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Abstract 

The effect of horizontal photon transport within real-world clouds can be of consequence to remote 
sensing problems based on plane-parallel cloud models. In this paper, analytic approximations for the 
root-mean-square horizontal displacement of reflected and transmitted photons, relative to the incident 
cloud-top location, are derived for plane-parallel cloud layers. With anisotropic scattering, separate approxi- 
mations are needed depending on the order of scattering. When sufficient numbers of photon scatterings 
occur, an approximation based on random walk theory (photon diffusion) is applicable; when scattering 
numbers are relatively small, a modification to the diffusion result is used. The resulting formulae are 
a function of the average number of photon scatterings, as well as particle asymmetry parameter and single 
scattering albedo. In turn, the average number of scatterings from plane-parallel, vertically inhomogeneous 
cloud layers can be determined from efficient adding/doubling radiative transfer procedures. The transport 
approximations are applied to liquid water clouds for typical remote sensing solar spectral bands, involving 
both conservative and non-conservative scattering. Results compare well with Monte Carlo calculations. 
Though the emphasis is on horizontal photon transport in terrestrial clouds, the derived approximations are 
applicable to general anisotropic, multiple scattering, plane-parallel radiative transfer problems. Approxima- 
tions useful for three-dimensional transport are also given. The complete horizontal transport probability 
distribution can be described with an analytic distribution specified by the root-mean-square and average 
radial displacement values. However, it is shown empirically that the average displacement can be reasonably 
inferred from the root-mean-square value. An estimate for the horizontal transport distribution can then be 
made from the root-mean-square photon displacement alone. 0 2000 Elsevier Science Ltd. All rights 
reserved. 
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1. Introduction 

Retrieval of cloud properties from multi-channel solar reflectance measurements presume the 
existence of vertically homogeneous, plane-parallel clouds. However, horizontal variability over 
many scales is readily observed in liquid water content in situ measurements [1,2], satellite 
reflectance imagery [3], and ground-based measurements [3,4]. In the vertical, cloud droplet sizes 
are generally expected to increase with height in non-precipitating clouds. Such size profiles are 
commonly observed with in situ aircraft [5,6]. Further, deviations from plane-parallel theory as 
a function of solar and viewing geometry have been observed in visible satellite reflectances [7]. 

A brute-force determination of cloud inhomogeneity effects on radiation fields, in both the 
horizontal and vertical, could be found by calculating reflected and transmitted intensities in 
various spectral bands on a case-by-case basis. However, the spatial measurements needed for such 
calculations are difficult to obtain in even the most extensive of field campaigns, and certainly not 
available for large-scale studies. For this reason, simple analytic models have been used to produce 
horizontal variability for studies of heterogeneous layered cloud systems [8,9]. Regardless of how 
horizontal structure is realized, it is not obvious how forward calculations from specific case studies 
or models may be extrapolated for use in global remote sensing inversion algorithms. In such 
general studies, variability of cloud type and morphology, both temporally and spatially, would 
have important consequences on the applicability of any case-specific heterogeneity assumptions. 
Aside from such issues, accounting for realistic inhomogeneities with two and three dimensional 
radiative transfer codes (e.g., Monte Carlo) is a computationally intensive endeavor. 

A simpler and more rudimentary approach is to investigate the spatial scales over which 
measured reflectances are effectively averaged. Such scales can be determined with relative 
computational ease for vertically inhomogeneous, plane-parallel cloud layers. The effect of these 
scales on cloud retrievals can then be inferred as a basic first-step approach towards understanding 
the practical implications of the plane-parallel assumption (i.e., the horizontal extent over which 
homogeneity is required for agreement with theory) and the general problem of cloud heterogen- 
eity. This is the approach adopted in this study. In other words, before considering the more 
difficult question of whether a particular real-world cloud may be effectively plane-parallel for 
remote sensing purposes, it is useful (and easier) to develop a simple theory for determining the 
radiative meaning of a plane-parallel geometry. Certainly, plane-parallel does not mean that 
homogeneity is required at distances arbitrarily far from photon incidence. It is convenient to 
consider the horizontal and vertical scales separately. 

For horizontal transport, the displacement of reflected and transmitted photons in a plane- 
parallel, inhomogeneous, anisotropic scattering medium can be estimated from the average 
number of scatterings encountered by such photons. The average number of scatterings can, in 
turn, be determined from an efficient superposition technique developed in previous studies 
[ lo,1 11. This estimated horizontal displacement can then be used to assess the scales over which 
horizontal inhomogeneities are important in remote sensing problems. An introductory discussion 
of vertical transport in visible and near-infrared remote sensing bands is also presented in the 
above references. Though the transport approximations developed in this paper were motivated by 
cloud remote sensing issues, they are useful for general anisotropic, multiple scattering problems. 

Analytic approximations for the root-mean-square (r.m.s.) horizontal transport of reflected and 
transmitted photons, applicable to both conservative and absorbing cloud problems, are derived in 
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Section 2 as a function of the average number of photon scatterings. Results are shown for a variety 
of solar and viewing geometries, spectral bands, ‘and cloud models. Monte Carlo calculations are 
used to assess the accuracy of the approximations. A two-parameter gamma function (expressed in 
terms of the horizontal radial-averaged and r.m.s. displacements) provides a robust analytic form 
for the horizontal displacement distribution function. In Section 3, it is shown that this average 
displacement parameter is related to the r.m.s. displacement by a relatively constant factor. 
Calculations of this factor over a range of cloud thicknesses and angles are presented. These results, 
along with knowledge of the r.m.s. displacement from Section 2, can then be used to reasonably 
approximate the full horizontal displacement distribution function. 

2. Root-mean-square horizontal transport 

In this section, we derive an analytic approximation for the horizontal transport of reflected and 
transmitted photons within a cloud as a function of the average number of photon scatterings. If 
average scattering numbers are obtained with relatively time-intensive Monte Carlo calculations, 
then horizontal transport can, of course, be found directly. Therefore, the development of this 
transport approximation is of practical use only if more efficient methods are available for 
determining the average number of scatterings. A means of calculating these averages for plane- 
parallel, vertically inhomogeneous clouds is available through superposition principles as demon- 
strated in a companion paper [ 111. The derived superposition formulae have been implemented for 
both reflectance and transmittance problems using fast and efficient adding/doubling numerical 
routines, and successfully tested against Monte Carlo calculations for various cloud optical 
thicknesses, viewing geometries, and solar spectral bands (both conservative and non-conservative 
scattering). 

2.1. Transport in an unbounded cloud 

We begin with isotropic photon scattering in an unbounded, infinite medium. For a three- 
dimensional (3-D) random walk, the root-mean-square displacement of photons relative to the 
starting location after some number of scatterings, n$, is described by the square root of 
(rT)* = @(L2), where the asterisk refers to the isotropic problem, z, is the 3-D optical path 
displacement (product of geometric path and optical extinction), and 1 is the photon optical path 
length between scatterings. By definition, the optical path length probability distribution between 
scatterings is e-l, giving a mean free optical path of unity and (12) = 2, or ($>* = 2n,*. Several 
approaches to approximating the anisotropic equivalent are possible. We start with an optical path 
scaling derivation. 

Various combinations of cloud optical parameters can give very nearly the same radiative 
properties when multiple scattering is present. This provides a means of scaling between isotropic 
and anisotropic scattering problems [ 121. Consider a cloud with parameters zc, g, and a0 (cloud 
optical thickness, droplet asymmetry parameter and single scattering albedo, respectively). Such 
a cloud will have radiative properties nearly equivalent to one with isotropic scattering (i.e., g* = 0) 
and 7: = z,(l - Dog), z@ = mo(l - g)( 1 - mog)- ‘. We wish to determine an appropriate means of 
scaling the isotropic random walk formulation given above to an anisotropic problem. The optical 
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displacement for anisotropic scattering can be approximated by scaling the displacement for the 
complementary isotropic cloud, i.e., (z,“)* z ($)(1 - a0g)2, where the absence of an asterisk on 
the averaging bracket refers to the anisotropic scattering cloud. The mean free optical path, and 
likewise (12), is unchanged in both problems. 

However, a scaling is required for n z. For instance, fewer scatterings are required for reflected 
photons with isotropic scattering since the incident photon directions are more readily reversed. 
Similarly, transmitted photons experience fewer scatterings since the isotropic cloud’s scaled 
optical thickness is significantly less than for the anisotropic cloud. Since n, determines the total 
mean photon path, it seems reasonable to use an optical path scaling, i.e., 

n? % n,(l - G&g). (1) 

With conservative scattering and g = 0.85, n, would be expected to be a factor of seven greater than 
for the isotropic problem. The factor would increase with asymmetry parameter and decrease with 
absorption. This scattering number scaling was also mentioned by Marshak et al. [9] and discussed 
by Davis and Marshak [ 131 for conservative scattering. With Eq. (1) and the horizontal optical 
path scaling, the isotropic expression ($)* = 2nz becomes (2;) z 2n,(l - aOg)-‘, giving the 

r.m.s. transport after n, scatterings as z,,,.,.,. Z J2n,(l - qg)? The wavelength dependence of 
all variables is implicit. 

An alternative, and more insightful derivation, is to consider the average number of scatterings 
required for photons to reverse direction. It can be shown that for a one-dimensional (i.e., 2-stream) 
analog, this average, n,,,,,, is given by I,“= 1 npBp~?/~~= lpBpk- ‘, where pB and pF are the 
probability of backwards and forwards scattering, respectively. Allowing for absorption, 
pB + pr + (1 - ZQ) = 1. Terms in the denominator give the probability for a reversal in direction 
occurring during the nth scattering; the sum is therefore equal to ZYJ~. The ratio converges to simply 
(1 - pF)- ‘. With the 2-stream approximation [14] being consistent with pr = ao(l + g)/2, the 
average number of photon scatterings becomes 2(1 + a - Dog)-‘, where a = 1 - m. is the frac- 
tional absorption at each scattering (or co-albedo). Note that for isotropic conservative scattering, 
the average is 2 as required, and increases with g. Therefore, anisotropic scattering requires a factor 

n s,rev (1 +a) 

x = K = (1 + a - m0g) 3 
(2) 

greater number of photon scatterings for a reversal of direction than for isotropic scattering. 
Scattering numbers much greater than x ensure randomness for the anisotropic problem and 
applicability of diffusion approximations. Other than the relatively small absorption term a, this is 
identical to x from Eq. (1). Monte Carlo calculations show that in 3-D, the average number of 
scatterings required for a photon to be re-directed into the opposite hemisphere is very close to this 
1-D average. With the above interpretation, the mean free isotropic optical path can now be scaled 
by this same factor X, i.e., 1 --+ xl and (12) + ~~(1~) = 2x2. The r.m.s. transport after n, scatterings is 

then zr,r.m.s. z dz. For conservative scattering, this is identical to the result derived from 
optical path scaling arguments. Even with droplet absorption, the two transport equations are 
nearly equivalent (the optical path scaling approximation is larger, but typically within 10% for the 
range of droplet absorption considered in this study, see Table 1). 

The accuracy of these unbounded transport approximations needs to be determined before 
modification to a form suitable for transport in a finite medium. Calculations of r,,,.,,,. in 
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Table 1 
Scattering parameters and integrated extinction averaged over typical cloud remote sensing instrument spectral 
channels, for liquid water droplet size spectra given by a gamma distribution with various effective radii and an effective 
variance of 0.10. Extinction for a droplet number concentration Nd = 100 cme3 is given as well as the corresponding 
geometric distance for unity optical path (for some other droplet concentration, the extinction column should be 
multiplied by the factor N,/lOO and the distance by 100/Nd). 

Effective Spectral band Single scattering Asymmetry Extinction Extinction Geometric distance 

radius albedo parameter efficiency for Nd = 100 cmP3 for z = 1, 
Nd = 100cmP3 

(w) @m) a0 9 Qe 0-0 O-4 

5 0.66 1 .ooo 0.843 2.16 0.0122 82 

1.6 0.997 0.796 2.32 0.0131 76 

2.2 0.991 0.782 2.42 0.0137 73 

3.7 0.957 0.762 2.86 0.0162 62 

10 0.66 1 .ooo 0.861 2.10 0.0475 21 

1.6 0.994 0.843 2.19 0.0495 20 

2.2 0.979 0.834 2.25 0.0509 20 

3.7 0.900 0.794 2.33 0.0527 19 

15 0.66 1 .ooo 0.869 2.08 0.1056 9.5 
1.6 0.99 1 0.859 2.14 0.1090 9.2 
2.2 0.969 0.860 2.18 0.1108 9.0 

3.7 0.864 0.843 2.27 0.1154 8.7 

a homogeneous unbounded medium were tested with Monte Carlo calculations by specifying g,mo 
and a fixed number of photon scatterings, n,. These results were then compared with the above 
expressions. For a large number of scatterings (i.e., where n,/x is large, or more specifically 

n, > 2% nZ > 3)~ zr,r.m.s. is indeed proportional to J- n, and accurately described by diffusive 
transport. However, for small scattering numbers (n, < x), path direction is clearly not random for 
the anisotropic problem and transport should be of the form z,,,.,.,. cc ng, where y > l/2. For 
instance, in the extreme situation where g = 1.0 (x --+ cc for conservative scattering) there is no 
deviation in photon direction regardless of scattering number, and the r.m.s. optical path is simply 

the product of n, and the r.m.s. optical displacement per scattering, i.e., y = 1 and z,,,.,.,. = J 2n,. 
Calculations show that with typical values of g for cloud droplets (see Table l), y increases from 
0.75 to 0.80 as g increases from 0.75 to 0.85, respectively, for the small scattering number regime. An 
excellent fit over the broad range g = 0.65-0.90 was found to be y = 0.85pr. Combining transport 
formulae for both scattering number regimes gives the approximate transport for any scattering 
number. In summary, for unbounded 3-D transport with anisotropic scattering, we have 

z r,r.m.s. z 4%~ 4 > X7 

z r,r.m.s. z Jin{ z JZn,OsspF, n, < x, (3 w 

where the approximation for y is appropriate for cloud droplets in the remote sensing bands of 
interest. 
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Monte Carlo calculations of 3-D transport as a function of n, were compared with Eq. (3) over 
a range of cloud droplet g and a0 (Table 1). The boundary between the two regimes was chosen as 
the intersection of the two curves, which occurs at n2, = x(2y- ‘)-‘. As a check, note that if g = 0, then 
x = 1 and the boundary is at n, = 1, meaning the diffusion approximation is appropriate for all 
orders of scattering as it should be with isotropic scattering. Example are shown in Fig. 1 for both 

I 

(b) droplet single scattering albedo = 0.90 

P 
1' I I 1 

1 10 100 1000 

number of photon scatterings, nS 

Fig. 1. Monte Carlo calculations (symbols) of the root-mean-square (r.m.s.) optical path displacement in three dimen- 

sions, T~.~.~. , after n, scatterings, compared with approximations given by Eqs. (3a) and (3b) (lines). Results are shown as 
a function of asymmetry parameter for (a) conservative scattering, and (b) scattering with large absorption (e.g., the 
3.7 urn spectral band in Table 1). 
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conservative scattering and a0 = 0.90 (e.g., 3.7 pm spectral band). Excellent agreement for both 

regimes is seen. The approximation error is of course greatest near the regime boundaries, but still 
within about 5%. A slight increase in the diffusion regime slope for the highly absorbing case at 
g = 0.9 is evident. H owever, average scattering numbers appropriate to cloud problems in this 
band are practically limited to the small scattering number regime [ 111. 

2.2. Transport in a finite cloud 

We now consider horizontal transport. The problem of interest is that of a finite layered 
cloud with incidence from above, and a specified optical thickness. If transport in each dimension 
is uncorrelated, the individual mean-square displacements are equivalent and the two-dimensional 
optical path displacement (e.g., the horizontal plane for the cloud problem) is then (r&) = 2/3($), 
where the subscript H refers to horizontal transport. This expression requires a large number of 
scatterings for the anisotropic cloud because of the need for sufficient directional randomness. 
Further, it is only strictly valid for unbounded transport with a specified number of scatterings. 
Substitution of the 3-D diffusion transport derivation gives (r$) z 4/3xn,. 

For a finite cloud, reflected and transmitted photons are described by a distribution of n,. The 
simplest way of accounting for bounded transport, is to replace n, with the average number of 

scatterings, N, = (n,), giving z,,,.~.~. %2JNs/3 in the diffusion domain. As mentioned, the 
average number of photons scatterings in a plane-parallel, vertically inhomogeneous cloud can be 
determined from superposition calculations. Use of N, was found to provide an excellent approxi- 
mation to horizontal transport for both reflected and transmitted photons in the large average 
scattering number regime (synonymous with large cloud optical thickness if absorption is relatively 
weak [ 111). In a similar fashion, a random walk derivation for geometric horizontal transport in 
terms of cloud geometric thickness was pursued by Davis et al. [ 151 for conservative scattering in 
discussing the characteristic physical spot size of light scattered from a narrow beam. Our diffusion 
domain result is similar to their formulation if the average number of scatterings is replaced by 
a functional dependence on cloud thickness (e.g., from asymptotic theory applied to flux reflectance 
or transmittance). 

When N,/x is small (i.e., small optical thickness or large absorption), photon scatterings are 
insufficient for transport in each dimension to be uncorrelated, and horizontal transport within the 
cloud is largely governed by the geometry of the situation. In the extreme case where only one 
scattering occurs before reflection or transmission, the photon’s horizontal exit displacement 

would be proportional to the sum of the sine of the solar and viewing angles, Jm and 

JO739 respectively (ignoring azimuthal changes in direction). The standard notation cl0 

and p has been used for the cosine of the solar and viewing angles, respectively. It is worth 
considering the suitability of a simple average of the two horizontal projections, i.e., 
(1 - ,LL~) = i[(l - p’) + (1 - &)I, for approximating the geometric dependence relevant for small 

numbers of scatterings. Transport then takes the form of z,,,.,.,. cc d-n:. Changes in 
azimuth direction will clearly modify the overall horizontal translation. Arbitrary constants are 
common in diffusion and asymptotic approximations [12] and the present situation is no excep- 

tion. In this case, calculations indicate that an additional factor of about m is needed to 
properly account for the geometric effect in the spectral bands of interest. Modifications to Eqs. (3a) 
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and (3b) therefore give 

TH,r.m.s. =$+, N, > x, (44 

TH,r.m.s. = dmNf.8spF, N, < x. w 

Again, the wavelength dependence of all optical variables is understood. In addition, N, is a strong 
function of cloud optical thickness and solar/viewing geometry. Note that Eq. (4) approximates 
both reflected and transmitted transport, the difference between the two cases being governed 
solely by the average number of scatterings. 

There are several approaches to delineating between the two regimes of Eq. (4). First, as used 
with the unbounded transport derivation, the number of scatterings separating the two regimes, 
call it NL, can be defined by the intersection of the two curves, i.e., 

N; = [i/z] 1’(y-1’2)a (5) 

This gives excellent agreement across all range of scattering numbers for nominal geometries (e.g., 
Fig. 2 where ,U~ = 0.65, ~1 = 0.85). However, an obvious problem will occur for near-normal 
directions when (1 - ,u~) z 0. Then Ni becomes so large that only the small scattering number 
regime approximation (Eq. (4b)) applies. For example, in the visible if ,LL~ = 0.95, p = 0.85, then 
Nk > 130 (corresponding to a cloud optical thickness of about 30 and 80 for transmittance and 
reflectance, respectively). Clearly, applicability of Eq. (4a) should ultimately depend on scattering 
number, not geometry. One way around this difficulty is to set an arbitrary maximum for Nk that is 
sufficient to guarantee applicability of the diffusion approximation. Calculations indicated a practi- 
cal upper limit of NQ,,,, = 4x for best overall accuracy of Eq. (4), i.e., a factor of four greater than 
the isotropic equivalent scattering number. However, when Nk is fixed, continuity between Eqs. (4a) 
and (4b) requires adjustment of the slope of y to 

1 log($Z) 
y=z+ 

l”dNi,max) ’ 
(6) 

This was the approach adopted in the results that follow. In summary, if application of Eq. (5) for 
a particular geometry gives NL > NH,,,, then Nk is set to N:,,,, and Eq. (6) used to determine the 
appropriate value of y. 

2.3. Horizontal transport examples 

Comparisons between Monte Carlo calculations and Eqs. (4)-(6) for reflectance and transmit- 
tance, using the average number of scatterings determined from superposition formulae, are shown 
in Fig. 2 as a function of cloud optical thickness and spectral band (or droplet absorption, see Table 
1). Superposition calculations are based on the matrix formulations of Twomey et al. [ 16,171 which 
average over finite bin sizes in ,U and ,u~. A 20-stream implementation is used, with equal bin sizes of 

pi + AP, for /4ti = 0*05,0.15, a*. ,0.95 and Ap = 0.05, for both view and solar zenith directions. For 
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consistency, Monte Carlo calculations are averaged over the same bin sizes. Scattering numbers, as 
well as all other calculations in this paper, are for the azimuthally averaged radiation field only. 
Though the superposition formulae may be applied to vertically inhomogeneous cloud layers, the 
present calculations are for a homogeneous cloud with a droplet effective radius ye, of 10 urn [IS] 
(nominal for non-precipitating liquid water clouds). Both optical path axes have been scaled to an 
extinction efficiency of 2.0 to avoid the wavelength dependence occurring for the same physical 
cloud specification (i.e., I = 211/Qe,l, where En and Qe,A are the wavelength-dependent optical path 
and extinction efficiency, respectively, and 1 is the wavelength-independent quantity plotted). Since 
the average number of scatterings in plane-parallel cloud layers obey reciprocity [ 111, Fig. 2 is also 
valid upon exchange of solar and viewing directions. 

As seen in Fig. 2, the approximations of Eqs. (4a) and (4b) for the separate regimes are in excellent 
agreement with Monte Carlo calculations. Horizontal displacement in this discussion is the r.m.s. 
exit location of reflected and transmitted photons relative to the entry location. This is somewhat 
overestimated for optically thick clouds. Also of interest is the r.m.s. maximum horizontal displace- 
ment achieved within the cloud (greater than or equal to the exit displacement). The r.m.s. 
maximum displacement determined from Monte Carlo calculations (also shown in Fig. 2a) was 
about 5-13% greater than the exit displacement, as cloud optical thickness increased from 5 to 40, 
respectively, generally independent of the spectral band. Eq. (4) actually gives better agreement 
with the maximum displacement for reflectance transport. The relative errors in the plots of 
Fig. 2 are shown in Fig. 3. The boundary between the two regimes is indicated by the peak in 
error. Because NL corresponds to an optical thickness of about 15 in the visible band for the 
chosen angles, this is the thickness of the peak error. Overall, there is a slight positive bias 
to the approximations. The only exception is for transmittance with large absorption (3.7 urn 
band). Otherwise, relative error is generally between 0 and 5% for optical thickness greater 
than 4. 

Due to the nonlinearity in Eq. (3), it is not obvious that average values of the scattering number 
or the bulk cloud asymmetry parameter correctly represent the effect of a distribution of values. An 
example of the scattering number probability distributions for reflectance and transmittance, p(ni) 
and p(nt), respectively, are shown for flux quantities in Fig. 4a as determined from Monte Carlo 
calculations (for a visible spectral band, z, = 10, ye = 10 urn). These curves are closely related to 
the path length distribution. In addition, reflected and transmitted photons clearly do not observe 
the same overall scattering statistics. Reflected photons experience more backward scatterings on 
average, resulting in an efSective asymmetry parameter that is less than the overall; likewise 
transmitted photons experience a larger effective asymmetry parameter. As an example, with 
z, = 10, g = 0.86, ZKJ~ = 1, the calculated asymmetry parameter determined from Monte Carlo 
calculations was found to be about 0.84 and 0.88 for reflected and transmitted photons, respectively 
(i.e., a separate tally was made of the average cosine of the scattering angle for each order of 
scattering undergone by reflected and transmitted photons). Example plots of g(ns) for this example 
are shown in Fig. 4b. The departure of the effective values from g increases as optical thickness 
decreases and the average number of scatterings is reduced. For the same reason, the departure 
increases when absorption is present. With z, = 10, g = 0.84, m. = 0.979 (2.2 urn spectral band 
with a 10 urn droplet effective radius), the effective asymmetry parameter is calculated to be 0.81 
and 0.87 for reflected and transmitted photons, respectively; for g = 0.79, m. = 0.900 (3.7 pm 
spectral band), effective values are 0.70 and 0.85, respectively. From Eq. (4), a smaller effective 
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- ta) -approximation (Eq. 3) 

nro0 Monte Carlo 

0.66 pm 

0 10 20 30 40 50 60 

Cloud optical thickness 

Fig. 2. Root-mean-square horizontal optical path displacement, rH,r.m.s,, of (a) reflected, and (b) transmitted photons as 

a function of cloud optical thickness in four spectral bands (from Table 1). Monte Carlo calculations (symbols) are 
compared with the transport approximation of Eqs. (4a) and (4b) (lines) for a homogeneous cloud with effective radius 
re = 10 pm, cosine of solar and viewing angles of p. = 0.65 and p = 0.85, respectively. Monte Carlo results are for the 
r.m.s. exit displacement except in (a) where x’s indicate the r.m.s. maximum horizontal displacement. 

. 

g (corresponding to reflectance) gives rise to less horizontal displacement, and conversely for 
a larger g (transmittance). 

For a small number of scatterings, both the p(ns) and g(ns) distributions are relevant (Fig. 4). In 
principle, improved estimates of horizontal transport in this regime can be made by incorporating 
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Cloud optical thickness 

Fig. 3. Relative error (%) in the horizontal transport approximations of Fig. 2 for (a) reflected and (b) transmitted 

photons. 

the distributions into Eq. (4b) giving 

TH,r.m.s. = 
s 

cc 
p(ns) [J3(1--lr2) nf.85 pF(g(‘\))l dn,. (7) 

0 

Eq. (4a) can be modified correspondingly, though for large numbers of scatterings the p(ns) 
distribution should dominate. Though these modified equations require Monte Carlo calculations 



86 S. Platnick /Journal of Quantitative Spectroscopy & Radiative Transfer 68 (2001) 75-99 

0.06 

0.05 

5 
'F; 
2 0.04 
.- L 
z .- 
u 
h 

0.03 
.C 
c 
a 

z 0.02 

k 

0.01 

0.00 
0 20 40 60 80 100 

20 40 60 80 100 

Number of photon scatterings, ns 

Fig. 4. (a) Probability distribution for the number of scatterings encountered by reflected and transmitted photons, 
ni and n:, respectively, and (b) effective asymmetry parameter determined from the accumulated scattering angle acquired 
by all photons with ni and ni scatterings. From Monte Carlo calculations of flux reflectance and transmittance for the 
visible band of Table 1, for a cloud with optical thickness z, = 10, re = 10 urn, and ,LL~ = 0.65. 

of the distribution functions, and so cannot be obtained solely from superposition calculations, it is 
instructive to determine whether they provide better estimates of horizontal transport. Application 
of Eq. (7) does reduce the error for reflectance transport by about a factor of 5. However, for 
transmittance, little improvement is made (l-2% absolute reduction in relative error). In the large 
numbers of scatterings regime, use of the distributions improves the transport approximation over 
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some limited range of optical thickness, but little is gained overall and Eq. (4a) is equally 
satisfactory. So, with the exception of reflectance transport at small optical thicknesses, the first 
moment of the scattering number size distribution and a single bulk asymmetry parameter are as 
successful in estimating horizontal transport as the complete distributions of Fig. 4. 

The angular dependence of transport is shown for a visible band in Figs. 5a and b, where N, and 

~HJ.lTLS. are given as a function of the cosine of the viewing and solar zenith angles for a cloud with 
optical thickness 10 (only Monte Carlo calculations are shown). For reflected photons, the larger 
scattering numbers, and hence transport, occur across a relatively broad angular range towards 
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Fig. 5. (a) Monte Carlo calculations of the average number of scatterings, IV:, and the r.m.s. horizontal displacement, 
TH,r,m,s., of reflected photons as a function of angles p. and p for the visible band of Table 1, with z, = 10 and r, = 10 urn. 
Note the reciprocity with angle (exact symmetry is limited by Monte Carlo statistical noise). (b) Same as Fig. 5a but for 
transmitted photons. 
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nadir views and zenith solar positions. For the cloud of this example, the azimuthally averaged 
bidirectional reflectance generally decreases with increasing ,u or ,u~. An exception is as the viewing 
(solar) position moves close to nadir (zenith) and reflectance begins to increase, peaking at a broad 
maximum corresponding to the rainbow scattering angle. The location of larger scattering 
numbers in the contour plot of Fig. 5a therefore correspond to smaller bidirectional reflectance 
values. However, as the cloud becomes thinner (e.g., z, z 2), both reflectance and average scattering 
number decrease with ,~l. In this case, scattering numbers are small ( - 5) and larger p values have 
the effect of limiting the optical path available for scattering and subsequent reflection. For 
transmittance (Fig. 5b), the largest scattering numbers are seen to occur for horizon views and solar 
positions, corresponding to smaller bidirectional transmittance values. Again, for thinner clouds, 
the opposite may occur. The correspondence between average scattering numbers and the bidirec- 
tional quantities as a function of angle therefore depends on optical thickness. In contrast, at any 
specific set of angles, as long as reflectance continues to increase with optical thickness, then of 
course so does the average scattering number. Likewise, the monotonic decrease in transmittance 
with optical thickness is always accompanied by an increase in the average number of scatterings 
[ 111. In both the reflectance and transmittance examples of Fig. 5, horizontal transport is greater 
than cloud optical thickness, with the ratio rH,r.m.s. /z, ranging from about 1.0-1.2 for reflectance to 
1.047 for transmittance. The ratio decreases with increasing optical thickness (except for conser- 
vative transmittance, see Fig. 2). 

The geometric, or physical, photon path is of practical interest when considering the scales of 
horizontal transport implied by plane-parallel theory. However, it is the optical path, used in the 
previous derivations, that is the more fundamental quantity. For example, two clouds with very 
different physical thicknesses can have the same optical thickness, and thereby identical optical 
path transport. The physical and optical paths are related by optical extinction, which is in turn, 
a function of cloud microphysics. Table 1 gives the Mie scattering parameters for liquid water 
droplets in the typical conservative and absorbing remote sensing bands of Fig. 2, across a nominal 
range of effective radii for non-precipitating liquid water clouds. The extinction (m-l) and its 
inverse is given in the last two columns for a droplet number concentration, Nd, of 100 cme3. As an 
example, for a cloud with this droplet concentration and an effective radius of 10 urn, an optical 
path of unity corresponds to a geometric path of about 20 m. Referring to the cloud of Fig. 2, with 

zc = 20 the horizontal r.m.s. geometric displacement of reflected photons varies from 80 m in the 
3.7 urn band to about 350 m in the visible; for transmittance, the displacement varies from about 
250-500 m, respectively. Note that for some other droplet concentration, the geometric paths 
derived from the table must be scaled by 100/N,+ For example, a somewhat “cleaner” cloud having 
fewer cloud condensation nuclei and Nd = 50 would result in twice the geometric displacement; 
likewise, a polluted cloud would result in less displacement. The cloud droplet size distribution 
used in all calculations is a modified gamma distribution [lS] with an effective variance of 0.10. 

Cloud retrieval algorithms and radiative balance calculations are typically based on plane- 
parallel cloud models. The r.m.s. horizontal displacement provides a useful scale over which 
a cloud should be effectively plane-parallel for such an assumption to be valid. Alternatively, these 
are the scales over which photons must be collected by an imaging instrument such that cloud 
regions outside of the viewing area contribute little to the measured signal. The r.m.s. displacement 
is also related to the scale break, or radiative smoothing scale, found in spectral analysis of high 
resolution imagery [9,15]. More specific statements require knowledge of the complete distribution 
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for photon transport. This is the subject of Section 3. In the preceding examples, note that the r.m.s. 
horizontal photon transport through the plane-parallel cloud was greater than the 10’s of meter 
pixel sizes obtained with high spatial resolution satellite and aircraft imagers (e.g., Landsat, ASTER 
[19], MODIS Airborne Simulator [20]), but on the order of the 250-1000 m resolution obtained 
by meteorological and global change satellites (AVHRR, MODIS [19]). 

2.4. Error calculations 

An empirical estimate of the horizontal transport relative error resulting from Eqs. (4)-(6) was 
obtained by comparison with Monte Carlo calculations across a range of cloud optical thicknesses, 
solar and view angles, and spectral bands. Calculations of relative error versus viewing and solar 
angles are shown in Figs. 6a and b for the visible and 2.2 urn bands, respectively, and at three 
optical thicknesses (7, = 5,10,20). As in Fig. 3, the error peaks at the boundary between the two 
scattering regimes of Eqs. (4a) and (4b). The highly structured contour lines result from the 
changing position of this boundary, i.e., Ni, with geometry. Exact symmetry in the plots are a result 
of averaging the Monte Carlo results for reciprocal pairs of angles; the average number of 
scatterings used in the approximations already obey reciprocity due to the nature of the superposi- 
tion numerical technique. In addition to improving the Monte Carlo statistical noise, the forced 
reciprocity in the resulting error calculations generates more easily interpretable contour plots. The 
angular detail shows some increase in error toward overhead solar and viewing positions at the 
larger thicknesses, but overall, error is generally within 10%. 

3. Approximations for the transport distribution 

It was suggested by van de Hulst [12] that a two-parameter gamma distribution provides 
a standard analytic form for photon path lengths. Marshak et al. [9] showed that such a distribu- 
tion works well for conservative horizontal photon transport in both plane-parallel and fractal 
clouds. They subsequently used the distribution to improve optical thickness retrievals in fractal 
clouds [21]. The distribution was also used for path length retrieval estimates in the visible [22]. 
For present purposes, an azimuthally symmetric, normalized standard distribution function can be 
written as 

a emaTH/('H) , (8) 

where ru is the horizontal optical path displacement of exiting photons, (rH) the average 1-D 
horizontal displacement, and a = (f” - 1) ’ withf = rH,r.m.s. /(ru ). The denominator provides the 
appropriate normalization. The average quantity introduced above should not be confused with 
the average displacement in the 2-D horizontal plane, which would be zero for overhead incidence 
(i.e., a mean exit location at the origin with exiting photons distributed in an azimuthally symmetric 
pattern). Rather, average displacement is defined along the ru dimension (i.e., the radial dimension 
in cylindrical coordinates) giving a non-zero average since negative +i locations are not possible. 

A value of a= l,f=$ corresponds to an exponential distribution. When a > 1, f < 4 the 
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Fig. 6. (a) Relative error (%) in the estimated r.m.s. horizontal displacement of reflected photons using Eqs. (4a) and (4b) 
(along with either Eq. (5) or (6)) compared with Monte Carlo calculations, for the visible and 2.2 ym spectral bands of 
Table 1 (columns) and three cloud optical thicknesses (rows). Results are shown as a function of solar and viewing 
geometry, for a cloud with an effective radius of 10 urn. Because of significant structure in the contour plots, exact 
reciprocity was ensured by averaging Monte Carlo calculations for reciprocal angles (transport estimates using average 
scattering values from superposition formulae automatically satisfy reciprocity). (b) Same as Fig. 6a but relative error in 
the estimated transport of transmitted photons. 
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Fig. 6. (continued). 

curvature of the log of the distribution versus optical path becomes negative (second derivative less 
than zero) at the shorter path lengths; conversely, curvature becomes positive in this region when 

a < 1,f > 4. The distribution always becomes exponential at longer path lengths with larger a’s 
resulting in greater exponential decay. 
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Eq. (8) was tested against horizontal transport distributions derived from Monte Carlo calcu- 
lations for the spectral bands of Table 1. Comparisons are shown in Fig. 7. The analytic function is 
seen to provide an excellent fit in all bands for both reflectance and transmittance cases. Note that 

the negative curvature seen in the plots implies cx > 1,f < $! (not always true, see Figs. 8 and 9). 

loo 

loo 

0 10 20 30 

Optical path 
40 50 

Fig. 7. Probability distribution functions for the horizontal optical path displacement of (a) reflected, and (b) transmitted 
photons are well approximated by the analytic gamma distribution (lines) for the visible and near-infrared bands of Table 
1, as shown in this comparison with Monte Carlo calculations (symbols). Calculated for flux reflectance and transmit- 
tance, rc = 10, re = 10 urn, and p. = 0.65. The two parameters needed for the gamma function, the root-mean-square 
and average radial displacement, are taken from the Monte Carlo calculations. 
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Fig. 8. The ratio of the horizontal r.m.s. photon displacement to the average radial horizontal displacement is found to 
be remarkably constant as a function of wavelength, cloud optical thickness and geometry, for both reflected and 
transmitted photons, for the cases considered. From Monte Carlo calculations with re = 10 urn. 

Of the two parameters needed in Eq. (8), only rn,r.m.s. is available from the approximations of 
Section 2. However, Monte Carlo calculations indicate that the average displacement is related to 
the r.m.s. by a relatively constant factor across a broad range of optical thicknesses, solar/viewing 
geometries, and spectral bands. Fig. 8a gives the ratiofas a function of cloud optical thickness for 
selected solar and viewing angles in the four spectral bands of interest. The ratios are nearly equal 
with optical thickness (which spans the typical range of terrestrial values) and across all bands. 
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Fig. 9. (a) Monte Carlo calculations of the ratio of the r.m.s. reflected horizontal displacement to the average radial 
displacement for the visible and 2.2 urn band of Table 1 (columns) and three cloud optical thicknesses (rows), as a function 
of solar and viewing geometry, for r-e = 10 urn. Reciprocity holds for the two angles, though exact symmetry is limited by 
Monte Carlo statistical noise. (b) Same as Fig. 9a, but the ratio for transmitted photons. 
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Fig. 9. (continued). 

With the exception of the 3.7 pm band, the ratios are about 1.35-1.40 for reflectance, and somewhat 
smaller for transmittance at about 1.2. There is a slight increase (decrease) in the ratio with 
wavelength for reflectance (transmittance). However, even the 3.7 pm band ratios are acceptably 
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close in value to the other bands for approximation purposes. Fig. 8b gives the ratios for fixed 
optical thickness, z, = 10, and solar zenith angle. Again the ratios are tightly constrained about the 
same values. With regard to Eq. (8) relatively constant values for the ratio f as a function of 
geometry and thickness correspondingly constrain values for the parameter a in the analytic 
distribution, leaving a single unknown parameter. 

The explanation for a fixed value off is not immediately obvious. However, Davis et al. [23] 
investigated similar ratios in their study of cloud lidar backscatter returns. In particular, for 
2-stream reflectance from homogeneous conservative scattering clouds, they derived asymptotic 
formulae for the first and second moment of the total photon path length as well as the r.m.s. 
horizontal path displacement (referred to as “spot size”). Their calculations show that the ratios 
1 T,r.m.s.l(~T) and kJ.rn.S.l(~T)~ where 1 T is the total photon optical path length, are constant up to 
a scaled cloud optical thickness of about (1 - g)z, z 2 - 3. However, as thickness increases 
beyond this range, IT,r.m.s./(lT) increases as [(l - g) r,]1/2, in the asymptotic limit, while 

%,r.m.s.NT > cl ecreases as [( 1 - g) r,] - ‘j2 Both quantities are closely related toJ: Motivated by the . 
asymptotic behavior of these ratios, flux reflectance and transmittance calculations (with 
,uo = 0.65) w ere made for all relevant quantities over an extended range of optical thicknesses. At 
small thicknesses,fis found to be identical to /T,r.m.s. /( 1T). LikewiseJeventually begins to increase 
with optical thickness, though more slowly, being proportional to [( 1 - g) z,]~‘~ in the asymptotic 
limit. Nevertheless, f is effectively constant for terrestrial clouds as already noted. Even up to 
z, = 150,fis approximately linear with optical thickness having a slope of only 0.003. Consistency 
with the observed asymptotic behavior of f requires (zn )/( 1.r) cc [( 1 - g)zc] - 3/4 or 

G”) K cc1 - 9) LF4 which is also borne out in the calculations (compare with ~n,~.~.~./ 
1 T,r.m.s. cc [( 1 - g) r,] - ’ from asymptotic theory). That is, as expected, average horizontal displace- 
ment quickly lags behind average total path length, though not as quickly as for the comparable 
r.m.s. quantities. With non-conservative scattering, bothfand IT,r.m.s./(lT) asymptotically increase 
to a constant value as absorption reduces long-range transport. In the case off for example, path 
absorption in the 2.2 urn band limits transport before optical thickness reaches values where the ratio 
would otherwise begin to increase significantly, resulting in a relatively constant value at any optical 
thicknesses. For transmitted photons, both ratios remain essentially constant regardless of cloud 
thickness for conservative scattering; when absorption is present the ratios eventually decrease 
linearly with optical thickness (slope of about - O.OOl), thoughf is again more nearly constant. 

The preceding results inspired a more comprehensive set of bidirectional calculations for J: 
Contour plots off for reflectance transport, as a function of both solar and viewing geometry, are 
shown in Fig. 9a for the visible and 2.2 urn bands, and three cloud optical thicknesses 
(2, = 5,10,20). The ratio is still relatively constant over a broad range of angles, with somewhat 
larger values occurring when both solar and viewing directions are towards the horizon or 
overhead. The departures from the nominal ratio are most dramatic for the thinner cloud (z, = 5) 
where there are fewer photon scatterings. Similar contour plots are shown in Fig. 9b for transmit- 
tance. Now, above-average ratios are only found towards overhead positions, with remarkably 
constant values throughout the rest of the region. Again, the increase is most dramatic for the 
thinner cloud. The spectral results indicate that the ratio is not critically dependent on asymmetry 
parameter (Table 1). 

In summary, calculations suggest that the average radial displacement can be reasonably well 
predicted from the r.m.s. value. Based on Fig. 9, r.m.s.-to-average ratios of about 1.35 and 1.18 for 
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reflectance and transmittance transport, respectively, appear representative for the visible. The 
2.2 urn band ratios generally differ from the visible by less that 2% in a manner similar to Fig. 8, but 
close to 5% at overhead solar/viewing positions. The 1.6 urn band ratios will be intermediate 
between these two bands. Values more appropriate for particular angles and thicknesses can be 
obtained directly from Figs. 8 and 9. To the extent that the above results can be used to predict the 
ratio at other thicknesses, the two-parameter analytic form for photon transport (requiring r.m.s. 
and average displacements) collapses to a single parameter form (r.m.s. or average value). There- 
fore, in conjunction with Figs. 8 and 9, the r.m.s. horizontal displacement formulae from Section 
2 can be used to estimate the full horizontal transport distribution. The accuracy in predicting the 
distribution obviously depends on optical thickness and solar/viewing geometry. The error calcu- 
lations of Section 2.4 and Figs. 8 and 9 can be combined to estimate an overall error in 
approximating the distribution in this manner. 

4. Conclusions 

Analytic formulae for estimating the root-mean-square (r.m.s.) horizontal photon optical path 
transport of reflected and transmitted photons, through anisotropic, multiple scattering cloud 
layers, have been derived for both small and large photon scattering number regimes. Transport in 
the latter regime is derived from random walk theory (photon diffusion), while a modified diffusion 
approximation is require for the former. In both regimes, transport is expressed as a function of the 
average number of photon scatterings and particle single scattering parameters (asymmetry 
parameter and single scattering albedo). The usefulness of the transport approximation is therefore 
dependent on a fast and efficient means for calculating the average scattering number. It is shown 
in a companion paper [l l] that the average number of reflected or transmitted photon scatterings 
occurring in an arbitrary vertically inhomogeneous, plane-parallel medium can be found accurate- 
ly from superposition formulae. These formulae have been implemented with common 
adding/doubling numerical routines for arbitrary combinations of solar and viewing geometry. 
The efficiency of the superposition calculations for scattering numbers allows for the practical use 
of the transport approximation. Only the azimuthally averaged radiation field was considered. 
Approximations for 3-D transport were also discussed. 

Horizontal transport estimates were compared with Monte Carlo calculations for liquid water 
clouds in several solar spectral bands used for cloud remote sensing, and as a function of cloud 
optical thickness, and solar and viewing geometry. Generally, relative error was within 10% across 
all these variables. The error increases for thin clouds (optical thickness less than 4) while 
local maxima are observed at thicknesses corresponding to the boundary between the two 
regimes described by Eqs. (4a) and (4b) (diffusion domain and small orders of scattering regimes, 
respectively). 

A standard two-parameter distribution function for photon transport was shown to be applic- 
able to horizontal transport through clouds in the spectral bands considered. The azimuthally 
symmetric distribution is expressed as a function of the horizontal r.m.s. and average radial 
displacement. Both parameters were determined from Monte Carlo calculations for a range of 
optical thicknesses, solar/viewing angles, and spectral bands (Figs. 8 and 9). Over most of the 
angular space, the ratio of the horizontal r.m.s. to the average radial displacement was found to be 
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tightly constrained for both reflectance and transmittance problems. These calculated ratios, in 
conjunction with the r.m.s. transport approximation, provide a straightforward means for estima- 
ting the full horizontal displacement distribution function. 

The photon transport approximations are useful in determining the extent over which plane- 
parallel radiative transfer models should be realized for use with remote sensing retrievals, that is, 
the practical definition of the plane-parallel assumption. In a similar sense, imaging instruments 
collecting radiation over these scales effectively eliminates the influence of cloud regions outside the 
field of view. 
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