent occurrence of large jumps in
both directions notwithstanding. Input and the end-product are
plotted in Figures A2a’ and A2f’, respectively. Here again the
background noise level is adequately reproduced, not the
strong/short events that come out of this noise.

We note a =10% discrepancy between the original (0.87
g/m3) and final (0.80 g/m3) spatial averages.ini Figures A2a’
and A2f that is traceable to the LWC that remains unobserved
due to the empirical vignetting model described in Figure Ala.
This bias in our “virtual” PVM-100A has no counterpart in the
real instrument because its calibration is blind to vignetting
effects. We incorporated vignetting into our simulations only
to eénsure that all known sources of Poissonian variability are
properly accounted for.

A3.6 A summary, in s$pectral representation.
Figure A3 illustrates the successive steps of our simulation
with the wavénumber spectrum E(k). We see a clear discrep-
ancy (a factor ranging from 2 to 22-5 = 5.6) between the spec-
tra of the simulated and measured data for scales smaller than
2-5m (k >211:0£0-5/13 km~! in Figure A3). This echoes the
visually observable differences seen in the spatial samples
(Figures A2a and A2a’ versus A2f and A2f).

(A17)

A4. Conclusions

We coriclude that the Poissonian noise related to the PVM’s
finite sampling volume is insufficient to explain the scale
break at 2-5 m. Furthermore, the excess variance is contained
in intermittently occurring intense eveints. This amounts to
saying that there is more than Poissonian variability in small-
scale cloud structure; in this respect, we concur with Baker
[1992] and Brenguier [1993].
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Figure A2 (continued). Simulation of the Poissonian noise component in the PVM’s LWC channel when
it is relatively high. (a’) Same as Figure 2Aa but from with data extracted from flight segment 6 in Table 2,

with relatively large LWC values.
mean in Figure 2Af’ than in Figure 2Aa’.

discussion in text.

Appendix B: Monofractal, Multifractal and
Bifractal Data Analyses

A convenient device for comparing the basic scaling prop-
erties of geophysical signals and/or model calculations is the
“bifractal” plane, with coordinates (H{,C;) [Davis et al.,
1994a, 1996b; Marshak et al., 1997a). The axes are assigned
to two first-order, hence highly robust, scaling exponents that
range from O to 1 (for 1-D data sets): horizontally, H; from
equation (6), an index of nonstationarity obtained directly
from the data of interest @(x); vertically, C; from equation
(11), an index of intermittency obtained from the related mea-
sure sq,(x) that describes the magnitude of small-scale gradients
in @(x) in equation (8).

In the terms of Mandelbrot’s [1977] fractal geometry, both
exponents are co-dimensions of remarkable sets.

(1) Abcissa: H1>= (a’+1)—Dg

where d < Dy < d+1 is the fractal dimension of the rough graph
of @(x) plotted versus x € R9. We are most familiar with the
" case d = 1 (often just 1-D transects through 3-D fields), but this
characterization carries over directly to 2D images (which may
be cuts through 3-D fields), 2 < Dy <3 and H; = 3-Dyg, as well
as 3D fields, 3 < Dy <4 and Hy =4-D,.

(2) Ordinate: Cy=d-D,

where 0 < Dy <d is the fractal dimension of the sparse set sup-

(f’) Same as Figure 2Af but for the data in Figure 2Aa’.
This bias is traceable to the effect of vignetting described in Figure
Ala, effectively a truncation and denormalization of the droplet-size distribution in equation (Ala);

Note the smaller

further

porting those values of the measure g,(x), x € R4, that domi-
nate its mean (gy), a.k.a. the “information” dimension.

We call “bifractal analysis” the restricted but general scale-
invariant characterization of correlations in geophysical data
based solely on (H,Cy). In other words, this is not a single-
exponent or “monofractal” characterization (such as stand-
alone spectral analysis) yet not a fully multifractal approach
either. In this paper, we actually follow a “bimultifractal” ap-
proach that uses both higher-order structure functions, yield-
ing the {(g) values, and a standard form of singularity analysis,
yielding the K(g) values.

Davis et al. [1993, 1994b, 1996b] and Marshak et al.
[1997a] discuss the potential for redundancy between {(q) and
K(q) exponents and the usual formula that relates them. The
outcome is (1) that at least one new exponent is needed to ob-
tain {(g) from K(g), a role that can be assigned somewhat arbi-
trarily to H;, or the “cancellation” exponent (1-H;) [O# et al.,
1992; Vainshtein et al., 1994], and (2) that K(g) is a
“detrended” version of {(q), that is, a linear term in g is re-
moved.

Problems one can encounter in multifractal analysis are as
follows: too much information in the (generally overlooked)
proportionality constants and/or the occurrence of spurious
multiscaling due to limited data resources (accuracy, range of
scales, and/or number of realizations) [Davis et al., 1996b].
Even if the above problems did not occur, finding an interpre-
tation for every exponent in a multifractal approach would lead

Figure A2. Simulation of the Poissonian noise component in the PVM’s LWC channel when it is relatively

low. Counterclockwise from top left-hand corner:

(a) Fragment of 2 kHz LWC data containing 1024 points at
the nominal resolution ¢ = 4 cm with relatively small values;

it is extracted from flight segment 5 in Table 2.

(b) Same as in panel (a) but averaged over 64 points, thus /, = 2.56 m resolution. (c) Semiartificial 16 kHz
(£* = 5 mm resolution) data obtained by fractally interpolating the data in Figure 2Ab with bounded cascade
models. (d) Result of passing the data in Flgure 2Ac through the Poissonian noise generator (see text). (e) The
noisy data in Figure 2Ad, still at resolution £* = 5 mm, after low-pass filtering (compare Figure Alb). (f) Data
in panel Figure 2Ae resampled at 2 kHz, resolution back to £ = 4 cm.
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Figure A3. Evolution of the energy spectrum .through dif-
ferent stages of the noise simulation. Half of the data set 5
from Table 2 is used, =3X10° points. Three other curves show
the energy spectra of the simulated data for two intermediate
" steps (fractal interpolation and Poissonian noise generation),
and for the last step (after low-pass filtering and resampling).
Fragments of the data are displayed, respectively, in Figures
A2a, A2c, A2d, A2e, and A2f.

to rather laborious modeling of data, hence the appeal of multi-
fractal characterizations with a small number of parameters
(compare section 6.2.2).

The most serious weakness of a monofractal approach is its
fundamental ambiguity, easily demonstrated by the following
example. Suppose we analyze some meteorological data @(x)
and find a spectral exponent 3 = 2; equivalently (Wiener-
Khinchin theorem), second-order structure function analysis
using equations (4)—(5) with ¢ = 2 yields {(2) = 1. Such find-
ings are representative of standard Brownian motion (Bm), the
running sum of independent random variables, alternatively,
(@(x) behaves like any coordinate of a particle in a random walk
(Figure B1). However, we cannot exclude a Heaviside step
(Hs), a finite jump in @(x) over an infinitesimal distance in x,
with constant behavior before and after (Figure B2). We can
think of the former model as “quiescent” atmospheric turbu-
lence, the latter to an intermittent but strong event such as the
passage of a “front,” and we can conceptualize boundary layer
dynamics as a alternation and/or combination of Bm and Hs.
We naturally wish to statistically distinguish the two situa-
tions in a robust manner, so we clearly need to go beyond
spectral analysis.

One solution is to consider one-point Probability Density
Functions (PDFs): Bm will tend to look Gaussian, whereas Hs
should be distinctly bimodal. However, in practice, this will
only work in very “pure” cases. Furthermore, PDFs tell us
nothing about spatial correlations; for this, we are still rely-
ing entirely on the wavenumber spectrum which, alone, fails
to detect intermittency (or lack thereof) in a signal.
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Figure B1. Simplified model for “quiescent” atmospheric

dynamics. The upper curve is a sample of a Lévy-Wiener pro-
cess, otherwise known as (standard) Brownian motion or
“Bm.” It is defined as the running sum of independent nor-
mally distributed random variables. Bm is scale-invariant be-
tween the pixel and outer scales, hence a power law wavenum-
ber spectrum E(k) ~ kP with B =2. The lower curve is the ab-
solute pixel-scale gradient field, that is, the absolute values of
the independent Gaussian deviates. This is essentially a field
of white noise, that is, § = 0. Being nonstationary (1 < 8 < 3),
we can only study increments of the former. Being stationary
(B > 1), we can legitimately investigate local averages of the
latter.

Multifractal analysis easily resolves the ambiguity of spec-
tral analysis:

{ structure functions:

Cam(q) = ¢/2 }
,q>0,

. . . B1
singularity analysis: Kgy(q) =0 (Bla)
and
structure functions: {y(gq) = 1
. . C o ,q>0,  (Blb)
singularity analysis: Kyg(g) = g—1
T 1.0- :
= < Random Heaviside Step - -
3 F900 3
=) R O SRSURSUU USRS - o
g 3 0.0 ] %
SN ~ ~
@ 7 V
8 ] ~600 §
% 1.0—_ ---------------------------------------------------- i §
] ~300 &
R absolute gradient — "
-0 &
0 200 400 600 800 1000

x (pixels), L = 1024

Figure B2. Simplified model for the passage of a discontin-
uous “front.” The upper curve is a randomly positioned and
randomly strong Heaviside step. The lower curve is the abso-
lute pixel-scale gradient field, that is, a randomly positioned
and randomly strong Dirac § function. The wavenumber spec-
tra of these processes are indistinguishable from their coun-
terparts in Figure B1. Indeed, phase information is not used in
E(k), the Fourier space equivalent of spatial averaging in
physical space, in this limited statistical approach where only
Fourier amplitudes are of interest. However, the only Fourier
difference between here and Figure B1 is synchronized rather
than random phases. Note the ten-fold increase in vertical
scale with respect to Figure B1 required to span the (finite) §
function.
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noting the identical spectral scaling exponents,

BBm = CBm(2)+1 = BHs = CHs(Z)"'l =2; (B2)
Davis et al. [1996b] and Marshak et al. [1997a] give short
derivations of equations (Bla)—(Blb). This comprehensive
approach certainly sheds new light on the differences between
Bm which is monofractal (and Gaussian), and Hs which is mul-
tifractal at least for structure functions (and highly non-
Gaussian).

Bifractal analysis of this problem is considerably simpler
and equally unambiguous:

(H1,C)pm = (1/2,0) (B3a)

whereas
(lecl)Hs = (1’1)3

telling us, on the one hand, that the Bm and Hs components
are on either end of C; values intermittency scale and, on the
other hand, they have somewhat different degrees of nonsta-
tionarity. Considering Figures B1-B2, both of these statisti-
cally correct statements also make intuitive sense.

When it comes to modeling a signal, it is generally recom-
mended to focus first on a small number of well-defined (hence
low g) parameters rather than try to reproduce a large number of
exponents, at least some of which (at high enough g) are ill-de-
fined for lack of data (as discussed by Davis et al. [1996b] and
others). We propose bifractal analysis as a compromise be-
tween too many and too few empirical constraints, with simple
statistical and geometrical meanings assigned to each axis in
the (H;,C;) plane.

(B3b)
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