Climate Publications

Varnai, T., and A. Marshak, 2001: Statistical analysis of the uncertainties in cloud optical depth retrievals caused by three-dimensional radiative effects. J. Atmos. Sci., 58, 1540-1548.

Abstract
This paper presents a simple yet general approach to estimate the uncertainties that arise in satellite retrievals of cloud optical depth when the retrievals use one-dimensional radiative transfer theory for heterogeneous clouds that have variations in all three dimensions. For the first time, preliminary error bounds are set to estimate the uncertainty of cloud optical depth retrievals. These estimates can help us better understand the nature of uncertainties that three-dimensional effects can introduce into retrievals of this important product of the MODIS instrument. The probability distribution of resulting retrieval errors is examined through theoretical simulations of shortwave cloud reflection for a set of cloud fields that represent the variability of stratocumulus clouds. The results are used to illustrate how retrieval uncertainties change with observable and known parameters, such as solar elevation or cloud brightness. Furthermore, the results indicate that a tendency observed in an earlier study (clouds appearing thicker for oblique sun) is indeed caused by three-dimensional radiative effects.
Download Full-Text (PDF)
 
 
Updated:
September 16, 2008 in Publications
Site Maintained By: Dr. William Ridgway
Responsible NASA Official: Dr. Robert Cahalan
 
Return to Climate Home NASA Homepage NASA Goddard Space Flight Center Homepage Lab for Atmospheres Homepage