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ABSTRACT

This paper presents a simple yet general approach to estimate the uncertainties that arise in satellite retrievals
of cloud optical depth when the retrievals use one-dimensional radiative transfer theory for heterogeneous clouds
that have variations in all three dimensions. For the first time, preliminary error bounds are set to estimate the
uncertainty of cloud optical depth retrievals. These estimates can help us better understand the nature of un-
certainties that three-dimensional effects can introduce into retrievals of this important product of the Moderate
Resolution Imaging Spectroradiometer instrument. The probability distribution of resulting retrieval errors is
examined through theoretical simulations of shortwave cloud reflection for a set of cloud fields that represent
the variability of stratocumulus clouds. The results are used to illustrate how retrieval uncertainties change with
observable and known parameters, such as solar elevation or cloud brightness. Furthermore, the results indicate
that a tendency observed in an earlier study—clouds appearing thicker for oblique sun—is indeed caused by
three-dimensional radiative effects.

1. Introduction

Satellite measurements of the solar radiation reflected
by clouds are often used to retrieve cloud properties
such as the amount of liquid water in the clouds and
the size of cloud droplets. Current retrieval algorithms
are based on one-dimensional (1D) radiative transfer
theory, which assumes that there is a one-to-one rela-
tionship between cloud reflective and physical proper-
ties. Common everyday experience, however, tells us
that clouds often feature fully 3D structures with strong
variabilities in both horizontal and vertical directions.
Radiative interactions among nearby elements of het-
erogeneous clouds can upset the one-to-one relation-
ships between cloud reflection and physical properties,
so any measured brightness can be associated with a
variety of cloud properties. Current retrievals avoid po-
tential ambiguities by ignoring 3D effects and using the
clear relationships of 1D radiative transfer instead—but
as numerous theoretical studies (e.g., Davies 1984; Ko-
bayashi 1993; Barker and Liu 1995) and several ob-
servational results (e.g., Loeb and Davies 1996; Loeb
and Coakley 1998) indicate, this can introduce signif-
icant errors into the retrievals. A different approach to
resolving retrieval ambiguities is to determine not a sin-
gle best-guess value, but rather, the statistical parameters
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of the distribution of possible values. This approach has
been used recently to estimate leaf area index and the
photosynthetically active radiation from space (Kny-
azikhin et al. 1998; Diner et al. 1999). The current paper
examines this statistical approach for cloud optical
thickness retrievals, focusing on the uncertainties that
horizontal cloud variability introduces into retrievals
based on 1D theory. This study thereby complements
earlier studies that examined the influence of vertical
cloud heterogeneities (e.g., Li et al. 1994; Platnick
2000).

Understanding the effects of using 1D radiative trans-
fer theory is especially important, because recent im-
provements in measurement accuracy can lead to com-
parable improvements in retrieval accuracy only if the
retrievals account for all relevant physical processes
(Fig. 1). However, while the possibility that 3D effects
can cause significant retrieval errors is widely accepted,
the magnitude of these errors in various situations is yet
to be determined. This paper presents a first attempt
toward this goal: it describes a simple approach to as-
sessing the influence of horizontal cloud variability on
the operational processing (Nakajima and King 1990;
King et al. 1997) of measurements by the Moderate
Resolution Imaging Spectroradiometer (MODIS) in-
strument on board the TERRA satellite. In particular,
the study examines the probability distribution of re-
trieval errors for stratocumulus cloud optical depth and
describes a simple technique to set error bounds for the
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FIG. 1. Rms error of optical depth retrievals. The dashed line shows
the errors when all the relevant physical processes are fully repre-
sented in retrievals based on 1D radiative transfer theory (1D real
clouds). Note that the rms tends to zero as the observational accuracy
increases, indicating that this situation is a ‘‘well-posed’’ problem.
In contrast, the solid line corresponds to 3D real clouds, and the rms
does not tend to zero even for perfectly accurate observations. This
is an ‘‘ill-posed’’ problem (Twomey 1977). The figure is based on a
sample set of radiative transfer calculations carried out at 250-m
resolution for 608 solar zenith angle.

FIG. 2. Example for estimating the uncertainty of optical depth (t)
retrievals at 1-km resolution. The error bars indicate the estimated
standard deviation of retrieval errors, which, assuming a Gaussian
frequency distribution of retrieval errors, contain the true t value with
a 68% probability. (In Gaussian distributions, the confidence level
corresponding to one standard deviation is around 68%.) The solar
zenith angle is 608, and the sun is on the left side.

MODIS retrievals. Figure 2 illustrates these error
bounds and shows that while such error bounds cannot
determine the retrieval errors for individual pixels (e.g.,
they do not show that the optical thickness is often
overestimated on the sunlit slopes on the left side of
cloud bumps and underestimated on the shadowy slopes
on the right side), they can give statistically represen-
tative estimates on the magnitude of the errors.

The outline of this paper is as follows. First, section
2 describes the test dataset used in the proposed as-
sessment algorithm. Then, section 3 outlines the algo-
rithm’s basic approach and also uses radiative transfer
simulation results to highlight various features of the
retrieval errors. Finally, section 4 summarizes the pa-
per’s main conclusions and outlines some possible di-
rections for future work.

2. Test dataset

Since the proposed technique is based on a clima-
tology of 3D effects that are obtained through radiative
transfer simulations, it is very important to ensure that
the simulations be representative of the processes that
occur in the real atmosphere. The key issue is not wheth-
er 3D radiative processes can be calculated accurately,
but whether the set of examined clouds is truly repre-
sentative of the real clouds observed by satellites.

The biggest challenge in building a climatologically
representative set of 3D cloud fields is that there are no
suitable measurements of full 3D cloud structures. In
situ aircraft measurements give only 1D transects, and
passive measurements of the radiation leaving a cloud
field cannot give detailed information on internal cloud

structure. In addition, these passive measurements can
be affected by the very same 3D effects we are trying
to understand. Although in principle, active sensors (i.e.,
lidars and cloud radars) could determine 3D cloud struc-
tures, current systems give information only in the ver-
tical and one horizontal direction, leaving cloud vari-
ability in the other horizontal direction unknown. Evans
et al. (2000) presented a first attempt to overcome this
limitation by developing a stochastic cloud model to
extend the measured cloud fields to the unknown hor-
izontal dimension.

The present study examines the statistical properties
of 3D cloud fields that were generated by three different
stochastic cloud models: the bounded cascades (Cahalan
et al. 1994; Marshak et al. 1994, 1995), the fractionally
integrated cascades (Schertzer and Lovejoy 1987), and
filtering Gaussian noise in Fourier space with a power
law (Evans 1993). (After the filtering, this third model
transforms the field back to physical space and resam-
ples it to obtain a scene with a Gamma or lognormal
probability distribution function that has the desired pa-
rameters.)

The main common property of the above cloud mod-
els is scale invariance or scaling that has been system-
atically observed in real clouds (e.g., Cahalan and Snid-
er 1989; Davis et al. 1994). The simple scaling means
that the average change in cloud properties (such as
optical depth t) over distances Dx and lDx (with l
being any positive number) can be related through (e.g.,
Vicsek 1989, p. 33)

H^ | t(x) 2 t(x 1 lDx) | & ; l ^ | t(x) 2 t(x 1 Dx) | &,
(1)

where the ; sign means statistical equality and ^ & in-
dicates ensemble averaging over many realizations. For
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TABLE 1. Ranges considered for various parameters of cloud
optical thickness variability.

Parameter H
Probability of partial cloud cover-

age
Cloud fraction for broken cloud

scenes
Scene-averaged optical thickness

0.25–0.5

0.5

$0.7
5.0–20.0

y 5 (Mean/St dev)2 overcast
scenes
broken cloud scenes

2.0–25.0
0.5–4.0

Shape of optical thickness histo-
gram

Lognormal for overcast
scenes, modified Gamma
for broken cloud scenes

stochastically continuous models H is required to be
positive (e.g., Papoulis 1965, p. 312), and typical H
values observed for the liquid water content of strato-
cumulus clouds vary between 0.25 and 0.4 (Marshak et
al. 1997).

Broken cloud fields were simulated either by a cutting
technique (Barker and Davies 1992; Marshak et al.
1998) or by the resampling technique where all values
are transformed to obtain the desired histogram. We
should note that the simulated broken cloud fields are
no longer exactly scale invariant, and they follow the
power-law scaling of Eq. (1) only approximately.

The models’ input parameters are chosen such that
they represent the observed average characteristics and
variability of cloud properties. Because the main goal
for this study was to generate a set of scenes that seeks
to cover the natural variability of stratocumulus cloud
properties, the clouds range from thin to thick, from
almost homogeneous to very heterogeneous, and from
overcast to partially cloudy. All results presented in this
paper are based on simulations for at least 300 scenes
that each cover (51.2 km)2 areas at 50-m resolution
(pixel size). Each scene was generated using a different
random number sequence and a different set of cloud
variability parameters. For optical thickness fields, these
parameters are the mean, the standard deviation, the
scaling parameter H, and the cloud fraction. These pa-
rameters were chosen for each scene according to a
random uniform distribution that is based on the range
of variability reported in Barker et al. (1996) (see Table
1).

Once the optical thickness was obtained by a sto-
chastic cloud model, the complete cloud structure was
determined by assuming a flat cloud base and vertically
constant volume extinction coefficient, and by calcu-
lating the geometrical cloud thickness (Dz) of each pixel
according to the empirical formula that Minnis et al.
(1992) established for stratocumulus clouds:

Dz 5 0.08t 2 0.04.

In order to represent cases where the t and Dz fields
are not well correlated, in half of the overcast scenes
the t field was regenerated after having obtained the Dz
field, using still the same parameters but a different
random number sequence.

Backward Monte Carlo simulations then calculated
the reflection of 10 randomly chosen pixels in each
scene—and so the presented results are all based on
simulations for at least 3000 pixels.

Once a comprehensive dataset of such scenes is put
together, realistic statistics of 3D radiative effects can
be calculated by weighting data points from each scene
according to how often the scene’s parameters can be
observed in real clouds. (As a result, data from scenes
resembling typical clouds will receive large weights,
whereas data from scenes similar to rare clouds will
carry much less weight in the statistical calculations.)
For an easier illustration of the proposed technique, all

data points in this paper are displayed with an equal
weight and are accordingly given equal weight in the
statistical calculations. Sensitivity studies (not shown)
indicated that while applying realistic weighting
schemes (e.g., assigning less weight to increasingly het-
erogeneous scenes) can change the mean and standard
deviation of retrieval errors, it does not modify the qual-
itative features discussed in this paper. In the future, one
can calculate climatologically representative statistics
on retrieval errors for several specific locations [such
as the Atmospheric Radiation Measurement (ARM) pro-
gram site in central Oklahoma and in the western Pa-
cific] by comparing the variability of simulated scenes
to variabilities observed in cloud radar measurements.

The presented simulations assume nonabsorbing
cloud droplets with a C.1 phase function and do not
consider the effects of cloud-free air and the underlying
surface. The cloud fields are specified at a 50-m reso-
lution, below which scale the fields are assumed to be
homogeneous. The results of Marshak et al. (1998) show
that this assumption does not significantly change the
calculated cloud radiative properties. Most simulations
presented in this paper, however, obtained cloud reflec-
tion for (250 m)2 pixels, thereby matching the resolution
of the MODIS instrument. Except when noted other-
wise, all presented results are for 608 solar zenith angle
and nadir view. The calculated reflectance values are
affected by random Monte Carlo simulation errors less
than 0.01, which could be viewed to be similar to var-
ious random uncertainties in the interpretation of sat-
ellite measurements. However, the paper does not spe-
cifically consider factors other than horizontal cloud het-
erogeneity that could affect the accuracy of optical
thickness retrievals (e.g., calibration errors). Such fac-
tors are discussed in Pincus et al. (1995).

3. Estimation of retrieval uncertainties

a. Magnitude of retrieval errors

As mentioned in the introduction, the main goal of
the presented technique is to estimate the influence of
3D radiative effects on MODIS optical depth retrievals
and to set error bounds on the retrieval results accord-
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FIG. 3. Comparison of 1D and 3D nadir reflectivities over (250
m)2 pixels for 608 solar zenith angle. The interval between the two
dashed lines schematically illustrates the accuracy of observations.

FIG. 4. Dependence of the standard deviation of retrieval errors
(s) of cloud optical thickness on cloud reflectivity. The bold curve
shows a polynomial fit of the actual results.

FIG. 5. Resolution dependence of retrieval errors. The mean error
(m) is defined simply as m 5 1/N «i, where the individual pixelNS i51

retrieval error «i can be either positive or negative, and s is defined
by Eq. (2).

ingly. The algorithm proposed to set the error bounds
is illustrated in Fig. 3, which displays simulation results
for a wide range of clouds. The operational MODIS
algorithm works by determining which cloud optical
thickness can yield the measured reflectivity value ac-
cording to 1D radiative transfer theory, that is, according
to the solid line in Fig. 3. The proposed assessment
technique then estimates the retrieval uncertainty by
considering a narrow brightness interval around the ob-
served radiance (which represents the measurement ac-
curacy and is indicated by horizontal dashed lines in the
figure) and calculating how spread out the true optical
thickness values yielding brightnesses inside the narrow
interval are in the 3D simulations.

Figure 4 shows that generally, the standard deviation
(s) of the t-retrieval errors («)—defined as

N1
2s 5 (« 2 ^«&) , (2)O i!N 2 1 i51

with N being the number of pixels—increases with cloud
reflectivity. This tendency is consistent with the findings
of Pincus et al. (1995), who showed that retrieval errors
caused by factors other than 3D effects increase with
cloud brightness as well. The initial increase seems fair-
ly intuitive, because the influence of 3D effects (which
push the individual points away from the 1D curve)
increases with the original 1D brightness it modifies. At
larger brightnesses the increase accelerates because of
the flattening of the 1D curve in Fig. 3: Since the bright-
ness hardly changes with t for thick areas, a given large
brightness can occur for a wide range of t values. This
can be interpreted as a sign that at bright (i.e., thick)
regions, the optical thickness and reflectivity (I) become
decoupled from each other, and the brightness is deter-
mined not as much by t, as by the local geometry that
creates 3D effects (e.g., whether the examined slope tilts
toward or away from the sun) (Várnai 2000). Finally,
the spread of retrieval errors remains fairly constant at

the brightest regions, because the 1D optical thickness
retrievals are constrained by the arbitrary limit of not
retrieving optical thicknesses greater than 100. Thus,
further increases in cloud brightness do not lead to larger
retrieval errors.

b. Magnitude and sign of retrieval errors

In addition to cloud brightness, retrieval uncertainties
also depend on other factors, such as the sun-view ge-
ometry and the spatial resolution of reflectivity mea-
surements. For example, Fig. 5 shows that, in agreement
with the findings of earlier studies (e.g., Chambers et
al. 1997; Davis et al. 1997; Zuidema and Evans 1998),
the influence of 3D effects decreases with coarsening
resolution, and at really coarse resolutions a 1D het-
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FIG. 6. Mean and standard deviation of retrieval errors for various
solar zenith angles at 250-m resolution.

FIG. 7. The t-dependence of retrieval uncertainties for various
solar zenith angles.

FIG. 8. Mean of true optical thickness in heterogeneous scenes
(3D), and the value retrieved using one-dimensional theory (1D). The
vertical dashed line represents the maximum nadir reflectance value
that is possible in 1D radiative transfer. Note that this maximum nadir
reflectance value (obtained for an infinitely thick cloud) is less than
the maximum possible albedo of 1, because most of the reflected
radiation goes in forward scattering directions, and relatively less
goes toward the zenith.

erogeneity effect called the plane-parallel bias (Cahalan
et al. 1994) becomes dominant. As a result, retrievals
can be expected to be most accurate at intermediate
resolutions in the order of a few hundred meters to a
few kilometers (Davis et al. 1997). However, as Fig. 6
shows, retrieval errors due to 3D effects increase sharply
for more oblique illuminations. This tendency causes
the overestimations that are due to 3D effects to dom-
inate over the underestimations that are due to the plane-
parallel bias, even at resolutions as coarse as 30 km
(Loeb and Davies 1996; Loeb et al. 1997; Varnai and
Davies 1999).

In the range of optical thicknesses where the retrievals
do not have an overall bias, the relative error of indi-
vidual pixel retrievals is fairly steady for a given solar
zenith angle (Fig. 7). This result suggests that in this
range, the statistical expectation of the retrieval uncer-
tainties (Dt) may be parameterized in a single linear
form such as

1 SZA
Dt ø t 3 3 , (3)

3 1008

where SZA is the solar zenith angle.
The estimates mean that the correct value is inside

the t 6 Dt interval with 68% probability. For example,
this formula estimates that for 308 solar zenith angle
and t 5 20, the uncertainty can be expected to be around
2. We should note, however, that this simple form may
need adjustments for situations not considered in this
study, such as different solar and viewing angles and
spatial resolutions.

On the topic of systematic retrieval biases, Fig. 8
shows the relationship between the retrieved and the
true mean optical thickness of all pixels that have a
certain nadir reflectivity in 3D simulations

t (I) 5 E(t | reflectivity 5 I),mean (4)

where E is the mathematical expectation of the optical
thickness retrieved using 1D theory [t1D(I)]. The figure

suggests that 1D retrievals give unbiased results for pix-
els that are not too bright. For brighter areas, however,
using 1D theory results in an overestimation of the true
mean optical thickness: when 3D effects enhance the
brightness of thick slopes tilted toward the sun, 1D re-
trievals do not know about the tilting and must therefore
assume very large optical thicknesses to account for the
large brightness values. The fact that overestimations
increase with cloud brightness is consistent with the
observations of Loeb and Davies (1996), and further
supports their assertion that the biases they observed
are indeed caused by 3D radiative effects.

The fact that t retrievals based on single reflectivity
values cannot yield accurate results for thick or bright
areas is also illustrated in Fig. 9. The figure shows that
the

I (t) 5 E(I | optical depth 5 t)mean 3D (5)
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FIG. 9. Comparison of the Imean(t) and the tmean(I) curves obtained
from averaging over all available pixels in 3D simulations for 608
solar zenith angle and 250-m resolution.

FIG. 10. Histogram of true optical thickness values for various
reflectivity intervals.

FIG. 11. Absolute values of error bounds for 95% (‘‘51.96 s,’’
full circles), and 68% (’’51 s,’’ empty squares) confidence levels.

and the tmean(I) curves diverge for t . 25 (i.e., I .
0.65), indicating that the mean t–I relationship becomes
nonreversible (Zhang et al. 2000).

In addition to considering the basic statistics of the
true t distribution as a function of cloud brightness, one
can also examine the full t histograms for fixed I values
(Fig. 10). [Similar histograms of leaf area index values
can be found in Knyazikhin et al. (1998).] The histo-
grams clearly illustrate the tendency shown in Fig. 4:
that the brighter a pixel is, the wider the histogram of
possible ttrue values is, and so the harder it is to estimate
the pixel’s true optical depth. Figure 10 also shows that
the histograms can be quite asymmetric, that is, under-
estimations and overestimations follow different prob-
ability distributions. This asymmetry is especially in-
teresting for dark pixels (I 5 0.3), where the histogram’s
tail on the left side is almost completely missing. (This
tail contains pixels that are extra bright because they
are on a sunlit slope.) Naturally, any tail on the left is
limited by the fact that t cannot go below zero. However,
Fig. 10 shows that the histogram does not reach this
limit, which means that another factor must restrict the
tail on the left side well above the zero value. The fact
that the tail on the left is smaller for less bright pixels
can be explained as follows. In bright (and generally,
thick) areas, pixels can gain significant extra illumina-
tion if the pixel in front is thinner, since this allows
more incoming radiation to reach their sides. In darker
(and generally thinner) areas, however, having an even
thinner pixel in front does not cause much brightening,
because the pixel in front would allow plenty sunlight
to reach the side of our pixel even if it was only as thin
as our pixel, and not even thinner.

The main practical implication of the resulting skew-
ness is that since the distribution of retrieval errors is
asymmetric, optimal error bounds should be set differ-
ently for underestimations and overestimations. Such
asymmetric error bounds were calculated following
standard statistical techniques (e.g., Cowan 1998, p.

119). These empirical error bounds were set to ensure
that the error for a randomly selected pixel lies inside
the bounds with a 95% or 68% probability (which we
denote by a), and lies outside the bounds on either side
with a probability of (1 2 a)/2 (50.025 and 0.16 for
a 5 0.95 and 0.68, respectively). In practice, the bounds
for underestimation (Bu) and overestimations (Bo) were
determined empirically from the equations

Bu 1 2 a
P(Dt) d(Dt) 5 and (6)E 2

2`

` 1 2 a
P(Dt) d(Dt) 5 , (7)E 2Bo

where P is the uncertainty probability density function.
Figure 11 shows the error bounds calculated empir-

ically for underestimations and overestimations, as well
as the bounds estimated using the Gaussian assumption.
The figure indicates that often there are significant dif-
ferences between the three error bounds. (The saturation
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FIG. 12. Error estimates for a (35 km)2 field of marine stratocumulus
clouds: (a) original reflectivity field measured at 50-m resolution, and
(b) estimated error bounds for optical thickness retrievals carried out
at 1-km resolution. The error bonds were set to contain the actual
retrieval errors with a 68% probability. Using 1D retrievals at 1 km
resolution, the mean and the standard deviation of the optical thick-
ness field are estimated to be 12.4 and 4.4, respectively.

of overestimation error bounds can be attributed to the
fact that retrievals are limited optical thicknesses smaller
than 100.) The figure also shows that the underesti-
mation error bounds drop to zero at bright areas, which
indicates that underestimations become very rare in
these areas.

4. Conclusions

This paper presented results from a study that seeks
to estimate the uncertainties that arise in satellite re-
trievals of cloud optical depth because retrievals are
based on 1D radiative transfer theory and thus do not
consider the effects of horizontal cloud variability. As
a first step toward this goal, the paper examined the
probability distribution of retrieval errors due to het-
erogeneity effects, as obtained from radiative transfer
simulations over a wide variety of heterogeneous scenes.
The examined scenes were generated by three different
stochastic cloud models such that they represent the
range of variability observed in stratocumulus clouds.
Based on the simulated scenes, the rms error of optical
thickness retrievals for (1 km)2 pixels were estimated
to be in the range of 3–5 for a solar zenith angle of 608.
The estimated error distributions were used to develop
a simple technique that can set error bounds for oper-
ational cloud property retrievals. Figure 12 illustrates
an example of error bounds estimated by applying the
technique to MODIS Airborne Simulator (King et al.
1996) measurements.

The simulation results indicated that the retrieval un-
certainties due to 3D radiative effects tend to increase
with cloud brightness and solar zenith angle. For ex-
ample, retrievals for 608 solar zenith angle gave unbi-
ased overall averages for areas with nadir reflectivities
less than 0.6, but the average optical thickness was in-
creasingly overestimated for brighter regions. This be-
havior is consistent with the observations of Loeb and
Davies (1996) and provides a further indication that the
biases they observed were indeed caused by 3D radi-
ative effects.

The results also suggested that when no overall bias
affected the retrievals, simple linear parameterizations
can give rough first estimates of the retrieval uncer-
tainties.

Although the results showed that retrievals over rel-
atively dark areas can be expected to be free of overall
biases, the results also indicated that these areas can still
be affected by another complication: that retrieval errors
have skewed probability distributions. This finding is
important when the uncertainty is characterized by error
bounds for specific confidence levels, since it shows that
optimal error-bounds should be set separately for un-
derestimations and overestimations.

While the scenes used in the calculations cover a wide
range of observed cloud field properties, they cannot be
considered climatologically representative, since it is
not known which scenes are important because they

resemble real clouds that occur frequently, and which
scenes are less important because they resemble very
rare clouds. Thus, the next step in quantitatively esti-
mating the uncertainties of satellite retrievals will be for
us to assign weights to the simulated scenes by com-
paring their structure to radar measurements over the
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ARM site in central Oklahoma and in the Western Pa-
cific. This will enable us to refine the initial estimates
of satellite retrieval uncertainty values that were pre-
sented in this paper.

Finally, the presented approach can be extended so
that it estimates retrieval uncertainties by considering
not only the brightness of each pixel, but also the spatial,
angular, and spectral variability of cloud reflection. For
this, one can examine how the additional information
can enhance the reliability of error estimates for various
sun-view geometries and cloud types. Our current ef-
forts seek to determine whether the influence of 3D
effects can be estimated using the phenomenon that 3D
effects enhance local brightness variability more strong-
ly at absorbing than at non-absorbing wavelengths (Or-
eopoulos et al. 2000). Promising preliminary results
suggest that the reliability of estimated error bounds can
be greatly improved by comparing the local variabilities
measured at 0.86 mm and at the new MODIS wavelength
at 2.13 mm. In addition, the early results also suggest
that a simple test of local gradient values (i.e., whether
a pixel is on a sunlit or shadowy slope) can predict
whether the retrievals for specific pixels are affected by
overestimation or underestimation.
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