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[1] Rainfall exhibits extreme variability at many space and timescales and calls for a
statistical description. Based on an analysis of radar measurements of precipitation over
the tropical oceans, we introduce a new probability law for the area-averaged rain rate
within the class of log-infinitely divisible distributions that accurately describes the
frequency of the most intense rain events. The dependence of its parameters on the spatial
averaging length L allows one to relate spatial statistics at different scales. In particular, it
enables us to explain the observed power law scaling of the moments of the rain rate
data and successfully predicts the continuous spectrum of scaling exponents expressing
the multiscaling property of the rain intensity field.
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1. Introduction

[2] The intrinsic unpredictability of rainfall intensity,
which varies in an irregular manner in time and space,
makes it natural to seek a statistical description in terms of
an underlying probability distribution. Since in the final
analysis rainfall merely consists of a collection of falling
raindrops of various sizes, the instantaneous point rain rate
field is a highly singular mathematical quantity that
becomes accessible to large-scale observation only through
space and/or time averaging. In this respect, radar remote-
sensing measurements and the traditional rain gauge mea-
surements probe the rain rate field in two distinct regimes.
Radar observations are a convenient way to measure the
near-instantaneous rain rate averaged over a certain area
(typically a few kilometers in size) determined by the
intrinsic spatial resolution of the experimental setup. A
sequence of gridded radar-derived rain maps over a larger
area, typically a few hundred kilometers in size, can be
utilized to study the statistical properties of area-averaged
rain. On the other hand, rain gauges measure time-averaged
rain rate over a very small area (of the order of a few tens of
centimeters) that can be well approximated as a point. In
this paper we seek a theoretical description of the statistical
properties of the spatial structure of rain and introduce a
new family of probability distributions for describing rain-
fall statistics, focusing on the spatial statistics of area-
averaged rain rate derived from radar remote sensing.

[3] An interesting aspect of rainfall statistics is that they
depend in a non-trivial manner on the length and timescales
over which rain rate is averaged. There have been a number
of different theoretical approaches to modeling the scale
dependence of rain statistics. Inspired by the statistical
theory of fully developed turbulence, phenomenological
models based on multiplicative random cascade process
have been proposed for the spatial statistics [Lovejoy and
Schertzer, 1985; Schertzer and Lovejoy, 1987; Gupta and
Waymire, 1990, 1993], the temporal statistics [Veneziano et
al., 1996; Menabde et al., 1997a; Olsson and Burlando,
2002] and the full space-time statistics [Marsan et al., 1996;
Over and Gupta, 1996; Seed et al., 1999]. These models
aim to capture the power law dependence of the moments of
the area- or time- averaged rain rate on the averaging scale
through a description of rain statistics in terms of fractals.
An alternative approach that leads to an explicit form of the
space-time covariance of the rain rate exhibiting the observed
power law scaling behavior is based on a stochastic dynam-
ical equation for the spatial Fourier components of the point
rain rate field [Bell, 1987; Bell and Kundu, 1996; Kundu and
Bell, 2003, 2006]. The model depicts the rain field as
undergoing anomalous or fractional diffusion driven by
white noise and incorporates in a natural way the observed
dependence of the correlation timescale on the degree of
spatial averaging. Themodel leads to prediction of dynamical
scaling [Kundu and Bell, 2006], a form of invariance of the
statistics under a combined space-timescale transformation
observed in isolated storms by Venugopal et al. [1999]. A
major limitation of the latter type of model is that unlike the
fractal models it is restricted to describing only the second
moment statistics.
[4] In the present work we restrict ourselves to studying

the spatial statistics of rain from a phenomenological point
of view leaving aside the temporal dependence aspects. We
are concerned with the spatial statistics of instantaneous area-
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averaged rain rate rL obtained by averaging over an L � L
square. Assuming space-time homogeneity of the statistics,
the entire gamut of statistical properties of the non-negative
random variable (RV) rL can be completely derived from
the probability density function (pdf) f (rL;ci(L)) where ci(L)
(i = 1, 2, . . .) are a set of parameters depending on the
averaging length scale L. In this paper we propose a new
candidate for the pdf of rL based on an analysis of a gridded
data set of surface radar measurements of rainfall. Our study
is based on a gridded precipitation data set [Short et al.,
1997] consisting of a series of radar images obtained during
the Tropical Ocean Global Atmosphere – Coupled Ocean
Atmosphere Response Experiment (TOGA-COARE)
[Webster and Lukas, 1992].
[5] Spatial intermittence of rain implies that rL has a

mixed distribution with a non-zero probability Pr[rL = 0]
� 1 � p(L) of attaining the sharp value 0, where p(L) =
Pr[rL > 0] represents the probability that an L � L grid box
contains non-zero rain. Clearly p(L) must be an increasing
function of L. If a rain image is ‘‘coarse-grained’’ through a
scale transformation L ! L0 = lL, (l > 1), adjacent rainy
and non-rainy patches are subsumed within a larger area
which is designated as rainy; consequently p(lL) > p(L)
(l > 1). Conversely, magnifying a rain image to a finer
spatial resolution L0 < L, in general reveals rainy and non-
rainy areas interspersed within a rainy area at resolution L.
Indeed it seems possible to assume that p(L) ! 0 as L ! 0.
Radar observations of rain are often well described by a
power law dependence on L: p(L) � Lc (c > 0) for small L,
suggesting an underlying fractal structure of the support of
the rain field of fractal dimension c [e.g., Kedem and Chiu,
1987a; Over and Gupta, 1994; Kundu and Bell, 2003]. The
exponent c represents the intermittency exponent for the
spatial rain field. A class of cascade models, known as the
b-model in the context of turbulence theory [Frisch et al.,
1978], with a finite probability of zero generator yields a
near power law dependence of p(L) on L [Over and Gupta,
1994]. However, the power law behavior must break down
at large scales since p(L) � 1 for all L and is expected to
approach unity as L ! 1. As noted by Kedem and Chiu
[1987a], the simple fact that p(L) depends on L already
precludes the area-averaged rain rate field from being self-
similar.
[6] A lognormal distribution has often been used to

describe the continuous part of the distribution corre-
sponding to rL > 0 [Biondini, 1976; Lopez, 1977; Houze
and Cheng, 1977; Crane, 1986; Kedem and Chiu, 1987b],
which is empirically known to be unimodal and highly
skewed to the right with a rapidly decaying tail as rL ! 1.
From a modeling perspective, the lognormal distribution is
attractive, since it naturally arises in a multiplicative process
involving independent identically distributed (iid) RVs with
a finite mean and variance because of the Central Limit
Theorem [Feller, 1971]. A lognormal multiplicative cascade
model of energy transfer across eddy size scales was origi-
nally invoked to account for intermittency in fully developed
turbulence [Kolmogorov, 1962; Obukhov, 1962]. However,
there is at present no consensus on the ‘‘correct’’ pdf for rain
rates. A number of authors have found evidence of depar-
ture from the lognormal distribution [e.g., Martin, 1989;
Pavlopoulos and Kedem, 1992; Kedem et al., 1994; Jameson
and Kostinski, 1999]. Several other distributions, including

the gamma [Ison et al., 1971] and Weibull [Wilks, 1989],
have also been used to represent statistics of precipitation
data. For a recent comparative study of the lognormal and
gamma distributions, see Cho et al. [2004]. Scale depen-
dence of the spatial gradient of rain rate was explored by
Kumar and Foufoula-Georgiou [1993] and Perica and
Foufoula-Georgiou [1996] for individual storm events using
wavelet transform method, who attempted to relate the
statistical parameters to physical storm characteristics. Our
primary interest is in a statistical description of rainfall
climatology over a relatively large area and a long period
of time, which includes the totality of all rain events as well
as the non-rainy areas in a certain space-time volume. We
find that the lognormal distribution is unsatisfactory at
coarser spatial resolutions. This leads us to seek a new
probability distribution that better represents rainfall statis-
tics over a broad range of spatial scales. We confine our
search within the class of the so-called infinitely divisible
(ID) distributions for candidates suitable for describing the
distribution of ln rL. They emerge as probability distribu-
tions of the sum of an arbitrary number of iid RVs and
contain many distributions commonly used in hydrology,
including the normal (and more generally, the Lévy stable),
Poisson, gamma and Gumbel extreme value distributions as
special cases. They also naturally arise in the context of a
multiplicative cascade process, which involves exponentia-
tion of additive iid RVs.
[7] In our search for a suitable probability distribution

describing the spatial statistics of rL from a precipitation
data set, we depart from the usual approach in which the
parameters of an empirically chosen form of the pdf are
determined by directly fitting it to the rain rate histograms.
Instead, we develop a theoretical method in which the pdf is
constructed ab initio from the moments of the rain rate data
by utilizing some mathematical characterizations of ID
distributions. A set of auxiliary dimensionless quantities
defined from the moments serves to guide us in identifying
a suitable member of this class and the parameters of the
distribution are estimated by fitting these functions to data.
The family of distributions that we construct contains a
certain type of Lévy-stable distribution as a limiting case.
[8] An important feature of the rain rate field is that the

moments of the rain intensity field conditional on nonzero
rain m(q;L) = hrL

qjrL > 0i (where the angle brackets h. . .i
denote ensemble average with respect to the distribution of
rL conditioned on rL > 0) exhibit power law scaling with
respect to L: m(q; L) / L�h(q). In general the scaling
exponents h(q) have a nonlinear dependence on the moment
order q � a property commonly referred to as multifractal or
multiscaling behavior. In the case of fully developed turbu-
lence, the relevant quantities are h(dvL)qi, the statistical
moments of the (longitudinal) velocity difference across a
distance L, and the spatially averaged energy dissipation
heL

qi. Various phenomenological models have been used
with considerable success to account for their scaling
properties [Kolmogorov, 1962; Benzi et al., 1984; Parisi
and Frisch, 1985; Meneveau and Sreenivasan, 1987a,
1987b; She and Leveque, 1994; Dubrulle, 1994; She and
Waymire, 1995]. They lead to simple explicit formulae for
the corresponding scaling exponents as function of q that
often agree remarkably well with observation. See Frisch
[1995] for a detailed account of multiscaling properties of
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fully developed turbulence. Novikov [1994] has explored
the possibility of understanding the scaling behavior of the
turbulent energy dissipation field in terms of an underlying
log-ID distribution of the so-called breakdown coefficients
el/eL over a range of scales [l.L]. For an application of this
idea to rainfall statistics see [Menabde et al., 1997b]. Power
law scaling of precipitation statistics has been known
empirically for some time and significant efforts have been
made to explain it in terms of multiplicative cascade
processes [Schertzer and Lovejoy, 1987; Gupta and
Waymire, 1990, 1993]. While atmospheric turbulence cer-
tainly plays a role in determining the space-time distribution
of precipitation, rainfall microphysics introduces additional
complexity into the precipitation process and there is no
compelling reason why the exponents resulting from turbu-
lence models would as such carry over to rain statistics.
From the dependence of the parameters of the probability
distribution on the spatial averaging length L we will be able
to estimate the scaling exponents approximately and com-
pare the predicted values with those estimated directly from
the moments of the data.
[9] The paper is organized as follows. In section 2 we

provide a brief review of the basic definitions and some of
the mathematical properties of the ID distributions that are
needed in our investigation. We then describe the mathe-
matical method employed in this paper to compute the pdf
of a log-ID distribution from certain auxiliary quantities
constructed from the moments of the distribution. In section
3 we give an account of the analysis of the TOGA-COARE
data set. Section 4 is devoted to the proposed new proba-
bility distribution with the necessary mathematical charac-
terizations for comparison with data. In section 5 we present
the results in detail and discuss the various outstanding
issues. Section 6 summarizes the main conclusions and
suggests some directions for future work. A number of
mathematical details relevant to our work are relegated to
three appendices so as to avoid distraction. They include
derivations of some results used in the main text and can be
skipped on a first reading if desired.

2. Theoretical Preliminaries

[10] The notion of infinite divisibility naturally arises
within the theory of probability distributions of a sum of
an arbitrary number of iid RVs in connection with the
familiar Central Limit Theorem. The concept is originally
due to de Finnetti [1929], with further seminal contributions
by Kolmogorov, Lévy and Khintchine. Detailed mathemat-
ical expositions of the subject can be found in a review
article by Bose et al. [2002] and in the monographs by
Feller [1971], Lukacs [1970] and Steutel and van Harn
[2004]. The last one is also a very complete source of
references to the original papers.

2.1. Some Basics of ID Distributions

[11] In this subsection we present a number of mathemat-
ical results regarding a subclass of ID distributions that arise
in our investigation.
[12] A RV X is said to be ID if for every positive integer n,

X can be expressed (in distribution) as the sum of n iid RVs
Xn,j ( j = 1, 2, . . ., n). The characteristic function (CF) f(t) �
E[eitX] =

R
�1
1 g(x)eitxdx is the n-th power of fn(t) (E[. . .]

denotes expectation value), the CF of Xn,j, i.e., f(t) =
[fn(t)]

n. The pdf of X, namely g(x) (which is given by the
inverse Fourier transform of f(t)) is the n-fold convolution
of gn(x), the pdf of Xn,j; symbolically, g(x) = [gn(x)]

*n. In the
context of rainfall statistics X will represent a logarithmic
rain rate variable to be introduced later.
[13] A random process consisting of stationary indepen-

dent increments naturally leads to an ID distribution.
Consider a sequence of RVs Y(l) parameterized by a real
variable l such that the difference Y(l + l0) � Y(l0) = X(l)
is function of l alone and the increments Xn,k = Y(lk) �
Y(lk�1) (k = 1, 2, . . ., n) are iid RVs, where l0, l1, . . .,
ln�1, ln = l + l0 are a set of (n + 1) equally spaced points
separated by l/n. Since each Xn,k is distributed like X(l/n)
and the choice of n is completely arbitrary, it follows that
X(l) is ID.
[14] Next we state a fundamental result giving a neces-

sary and sufficient condition that a function f(t) is the CF of
an ID distribution [see, e.g., Lukacs, 1970; Steutel and van
Harn, 2004]:
[15] The Lévy canonical representation – A complex-

valued function f(t) of a real variable t is the CF of an ID
distribution iff it can be expressed in the form

fðtÞ ¼ exp ikt � 1

2
s2t2 þ

Z
Rn 0f g

eitu � 1� itu

1þ u2

� �
dHðuÞ

" #
;

ð2:1Þ

where k is real, s2 is real and �0, and H(u) is a non-
decreasing right-continuous function (the Lévy spectral
function) on (�1, 0) and (0,1), so that H(u) ! 0 as u !
±1 and

R
[�e,e]\{0}u

2dH(u) is finite for every e > 0. The
representation is unique.
[16] Equation (2.1) allows one to represent such a RV, up

to a shift as a sum of a Gaussian RV and a limiting sum of
(suitably scaled) independent Poisson distributed RVs.
[17] The four parameter Lévy stable distributions Sa(c, b, k),

where a (0 < a < 2) is the stability index, and b (�1 � b �
1), c (0 < c <1) and k (�1 < k <1) are, respectively, the
asymmetry, scale and location parameters, constitute
an important subclass of ID distributions. The a = 1
Lévy stable distributions are distinguished from the others
by their unusual transformation property under a rescaling
of variables and have to be treated separately. The maxi-
mally asymmetric distribution S1(c,�1, 0) turns out to play
an important role in the course of our investigation. It has
the CF

fðtÞ ¼ exp½�cjtj þ ð2i=pÞct ln jtj�

See Appendix A for a short review and Samorodnitsky and
Taqqu [1994] for further details of various properties of the
stable distributions.
[18] From the CF f(t) one can construct a function a(q) =

E[eqX] of a real variable q via analytic continuation it ! q,
assuming that one does not encounter singularities in the
complex t-plane. The quantity a(q) has the mathematical
interpretation of being the q-th order moment of the RV Y =
eX. Note that a(q) can also be regarded as a moment
generating function for X. The Taylor expansion of a(q) at
q = 0, if it exists, yields the successive integer order
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moments of X. If the distribution of X is ID, one can easily
derive an integral representation of a(q) from the Lévy
canonical representation (2.1). For the purpose of our
intended application to the rainfall problem, guided by
hindsight (see discussion at the end of section 5), we limit
ourselves to the special case

s2 ¼ 0; Hðu > 0Þ ¼ 0: ð2:2Þ

Letting u ! �u and introducing h(u) = H(�u) when u > 0
we obtain the integral representation

ln aðqÞ ¼ qkþ
Z 1

0þ
1� e�qu � qu

1þ u2

� �
dhðuÞ: ð2:3Þ

The maximally asymmetric Lévy stable distribution
S1(c,�1, 0) corresponds to the choice h(u) = (2c/pu) (u > 0)
and in this case for q > 0, a(q) is given by the simple
formula [Gupta and Waymire, 1990; Samorodnitsky and
Taqqu, 1994]

ln aðqÞ ¼ ð2c=pÞq ln q ð2:4Þ

Note that it has a singularity at q = 0, consistent with the fact
that the moments of X do not exist for this distribution. The
distribution is strongly skewed to the left; it has a power law
tail at large negative X

Pr½X < �x� � ð2c=pÞx�1; x ! 1 ð2:5Þ

but falls off steeply at large positive X [Samorodnitsky and
Taqqu, 1994]

Pr½X > x� � 1ffiffiffiffiffiffi
2p

p exp � px=2cð Þ � 1

2
� eðpx=2cÞ�1

� 	
; x ! 1:

ð2:6Þ

2.2. Application to Rainfall Statistics

[19] The results summarized above are now applied to the
problem of interest, namely quest for the distribution of the
rain rate variable rL within the class of log-ID distributions.
Since the rain rate is governed by a mixed distribution, the
normalization of the pdf describing the continuous part of
the distribution can be expressed as

Z1
0

drL f ðrL; ciðLÞÞ ¼ pðLÞ: ð2:7Þ

where p(L) = Pr[rL > 0]. We define

mðq;LÞ � r
q
L


 �
¼

Z1
0

drLr
q
L f ðrL; ciðLÞÞ ð2:8Þ

as a function of the moment order q where q is a real
variable. When q > 0, m(q;L) are to be interpreted as the
unconditional moments of rL. Obviously, p(L) = limq!+0

m(q;L). The moments conditional on non-zero rain are
given by

mðq;LÞ � r
q
LjrL > 0


 �
¼ mðq;LÞ=pðLÞ ð2:9Þ

and are meaningful for all q, both positive and negative. For
convenience, we introduce the ‘‘dimensionless moments’’

aðq; LÞ ¼ mðq; LÞ=½mð1;LÞ�q: ð2:10Þ

Note that by definition a(0;L) = a(1;L) = 1. When
expressed in terms of the dimensionless logarithmic rain
rate variable

xL ¼ ln½rL=mð1;LÞ� ¼ ln½pðLÞrL=hrLi�; ð2:11Þ

the function a(q;L) has the simple interpretation

aðq;LÞ ¼ E½expðqxLÞ� �
X1

n¼0

qn

n!
E½xnL�; ð2:12aÞ

i.e., a(q;L) is the moment generating function of the RV xL,
(the condition rL > 0 being automatically satisfied in the
expectation value E[. . .] computed with respect to the dis-
tribution of xL). In classical probability theory the coef-
ficients of the Taylor series expansion of ln a(q;L) at the
origin define the successive cumulants of xL:

ln aðq; LÞ ¼
X1

n¼1

knðLÞ
n!

qn ð2:12bÞ

This cumulant expansion later plays a central role in our
analysis. The pdf of the variable xL, g(xL; L) (which has
L-dependence through xL as well as through the parameters
of the distribution) is given by the expression

g xL; Lð Þ ¼ rLf rL; ci Lð Þð Þ=p Lð Þ: ð2:13Þ

It is the inverse Fourier transform of the CF f(t;L) =
E[exp(itxL)], i.e.

gðxL;LÞ ¼
1

2p

Z1
�1

dte�itxLfðt; LÞ ð2:14Þ

and is normalized as

Z1
�1

dxLgðxL;LÞ ¼ 1: ð2:15Þ

Since the pdf of a distribution is necessarily nonnegative, it
follows from a classical result [Bochner’s theorem; see e.g.,
Lukacs, 1970] that f(t;L) is a positive definite function, i.e.,
satisfies the inequality (bar denotes complex conjugation)

Xn
k¼1

Xn
j¼1

fðtk � tj;LÞ�xkxj � 0

for all n � 1, real tj, tk and complex xj, xk ( j,k = 1,2, . . .,n).
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[20] Ideally one would like to construct the pdf g(xL;L)
directly from the dimensionless moment function a(q;L)
determined from the data for all q. However, attempts to
describe the moment data in terms of simple empirical
functions in general yield a non-positive definite function
f(t;L) thus leading to potential candidates for the pdf that
become negative in certain ranges of xL and are therefore
mathematically unacceptable. In order to overcome this
obstacle we restrict ourselves to the family of ID distribu-
tions for which an explicit representation of a(q;L) can be
constructed.
[21] In particular, we wish to consider the case when the

distribution of xL belongs to the subclass satisfying equation
(2.2) and characterized by a Lévy spectral function h(u;L)
with the following properties: (i) h(u;L) is a non-increasing
left-continuous function on (0,1), (ii) h(u;L)! 0 faster than
exponential as u ! 1 and (iii) the integral

R
0
e u2 dh(u;L)

is finite for every e > 0. The conditions (i) and (iii) are the
same as in equation (2.1), while the more stringent fall-off
behavior of h(u;L) in condition (ii) ensures the convergence
of the integral representation given by equation (2.3) for all
q. Under these conditions it is possible to re-express the
function ln a(q;L) in the simpler form (see Appendix B for
derivation)

ln aðq;LÞ ¼ q

Z 1

0

du hðu; LÞ½e�u � e�qu�: ð2:16Þ

The problem of finding a suitable distribution within this
subfamily thus reduces to finding a suitable function h(u;L)
so that the theoretically computed a(q;L) agree with those
estimated from data.
[22] For a lognormally distributed rL (i.e., normally

distributed xL), one has the simple form [Aitchison and
Brown, 1957] with a parabolic q-dependence,

ln aðq; LÞ ¼ 1

2
s2ðLÞðq2 � qÞ; ð2:17Þ

where s2(L) is the variance of xL. It arises as the special case
s2 6¼ 0, H(u) = 0 in equation (2.1) and will turn out not to
describe the large order moments of radar precipitation data
well.

3. Data Analysis

[23] Our analysis utilizes a gridded precipitation data set
described by Short et al. [1997]. The data set was
constructed from radar scans that were collected during
TOGA-COARE, an experimental campaign conducted in
the tropical western Pacific during the period November
1992 to February 1993 using two ship-borne Doppler radars
(labeled TOGA and MIT). The entire data set consists of
101 days of observation divided into three approximately
monthlong ‘‘cruises’’ in which radar images were available
about every 10 min. In this paper we present results based
on the data obtained during Cruise 3, which contains 4380
merged rain images from both radars. Each rain image
consists of a 278 � 278 array of pixels 2 km � 2 km in
size. The statistics were collected from 128 �128 km2 areas
concentric with the circular radar fields of view, as
described by Kundu and Bell [2003]. Statistics for all L � L

sub-areas with L = 2, 4, 8, . . .,128 km were computed by
aggregating the L = 2 km single pixel data. Only those grid
boxes in a rain map were used for which at least 95% of the
box had valid data. This was done in order to exclude boxes,
especially those at the smaller scales 4, 8, and 16 km located
near the center, which occasionally suffered from data
dropout. The algorithm for moment computation was formu-
lated in double precision arithmetic and was tested to ensure
that the results are not compromised by machine round-off
error.
[24] We note that the rain rate variable rL is to be

interpreted as the spatial average of an underlying instanta-
neous point rain rate r(x,t) (which itself is not directly
measurable) over an L � L grid box, i.e., rL � rL(t) =
L�2

R
L�L r(x, t) d2 x. The mean rain rate hrLi � m(1;L)

would in general not be independent of L (and time)
unless appropriate spatiotemporal homogeneity assump-
tions are made regarding the statistics of the random
variable r(x, t) over the entire area of interest and the
entire period of observation. However, given a data set
consisting of single pixel data at a fixed resolution L = L*
(= 2 km) which defines a certain minimum scale, our
coarse-graining procedure automatically enforces the con-
dition hrLi = hrL*i � hri at each explored spatial scale L �
L* up to the largest scale L = L0 (= 128 km). The quantity
hri can then be interpreted as an estimate of the (scale-
independent) mean of the probability distribution we seek
for describing the rain rate statistics over the entire L0 �
L0 area and for the entire observation period 0 � t � T
under the presumed homogeneity conditions. Ideally, one
should also test the data for statistical homogeneity — a
somewhat arduous task that we have refrained from
carrying out in detail.
[25] For the MIT radar, about 78.3% of the pixels had

valid data and of the latter about 10.6% had non-zero rain.
For the TOGA radar the corresponding fractions are 76.0%
and 8.4% respectively. Most of the missing data was from
images taken when one of the radars was not operational. At
each spatial scale L, the quantities p(L) and the moments
m(q;L), and from them the dimensionless moments a(q;L)
were evaluated for various values of q between �2 and 10.
Also the appropriately normalized rain rate histograms were
computed for each L in equal intervals of

xL ¼ ln½pðLÞrL=hri�: ð3:1Þ

For MIT and TOGA Cruise 3, the mean rain rate was
estimated to be hri = 0.200 ± 0.036 and 0.155 ± 0.035 mm
h�1 respectively. The standard error estimates were obtained
under the assumption of (asymptotic) normality of the
sample mean (by virtue of the Central Limit Theorem, even
though the individual rL are markedly non-Gaussian).
Although the successive radar scans are about 10 min.
apart and as a result there are a large number of images
available (N = 4380), the values of rL for L = 128 km are
strongly time-correlated and therefore cannot be treated as
independent samples. We assumed an exponential time
autocorrelation typifying red noise in order to make use of
an error estimate obtained by Leith [1973]. Leith’s estimate
can be expressed in the form sL/

p
Neff, where sL

2 is the
variance of rL, Neff = T/(2tL) is the effective number
of independent samples in the time series of length T �
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30 days and tL is the (1/e)-folding autocorrelation time of
rL. For MIT and TOGA Cruise 3, Kundu and Bell [2003]
found the values sL

2 = 0.17 and 0.12 mm2 h�2, tL = 2.8 and
3.6 h, which yield Neff � 129 and 100 respectively. An
obvious caveat in this computation is that contrary to the
assumption made in Leith’s [1973] original derivation, the
observed lagged autocorrelation functions are in general
markedly non-exponential. Nonetheless, we believe that the
error estimates have the right order of magnitude.

4. The Proposed Distribution

[26] In order to search for an appropriate candidate for the
rain rate distribution, we examine the q-dependence of the
dimensionless moments a(q;L) for each L (‘‘the moment
curves’’, Figure 1). It is found convenient to carry this out in
terms of the auxiliary variable

Lðq;LÞ ¼ q�1 ln aðq;LÞ ð4:1Þ

We find that when q > 1, a(q;L) closely obeys the formula

ln aðq;LÞ � ð2=pÞcðLÞq ln q; ð4:2Þ

where c(L) > 0, characterizing a log-S1(c,�1,0) distribution
[see equation (2.4)], but crosses over to a different q-
dependence when q < 1. Systematic departure from
equation (4.2) at small q becomes apparent when one
examines the plots of L(q;L) vs. q (Figure 1). In fact it is
found that the numerical behavior of L(q;L) as function of q
near q = 0 is strongly indicative of continuity of the slope
L0(q;L) � dL(q;L)/dq at q = 0 instead of the 1/q divergence
predicted by (4.2). If rain rates were lognormally dis-
tributed, one would have had, according to equation (2.17),

ln a(q;L) / q2 � q, and consequently L0(q;L) = const. for
all q. This also explains why a nonzero s2 in equation (2.1)
is apparently not favored by data: Any such term would lead
to a quadratic dependence on q at large q in equation (4.2).
[27] The asymptotic large-q behavior (4.2) implies that

the right tail of g(xL;L) representing the high rain rate events
resembles that of the stable distribution S1(c,�1,0) which
drops off precipitously as xL !1 (rL !1) as indicated by
equation (2.6). The large-q behavior of a(q;L) is governed
by small-u behavior of the Lévy spectral function h(u;L) in
the integrand of equation (2.16) and vice versa. Since the
distribution S1(c,�1,0) corresponds to the choice h(u;L) =
2c(L)/pu in equation (2.16), we surmise that an appropriate
modification will need to preserve the u�1 dependence near
the origin. We find that the simple choice

hðu;LÞ ¼
2cðLÞ=pu ; u � bðLÞ

0 ; u > bðLÞ

8<
: ; ð4:3Þ

where c(L) and the cut-off b(L) are scale-dependent
parameters, in fact reproduces the essential aspects, if not
the details, of the q-dependence of the moments including
both the large-q behavior given by equation (4.2), as well as
the behavior near q = 0 (Figure 1).
[28] For the ID distribution defined by the choice (4.3) for

h(u;L), the integral (2.16) converges for all q and yields the
explicit formula

ln aðq;LÞ ¼ ð2=pÞcðLÞq
� ½ln jqj þ Eið�bðLÞÞ � Eið�bðLÞqÞ�; ð4:4Þ

Figure 1. Plots of L(q) = q�1ln a(q;L) versus q from data (open circles) compared with predictions
from the proposed distribution, given by equation (4.4) with the parameters listed in Table 1 (solid line)
for (a) L = 2 km and (b) L= 128 km forMIT Cruise 3 and TOGACruise 3. The level of agreement is similar
for all other L.
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where Ei(x) = �
R
�x
1 dt(e�t/t) denotes the exponential integ-

ral function [Abramowitz and Stegun, 1972]. Equation (4.4)
predicts that, despite its appearance, ln a(q;L) is in fact anal-
ytic at q = 0 and can be written for small q as a series expan-
sion (the logarithmic branch point singularities cancel)

ln aðq;LÞ ¼ qðq� 1Þ ½c0ðLÞ þ c1ðLÞqþ c2ðLÞq2 þ . . .�: ð4:5Þ

The coefficients c0(L), c1(L) etc. are simple linear combina-
tions of the cumulants kn(L) introduced in equation (2.12b):
c0 = �k1, c1 = �(k1 + 1=2 k2), etc. Moreover, in view of the
series expansion [Abramowitz and Stegun, 1972]

Eið�xÞ ¼ g þ ln xþ
X1

n¼1

ð�xÞn

n:n!
ðx > 0Þ

they can be expressed in terms of c(L) and b(L):

c0 ¼ ð2c=pÞ½g þ ln b� Eið�bÞ�;

c1 ¼ c0 � ð2cb=pÞ;

c2 ¼ c1 þ ð1=2:2!Þð2=pÞcb2;

ð4:6Þ

and so on (suppressing the L-dependence for ease of
notation), where g = 0.5772. . . denotes Euler’s constant. We
remark that equation (4.4) involves an overall compromise,
which sacrifices slightly the quality of fit at large q in order
to achieve an acceptable fit at small q. It generates an
additional subdominant term linear in q that survives at
large q in contrast to the simpler equation (4.2), which by
itself fits the large order behavior of the moments quite well.
Finally, we note that since the function a(q;L) defined by
equation (4.4) is an entire function (i.e., analytic in the
entire complex q-plane), it immediately follows that our
postulated probability law for rL possesses finite moments
of all orders q, both positive and negative.
[29] A limiting case of interest arises when c!1, b! 0

in such a way that cb tends to a finite value. In this limit c0 =
2cb/p and the higher order coefficients c1, c2 etc. all vanish
as successive powers of b. The series expansion (4.5) then

reduces to the simple parabolic form (2.17) with s2 = 2c0 =
4cb/p and consequently the new distribution approaches a
lognormal distribution.
[30] For the CF f(t;L) we obtain, after carrying out an

analytic continuation q ! it, the explicit formula

lnfðt; LÞ ¼ ð2cðLÞ=pÞ½�jtjSiðbðLÞjtjÞ
þ it ln jtj � CiðbðLÞjtjÞ þ Eið�bðLÞÞf g�; ð4:7Þ

where Si(z) =
R
0
z dt (sin t/t) and Ci(z) = �

R
z
1 dt (cos t/t) are

the standard sine and cosine integral functions [Abramowitz
and Stegun, 1972].

5. Results and Discussion

[31] Because of the intricate relationship between the
moments and the overall shape of the pdf, obtaining a set
of parameter values that best describe the data proved to be
a somewhat delicate problem. We first obtained a prelimi-
nary estimate by leaving hri and p(L) fixed at their sample
values and evaluating c(L) and b(L) by a nonlinear least
squares fit to the moment curves through equation (4.4) in
the range 0 � q � 10 using the routines provided by Press
et al. [1995]. The estimates of c(L) and b(L) thus obtained
were found to be linear in ln L to considerable accuracy.
They were taken as starting point for constructing the pdf
g(xL;c(L),b(L)) from f(t;L) by numerically evaluating the
inverse Fourier transform for each L. We sought to improve
the estimates by examining the overall quality of the fit to
the rain rate histograms. The final parameter choices
obtained by essentially a trial-and-error approach represent
our best effort to reproduce both the moment curves and the
observed histograms as faithfully as possible. They are
listed in Table 1. (See Appendix C for some computational
details). We see that the computed pdfs for both MIT Cruise
3 and TOGA Cruise 3 fit the observed rain rate histograms
fairly well over the entire explored range of spatial scales
(Figure 2). This is also supported by the quantile plots
showing the k-th quantile, xL*(k) (0 < k < 1) satisfying the
equation Pr[XL � xL*(k)] = k, computed from sample data
against those predicted from the model. Figure 3 shows

Table 1. Model Parameters p(L), c(L), b(L) and Related Quantities for Cruise 3a

(a) MIT Radar

L (km) 2 4 8 16 32 64 128
p(L) 0.106 0.139 0.198 0.303 0.472 0.683 0.858
c(L) 3.0 2.8 2.6 2.4 2.2 2.0 1.7
b(L) 1.0 1.6 2.2 2.8 3.3 3.9 4.6
c0(L)(model) 1.52 2.02 2.32 2.48 2.49 2.47 2.28
c1(L)(model) �0.39 �0.83 �1.32 �1.80 �2.13 �2.49 �2.70
c0(L)(fit) 1.664(0.002) 1.928(0.001) 2.171(0.002) 2.363(0.005) 2.480(0.008) 2.458(0.011) 2.228(0.012)
c1(L)(fit) �0.073(0.013) �0.398(0.005) �0.777(0.009) �1.129(0.025) �1.405(0.043) �1.551(0.059) �1.496(0.067)

(b) TOGA Radar

L (km) 2 4 8 16 32 64 128
p(L) 0.084 0.109 0.155 0.239 0.374 0.546 0.730
c(L) 3.5 3.2 2.8 2.5 2.2 1.9 1.7
b(L) 0.9 1.3 1.9 2.8 3.6 4.4 5.1
c0(L)(model) 1.63 1.99 2.27 2.58 2.61 2.49 2.39
c1(L)(model) �0.37 �0.66 �1.11 �1.87 �2.43 �2.83 �3.13
c0(L)(fit) 1.647(0.002) 1.906(0.001) 2.151(0.002) 2.346(0.005) 2.444(0.007) 2.418(0.011) 2.413(0.014)
c1(L)(fit) �0.044(0.011) �0.375(0.004) �0.763(0.010) �1.124(0.026) �1.358(0.040) �1.552(0.061) �1.708(0.076)

aThe quantities within parentheses are the standard errors.
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these plots for quantiles k in the range 0.001 � k � 0.999.
They reinforce the conclusion that the proposed distribution
successfully reproduces the observed frequencies of high
rain rate events. The model correctly reflects the gradual
change in the shape of the distribution with the increase of
L, as more and more areas of zero rain interspersed among

the rainy areas are averaged together. In particular, it
accounts for the slowly decaying tail at lower rain rates
that becomes increasingly pronounced at larger L, an effect
not explained by a lognormal distribution. Fall-off of the
pdf at high rain rates governed by the tail behavior (2.6) is
much more rapid than what would be expected from a

Figure 2. Plots of the pdf g(xL;c(L), b(L)) versus xL superimposed on the observed rain rate histograms
for MIT Cruise 3 and TOGA Cruise 3 data at different spatial scales: (a) L = 2 km, (b) L = 8 km, (c) L =
32 km and (d) L = 128 km. The pdf (solid curve) is scaled so that the area under the curve equals the area
of the histogram between the observed maximum and minimum rain rates. Agreement at the other
explored scales L = 4 km, 16 km and 64 km (not shown) are also deemed satisfactory.
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lognormal distribution. It can be argued that the observed
pdfs for intermediate L are more representative of the
‘‘true’’ statistical behavior of precipitation since spatial
aggregation serves to smooth out possible data preparation
artifacts introduced at the original grid scale. Such artifacts
can arise, for example, from radar algorithm error due to
misclassification of rainy pixels into convective/stratiform
types and from uncertainties in detecting low rain rates at
the intrinsic spatial resolution of the radar. On the other
hand, as L becomes large and comparable to the synoptic

scale, one can expect effects of spatial inhomogeneity to
distort the results. We also notice a systematic discrepancy
between the data and the model at low rain rates that
prominently appears in the quantile plots in Figure 3. We
find that as k ! 0, the data quantiles rapidly flatten out to a
constant value of xL corresponding to a minimum nonzero
rain rate rL of about 0.01 mm h�1 at the pixel scale L = 2 km
that is registered by the radar whenever it detects rain. We
interpret this as a low rain sensitivity threshold for the radar
possibly arising from its intrinsic electrical noise. The

Figure 3. Quantile plots of data versus model for MIT Cruise 3 and TOGA Cruise 3 data at different
spatial scales: (a) L = 2 km, (b) L = 8 km, (c) L = 32 km and (d) L = 128 km. (The straight line represents
the diagonal y = x).
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discrepancy between the data and the model may therefore
be due, at least in part, to the radar measurements of low
rain rates being inherently unreliable and possibly noise-
limited. The difficulty of detecting low rain rates may also
affect identification of the support of the nonzero rain field,
i.e., estimates of the parameter p(L). The other TOGA-
COARE data subsets also exhibit similar general behavior
with only minor individual differences, except for TOGA
Cruise 1 in which a second weak mode seems to appear in
g(xL) at very low rain rates as L is increased.
[32] Figure 4 depicts the scale dependence of the model

parameters ln p(L), c(L) and b(L) regressed against ln L. Fit
to a power law p(L) / Lc yields an estimate of the
intermittency exponent c: c � 0.531 for MIT Cruise 3
and c � 0.546 for TOGA Cruise 3. From equation (4.2)
upon setting q = 2 it follows that

c Lð Þ � p
4
log2

p Lð Þm 2; Lð Þ
rh i2

" #
¼ p

4
log2 1þ z2 Lð Þ

� �
; ð5:1Þ

where z(L) denotes the coefficient of variation conditional
on rL > 0. Based on radar and rain gauge data sets it has
been suggested that z(L) is independent of L [Short et al.,
1993]. Our results show that this is not true in the present
data set. As L ! 1, one expects that p(L) ! 1, m(2;L) !
hri2, so that z(L), c(L) ! 0. This is consistent with the trend
seen in Figure 4. However, it should be emphasized that the

linear dependence on ln L implied in the regression can only
be valid in a limited range of scales since the model
parameters are restricted by the inequalities p(L) � 1,
c(L) > 0, b(L) > 0.
[33] In order to explore the scaling behavior of the

moments we examine plots of ln m(q;L) vs. ln L for L
between 2 and 128 km and q between �2 and 10 computed
from data (Figure 5). The linear regressions reveal an
approximate power law relationship

mðq;LÞ � L�hðqÞ ð5:2Þ

in this range of spatial scales yielding a set of ‘‘mean’’
scaling exponents h(q). By definition [equation (2.9)] h(0) =
0 and since the unconditional mean m(1) � hri is
independent of L, it follows that h(1) = c, the intermittency
exponent. An exact power law scaling of all the moments
with computable exponents would automatically follow
from our probability model if ln p(L) and c(L) are linear
functions of ln L and b(L) is a constant. This is however not
actually the case since all three of our model parameters that
fit the data exhibit nontrivial L-dependence; ln p(L), c(L)
and b(L) are all found to be roughly linear in ln L (Figure 4).
Nevertheless we still find that, for a wide range of values of
q, a power law scaling empirically holds to a good
approximation and moreover the exponents h(q) can be
fairly accurately determined from just its observed values
for the q = 1=2, 1 and 2 moments. The continuous spectrum
of scaling exponents determined from the model therefore
describes the multiscaling characteristics of the rain field.
However, a more careful analysis shows ln m(q;L) to be
nonlinear in ln L implying that the exponents defined by
equation (5.2) are actually slightly L–dependent.
[34] To understand the origin of the observed approxi-

mate power law scaling we represent ln m(q;L) and ln
a(q;L) in the form of power series in ln L. To the extent the
quadratic and higher order terms can be neglected, the
coefficient of the ln L term can be identified as the scaling
exponent introduced in equation (5.2). (A similar multi-
scaling analysis based on cumulant expansion of a distri-
bution has also been employed recently by Venugopal et al.
[2006].) Although in general ln a(q;L) has an intricate joint
dependence on q and L, for the purpose of estimating the
scaling exponents, it is convenient to employ separate
approximations for ‘‘large q’’ (q � 1) and ‘‘small q’’ (jqj �
1) with separable q- and L-dependence. To this end we
replace equation (4.4) by the following approximation:

ln aðq;LÞ � ð2=pÞcðLÞq ln q ; ðq � 1Þ
ðq2 � qÞ½c0ðLÞ þ c1ðLÞq� ; ð�1 < q < 1Þ :

�
ð5:3Þ

where c(L), c0(L) and c1(L) are assumed to be linear in ln L.
We then match the exponents at q = 1, 1=2 and 2 with the
observed values by joining the derivative dh(q)/dq con-
tinuously across q = 1. A little computation leads to the
following simple formula for h(q):

hðqÞ �
cqþ aq ln q ; ðq � 1Þ

cqþ ½ðaþ bÞ � ð2aþ bÞq�ðq� q2Þ ; ð�1 < q < 1Þ
;

8<
:

ð5:4Þ

Figure 4. Linear regression of c(L) (solid circles), ln p(L)
(solid triangles) and b(L) (open circles) against ln L between
L = 2 km and L = 128 km for MIT Cruise 3 and TOGA
Cruise 3.
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where a = [�2c + h(2)]/(2 ln2) and b = 4[�c + 2h(1=2)],
with a � 0.079, b � �0.066 for MIT Cruise 3 and a �
0.178, b � �0.005 for TOGA Cruise 3. Results from
equation (5.4) are plotted in Figure 6 along with the
exponents estimated from data (with error bars representing
95% confidence intervals estimated during the least squares
fit to equation (5.2)) and those predicted from a simple
lognormal distribution obeying equation (2.17), namely,

hLN ðqÞ ¼ cqþ 1

2
½�2cþ hð2Þ�ðq2 � qÞ: ð5:5Þ

The agreement between the predicted and the measured
exponents is quite striking, especially considering the heu-
ristic nature of the arguments leading to equation (5.4).
Only the scaling exponents of the moments of order q � 1
apparently suffer slightly from the artifacts of our
approximation. Not unexpectedly, the model estimates of
h(q) based on the approximation (5.3) deviate increasingly
from the observed values as q becomes more and more
negative. In contrast, the lognormal model fares rather
poorly in predicting the exponents as q becomes large. The
constants c0(L) and c1(L) estimated from a least squares fit
to L(q;L) vs. q near the origin are given in Table 1 with the

estimated standard errors. We find that the assumption of
linearity in ln L anticipated in our explanation of power law
scaling holds reasonably well in the data. Also included are
the values of c0(L) and c1(L) computed from the parameters
c(L) and b(L). We see that while the two values of the
leading coefficient c0(L) agree well, for c1(L) the agreement
is rather poor. This can be attributed to the fact that the
series expansion (4.5) for ln a(q;L) converges rather slowly
and the terms beyond the second are not negligible when
jqj � 1.
[35] At this point it is appropriate to recognize some

caveats in our analysis. A complete evaluation of the pdf
ideally involves knowledge of the function ln a(q;L) for all
q, both positive and negative. The asymptotic behavior (4.2)
of the moments at large positive q appears to be a robust
feature at all spatial scales as evidenced by the fact that the
predicted pdf correctly captures the steep fall-off of the
observed histogram at each L. Thus our proposed distribu-
tion accurately describes the relative frequency of spatial
occurrence of heavy rainfall. However, the q < 0 moments
depend increasingly on radar estimates of very low rain
rates, and are thus increasingly unreliable. Our analytic
continuation method of inferring the form of the character-
istic function f(t;L) for all real t thus implicitly involves

Figure 5. Log-log plots of m(q;L) versus L for selected values of q illustrating power law scaling
behavior of the moments for MIT Cruise 3 and TOGA Cruise 3.
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additional working assumption about its analytic behavior.
The specific distribution that we have proposed based on
observed dependence of the moments as function of q, has
the conceptual advantage that the corresponding ln a(q;L)
function given by (4.4) is an entire function, i.e., has a
convergent Taylor series expansion everywhere in the
complex q-plane. However, as mentioned above, practical
usefulness of the expansion (4.5) is limited by its slow
convergence. Nonetheless, analyticity at q = 0 allows us to
extend the function a certain way into the region of negative
q. We have decided somewhat arbitrarily to limit ourselves
to theoretically exploring the moments only up to q = �1.
As seen from Figure 1, the actual L(q;L) computed from
data deviates increasingly from its model-predicted form as
q becomes negative. Departure of the shape of the moment
curve from the model behavior is seen by examining its
slope L0(q;L) which was also estimated from data. For
L0(q;L) the proposed probability distribution predicts the
simple form

L0ðq; LÞ ¼ ð2cðLÞ=pqÞð1� e�bðLÞqÞ ð5:6Þ

which increases monotonically as q decreases. For each L
the observed shape generally agrees with the above form up
to a certain minimum q where L0(q;L) attains a local
maximum and then decreases slightly to reach a fairly
constant value. This departure at negative q is consistent
with the fact that the pdf appears to systematically

underestimate the low rain rate tail of the histograms at all
spatial scales. It remains to be seen whether the discre-
pancies between the observed histograms and the model pdf
are statistically significant.
[36] Limited experimental access to the negative q

moments implies a limitation of our knowledge of the
corresponding scaling exponents. However, in view of the
analyticity at q = 0, there appears to be no drastic change in
behavior as one crosses over from positive to negative q
regime. The approximation (5.3) used to estimate the
scaling exponents is designed to preserve the leading
asymptotic behavior of the exact model expression for ln
a(q;L) [equation (4.4)] for large positive q at the expense of
altering somewhat the analytic behavior near q = 0.
[37] Our method of estimation of c(L) and b(L) can

perhaps be improved. The nonlinear least squares algorithm
that we used to obtain the initial estimates by fitting
equation (4.4) led to large error estimates for these param-
eters, especially b(L), forcing us into the trial-and-error
approach. In retrospect, this is not surprising since the log-
Lévy-like tail at high rain rate corresponds to the limit in
which b(L) tends to infinity but the rest of the pdf requires a
much smaller b(L). Broad internal consistency of our esti-
mates is corroborated by the fact that fitting the parameters to
the simple form of L0(q;L) given by equation (5.6) yields
values not too far from the values obtained from fitting
L(q;L). Also, one should recognize that a best fit of the
L(q;L) function in a least squares sense does not necessarily
lead to best overall fit for the pdf. This is because of the
highly nonlinear (and presumably non-local) relationship
between the two functions; a small range of q effectively
controls the shape of most of the pdf curve, the large jqj
moments being instrumental in only determining the tails of
the distribution. Our estimates of the parameters should
nevertheless be close to being optimal as evidenced by the
close overall agreement between the computed pdf and the
observed rain rate histograms.
[38] The log-ID distribution we have proposed in this

paper has finite moments to all orders and was arrived at by
attempting to match the sample moments (which of course
are always finite) as closely as possible. In view of the
complicated relation between the moments and the pdf
noted above, it is in principle possible for a different pdf
to provide an adequate fit to data even if its (population)
moments cease to exist for orders q outside a certain range.
This is a relevant issue since in many multifractal scenarios
often the moments of the rain rate distribution beyond a
certain maximum and/or minimum order diverge due to the
presence of ‘‘heavy’’ (i.e., Pareto-like) tails [e.g., Lovejoy
and Mandelbrot, 1985]. In order to explore this possibility
(at each spatial scale L), we consider a ‘‘test’’ pdf g0(x) �
Cexp(�ljxj) (l > 0) that falls off exponentially as x ! ±1.
This corresponds to a power law dependence of the condi-
tional rain rate pdf f0(r): f0(r) � rl�1 as r ! 0 and f0(r) �
r�(1 + l) as r!1. (The cusp at x = 0 is unimportant for our
arguments, since we are interested only in the asymptotic
behavior). For this pdf the moment function a0(q) [defined
by equation (2.12)] has the form a0(q) � (l2 � q2)�1 and
consequently only the moments of order q in the range jqj <
l converge. On the other hand, for the proposed distribu-
tion, equation (4.4) predicts that moments of r exist to all
orders. This in particular implies the absence of a Pareto-

Figure 6. The observed scaling exponents h(q) (solid
circles) compared with the predictions from the new (solid
line) and the lognormal (dashed line) models for (a) MIT
Cruise 3 and (b) TOGA Cruise 3.
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like power law right tail as r ! 1. In fact, as we have
already noted, for large q > 0, a(q) grows approximately like
exp[(2c/p)q lnq] [see equation (4.2)] characterizing a log-
S1(c,�1,0) distribution. The expression (2.6) for the tail
probability Pr[X > x] of the associated Lévy stable distri-
bution S1(c,�1,0) then leads to the asymptotic behavior

f rð Þ � r=m1ð Þ� 1��=2ð Þ� exp � 1=eð Þ r=m1ð Þ�
h i

;

m1 = m(1;L), d = p/2c for the pdf of r (retaining only the
dominant term), as r ! 1. In order to investigate
whether the rain rate data itself would allow a heavy-
tailed distribution, we proceed with an elementary analysis
of the tail quantiles of x. For the exponential distribution
g0(x) a simple explicit calculation shows that the k-th
quantile, x*(k) obeys a linear relationship with ln(1 � k) at
the right tail (k � 1) and with ln k at the left tail (k � 0)
with slope (�1/l) in each case. Plots of x*(k) vs. ln(1 � k)
from sample x-data however do not exhibit any clear linear
regime. Moreover, attempts to estimate the exponent l
using the standard Hill estimator [Hill, 1975] yield values
of l that are much larger than unity, rapidly increasing as
one considers smaller and smaller ranges of k along the
right tail. This is consistent with the (approximate)
stretched exponential falloff of f(r) predicted by the model
at large r.
[39] The situation is not quite as clear with regard to the

behavior of f(r) at low rain rates. As the moment order q !
�1, equation (4.4) indicates that a(q) remains finite but
grows very rapidly, roughly like exp[(2c/p)exp(bjqj)]. This
implies that f(r) tends to zero as r! 0 faster than any power
law (but more slowly than say the lognormal pdf). In the
absence of a closed analytic form, this suggestion is
confirmed by a numerical exploration of the asymptotic
behavior of the pdf g(x) at large negative x. We find that as
x!�1, the left tail of the computed g(x) can be accurately
represented by a simple stretched exponential form g(x) �
exp[�const.jxjn]. The exponent n (which presumably
depends on the parameters c and b in an unknown way)
is greater than unity at all explored spatial scales, ranging
between the values 1.80 (L = 2 km) and 1.52 (L = 128 km)
for MIT Cruise 3. The faster-than-exponential decay of our
model pdf g(x) is clearly consistent with finiteness of the
moment function a(q). Over the limited range of x that is
experimentally accessible, g(x) is practically indistinguish-
able from the exponential decay of the test pdf g0(x)
especially for larger L and both fit the left tail of the sample
histograms. However, examination of the plots of the
quantiles x*(k) from sample x-data against ln k for small k
does not reveal a linear regime at any L. As we have already
noted earlier in this section, some of the disagreement
between the data and the theoretical model may be attrib-
utable to the inherent difficulty of making accurate radar
measurements of low rain rates. The empirical evidence for
our pdf is thus somewhat less compelling in the low rain
rate regime but we see no evidence of a power law tail at
low rain rates in the available data.
[40] A final point to be noted is a rationale for our

restriction to the subclass of ID distributions characterized
by equation (2.2). We have already seen that the large-q

behavior of a(q;L) strongly favors s2 = 0. The condition
H(u > 0) = 0 can conceivably be relaxed if warranted by
experimental data to include functions H(u) that fall off
sufficiently fast at large positive u (faster than exponential)
so that the contribution of the u > 0 portion of H(u) to the
integral representation of a(q;L) converges for large posi-
tive q to ensure the existence of the moments.

6. Conclusion

[41] To conclude, we have introduced a new probability
distribution belonging to the log-ID class that describes the
spatial statistics of area-averaged rain rate over a broad
range of length scales. In view of the Lévy representation
(2.1), such a distribution can be interpreted as coming from
a multiplicative random process that can be represented as a
limiting product of log-Poisson processes. Clarifying the
physical significance, if any, of such a representation is an
intriguing problem that deserves further investigation.
[42] The scale dependence of the theoretically computed

moments of the fitted distribution explains the observed
multiscaling of the rain rate field. This allows one to
extrapolate rainfall statistics down to sub-grid scales for
hydrological applications in a clearly defined and natural
manner. Our method of constructing the distribution relies
on moment estimation instead of following the traditional
route of fitting an empirically chosen form of the pdf
directly to the observed rain-rate histograms. Our choice
of the Lévy spectral function h(u) should be regarded only
as a first guess. Clearly a more systematic method of
exploring the entire family of distributions specified by this
function will be desirable. It is conceivable that a judicious
choice of h(u) will lead to a closer fit for the pdf, perhaps at
the cost of introducing more adjustable parameters. Since
the pdf is not available in closed analytic form, formulating
a systematic tractable method of parameter estimation
remains an open problem.
[43] It will also be of interest to explore whether the new

distribution can successfully describe the scale dependence
of statistics of time-averaged precipitation data derived from
rain gauge measurements, which probe the temporal statis-
tics at a point. A dense rain gauge network monitored over
an extended period of time provides a natural way to study
the statistics of time-averaged rain rate and preliminary
investigations with such data appear to be encouraging.
We hope to return to this problem elsewhere.

Appendix A: Lévy Stable Distributions

[44] As mentioned in the main text, the Lévy stable
distribution with a = 1, b = �1 constitute a limiting case
of the new distribution. In this Appendix we summarize, for
the readers’ convenience, some properties of the Lévy stable
distributions.
[45] The Lévy stable distributions Sa(c, b, k) are obtained

as a special case of (2.1) in whichs2 = 0 andH(u) has the form

HðuÞ ¼
C1juj�a ; u < 0

�C2u
�a ; u > 0

8<
: ðA1Þ
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where the constants C1, C2 satisfy C1, C2 � 0, C1 + C2 > 0.
They are related to the scale and asymmetry parameters c
and b through the formulas [Lukacs, 1970]

ca ¼ gðaÞðC1 þ C2Þ; b ¼ C2 � C1

C1 þ C2

: ðA2Þ

[46] The factor g(a) in general has somewhat complicated
dependence on the exponent a when a 6¼ 1 and has the value
g(1) = p/2. The CF of the family of distributions Sa(c, b, k)
has the form

lnfðtÞ ¼
ikt � cajtja½1� ibsgnðtÞ tanðpa=2Þ� ;a 6¼ 1

ikt � cjtj½1þ ibð2=pÞsgnðtÞ lnjtj� ;a ¼ 1

8<
:

ðA3Þ

The special case s2 6¼ 0, H(u) = 0 represents the familiar
normal distribution, which can also be regarded as the a = 2
limiting case of the Lévy stable distributions (the parameter
b is redundant in this case). The a = 1 stable distributions
are distinguished from the others by the fact that multi-
plication of the random variable by a constant results in
rescaling of the scale parameter c accompanied by a
nonlinear change of the shift parameter k, and have to be
treated separately. S1(c, 0, k) denotes the familiar Cauchy
distribution. The b = �1 case is of particular interest to us
and corresponds to the choice C2 = 0, C1 6¼ 0 above.
[47] We now list a few useful elementary properties of

these distributions. They follow straightforwardly from the
explicit formula for the CF. More details can be found in
[Samorodnitsky and Taqqu, 1994].
[48] Property A.1. Let X1 and X2 be two independent RVs

with Xi � Sa(ci,bi,ki) (i = 1, 2) (meaning Xi has the
distribution Sa(ci, bi, ki)). Then X1 + X2 � Sa(c, b, k) with

ca ¼ ca1 þ ca2 ;b ¼ b1c
a
1 þ b2c

a
2

ca1 þ ca2
;k ¼ k1 þ k2 ðA4Þ

[49] Property A.2. Let X � Sa(c, b, k) and let a be any
real constant. Then X + a � Sa(c, b, k + a).
[50] Property A.3. Let X � Sa(c, b, k) and let a be any

real constant 6¼0. Then

aX �
Saðjajc; sgnðaÞb; akÞ ;a 6¼ 1

S1ðjajc; sgnðaÞb; ak� ð2=pÞalnjajbÞ ;a ¼ 1

8<
: ðA5Þ

In particular, �X � Sa(c,�b,�k).
[51] The moment generating function a(q) = E[eqX] is a

quantity of interest to us. We have the following proposi-
tion:
[52] Proposition A.1. For a RV X � Sa(c,�1,0), the

function a(q) = E[eqX] (q real and >0) is given by

aðqÞ ¼
exp½�secðpa=2Þcaqa� ;a 6¼ 1

exp½ð2=pÞcq ln q� ;a ¼ 1

8<
: ðA6Þ

It is ill-defined when q < 0.

[53] Existence of the function a(q) is intimately connected
with the tail behavior of the distribution as expressed by the
next proposition:
[54] Proposition A.2. Let X � Sa(c, b, k) with 0 < a < 2.

Then the decay rate of the tail of the distribution is given by

limx!1xaPr X > xf g ¼ 1=2Aað1þ bÞca

limx!1xaPr X < �xf g ¼ 1=2Aað1� bÞca

8<
: ðA7Þ

where

Aa ¼
½Gð1� aÞcosðpa=2Þ��1 ;a 6¼ 1

2=p ;a ¼ 1

8<
: ðA8Þ

In the maximally asymmetric case b = �1, Proposition A.2
implies that the left tail (x ! �1) has power law behavior
while the right tail (x ! 1) tends to 0 faster than x�a.
Finding the actual fall-off rate is a somewhat complicated
problem [Zolotarev, 1986] and the final result is quoted in
[Samorodnitsky and Taqqu, 1994]. For the a = 1 case the
tail behavior is given by equation (2.6).

Appendix B: Moment Function of Log-ID
Distributions

[55] This Appendix is devoted to a description of some
relevant mathematical properties of the moment function
a(q;L) and its analytic continuation, namely the CF f(t;L).
For simplicity of notation we suppress the L-dependence
throughout this section.
[56] We consider the functions a(q) = E[eqX] and f(t) =

E[eitX] for an ID distribution satisfying the conditions (2.2).
The RV X is to be identified with the logarithmic rain rate
variable xL introduced in Section 2.2. First we derive the
integral representation of ln a(q) given in equation (2.16).
Starting from equation (2.3), namely

ln aðqÞ ¼ qkþ
Z1
0

1� e�qu � qu

1þ u2

� �
dhðuÞ

obtained from analytic continuation of the Lévy canonical
representation (2.1), we eliminate the location parameter k
using the condition a(1) = 1, leading to a simpler form

ln aðqÞ ¼
Z1
0

dhðuÞ½ð1� e�quÞ � qð1� e�uÞ�: ðB1Þ

We should emphasize that for the formal analytic continua-
tion to yield a well-defined a(q), it is necessary for the
integral to converge. When q > 0, the integral indeed
converges since h(u) is a non-increasing function of u on
(0,1). The convergence is not automatic when q < 0; to
guarantee convergence for all q, in addition it is necessary
that the function h(u) tend to zero faster than exponential
as u ! 1. Otherwise one is led to divergent negative
order moments of eX.
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[57] The expression (B1) can be simplified further. An
integration by parts (in the Lebesgue-Stieltjes sense) yields

ln aðqÞ ¼ ð1� qÞhðuÞ 1
0þ þ qe�uhðuÞ
�� ��1

0þ

� e�quhðuÞj10þþq

Z1
0

duhðuÞ e�u � e�qu½ �:

The boundary terms at the origin cancel identically even
when the function h(u) is singular there. An examination of
the first and second boundary terms at infinity show that they
vanish individually for all q by virtue of the boundary
conditions imposed on h(u) by the Lévy canonical representa-
tion. The third term at infinity also vanishes with the
additional condition that h(u) tends to zero faster than
exponential as u ! 1. Then only the last term survives
yielding

ln aðqÞ ¼ q

Z1
0

duhðuÞ e�u � e�qu½ �; ðB2Þ

which is equation (2.16). Since the spectral function h(u) is
non-increasing on (0,1) and tends to zero as u ! 1, it
follows that h(u) � 0 on (0,1). In the absence of the
additional fall-off condition on h(u), the third boundary term
at infinity would also survive and would in general diverge
when q < 0.
[58] It should be noted that h(u) is in general only

required to be left-continuous. This allows it to have finite
jump discontinuities at a countable set of points (atoms),
where the derivative h0(u) has a Dirac d-function singularity.
Each atom corresponds to a (suitably shifted and scaled)
Poisson component of X.
[59] Next, we explore the analytic behavior of the func-

tion a(q) defined by equation (B2) which is conveniently
rewritten in the form

LðqÞ � q�1 ln aðqÞ ¼
Z1
0

duhðuÞ e�u � e�qu½ �: ðB3Þ

Clearly, L(1) = 0 and L(0) < 0. Differentiating under the
integral sign we compute the successive derivatives of the
function L(q) with respect to moment order q:

L0ðqÞ ¼
Z1
0

du uhðuÞe�qu;

L00ðqÞ ¼ �
Z1
0

du u2hðuÞe�qu;

. . .

LðmÞðqÞ ¼ ð�1Þmþ1

Z1
0

du umhðuÞe�qu;

ðB4Þ

and so on. Since the function h(u) satisfies h(u) � 0 on
(0,1), it follows that L(q) is completely monotone, i.e., the
successive derivatives of L(q) alternate in sign: L0(q) > 0,
L00(q) < 0, etc. The Taylor series expansion of the function
L(q) at q = 0, L(q) = Sn=1

1 (kn/n!)q
n�1 (if it exists) yields the

successive cumulants kn of the distribution of X. Since

a(q) = E[eqX], equating like powers of q yields k1 = E[X],
k2 = E[X2] � E2[X] � Var[X] and so on.
[60] As an example of application of equation (B2) we

consider the maximally asymmetric log-Lévy (b = �1)
distribution. This is characterized by the choice h(u) =
C/ua, where the stability index a lies in the range 0 < a < 2.
Direct computation yields, for q > 0,

ln aðqÞ ¼ Cq

Z1
0

du u�a e�u � e�qu½ �

¼ Cðq� qaÞ
Z1
0

du u�ae�u

¼ CGð1� aÞðq� qaÞ

The special case a = 1 can be easily accommodated by a
limiting procedure:

ln aðqÞ ¼ CLima!1Gð1� aÞðq� qaÞ

¼ CLima!1Gð2� aÞ ðq� qaÞ
1� a

¼ CLima!1

ðq� qaÞ
1� a

¼ Cq ln q

in agreement with Proposition A.1 above (up to a nontrivial
centering term linear in q when a 6¼ 1). The computation
fails when q < 0 since the original integral diverges.
Nonexistence of the negative order moments of eX is con-
sistent with the distribution of X having a slowly decaying
power law tail along the negative axis.
[61] Explicit computation of the function L(q) at various

q from the moments of the precipitation data suggest that
one might try to represent it as a Taylor series at q = 0 in the
form (taking into account the fact that L(q) has a simple
zero at q = 1):

LðqÞ ¼ ðq� 1Þ c0 þ c1qþ c2q
2 þ c3q

3 þ . . .
� �

ðB5Þ

These coefficients are simply certain linear combinations of
the cumulants kn introduced above: c0 = �k1, c0 � c1 =
1=2k2, etc. They can be explicitly calculated for a specified
Lévy spectral function h(u). The inequalities (�1)mkm > 0
(m = 1,2, . . .) then imply that the coefficients c0, c1, c2 . . .
must satisfy the sequence of inequalities c0 > 0, c1 < c0, c2 >
c1 and so on.
[62] For the new distribution defined by equation (4.3)

the integral (B3) converges for all q, both positive and
negative. We have, when q > 0,

LðqÞ ¼ ð2c=pÞ
Zb

0

du u�1 e�u � e�qu½ �

¼ ð2c=pÞð
Z1
0

�
Z1
b

Þ du u�1 e�u � e�qu½ �

¼ ð2c=pÞ ln qþ E1ðbqÞ � E1ðbÞ½ �
¼ ð2c=pÞ E1ðzÞ þ ln z½ �bqb ðB6Þ
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where E1(z) =
R
z
1 dt(e�t/t) is one of the exponential integral

functions of a complex variable z [Abramowitz and Stegun,
1972]. E1(z) has a logarithmic branch point at the origin and
is defined as an analytic function in the complex z–plane
(jarg zj < p) cut along the negative real axis. It can be
represented by a series expansion

E1ðzÞ ¼ �g � ln z�
X1

n¼1

ð�zÞn

n: n!
ð arg zj j 6¼ pÞ

where g is Euler’s constant. The combination Ein(z)� E1(z) +
g + ln z which appears in the final step of equation (B6), is
thus analytic in the entire complex z-plane since the branch
point singularities of the individual terms cancel each other
out. This allows one to analytically extend L(q) to q < 0 as
follows (even though the above formal derivation fails). One
defines the function Ei(x) of a real variable x as [Abramowitz
and Stegun, 1972]

EiðxÞ ¼

�
Z1
�x

dtðe�t=tÞ ¼ �E1ð�xÞ ðx < 0Þ

�P

Z1
�x

dtðe�t=tÞ ðx > 0Þ

8>>>>>><
>>>>>>:

Here P denotes the integral defined by the Cauchy principal
value prescription at the origin where the integrand
encounters a singularity. [This is in complete analogy with
the elementary results ln x = �

R
x
1 dt/t (x > 0) and ln jxj =

�P
R
x
1 dt/t (x < 0)]. Like the logarithmic function, E1(z) has a

finite discontinuity 2pi across the branch cut along the
negative real axis with the assigned values

E1ð�x� i0Þ ¼ �EiðxÞ � pi

so that

�EiðxÞ ¼ 1

2
E1ð�xþ i0Þ þ E1ð�x� i0Þ½ � ðx > 0Þ

The function Ei(x) can then be expressed in the form

EiðxÞ ¼
g þ ln xjj � Einð�xÞ ðx < 0Þ

g þ ln x� Einð�xÞ ðx > 0Þ

8<
:

Returning to the evaluation of L(q), we can therefore
combine both cases q > 0 and q < 0 into a single expression:

LðqÞ ¼ ð2c=pÞ ln qjj � Eið�bqÞ þ Eið�bÞ½ � ðB7Þ

which yields equation (4.4). Its derivatives are expressible in
terms of elementary functions: L0(q) = (2c/p)(1� e�bq)/q and
so on. Truncation of the Lévy spectral integral has the effect
of rendering all the moments of eX finite and well defined.
[63] The CF of the new distribution is given by the

integral representation

lnfðtÞ ¼ it

Z1
0

duhðuÞ e�u � e�itu
� �

¼ ð2i=pÞct
Zb

0

du u�1 e�u � e�itu
� �

:

Explicit evaluation yields equation (4.6):

lnfðtÞ ¼ ð2c=pÞ � tj jSiðb tj jÞf þ it ln tj j � Ciðb tj jÞ � E1ðbÞ½ �g

where Si(z) =
R
0
z dt (sin t/t) and Ci(z) = �

R
z
1 dt (cos t/t)

denote the sine and cosine integral functions respectively
[Abramowitz and Stegun, 1972] and are related to the
exponential integral function E1(z) through the formula

E1ðizÞ ¼ �CiðzÞ þ iSiðzÞ � ip=2

While Si(z) is an analytic function, Ci(z) inherits a
logarithmic branch point singularity at the origin from
E1(z) and can be expressed in the form

CiðzÞ ¼ g þ lnz� CinðzÞ

where Cin(z) =
R
0
z dt (1 � cos t)/t is an entire function of z in

the complex plane.

Appendix C: Computation of the Function
g(xL;c(L),b(L))

[64] In this Appendix we outline some of the details
involved in the computation of the pdf of the logarithmic
rain rate variable xL. As before we suppress the L-depen-
dence throughout this Appendix.
[65] The pdf g(x; c, b) is computed by numerically eval-

uating the Fourier transform integral

gðx; c; bÞ ¼ 1

2p

Z1
�1

dte�itxfðtÞ

In view of the reality condition f(�t) = f(t), it can be
expressed in the form

gðx; c; bÞ ¼ 1

p

Z1
0

dt exp �ð2c=pÞt SiðbtÞ½ �cos xt �Qðt; c; bÞ½ � ðC1Þ

where

Qðt; c; bÞ ¼ ð2c=pÞt ln t � CiðbtÞ � E1ðbÞ½ � ðC2Þ

Note that the functions Ci(z) and Si(z) appearing in the
integrand in (C1) need to be evaluated only for positive
arguments. The necessary numerical routine is provided by
Press et al. [1995].
[66] The Fourier cosine integral (C1) is computed for a

specified value of c and b by utilizing a numerical imple-
mentation based on Fast Fourier Transform (FFT) algorithm
as described by Press et al. [1995]. The routine was tested
with several known examples – the normal, the Cauchy and
the S1(c,�1,0) Lévy stable distributions. In the first two
cases simple analytic results are available. In the last case
the computed pdf was checked against that obtained from
an alternative integral representation of the pdf of stable
distributions due to Nolan [1997], which has the numerical
advantage of having a non-oscillatory integrand. For the
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S1(1, b, 0) distribution Nolan’s representation of the pdf
reads (in the case b 6¼ 0)

vðx; 1; bÞ ¼ 1

2 bjj e�px=2b
Zp=2

�p=2

V ðq; 1; bÞ

� exp �e�px=2bV ðq; 1;bÞ
h i

dq

where

V ðq; 1; bÞ ¼ 2

p

p=2 þ bqð Þ
cos q

exp
1

b
p
2
þ bq

� �
tan q

� 	

[67] No explicit analytical results are available for check-
ing the computation of the new pdf g(x;c,b). However, a
powerful consistency check is provided by the fact that
g(x;c,b) satisfies the scaling identity

gðlx;lc;lbÞ ¼ l�1gðxþ x; c; bÞ

with a shift x given by

x ¼ c E1ðlbÞ � E1ðbÞ � lnl½ �

The equality was verified by explicit computation from our
numerical algorithm.
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