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Abstract – In the atmosphere, multiple scattering matters nowhere more than in clouds, and being a prod-
uct of its turbulence, clouds are highly variable environments. This challenges three-dimensional (3D)
radiative transfer theory in a way that easily swamps any available computational resources. Fortunately,
the far simpler diffusion (or P1) theory becomes more accurate as the scattering intensifies, and allows for
some analytical progress as well as computational efficiency. After surveying current approaches to 3D
solar cloud-radiation problems from the diffusion standpoint, a general 3D result in steady-state diffusive
transport is derived relating the variability-induced change in domain-average flux (i.e., diffuse transmit-
tance) to the one-point covariance of internal fluctuations in particle density and in radiative flux. These
flux variations follow specific spatial patterns in deliberately hydrodynamical language: radiative chan-
neling. The P1 theory proves even more powerful when the photon diffusion process unfolds in time as well
as space. For slab geometry, characteristic times and lengths that describe normal and transverse trans-
port phenomena are derived. This phenomenology is used to (a) explain persistent features in satellite
images of dense stratocumulus as radiative channeling, (b) set limits on current cloud remote-sensing
techniques, and (c) propose new ones both active and passive.

I. MOTIVATION, CONTEXT, AND OVERVIEW

Low-altitude clouds~in the planetary boundary layer!
are made of liquid water droplets in sizes and concentra-
tions that make them highly reflective in much of the so-
lar spectrum. In turn, this gives these clouds a critical
role in balancing the Earth’s radiative budget, so they have
a first-order effect on climate and weather.1 Unfortu-
nately for numerical climate and weather modelers, clouds
come in many shapes and forms. They are extremely com-
plex structures not well understood in terms of their for-
mation and life-cycle. They are not better understood from

the standpoint of their basic optical properties, both at
the macroscopic level that affects the radiation budget
and at the microscale where turbulence prevails. Un-
resolved structure also makes the remote sensing of cloud
properties a difficult task; even if the fine cloud structure
is resolved by high-resolution imaging techniques, the
three-dimensional~3D! radiative transfer it beckons can-
not be applied operationally in the data processing. So
the treatment of clouds in all aspects of atmospheric ra-
diation science is a question of approximation, and de-
termining the limitations of a given approximation is
generally nontrivial.

High-altitude clouds~cirrus! are out of the scope of
this study not because their optics are any simpler but*E-mail: adavis@lanl.gov
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because they are generally too thin optically to support
diffusive radiation transport. The major source of
complication in these clouds is that they are made of ice
crystals that are not necessarily randomly oriented. So
the single-scattering properties of cirrus are difficult to
measure, to compute, and to incorporate into multiple scat-
tering models.2

In the radiative transfer theorist’s mind,highly-
reflectiveautomatically translates toweakly absorbing
and dominated by multiple scattering, which, in turn, is
an invitation to apply diffusion~or P1! theory to the larg-
est possible extent. This is conventional wisdom in neu-
tron transport science and it will be our strategy here. A
detailed survey of cloud radiation literature, even lim-
ited to 3D theory, would be overwhelming. However, a
representative survey of prior applications of 3D pho-
ton diffusion theory in the geophysical literature is in
order. In this community at least, it was fully realized
that diffusion andP1 theories were in fact equivalent
until about the time Preisendorfer clarified this in his
1976 texts3 in hydrological optics. So early papers, start-
ing with Giovanelli4 in 1959, systematically start with
the general radiative transfer equation and rederive the
formulas of photon diffusion before turning to an appli-
cation. The problem of solar illumination, of particular
interest here, has been worked out analytically for sev-
eral 3D geometries. In plane-parallel geometry, the sine-
wave cloud that we use extensively further on as an
illustration was studied by perturbation analysis,4,5 and
exactly by eigenfunction analysis.6 Several isolated cloud
problems were similarly solved: homogeneous finite-
height cylinders,7 homogeneous rectangular parallele-
pipeds,8 and full and hollow spheres.9 Internal diffuse
sources are also of interest in thermal infrared~IR! stud-
ies.10 The trend is now to develop a general-purpose
numerical code that implements a steady-state dif-
fusion-based solution for an arbitrary distribution of
scattering0absorbing material and both thermal and so-
lar source terms.11,12 Steady localized sources have also
elicited some interest.13 In most of these studies, diffu-
sion theory is presented as a viable alternative to exact
transport methods in perennial efficiency-versus-accuracy
trade-off problems, and the solutions are generally val-
idated against Monte Carlo or grid-based codes. The mo-
tivation behind almost all atmospheric radiation theories,
photon diffusion included, is optical and0or thermal re-
mote sensing~in which case radiances are sought! and
climate ~in which case fluxes are of primary interest!.
However, the lightning community has recently showed
interest in time-dependent diffusion methods for local-
ized sources,14 a problem that is also of interest in cloud
probing with lidar~light radar!.15

The paper is organized as follows. In Sec. II, we
introduce the required notations in radiative transfer
with multiple scattering and survey the connections
between this incarnation of linear transport theory and
diffusion theory, including a recently uncovered one

that makes no outright hypothesis on the radiance field.
In Sec. III, we pose the general albedo problem in
steady state using both radiative transfer and diffusion
theories in a geometry suitable for atmospheric applica-
tions: collimated solar beam impinging from above onto
a dense cloud layer. This problem is the focus of the
next three sections, each introducing a successively bet-
ter approach to its solution. Section IV uses the all-too-
standard homogeneity assumption, thus neglecting all
horizontal variability. In Sec. V we make use of the
closed-form homogeneous solution but apply it locally.
This independent pixel assumption is widely used in at-
mospheric radiation, although not necessarily at a scale
where it works best; we explore its general predictions
for large-scale averages and their consequences for cli-
mate. Section VI uses 3D diffusion theory to derive a
general result that links the change in domain-averaged
flux caused by the~arbitrary! variability to the cross-
correlation between fluctuations in the extinction and
local flux fields. This result illustrates the general mech-
anism by which radiation flow interacts with fluctua-
tions in density that we call radiative channeling.
Section VII is devoted to characteristic timescales and
related length-scales of importance in diffusive trans-
port through finite slab media, with and without absorp-
tion. In turn, these scales for diffusion are used in Sec. VIII
to interpret some robust features observed in the spatial
statistics of remotely sensed cloud radiance fields and,
from there, to set bounds on the applicability of the
independent-pixel approximation. In Sec. IX, we sum-
marize our findings, describe some work-in-progress that
uses 3D diffusion concepts, and we connect with stochas-
tic radiative transfer~as it has been applied to problems
in atmospheric radiation by G. C. Pomraning and friends!.

II. RADIATIVE TRANSFER WITH
MULTIPLE SCATTERING

In this section, we introduce notations for quantities
of interest throughout this study and recall some basic
results from radiative transfer and diffusion transport
theories.

II.A. Radiative Transfer in 311 Dimensions

We seek the time-dependent radiance fieldI ~t, x,V! $
0 as a function of propagation directionV on the unit
sphereJ, at a pointx in a domain M ofR3, and at time
t. We assume the~open! set M to be convex, meaning
that exiting rays can not reenter the medium. This last
assumption simplifies formulation but does not actually
restrict the generality of our discussion because, at least
up to the point where we take the diffusion limit, we can
always sets~x! 5 0 in some areas of M.

Inside the scattering0absorbing optical medium M,
the radiance field is determined by16,17
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1. The integrodifferential radiative transfer equa-
tion ~RTE!:

Fc21
]

]t
1 V{¹G I

5 2s~x! I 1 ss~x!E p~V{V' ! I ~t, x,V' ! dV'

1 f ~t, x,V! , ~1!

where the source termf ~t, x,V! is specified.

2. Boundary conditions~BCs in the following! if
M Þ R3, specifically,

I ~t, x,V! is given, for allt ,

where

x [ ]M 5 wM \M , and V{n~x! , 0 ,

n~x! being outward normal to M’s boundary]M at x
~ wM denotes the closure of M!.

3. An initial condition if only t $ 0 is of interest,
specifically,

I ~0,x,V! is given forx [ wM, andV [ J .

Coefficientss~x! andss~x! that appear in the RTE are
given nonnegative fields describing the infinitesimal prob-
abilities per unit of length of photon-matter interaction
along an arbitrary beam, respectively, for extinction~ei-
ther scattering or absorption! and for scattering alone. One
more optical property needs to be specified: the scatter-
ing phase function,p~V{V' !, assumed in this study to
depend only on the scattering angleus 5 cos21~V{V' !;
we adopt the normalization convention, where

Ep~V{V' ! dV 5 1 . ~2!

Note that the aforementioned problem for photons is for-
mally identical to~one-group! neutron transport, so apart
from some points in terminology, much of this study car-
ries over to nuclear science.

The key quantity in the RTE is the extinction field
s~x! because it controls the photon free-path distribu-
tion, at the heart of the transport problem. Its inverse is
the mean-free-path~mfp! only in one case, albeit a very
well-studied one:s~x! is uniform in space; free paths
are then exponentially distributed and thus entirely de-
termined by the mfp,, 5 10s. This restriction of the
Bouger-Beer law of exponential extinction to strictly ho-
mogeneous situations is often overlooked. In heteroge-
neous media, the actual photon mfp depends nontrivially
on the spatial correlations ins~x!. Letting overscores
designate spatial averages in the remainder of this paper,
the actual value of, can only occasionally be equal to

~ Ts!21, the effective mfp in a homogeneous medium with
the same average extinction. Under some circumstances,
, 5 10s, which is, in essence, the mean mfp. So extinc-
tion only determines a local mfp, the mfp the photons
would have in a homogenous medium of equal opacity.
The quantity that is still exponentially distributed~with
unit mean! in 3D radiative transfer is

t~x,V;s! 5 E
0

s

s~x 1 Vs' ! ds' , ~3!

the optical distance betweenx andx ' 5 x 1 Vs, where
s 5 7x ' 2 x7 and V 5 ~x ' 2 x!0s.a Optical distance
t~x,V; s! is a measure of the cumulative amount of
scattering0absorbing material ass increases along the
~x,V! beam, appropriately weighted by the photon-
matter interaction cross section. For the famous expo-
nential law to carry over to physical distances ~the
photons’ random free paths!, we require proportionality
betweent and s; i.e., s~x! is invariant in directionV
starting atx. If this is true for all ~x,V!, thens~x! is
clearly uniform. Davis9 gives a more powerful proof of
this statement using characteristic-function theory in prob-
ability; moreover, he shows that 3D free-path distribu-
tions are always broader than exponential in the sense
that ^s2& $ 2^s&2 5 2,2; equivalently, the standard de-
viation of s exceeds its mean,. Throughout this paper,
angular bracketŝ{& are used to denote ensemble aver-
ages, in this case, over photon trajectories.

An abundant source of challenging radiative trans-
fer problems is the interaction of the Earth’s cloudy at-
mosphere with solar and thermal photons, as well as radar
and lidar beams. In this case, we can think of M either as
the whole atmospheric column, M5 R2 J R1 ~z $ 0
represents altitude!, or a part of it, such as a cloud layer
~betweenz5 zbot $ 0 andz5 ztop $ zbot!; either way, we
neglect curvature effects, hence the infinite~x, y! extent
of the column. Some optically relevant atmospheric con-
stituents are primarily stratified, i.e., variable more inz
than inx andy; examples are well-mixed absorbing trace
gases~H2O, CO2, etc.! and scattering and absorbing aero-
sol particles. Others are highly variable in all three spa-
tial directions, arguably more in the horizontal than in
the vertical in some cases—cloud droplets for instance.

II.B. Scattering and Absorption

The extinction coefficient decomposes as follows, for
scattering and for absorption:

s~x! 5 ss~x! 1 sa~x! ; ~4!

aThis can be shown from Eq.~1! in steady state and with-
out source terms: If lnI ~x ',V!6x '5x1Vs 5 2t~x,V;s! 1 con-
stant, then we haveV{¹I [ dI0ds5 2s~x! I, and conversely.
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it is customary to define the relative probability of scat-
tering as

Ã0 5
ss~x!

s~x!
# 1 , ~5!

also known as the single-scattering albedo. As previ-
ously indicated, we requireÃ0 to remain constant inside
M for the remainder of the paper.

A quantity of particular interest in scattering media
is the phase function’s asymmetry factor:

g 5 ^ms& 5 2pE
21

11

msp~ms! dms , ~6!

wherems 5 cosus. This quantity is sufficient to specify
the popular Henyey-Greenstein model18

p~cosus! 5 S 1

4p
D 12 g2

@11 g2 2 2g cosus#
302 , ~7!

used extensively in the following.
In many applications—particularly when multiply

scattered photons dominate the bulk of the radiation
field—simple phase functions such as Eq.~7! are ade-
quate substitutes for more realistic ones, especially when
one is only interested in fluxes as opposed to radiances.
In dense boundary-layer clouds, a realistic phase func-
tion would be based on Mie scattering computations for
spherical droplets followed by averaging over the ob-
served droplet-size distributions.19 This leads tog' 0.85
and justifies using the relation for asymptotically large
particles with respect to wavelength: cross section~per
particle! ' 2pr 2. Thuss ~i.e., cross section3 density!
can easily be obtained from the effective droplet radius,
re 5 ^r 3&0^r 2&, and the meteorological quantity known
as liquid water content~LWC! in grams per cubic metre:
s 5 ~203!LWC0rw re, whererw is the density of water
106 g0m3. Typical values arere ' 8 to 10mm, LWC '
0.7 g0m3, hences ' 0.05 m21 ~highly variable!, which
would correspond to, ' 20 m in a homogeneous cloud.

II.C. Fluxes and Radiant Energy Conservation

In essence, Eqs.~2! and~6! characterize the zeroth-
and first-order coefficients of the scattering phase func-
tion in a Legendre-polynomial expansion in cosus. In the
same way, we can project the radiance fieldI ~{,V! onto
the space of isotropic functions onJ, with a nonnegative
scalar coefficient

J~t, x! 5 EI ~t, x,V! dV ~8!

on the one hand, and onto the orthogonal space of dipo-
lar functions onJ, with a vector coefficient

F ~t, x! 5 EVI ~t, x,V! dV ~9!

on the other hand. This is equivalent to a spherical-
harmonic~Pn! expansion to order 1. The quantity in
Eq. ~9! is the familiar~net! radiative flux vector field,
whereas the quantity in Eq.~8! bears different names in
different literatures: scalar flux,3 spherical flux,20 or ac-
tinic flux.21 At any rate, it is related to the radiant energy
~or photon! density field17

U~t, x! 5 J~t, x!0c , ~10!

where c is the speed of light, or to mean radiance16

J~t, x!04p.
Integrating the RTE in Eq.~1! over J and using

Eqs.~2!, ~4!, ~5!, ~8!, and~9!, we obtain the expression
of radiant energy~or photon number! conservation, with
depletion and creation terms:

c21
]

]t
J 1 ¹{F 5 2sa~x!J~t, x! 1 S~t, x! , ~11!

whereS~t, x! 5 * f ~t, x,V!dV describes internal sources
from the standpoint ofJ~t, x!. Now, in nuclear reactor
theory, neutron multiplication is the important source of
particles. Being proportional to densityJ~t, x!, this source
can be modeled by formally makingsa~x! , 0 in Eq.~11!;
equivalently,Ã0 . 1 in Eq.~5! is the multiplication fac-
tor. In that same context, scattering is often considered
isotropic,g ' 0 in Eq.~6!.

If sa~x! 5 0 ~Ã0 51! and, in the absence of internal
sources, we see that the mean flow of the photon gas is
irrotational in steady state, then

¹{F 5 0 , ~12!

expressing local radiant energy conservation at all points
in M. Geometrically, Eq.~12! means that radiative flux
lines cannot form closed loops, neither can they start or
end inside M, only at its boundary]M; several examples
of such radiative flows are provided in the following
pages.

II.D. Diffusion, as a Self-Consistent Transport Theory

We know of at least two roads from the RTE to dif-
fusion theory, where it surfaces as a transport theory of
interest in its own right:

1. invoking Fick’s constitutive law to close the trans-
port problem partially posed in Eqs.~11! or ~12!

2. a formal limit in discrete-angle~DA! radiative
transfer theory.

Fick’s law relatesF to J 5 cU through

F ~t, x! 5 2@D~x!0c#¹J , ~13!
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whereD~x! is diffusivity, the fundamental quantity in
diffusion theory. It is related to the photon’s~local! trans-
port mfp,t ~x! as follows22:

D~x!0c 5 ,t~x!03 , ~14!

and, from there, to extinction inb

,t~x! 5 10@~12 Ã0g!s~x!# , ~15!

wheres~x!21 is the local mfp andg is . 0 for scattering
preferentially in the forward direction. The transport mfp
in Eq. ~15! is probably the single most important length
scale in diffusion theory.

In statistical physics, Eq.~13! is a constitutive law,
which is always paired with a continuity equation, in this
case Eq.~11! or ~12!, expressing particle-number con-
servation in the course of diffusive motion. Fick’s law is
intuitively appealing: photons flow from high to low pho-
ton concentrations at a rate proportional to,t~x!. There
are many other continuity-constitutive equation pairs:
charge conservation and Ohm’s law, energy conserva-
tion and Fourier’s law, fluid mass conservation and
D’Arcy’s law, etc. Photon diffusion theory thus inherits
from a vast culture in the physical sciences.

Photon diffusion theory also inherits from the more
mathematical culture of probability and statistics: We can
think of the photons as particles in Brownian motion, i.e.,
following convoluted “drunkard’s paths” made of a long
sequence of short steps in random directions. In this
framework of random walk theory, scattering withg . 0
is equivalent to short-time directional correlations that
cause persistent motion in the original direction of the
beam.23 Rescaling of mfp’s by~1 2 Ã0 g!21 . 1 in
Eq. ~15! accounts for the extent of this drift that cumu-
lates over several scatterings, and,t~x! can be inter-
preted as the effective mfp for a single-but-isotropic
scattering.

Combining Eqs.~11! and~13!, we find the parabolic
partial differential equation~PDE!

c21F ]

]t
2 ¹{D~x!¹ 1 csa~x!GJ 5 S~t, x! , ~16!

where we identify another characteristic scale,

Ld~x! 5 !D~x!0csa~x!

5 s~x!21@3~12 Ã0!~12 Ã0g!#2102 , ~17!

known as the~local! diffusion length. In a homogeneous
medium, the physical meaning ofLd is that a significant
number of photons will have been destroyed by absorp-
tion at this distance from their source. The analog ofLd

in nuclear reactor theory~Ã0 . 1, g ' 0! is the size fac-
tor, ,t 0~Ã0 21!102, that determines the critical mass in a
given geometry.

For future reference, we define the spatially invari-
ant ratios

k~Ã0, g! 5
1

s~x!Ld~x!
5!3~12 Ã0!~12 Ã0g!

~18!

and

j~Ã0, g! 5
,t~x!

Ld~x!
5 !3~12 Ã0!

12 Ã0g
, ~19!

sometimes called the similarity factor.24

The alternative connection between diffusion and DA
radiative transfer theories is a relatively recent finding
by Lovejoy et al.25 DA radiative transfer theory follows
from the RTE in Eq.~1! with a special choice of phase
function made of a discrete sum of Diracd functions on
J; the requirement of phase function dependence only
on V{V' limits the d’s to the vertices of regular poly-
hedra. The most popular case uses the sixfold symmetry
of the octahedron~dual surface of the cube! that lines up
with the orthogonal Cartesian axis: DA photons can scat-
ter forward~us5 0!, backward~us5 p!, or sideways~us5
p02, with four different azimuthal possibilities,ws 5 0,
p02, p, and 3p02!, and the respective probabilities of
these events add up to unity. By the same token, the new
RTE is not an integrodifferential equation but a discrete
system of six coupled PDEs for the six fluxes of photons
propagating in6x, 6y, and 6z directions, where the
phase function integral is replaced by a 63 6 scattering
matrix. By formally manipulating the phase-function pa-
rameters in a representation that diagonalizes the scatter-
ing matrix, one can emphasize side-scattering to the point
where some of the phase-function parameters take non-
physical ~negative! values in their natural representa-
tion; at the same time however, the PDE system collapses
onto a scalar diffusion equation and a Fickian vector re-
lation. This approach to diffusion is novel in that it makes
no outright assumptions on the radiance like most other
approaches; only phase functions are changed. It also
presents the standard~RTE-based! theory, DA theory, and
diffusion theory in a unified formalism where each
photon-transport theory has a distinctive mathematical
character, rather than just a hierarchy of approximations.

II.E. Diffusion, as an Approximation
to Radiative Transfer

There are also well-traveled roads from the RTE to
diffusion theory that present it as an approximation to
the more general linear transport theory encapsulated in
the RTE:

bWe quote here the standard result from transport theory
and defer our discussion of the currently debated dependence
of D on Ã0 until Sec. II.E.
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1. P1 truncation,22 i.e., at first order in the spherical-
harmonic expansion of the RTE

2. asymptotic theory.26

From this standpoint, we represent—when and where
possible—the radiance fieldI ~t, x,V! with the scalar and
vector quantitiesJ~t, x! andF ~t, x!; we therefore have

I ~t, x,V! ' @J~t, x! 1 3V{F ~t, x!#04p , ~20!

as can be verified directly by substitution into Eqs.~8!
and ~9!. In other words,I ~t, x,V! is presumably well-
approximated onJ by the sum of an isotropic term and a
dipole term. Using Fick’s law@Eq. ~13!# with Eqs.~10!
and~14!, we can eliminate the flux field from Eq.~20!:

I ~t, x,V! ' @12 ,t~x!V{¹#J~t, x!04p . ~21!

When and where is this likely to be a reasonable rep-
resentation? The short answer is: not too close to photon
sources, especially if they are directional and0or local-
ized and0or rapidly evolving; not too close to sinks ei-
ther. This has ramifications in space and time as well as
for the scattering and absorption properties of the optical
medium. We now visit each item individually.

1. In space, sources can be internal or at boundaries.
Internal ones are often thermal, hence isotropic, which is
good for diffusion. In contrast, boundary sources are of-
ten collimated and sometimes localized too, which is bad
for diffusion. More bad news for diffusion: Boundaries are
generally radiation sinks and often sources as well, de-
pending on direction of propagationV. However, a high-
reflectance Lambertian~isotropic! boundary is good news.
There is a way of stating this requirement quantitatively,
at least of conservative~Ã051! systems. We letH denote
the smallest of M’s outer dimensions, which is then the only
other length scale of any immediate consequence beyond
the~local! mfp ,~x! 510s~x!; we therefore require

H0,~x! 5 s~x!H * 1 ~22!

for photon diffusion to occur. A reasonable cut-off value
for * is27 1 to 2 times~12 g!21. It is not clear, however,
whether~12 g!s~x!H 5 H0,t~x! needs to exceed unity
everywhere or only most of the time in variable media
such as clouds. At any rate, the larger is the ratio in
Eq. ~22!, which we can interpret as the optical distance
through the smallest chord of M, the higher is the pre-
vailing order-of-scattering; this is intuitive, but we will
restate this quantitatively in Sec. VII. In turn, many scat-
terings~less memory of direction to sources! will make
Eq. ~20! a reasonable representation ofI ~t, x,V!. This
makes the absorbing boundaries opposite those bound-
aries with sources in optically thick media~e.g., the bases
of dense clouds in daylight! look like a good place for
diffusion; unfortunately, diffusion is disrupted near such
boundaries too because many of the photons that have
arrived there after many scatterings can now escape by
collective streaming motion~i.e., higher-order harmon-

ics are excited!. In summary, there is a boundary layer of
thickness',t~x!, x [ ]M, where photon transport nec-
essarily is nondiffusive.

2. Concerning temporal behavior, a cursory compar-
ison of the RTE in Eq.~1! and the diffusion equation in
Eq.~16! reveals that the RTE is relativistically invariant,
but its diffusion counterpart is not. Solutions of the dif-
fusion equation for a pulsed source~temporal Green func-
tions! have the equivalent of radiative shocks—unphysical
infinite velocities—at early times. Again, this is because
the photons are still primarily in streaming motion near
the source. One needs to wait a few times scales associ-
ated with the transport mfp to see the accuracy of the
diffusion approximation improve:

t * ,t~x!0c 5 3D~x!0c2 . ~23!

3. Concerning scattering, it is clear that a phase func-
tion that varies over almost five orders of magnitude~half
of which are within a degree or so ofus5 0! is detrimen-
tal to diffusion theory. Unfortunately, this is precisely the
case in typical cloud environments due to the diffraction
peak.19

4. Concerning absorption, it is clear that the larger
is sa5 ~12 Ã0!s, the lesser is the number of scatterings
for the photon population at large. For a sufficient num-
ber of scatterings to occur without prior absorption so
that Eq.~20! becomes reasonably accurate, we need to
have,t * Ld. Using the definition in Eq.~19!, this trans-
lates toj~Ã0, g! * 1; hence,

Ã0 *
2

3 2 g
, ~24!

which is the critical single-scattering albedo for a given
asymmetry factor. For most atmospheric applications
g ' 0.75 to 0.85, so we find thatÃ0 should exceed
0.89 to 0.93.

The next question is of course: Are there fixes for
these shortcomings of diffusion theory?

1. In space, we are dealing with a typical boundary-
layer problem where the diffusive solution applies in the
bulk of the medium and a photon-streaming solution ap-
plies close to the boundaries. An approach based on short
characteristics,28,29 currently used to accelerate numeri-
cal radiative transfer, may be applicable in diffusion
methods.

2. A first improvement on the early-time problem is
to use the telegrapher’s equation30 with both first- and
second-order derivatives int instead of the standard par-
abolic PDE in Eq.~16!; this results from having a time
derivative ofF~t, x! in Eq. ~13!, as is normally required
by a first-order harmonic~P1! truncation of the RTE. Pom-
raning and others devoted much effort into improving
the performance of diffusion theory near sources and
boundaries and in optically thin regions, especially when
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the fluxes vary rapidly in time~a common occurrence in
neutron transport applications!. The most powerful ideas
were those of “variable Eddington factors” and “flux-
limited” diffusion.31,32

3. If the goal of using diffusion is to have at hand a
numerically efficient photon transport theory, and
diffusion0P1 theory does that, then its breakdown due to
absorption is not too serious because the convergence
rates of numerical RTE solvers generally increase with
the relative amount of absorption. If the goal is to have
at hand an analytically tractable theory, then the prob-
lem remains. In fact, challenging observational para-
doxes have risen recently33 following a controversial
prediction by Furutsu and Yamada34 that one should al-
ways useÃ0 5 1 in Eqs. ~14! and ~15! to obtain D.
Rewriting Eqs.~14! and~15! asc0D 5 3s@~12 g!Ã0 1
a~1 2 Ã0!# , we havea 5 1 for the standard prediction
~used in the following! anda 5 0 for the alternative pre-
diction in diffusion theory, while the more accurate te-
legrapher’s equation suggests30 a 5 103. A fruitful
approach here seems to be a careful application of as-
ymptotic transport theory advocated by Aronson and
Corngold.35 These last authors arrive ata ' 1 2 ~405!0
~1 1 g! for Henyey-Greenstein scattering; for atmo-
spheric particles withg ' 0.75 to 0.85, we find
intermediate valuesa ' 0.54 to 0.57.

4. With respect to scattering phase functions with
strong diffraction peaks in the forward direction, there
is a standard fix,36 where the peak is modeled as ad
function at us 5 0 with a weight f . 0: p~ ms! 5
fd~12 ms! 1 ~12 f !@11 3g'ms# , whereg' 5 ~g 2 f !0
~1 2 f ! , g; the popular choice forf is g2. Conse-
quently, other optical properties are also rescaled:Ã0

' 5
Ã0~1 2 f !0~1 2 Ã0 f ! $ Ã0 ~5 being forÃ0 5 1!, and
s '~x! 5 ~12 Ã0 f !s~x! , s~x!. These mappings leave
invariant the coefficients on the left side of the diffu-
sion equation in Eq.~16!, but the source term on the
right side is more distributed throughout the medium
when used to represent the solar beam~as described in
Sec. III!; this improves the performance of the diffu-
sion model.

The most important question is probably: How rel-
evant is photon diffusion theory to atmospheric radiation
transport? King, Radke, and Hobbs37 measured radiance
distributions inside marine stratocumulus, which are hor-
izontally extended and unusually persistent cloud sys-
tems, hence climatically important. The authors frequently
found angular signatures that can be accurately modeled
by Eq. ~20!. An enumeration of less direct, but equally
compelling, pieces of evidence that radiative transfer is
primarily diffusive in dense boundary-layer clouds at
large, is provided in Refs. 15 and 38. The reasonable suc-
cess of asymptotic theory in cloud remote-sensing activ-
ity39 at moderate resolution~'1 km! also bears witness
to that fact.

III. THE GENERAL STEADY-STATE
ALBEDO PROBLEM

In this section, we focus on albedo problems, imply-
ing a uniform and constant source located at the part of
the boundary of M that is exposed to a collimated beam.
After that, we return to time dependence and0or nonuni-
form sources.

III.A. Boundary Conditions and Responses
in Radiative Transfer Theory

We seek the responseI ~x,V! in M J J to a steady
and uniform external irradiation from a collimated~i.e.,
distant! source in some directionV0 ~photons travel in
direction2V0!:

I ~x,V! 5 5
F0d~V 1 V0! ,

x [ ]Msrc5 $x [ ]M; n~x!{V0 . 0%

0 , x [ ]Msnk 5 ]M 0]Msrc

~25!

and no internal source term in Eq.~1!. Alterna-
tively, this boundary source can be recast as an
internal source for the diffuse component of the
radiance field, which obeys homogeneous BCs; the
source term in the RTE would then beS0~x,V! 5
Ã0s~x!F0 exp@2t~x0, x!# p~2V0{V! where x0~x,V0!
is the piercing point with]Msrcof the beam going through
x in directionV0. In atmospheric work,F0 is called the
solar constant. The choice of subscripts refers to the pres-
ence of photon sources on one~connected! part of the
convex boundary and photon sinks on the other part.

For specificity, consider a geometrically plane-
parallel medium, i.e.,

M 5 $x 5 ~x, y, z!T [ R3; 0 , z , H % , ~26!

where superscript T means transpose. We haveV 5
~sinu cosw, sinu sinw, cosu!T, where it is customary to
denote thezcomponent ofV by m 5 cosu. Note that this
simple external geometry does not exclude arbitrary in-
ternal variability. For instance, in Fig. 1a, we show a
plane-parallel optical medium with

Hs~x! [ s~x! 5 Ts 1 ds~x!

ds~x! 5 2dsmaxcos~2px0L!
, ~27!

whereL is the period of the extinction oscillation, inde-
pendently ofy andz, and we requiredsmax # Ts to keep
the field nonnegative. This simple sine-wave cloud model
will be used extensively in the following sections to il-
lustrate three different approaches to 3D radiation trans-
port problems.

In atmospheric applications, Eq.~26! is used to
describe a stratiform cloud layer; in this context,z is
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assigned to the vertical. We can therefore setV0 5
~ @12 m0

2#102, 0, m0!T, 0 , m0 # 1 describing collimated
~i.e., solar! illumination from above at an angleu0 5
cos21 m0 from zenith in a principal plane defined byw 5
w0 5 0 ~constanty!. This natural convention leads to

]M 5 ]Msrcø ]MsnkH]Msrc5 $x [ R3 z5 H %

]Msnk5 $x [ R3; z5 0%
. ~28!

In many cases, we are interested in the unknown radi-
ance fields at the boundaries: the escaping~hence re-
motely observable! radiance fields, not given by the BCs
but by the solution of the RTE. More precisely, we seek
I ~x, y, H, V! for n ~x, y, H !{V~ m, w! 5 m $ 0 and
I ~x, y,0,V! for n~x, y,0!{V~m,w! 5 2m $ 0. The for-
mer contributes to local reflectance~or albedo!, namely,

R~x, y! 5
1

m0 F0
E

m$0
mI ~x, y, H, m,w! dmdw , ~29a!

and the latter, to local transmittance,

T~x, y! 5
1

m0 F0
E

m#0
6m6 I ~x, y,0,m,w! dmdw , ~29b!

where

m0 F0 5 E
m,0
6m6 I ~x, y, H, m,w! dmdw ~30!

is the uniform incoming flux, normal to the upper bound-
ary, according to Eqs.~25! and~28!. Note that these quan-
tities are all hemispherical~rather than net! vertical fluxes.

There is a variety of general-purpose publicly avail-
able numerical transport codes that can compute the
boundary fields in Eqs.~29a! and~29b! as well as inter-
nal fields. Packages such as DANTSYS~Ref. 40!, orig-
inally designed for neutron transport, can be adapted to
atmospheric geometries and optics. Currently, the popu-
lar choice in the cloud-radiation community is Evans’s
SHDOM model.41 For a comprehensive survey, we refer
the reader to the ongoing Intercomparison of 3D Radia-
tion Codes~I3RC! Web sitê http:00climate.gsfc.nasa.gov0
I3RC& for details on and performance of each model.

III.B. Boundary Conditions and Responses
in Diffusion Theory

In the P1 framework, the only available quantities
areJ~x! andF ~x!, as related by Fick’s law. It is custom-
ary to write the BCs for the PDE in Eq.~16! as

5
1

2 F11 x,t~x!
]

]zGJ~x! 5 m0 F0 , x [ ]Msrc

1

2 F12 x,t~x!
]

]zGJ~x! 5 0 , x [ ]Msnk

,

~31!

Fig. 1. Simple model of an internally variable, purely scat-
tering optical medium illuminated uniformly from above, and
three approaches for the radiation transport therein.~a! We take
extinction from Eq.~27! andt~x! 5 s~x!H for optical depth
where necessary. So there is a single variability scale, periodL
of the sine wave, to which a well-defined amplitude is as-
signed,dsmax# Ts. Schematics for three different solutions to this
problem are illustrated in the other panels.~b! Flux lines in HPP
theory as it is generally applied to horizontally variable clouds
by using the mean extinction.~c! Flux lines in the IPA.~d! Flux
lines in 3D transport theory, described with 3D diffusion.
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wherex,t~x! is the extrapolation length at somex [ ]M,
and the numerical constantx is essentially a free param-
eter used to make diffusion a better approximation to the
RTE in some respect. From Eq.~31!, we note thatJ does
not vanish at the lower boundary but, at a distanceJ06]zJ65
x,t below it,J linearly extrapolates to zero. Here again,
one can use homogeneous BCs on]Msrcas well as]Msnk
whenJ~x! represents only the diffuse radiance field; in this
case, an internal source term is required in Eq.~16! to model
the deposition of solar photons in the medium:S0~x! 5
Ã0s~x!F0 exp@2t~x0~x,V0!, x!# .

There is no unique method for determiningx from
previously defined parameters in the problem. To wit, we
have

x 5 5
one-third, from Fick’s law and Eq.~20!
two-thirds, in Eddington’s approximation
0.7104 . . . , from Milne’s problem
four-thirds, in the optically thin limit .

~32!

It was soon realized that Fick’s law, and thus diffusion
altogether, fails near cloud boundaries as photon trajec-
tories become more ballistic and less like random walks.
Milne’s problem~a semi-infinite medium with isotropi-
cally scattering and uniform internal sources! was used
extensively as a benchmark for diffusion theory. Notice
how Eddington42 arrived at a value quite close to the ex-
act one.

In analogy with Eq.~31! for the incoming fluxes, the
unknown flux fields describing the radiation that even-
tually escapes the medium in Eqs.~18a! and ~18b! are,
respectively,

R~x, y! 5
1

2m0 F0
F12 x,t~x, y!

]

]zGJ~x, y, z!6z5H

~33a!

and

T~x, y! 5
1

2m0 F0
F11 x,t~x, y!

]

]zGJ~x, y, z!6z50

~33b!

after normalization bym0 F0. Combining with Eq.~31!,
we find

R~x, y! 5 J~x, y, H !0m0 F0 2 1 ~34a!

and

T~x, y! 5 J~x, y,0!0m0 F0 . ~34b!

In transport theory,R~{! andT~{! in Eqs.~29a! and~29b!
are simple ratios of radiative fluxes. In diffusion theory,
this is no longer true as soon asx Þ 103 in Eq.~32! be-
cause the assumed relation betweenJ and flux ~Fick’s
law! does not apply near the boundaries. However, it is
natural to want to estimate net radiative fluxes inside the

medium fromR~{! andT~{!. For instance, in the absence
of absorption, the spatial integralsRandT of R~x, y! and
T~x, y!, respectively, add up to unity, andT is the mean
flux through the cloud divided bym0 F0; by energy con-
servation,m0 F0T should be the result of integrating
n~x!{F ~x! over any surface inside M that covers its
boundary~i.e., has the same extent inx, y!. Using Fick’s
law and the lower BC in Eq.~31!, we find however from
Eq. ~34b! that the mean value ofFz over the boundary
domain ism0 F0T03x.

III.C. Bulk Radiative Energy Budget

We now examine radiant energy conservation within
a finite volume. Consider the rectangular parallelepiped,

C~r; x, y! 5 $~x ', y', z' !T [ R3; x , x ' , x 1 r,

y , y' , y 1 r, 0 # z' # H % ,
~35!

noting that the choice of a square~rather than a circle!
for the horizontal cross section of this cylinder is not
important for the following but simplifies formulas. Now
integrate Eq.~11! with ]J0]t [ 0 over all points in
C~r; x, y!. Using the divergence theorem to replace the
volume integral by a surface integral on the left side
and dividing both sides by the total incoming radiation
~namely,r 2m0 F0!, we obtain

@ OR~r; x, y! 2 1# 1 @ PT~r; x, y! 2 0# 1 OD~r; x, y!

5 2 NA~r; x, y! , ~36!

where

1. the first term@in square brackets# comes from the
net flux through]Msrc ù C~r; x, y!, with

OR~r; x, y! 5
1

r 2 E
x

x1rE
y

y1r

R~x ', y' ! dy'dx ' ,

~37a!

where R~x, y! is obtained from Eq.~29a! or
Eq. ~33a!, depending on whether the RTE or the
diffusion equation is used to model the transport
process

2. same remark for the second term, but through
]Msnk ù C~r; x, y! this time, so

PT~r; x, y! 5
1

r 2 E
x

x1rE
y

y1r

T~x ', y' ! dy'dx ' ,

~37b!

where the integrand is obtained from Eq.~29b! or
Eq. ~33b!

3. the third term is the net flux through Mù
]C~r; x, y!, expressed in units ofr 2m0 F0 spelled
out in Eq.~39!
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4. finally, on the right side, we have bulk absorptance

NA~r; x, y! 5
1

r 2m0 F0
E

0

HE
y

y1rE
x

x1r

sa~x ', y', z!J~x ', y', z! dx 'dy'dz . ~37c!

Rearranging the terms in Eq.~36! for easier interpretation, we have43

OR~r; x, y! 1 PT~r; x, y! 1 NA~r; x, y! 5 12 OD~r; x, y! , ~38!

where the only inherently 3D term is

OD~r; x, y! 5
1

r 2m0 F0
E

0

HHE
y

y1r

@1Fx~x 1 r, y', z! 2 Fx~x, y', z!# dy'

1 E
x

x1r

@1Fy~x ', y 1 r, z! 2 Fy~x ', y, z!# dx 'Jdz , ~39!

with Fx andFy denoting net fluxes in thex andy direc-
tions, respectively. It accounts for losses and gains through
the sides of the column, i.e., photons that are not re-
flected, transmitted, or absorbed within the confines of
C~r; x, y!. There is at least one sure case where the 3D
term OD~r; x, y! vanishes identically~for all x, y!: Taker 5
L, the size of the computational domain in a numerical
simulation with cyclical BCs in the horizontal.

In the energy balance equation~38! of a cloud, or the
whole atmosphere, onlyOR~r;{! and PT~r;{! can be esti-
mated from data using radiometers above and below the
system. It is clearly important to find the scaler at which
the contribution of OD~r;{! to the radiation budget can jus-
tifiably be neglected. This has been done, at least for dense
stratiform clouds like marine stratocumulus,38,43 as ex-
plained in Sec. VIII. Another approach that in principle
can work at very small scales is to somehow remove the
effect of horizontal fluxes empirically. With this in mind,
Ackerman and Cox44 obtained the apparent absorption
OD~r;{! 5 1 2 @ OR~r;{! 1 PT~r;{!# at visible wavelengths,

where NA~r;{! [ 0, and, assuming its counterpart in the
near IR spectrum is comparable in magnitude and sign,
then derived a less-biased estimate ofNA~r;{!. An im-
proved version of this technique is described by Mar-
shak et al.45

IV. ZEROTH-ORDER SOLUTION: HOMOGENEOUS
PLANE-PARALLEL THEORY

IV.A. Enforced Global Translational Symmetry
(Ignoring Horizontal Variability)

Within the framework of plane-parallel geometry,
Eq. ~26!, we now assume

s~x! [ s~z! . ~40!

In the absence of horizontal fluxes driven by nonuniform
illumination, we then have

]

]x
,

]

]y
[ 0 ~41!

in the Eq.~1! RTE and Eqs.~11! or ~12! and ~13! for
diffusion. This defines the horizontally homogeneous
plane-parallel~HPP! problem, a standard in many appli-
cations, including atmospheric science: HPP theory is still
used operationally in many situations, remote sensing and
climate forecasting in particular.

We view HPP theory as a reference with which to
compare “better” theory for a horizontally variable me-
dium. Presumably,s~z! in Eq.~40! is identified with the
average value ofs~x, y, z! over a givenz plane; this is a
natural choice becauses is proportional to particle den-
sity, ands~z! would be predicated on the mean density
at level z. With respect to the general albedo problem,
standard HPP theory is based on a voluntary neglect of
horizontal variability. Effectively, we have imposed a
strong degree of translational symmetry on the system.

Using Eq.~41! with Eq. ~5!, the RTE becomes

m
dI

dtz

5 2FI 2 Ã0Ep~V{V' ! I ~tz,V' ! dV'G ~42!

in HPP theory, where we have set dtz 5 s~z!dz; Leno-
ble20 extensively surveys solution methods. Further-
more, we taket0 5 0 and

t 5 E
0

H

s~z! dz5 tH ~43!

is the only parameter of interest: the~nondimensional!
optical thickness of the slab. Recall that 10s is the pho-
ton mfp. So, if it is uniform inz, thent 5 sH is the slab’s
thickness in mfp’s. In dense but nonprecipitating clouds,
t is highly variable at all scales, even whenH is almost
constant~e.g., marine stratocumulus!. However, a typi-
cal value is 15. Using the cloud microphysical param-
eters quoted earlier, this translates to'0.2 kg0m2 of liquid
cumulated in the droplets and, in turn, this amounts to
only '0.2 mm of water. There is generally approxi-
mately two orders of magnitude more water vapor in the
column.
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If the BCs are axisymmetric, i.e.,V0 5 ~0,0,1!T,
hencem0 5 1 in Eq.~25!, then we have

Fx~tz! 5 Fy~tz! [ 0 ~44!

for anyz, anyt, and phase function. Figure 1b illustrates
the flux lines—the mean photon flow—for this highly
symmetric situation. In the case of slant illumination
~m0 , 1!, we have

Fx~H ! 5 E
J

Vx I ~H,V! dV

5 (
i51

4 E
i ’th quadrant

Vx I ~H,V! dV . ~45!

Referring to the schematic of the principal plane in
Fig. 2, we see that contributions from quadrants 2 and 3
~Vz , 0! come from the BCs in Eqs.~25! and ~28!:
quadrant 2~Vx $ 0! gives zero as soon as the sun
is off-zenith ~Vx0

. 0, Vy0
5 0 becausew0 5 0,

and Vz0
5 m0 , 1!, and quadrant 3~Vx , 0! yields

2~12 m0
2!102 3 F0. Contributions from quadrants 1 and

4 ~Vz $ 0! are determined by the RTE’s solution; in
general, they are of unequal magnitude, but if the scat-
tering is rigorously isotropic, then they are equal in mag-
nitude and opposite in sign, so they cancel in Eq.~31!.
In summary, we haveFx~H ! , 0. Conditional that

~1 2 g!t .. 1 then, for anyV0 in the principal~ y 5
constant! plane represented in Fig. 2, there exists37 a
diffusion domain deep enough inside M, where

HFx~tz! ' 0 , constant0~12 g! & tz # t

Fy~tz! 5 0 , 0# tz # t
. ~46!

The value assigned to the numerical constant will de-
pend on the criterion for the onset of diffusive transport;
van de Hulst27 argues for two.

Although there are three spatial dimensions in HPP
theory, it is often referred to as 1D theory because of
the mathematical structure of Eq.~42!. Furthermore, there
is a large class of two-stream approximations to HPP
theory,46 an idea that actually antedates the RTE it-
self.47 Basically, one captures the effects of absorption
~Ã0 # 1!, forward scattering~g $ 0!, and0or slant illu-
mination ~m0 # 1! in the various coefficients that ap-
pear in a tractable system of two coupled ordinary
differential equations~ODEs!. This leads to closed-
form results forT, R, andA as functions of~m0,Ã0, g,t!.

IV.B. Steady-State Diffusion in a Homogeneous Slab

An approximation akin to the two-stream model is
obtained by applying photon diffusion theory to a ho-
mogeneous slab. We end up solving an ODE inJ~z!,
@2~d0dz!2 1 3~1 2 Ã0!~1 2 Ã0g!s2#J 5 0 with BCs
in Eq. ~31!, wherem0 does not appear explicitly~i.e.,
separated fromF0!. In the conservative case~Ã0 5 1!,
we solve a 1D Laplace equation,2~d0dz!2J 5 0. So we
haveJ~z! 5 J0 1 J 'z, where we obtainJ0 5 m0 F0THPP
from Eq. ~34b!; J ' is obtained from the lower BC in
~31!: J0 2 x,t J ' 5 0. We find

J~z! 5 m0 F0 3 THPP3 ~11 z0x,t! . ~47!

As remarked earlier, the constant magnitude of the flux
vector,6Fz65 ~,t 03!J ' from Fick’s law in Eqs.~13! and
~14!, is THPP03x. The key quantity here is the transmit-
tance of the slab:

THPP~m0,1,g,t! 5 1YF11
H

2x,t
G , ~48a!

where the nondimensional term contains the dependen-
cies on optical parameters,

H

2x,t
5

~12 g!t

2x
5

3

4
~12 g!t ~48b!

if we opt for x 5 203 in Eq.~32!.
Unlike the aforementioned result, the popular ver-

sions of two-stream theory account approximately for di-
rect solar beam effects asm0 varies over the Earth’s
surface. The simplest model is20

Fig. 2. Computation of net horizontal flux at upper bound-
ary under slant illumination. Four quadrants are defined to give
meaning to Eq.~31!. Quadrants 2 and 3 make up the inward
hemisphere, where radianceI ~x,V! is specified by the bound-
ary conditions. In the other two quadrants, we find the angular
distribution of escaping radiance~Vz $ 0!, as determined by
the radiative transfer equation. We have drawn a typical flux
line in the prediffusive domain~0 , tz & 20~12 g! according
to van de Hulst,27! assuming for simplicity azimuthal symme-
try in the albedo field.
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THPP~m0,1,g,t! 5 1YF11
~12 g!t

2m0
G , ~49!

which coincides with Eqs.~48a! and ~48b! whenm0 5
x 5 203 ~u0 5 53.5 deg!. Meador and Weaver46 describe
several increasingly sophisticated formulations of the two-
stream model. To incorporate the nontrivial effects ofm0
in the framework of diffusion theory, one would useJ
only to model the diffuse component and therefore solve
the aforementioned ODE with homogeneous BCs and a
source term for direct transmission. The outcome is some-
what more complex than Eqs.~47! and ~48! in that ex-
ponentials are present, even forÃ0 5 1.

IV.C. One-Half-Order Solution for Large-Scale
Properties: Linear Mixing of Cloudy

and Clear Skies

An important meteorological application of HPP
theory is to compute~approximately but efficiently! the
contribution of solar radiation to the energy budget at
all levels in the atmospheric column. It is unrealistic,
however, to expect the atmosphere to be horizontally
homogeneous at the relatively large scales of interest in
numerical climate modeling~grid points are several hun-
dred kilometres wide!. The simplest possible character-
ization of subgrid scale variability is to somehow define
a cloud fractionN. We then mix results for cloudy and
clear skies as follows:

Feff~z! 5 m0 F0

3 H@NTcloud1 ~12 N!Tclear2 0 , z5 0

12 @NRcloud1 ~12 N!Rclear# , z5 H

~50!

for the net fluxes at the boundaries. Typically, two-
stream approximations as in Eqs.~48! or ~49! are used to
obtain theR’s andT’s, sometimes an accurate solution of
the 1D RTE in Eq.~42!.

Since there is no account of horizontal fluxes, nor of
the generally continuous distribution of optical depth val-
ues, we consider this computational device as part of HPP
theory, only a half-step toward accommodating horizon-
tal variability. We will call the result in Eq.~50! weighted
plane-parallel~WPP! theory.

V. FIRST-ORDER SOLUTION: THE INDEPENDENT
PIXEL APPROXIMATION

V.A. Enforced Local Translational Symmetry
(Adapting to Horizontal Variability)

Remaining with the albedo problem, Eq.~25!, in
plane-parallel geometry, Eq.~26!, we maintain the iden-

tification of bothx andy derivatives with zero, Eq.~41!,
from Sec. IV.A. However, instead of neglecting horizon-
tal variability altogether, as in Eq.~40!, we rather make
the following identification:

s~x! [ s~x, y; z! , ~51!

where the semicolon now separates the independent vari-
ablez from the parametersx andy. Indeed, onlyz is used
in solving the RTE in HPP geometry. More precisely, we
continue to use HPP theory but with an optical thickness
that is~x, y!-dependent:

t~x, y! 5 E
0

H

s~x, y; z! dz . ~52!

Cahalan et al.48 call this the independent pixel ap-
proximation~IPA!. Figure 1c illustrates diffusive trans-
port under the IPA assumption. In comparison with HPP
theory in Fig. 1b, flux lines are still parallel to one an-
other and perfectly aligned along the vertical axis; how-
ever, they are no longer equidistant. We are now dealing
with a local symmetry.

V.B. Pixel-Scale Values and Coarse-Graining

At some fine~pixel! scale, we use HPP theory to
compute

FIPA~x, y! 5 FHPP@{,t~x, y!# ~53!

for any radiative quantity of interest: a reflectance~F5R!,
a transmittance~F 5 T !, or an absorptance~F 5 A!, pos-
sibly a radiance~F5 I !, etc.; these will in general depend
on the usual geometric and optical parameters~m0,Ã0, g!.
For instance, we can use results from 1D diffusive~or two-
stream! transport theory in slab geometry, namely,
Eqs.~48a! and~48b! or Eq.~49! for F 5 T andÃ0 51.

The general question of IPA validity at small scales
is discussed in Sec. VIII. In practice, the IPA is used to
compute larger-scale quantities by coarse-graining the ra-
diative response in Eq.~53!:

OFIPA~r; x, y! 5
1

r 2 E
x

x1rE
y

y1r

FHPP@{,t~x ', y' !# dy'dx ' .

~54!

This whole strategy is based on the hope that for a large
enough scaler, PTIPA~r;{!, ORIPA~r;{! and NAIPA~r;{! become
reasonable approximations to the exact coarse-grained
quantities in Eqs.~37a!, ~37b!, and~37c! in the macro-
scopic radiative budget spelled out in Eq.~38!.At this scale,
the contribution of horizontal fluxes,OD~r;{! in Eq. ~39!,
should be negligibly small becauseODIPA~{!512 PTIPA~{!2
ORIPA~{! 2 NAIPA~{! [ 0.
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V.C. Randomt Events and Ensemble-Averaging

The power of the IPA method is twofold:

1. It is computationally efficient compared to any
exact method of solving the full 3D RTE, even in the
diffusion approximation, and even if this is repeated many
times at the pixel scale.

2. The IPA averages in Eq.~54! can often be ob-
tained forr large enough in closed form,49 as long as one
more hypothesis is clearly stated.

The new hypothesis is similar to ergodicity in the statis-
tical literature: We replace the spatial average in Eq.~54!
by an ensemble average. In practice, this means that in-
stead of summing à la Riemann over all possible pixels,
each with the same weight, we sum à la Lebesgue over
all possiblet values~events!, weighting each one by its
relative frequency in the ensemble of all possible real-
izations. In other words, we integrate Eq.~53! with re-
spect to the probability measure

dP~t! 5 P~dt!

5 Prob$t # optical thickness, t 1 dt% . ~55!

We will useP~t! to denote Prob$0 # optical thickness#
t%, the cumulative probability oft. The probability den-
sity function~pdf! of t is dP0dt when it exists.

Dropping the~ presumably weak! spatial and scale
dependencies in Eq.~54!, we have

OFIPA ' ^FHPP~t!& 5E
0

`

FHPP~t! dP~t! . ~56!

The WPP scheme for large-scale fluxes in Eq.~50! offers
a simple illustration of the IPA concept using a probabil-
ity measure fort. Specifically, there are only two types
of pixel ~cloudy and clear!, drawn at random from a Ber-
noulli law: Prob$cloudy% 5 N, and Prob$clear% 5 1 2 N;
Eq. ~50! then follows directly from Eqs.~55! and~56!.

Equation~56! immediately explains a well-known ef-
fect of horizontal variability: systematic albedo reduc-
tion. Notice how we have more flux lines in Fig. 1c~IPA
schematic! than in Fig. 1b~HPP schematic!. This is not
arbitrary and translates graphically the fact that the over-
all flux ~hence transmittance! through the system is in-
creased in the improved theory~so albedo is reduced!.
This is a direct consequence of Jensen’s inequality,50

namely,

^F~t!& $ F~^t&! ~57!

as soon asF~t! is convex, i.e.,F ''~t! $ 0 over the sup-
port ofP~t!, i.e., theR domain, where 0, P , 1. The5
is obtained in Eq.~57! in only two cases:

F~t! 5 at 1 b ;

or

P~t! 5 Q~t 2 ^t&! ,

whereQ~{! is the Heaviside step function.

For illustration, one can average the direct transmis-
sion through the sine-wave cloud model in Eq.~27!:
use Eq.~56! with F ~t! 5 Tdir~t! 5 exp~2t! andP~t!,
which is cos21 @~^t& 2 t!0dtmax#0p on the interval
@^t& 2 dtmax,^t& 1 dtmax# , 0 before and 1 after. Equiva-
lently, use Eq.~54! with r 5L and a trivial change in vari-
ables to show that

^Tdir~t!& 5 E
0

p

exp@2~^t& 2 dtmaxcosw!# dw0p .

This yields

^Tdir~t!& 5 exp~2^t&! I0~dtmax! , ~58!

whereI0~{! is the order-0 modified Bessel function; so
^Tdir~t!&0Tdir~^t&! 5 I0~dtmax! is unity at the origin and
increases monotonically onR1, as predicted in~57!.

Since~]0]t!2T . 0 for t $ 0 in Fig. 3a, we can an-
ticipate ^T~t!& $ T~^t&! for any m0, Ã0, andg. Simi-
larly, the IPA average of reflectance, e.g.,RHPP~t! 512
T~m0,1,g,t!5 ~12 g!t0@2m01 ~12 g!t# from the two-
stream result in Eq.~49!, will lead to a value smaller than
RHPP~^t&! [ R~m0,1,g,^t&! because~]0]t!2R , 0. Ca-
halan et al.51 call

dRIPA 5 ORIPA 2 RHPP~^t&!

' ^RHPP~t!& 2 RHPP~^t&! # 0 ~59!

the plane-parallel bias; it is necessarily negative because
the reverse inequality from Eq.~57! applies here.

Figure 3b shows6dRIPA6 for a specific example, the
smoothly varying sine-wave cloud model in Eq.~27! and
Fig. 1. Any THPP~t! 5 1 2 RHPP~t! in the form 10@1 1
constant3 t# as, e.g., in Eqs.~48! or ~49!. A little alge-
bra then yieldŝTHPP~t!&0THPP~^t&! 5 @12 a2# 2102 $ 1,
wherea 5 RHPP~^t&! 3 dtmax0^t&; the range of this pa-
rameter is 0# a # RHPP~^t&! , 1. Notice how the re-
sulting albedo bias is maximum when the variance oft
is the largest possible and when^t& is at a point~depen-
dent on the adopted variability model! that maximizes
the effect ofRHPP~t!’s nonlinearity with respect tot. If
the pdf is heavily weighted by very larget values, where
RHPP~t! is almost saturated at unity, the bias will neces-
sarily decrease. It is interesting to note that with the
typical optical parameters used in cloud studies~g 5
0.85,x 5 203! and relatively strong variability~0.7 &
dtmax0^t& & 1!, the largest albedo biases~.0.05! are
reached precisely at typical values of^t&, from '10 to
'50.

V.D. Application to Earth’s Climate System

It is now widely acknowledged by the meteorologi-
cal community that variable cloud systems transmit more
visible sunlight than their homogeneous counterparts
for a given amount of total liquid water, at least for non-
grazing incidence. As described in Sec. V.C, the IPA
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approach to radiative transfer at large scales elegantly ex-
plains this in conjunction with two-stream—hence
diffusion-type—radiation transport theory.

The resulting albedo bias in the 5 to 10% range~with
respect tom0 F0! seems small until one realizes how much
that modulates the sole energy source of the climate sys-
tem, which is in a close radiative equilibrium. Solar flux
at the Earth’s orbit isF0 ' 1370 W0m2, and spread over
the whole globe~including night side!, this input is still
^m0&F002 ' 342 W0m2 on average~a typical value at
midlatitudes!. Approximately 30% of this energy budget
is reflected back to space~largely thanks to clouds!, but
a 5 to 10% fluctuation is still 17 to 34 W0m2. This is the
number to be contrasted with the mere 4 to 5 W0m2 in-
crease in surface heating~by enhanced greenhouse ef-
fect! that would result from an anthropogenic doubling
of CO2 in the atmosphere. The corresponding changes in
surface temperature, sea level, cloudiness, etc., depend
of course on feedback mechanisms, poorly understood
for the most part. Some of these feedbacks are mediated
by clouds, so cloud-radiative processes need to be ade-
quately represented in global climate models~GCMs!,
including the effects of 3D structure if possible. New
solar cloud-radiation modules in GCMs that incorporate
the IPA ~effects beyond the linear mixing described in
Sec. IV.C! are in order and some are currently being
tested.49,52

VI. SECOND-ORDER SOLUTION:
THREE-DIMENSIONAL DIFFUSION THEORY

VI.A. Symmetry Broken
(Welcoming Horizontal Variability)

In the previous two sections, we have discussed me-
dia where there is no cause for net horizontal fluxes to
arise~HPP, Sec. IV! and a computational device~IPA,
Sec. V! where we neglect horizontal fluxes but allow for
the variability that will surely excite them. We now turn
to radiation transport models that fully account for hor-
izontal fluxes. Figure 1d illustrates schematically this de-
sire with the simple sine-wave medium from Fig. 1 and
Eq. ~27!, already used in Secs. IV and V. In the remain-
der of this section, 3D diffusion theory is used to de-
scribe the mechanics of extinction-radiance interaction;
we will follow Cannon53 and refer to the dominant pro-
cess as radiative channeling.

Figure 1d shows the tendency of photons to flow
around the dense central area and into the more tenuous
regions on either side, an example of radiative channel-
ing ~Sec. VI.B and Fig. 4 in Sec. VI.B!. The fact that the
flux lines are more evenly spread out at the lower bound-
ary than the upper one, where the photons originate, is
not arbitrary; this is caused by the more extensive radi-
ative smoothing in transmittance than in reflectance, as
explained in Sec. VIII.

Fig. 3. IPA tools and case study.~a! Takingx 5 203 from Eq.~32!, we plot on the left axisTHPP~Ã0, g;t! andRHPP~Ã0, g;t!
versus~12 Ã0g!t for g 5 0.85 withÃ0 5 1 ~e.g., clouds in the visible spectrum! andÃ0 5 0.99~e.g., clouds in near IR!. In the
former~conservative scattering! case, we haveTHPP~1,g;t! 1 RHPP~1,g;t! [ 1, AHPP~1,g;t! [ 0; in the absorbing case, we also
plot AHPP~Ã0, g;t! on the right axis. We have highlighted the regime where diffusion theory~and related two-stream approxi-
mations! work best:~1 2 Ã0g!t * 1, meaningt * 6 to 7 for dense boundary-layer clouds~g ' 0.85, Ã0 ' 1!. Note that
THPP~Ã0, g;t! is convex with respect tot, whereasRHPP~Ã0, g;t! andAHPP~Ã0, g;t! are concave; these analytical properties are
characteristic of diffusive transport and explain the systematic effects of variability discussed in the main text.~b! We plot the
plane-parallel bias6dRIPA6 from Eq.~59! for the sine-wave extinction field in Fig. 1 and Eq.~27! as a function ofRHPP~{;^t&! for
conservative scattering~Ã0 5 1!; also indicated~upper axis! are some representative values of the domain-average optical depth
^t& rescaled by 2x0~12 g! ' 8.9 for the typical values used in Fig. 3a. The bias increases with the variability parameterdtmax0
^t& # 1 and with^t& although only up to a point determined bydtmax0^t&.
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VI.B. Local Analysis: Radiative Channeling
as the Symmetry-Breaking Mechanism

In this section, we takesa~x! [ 0 in Eqs.~3! and~4!,
hences~x! 5 ss~x! andÃ0 5 1 in Eq.~5!. Substitution
of Fick’s law @Eq. ~13!# and the expression for radiative
diffusivity in Eqs.~14! and~15! into Eq.~12! leads under
these conditions to4

¹2J 5 @¹ ln s#{@¹J# , ~60!

so J responds only to the relative fluctuations ofs~x!:
¹ ln s 5 ~¹s!0s. Even with the BC effects discussed
later, this remains largely true. Equation~60! is easier to
interpret in the form

2¹2J 5 3~12 g!F ~x!{¹s , ~61!

bearing in mind the otherF 2 s 2 J coupling in Fick’s
law

F ~x! 5 2@3~12 g!s~x!#21 ¹J . ~62!

Let JHPP~x! [ JHPP~z! be the solution of Laplace’s
equation

2¹2JHPP5 0 ~63!

with the BCs in Eq.~31!. In this homogeneous situation,
FHPP~x! is a uniform vector field; furthermore, the only
nonvanishing component is~Fz!HPP[ 2m0 F0THPP03x.
The constantTHPP is transmittance, as obtained fromg
and St 5 TsH in Eqs.~48a! and~48b!. We use here volume-
averaged extinction:

Ts 5 E
M

s~x! dxYE
M

dx 5
1

HL2 E
M

s~x! dx ~64!

because

M 5 @0,L!2 J ~0,H ! ~65!

is the~periodically replicated! computational domain of
interest in the following. Let

s~x! 5 Ts 1 s '~x! ~66!

define the extinction fluctuations '~x!; by this defini-
tion, the average ofs '~x! over M vanishes. Also let

HJ~x! 5 JHPP~z! 1 J '~x!

F ~x! 5 FHPP~z! 1 F '~x!
, ~67!

where J~x! is the solution of Eq.~60!, with BCs in
Eq.~31!, andF ~x! is derived from Fick’s law in Eq.~62!.
These quantities are decomposed in the same way ass~x!
in Eq. ~66!, but without any prior knowledge about their
volume integrals~they are in fact estimated later!.

From Eqs.~61! and~67!, we see that the 3D compo-
nent of the solution,J '~x!, obeys exactly

2¹2J ' 5 3~12 g!F ~x!{¹s ~68!

with BCs inz as in Eq.~31! but homogeneous, i.e., van-
ishing right sides~a fact we will exploit later!. @The in-
homogeneous part of the BC forJ~x! at z5 H is readily
accounted for in the zeroth-order HPP solution.# Further-
more, in contrast with Eq.~63! for the unperturbed field,
J '~x! has an internal source-and-sink-like term on the right
side of Eq.~68! @see Eq.~11! with ]0]t [ 0# .

Retaining only first-order terms in¹s [ ¹s ', J ' , F '

from Eq.~68!, we find

2¹2J ' ' 3~12 g!FHPP{¹s

5 F0 3
]

]x
1 0 3

]

]y
2 3~12 g!m0 F0THPP3

]

]zG
3 s~x! ~69!

and defer to Sec. VI.C a discussion of the magnitude of
the neglected terms. The schematic in Fig. 4 illustrates
the fate of flux-line geometry, as dictated by Eq.~69!,
when scattering material is added and0or removed to an
HPP substrate. Recalling that extinction is proportional
to local particle density, we see that

1. where the extinction or density gradient is in the
opposite direction from the unperturbed~and overall! flux,
the right side of Eq.~69! is negative. The perturbed flux
lines will therefore appear in a converging pattern. To
see this in a simple way, note that¹{F ' @ 2¹2J ' will
also be,0, i.e., the same sign as the characteristic sink
term in Eq.~11!. There are examples in the lower left
and upper right parts of Fig. 4.

2. where the gradients are in the same direction as
the average flux@the right side of Eq.~69! is .0# , the
perturbed flux lines will then diverge from each other
because¹{F ' . 0 then looks like the internal source term
in Eq. ~11!. ~See upper left and lower right portions of
Fig. 4.!

Fig. 4. Radiative channeling. An originally homogeneous
plane-parallel medium is restructured internally by removing
scattering material from the circular region highlighted on the
right side and adding it to the region on the left side. Flux lines
are naturally deflected around the dense region and into the
tenuous one. Flux-line geometry used here assumes diffuse or,
if collimated, normal illumination~see discussion of Fig. 2!.
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3. elsewhere, there is little variation ins~x! along
the mean flux line@so the right side of Eq.~69! is '0# . In
this case, flux lines are in a locally parallel0equidistant
configuration; see, for instance, the portion of Fig. 4 mid-
way between the two boundaries.

Overall, we see that the response of the photon flow
to a positive fluctuation in extinction~density! is to de-
flect itself around the correspondingly opaque region. In
the same manner, photons will tend to flow toward and
into the tenuous region related to a negative fluctuation
in s~x!.Although in a different setting~spectral line trans-
fer!, Cannon53 described a similar phenomenon ob-
served in his early 2D numerics: “@photons flow# into the
less opaque regions by increased scattering in the re-
gions of greater opacity;” he called this radiative chan-
neling. In particular, channeling is responsible in Fig. 1d
~3D diffusion transport! for breaking the translational sym-
metry in the vertical direction in Fig. 1c~IPA transport!.

IV.C. Global Analysis: The Effect of Variability
on Bulk Transport Properties

Wecarryon theaforementioned3Dperturbationanaly-
sis by incorporating BCs. We wish to determine a global
quantity such asT~r,{! in Eq.~37b!, where the averaging-
scaler is, in principle, large enough that we can neglect
the residual dependence on the horizontal coordinates.c

In practice, we just taker 5 L, the size of the finite hor-
izontal computational domain in Eq.~69!, where we ap-
ply periodic BCs in the horizontal plane. The transport
problem is specified entirely in the framework of the
plane-parallel geometry defined in Eqs.~25! and~28!.

Now, define the global responses to an arbitrary per-
turbation in the extinction field:

dR 5 OR~L,{! 2 RHPP ~70a!

or

dT 5 PT~L,{! 2 THPP5 2dR , ~70b!

because we are in the framework of conservative scat-
tering. Of the 3D perturbation, we require only that

1. s~x! 5 Ts 1 s '~x! $ 0

2. the integral ofs '~x! over M vanishes, as follows
from Eqs.~64! and~66!.

This latter requirement is akin to conservation of total
mass, equivalently, of the total number of scattering par-
ticles, because extinction is proportional to the local den-
sity of the scattering material. Any scattering mass
redistribution compatible with the former constraint is
acceptable; in particular, we do not needs '~x! to be
small in any sense.

Substitution of the mean1deviation decomposition
in Eqs.~56! and~57! into Fick’s law in Eq.~62!, rewrit-

ten for more convenience as@3~12 g!s~x!#F ~x! 5 2¹J,
yields

3~12 g! TsFHPP5 2¹JHPP ~71!

at zeroth order, and

3~12 g!@s 'FzHPP1 TsFz
'1 s 'Fz

'# 5 2S ]

]z
DJ ' ~72!

for all the perturbation terms along the~vertical! z axis.
We now integrate Eq.~72! term-by-term over M and

divide by the total incoming flux,m0 F0L2:

1. First term in Eq. (72): It vanishes identically be-
cause of the aforementioned mass-conservation constraint.

2. Second term in Eq. (72): We exploit the fact that
the total flux crossing a horizontal cut through M is in-
variant in z. This follows directly from radiant energy
conservation,¹{F 5 0, and applies to the perturbation
term as well:¹{F ' 5 0 ~because¹{FHPP 5 0!. So we
only need to estimate the horizontal integral once: at
z 5 0, we haveFz~x, y,0! 5 2m0 F0T~x, y!03x from
Sec. IV.B. The perturbation of its spatial integral is there-
fore 2m0 F0L2dT03x, using Eqs.~37b! and~70b!. After
vertical integration and normalization, the second term
in Eq. ~72! thus becomes23~1 2 g! TsHdT03x 5
2~1 2 g! StdT0x.

3. Third term in Eq. (72): It simply yields
3~1 2 g!H 3 Rs 'Fz

'0~m0 F0!, where the~one-point! co-
variance of the fluctuations in extinction and in vertical
flux is measured by

Rs 'Fz
' 5

1

HL2 E
M

s '~x!Fz
'~x! dx . ~73!

Multiplying top and bottom by Ts, the third term be-
comes 3~12 g! St 3 Rs 'Fz

'0~ Tsm0 F0!.

4. Right side of Eq. (72): Being the volume-integral
of a gradient inz, this becomes the difference between
the horizontal integrals ofJ '~x! taken atz5 0 andz5 H.
Using Eqs.~34a!, ~34b!, ~37a!, and~37b!, this becomes
the difference betweendR obtained atz 5 0 anddT 5
2dR obtained atz 5 H. The right side of Eq.~72! thus
becomes22dR5 2dT. In summary, Eq.~72! has become

2~12 g! StdT0x 1 3~12 g! St
Rs 'Fz
'

Tsm0 F0
5 2dT . ~74!

Grouping similar terms, we can solve fordT. Using
Eqs.~48a! and~48b!, we recognize the multiplier ofdT
as 10~3xRHPP! 510@3x~12 THPP!# . Thus we can rewrite
Eq. ~74! as

dT

12 THPP
5

2dR

RHPP
5 3x
Rs 'Fz
'

Tsm0 F0
. ~75!

cWe are in an effectively ergodic regime.
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The preceding formula fordT is exact in the framework
of diffusion theory and it is second order in the fluctu-
ations. In other words, the quantitydT vanishes in the
limit of a linear perturbation analysis, as used locally in
Eq. ~69!. We also see that—as predicted from Eq.~60!—
only the relative fluctuations,s '0 Ts, are important in dif-
fusion theory. Finally, the magnitude ofdT will depend
on the specifics of the perturbation, but we can predict
its sign on general grounds:dT . 0.

Proof that dT . 0: We only need to consider the
numerators in Eq.~75!. Flux lines define the flux-
vector field completely up to a multiplicative constant:
At a given point, its direction is given by the tangent of
the line through that point and its magnitude by the lo-
cal density of lines~number of lines piercing a unit sur-
face at right angles to the tangent! ~see Figs. 1b through
1d!. Thus, if ds 5 s ' . 0 ~left side of Fig. 4!, then
d7F 7 5 2Fz

' , 0, because perturbed lines are the fur-
thest apart here; conversely, ifds 5 s ' , 0 ~right side
of Fig. 4!, then d7F 7 5 2Fz

' . 0, because perturbed
lines are closer here. In summary, we can safely assert
that the numerator on the right side of Eq.~75! is pos-
itive; hence,dT . 0. Davis9 provides another argu-
ment, using Stephens’s parameterized representation54

of his numerical results.55

VI.D. Relation of Eq. (75) to the Independent Pixel
Approximation and Sun-Angle Complications

In the framework of the IPA, we can define in anal-
ogy with Eq.~59!

dTIPA 5 PTIPA 2 THPP~ St! 5 RTHPP~t! 2 THPP~ St! , ~76!

and we found that

dTIPA 5 2dRIPA $ 0 ~77!

as a consequence of Jensen’s inequality in Ref. 55. How
does this bias compare to the general definition ofdT in
Eq.~70b! and its 3D diffusion-based estimate in Eq.~75!?

Imagine a medium wheret~x, y! [ St in Eq. ~52!;
yet, every column has a different structure inz. Such a
medium hasdTIPA 5 0 in Eq.~77!, yet horizontal fluxes
will occur, sodT . 0 in Eqs.~70b! and~75!. Based on
this example, we conjecture that in diffusion theory for
pure scattering~Ã0 5 1!, we have

dT $ dTIPA $ 0 ~78!

and, from there,

T $ TIPA $ THPP~ St! ~79!

for any s~x! in plane-parallel geometry that conserves
mass~same St!. Returning to Fig. 1, this explains why,
realistically, there are more flux lines in Fig. 1c than in
Fig. 1b and more in Fig. 1d than in Fig. 1c.

The conditions under which the ordering in Eq.~79!
carries over to RTE solutions are an open question. In

meteorological applications, sun angleu0 5 cos21m0 is
an important parameter and, given the huge range of
extinction found in the atmosphere, deviations from dif-
fusion theory need to be addressed. For all practical pur-
poses, illumination is regarded as isotropic in diffusion
theory as used here with BCs in Eq.~31!; along with
F0, m0 controls the strength of the illumination but not
its directivity.d It seems natural to require that the illu-
mination be at least as symmetric as thes~x! field in
order to obtain the ordering in Eq.~79!. Going back to
Fig. 2, it is easy to see that another~illumination-
symmetric! situation that is easier to comprehend is when
m0 5 1, but, strictly speaking, it is only applicable to
one ~subtropical! location on Earth at a time. The first
inequality in Eq.~79! has indeed been observed to oc-
cur in the reverse order in numerical simulations, only
when m0 , 1 however. For instance, the Monte Carlo
estimates of the IPA biasRIPA 2 R 5 T 2 TIPA by Ca-
halan et al.51 are of either sign, dependent onm0 and
cloud variability parameters.

The restriction of Eq.~79! to diffusion theory and
azimuthally symmetric illumination highlights the diffi-
culty of obtaining general results in 3D radiative trans-
fer. However, the observed violations in the ordering in
Eq. ~79! are not incompatible with the idea of radiative
channeling picture introduced in Sec. VI.C, on the con-
trary. To see this, imagine, for simplicity, an isolated cloud
of finite size embedded in an otherwise homogeneous op-
tically thin atmosphere. Now, if that cloud—a strongly
positive fluctuation ins~x!—is illuminated at a grazing
angle, then the sunlight is channeled upward into reflec-
tance, as well as downward into transmittance, as de-
fined by the local zenith. Compare Fig. 5, a schematic
illustration of thesem0 , 1 effects, and Figs. 1d and 4,

dTo model specificm0 effects in diffusion theory, one must
separate the direct and diffuse components of radiance and write
the diffusion PDE for the latter with homogeneous BCs inz
and with an internal source term dependent onm0.

Fig. 5. Radiative channeling whenm0 , 1 described sche-
matically by typical radiative flux lines. Channeling of photon
flow contributes here to both reflectance and transmittance,
whereas in Fig. 4 only the latter benefits on average, as a second-
order correction to the HPP case~see Sec. VI.C!. Whatever the
configuration, photons interact collectively with the fluctua-
tions of the extinction field like a fluid in a porous medium,56

always seeking channels~paths of least resistance!.
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where the channeling patterns are symmetric with re-
spect to the vertical axis. In summary, Eq.~75! shows
that if m0 51, then channeling contributes only to trans-
mittance~reduces albedo! on average; this is no longer
the case ifm0 , 1.

It is now easy to see why the non-IPA~channeling-
driven! component of albedo reduction is of second or-
der~hence quite small! under quasi-normal illumination
at large scales: Eq.~75! is not robust with respect to
deviation fromm0 5 1. On the other hand, the well-
documented38,43,51,57 break-down of the IPA at small
scales is traceable, by virtue of the definitions used here,
to localized channeling events under any sun angle.

VI.E. Criterion for the Onset of Strong Channeling

Whether through fully diffusive transport~as de-
scribed here! or via just a couple of scatterings in an RTE-
based approach,58,59 channeling is ubiquitous because it
is a symmetry-reducing~entropy-increasing! process.
Since channeling occurs to some extent as soon as there
is any degree of 3D variability, it is desirable to have a
criterion for the onset of strong channeling. This is not
hard to establish because the variability itself gives us a
local length scale to compare with the local mfps~x!21,
namely,s~x!07¹4s7. This is the nominal distance needed
for s~x! to change by once its own value in a displace-
ment along the direction of¹4s, which denotes the hor-
izontal gradient ofs. More precisely, we are interested
in the gradient perpendicular to the mean photon flow
through the system, hence the subscript' for the gradi-
ent operator. Bearing in mind that 10s~x! must also be
on average small with respect to the outer dimensions of
the system~H andL! to enable the multiple scattering,
the relevant ratio is therefore

z~x! 5
s~x!21

s~x!07¹4s7
5 66¹4S 1

s
D 66 . ~80!

So we are looking at the norm of the gradient of local
mfp, transverse to the mean photon flow. We will distin-
guish three regimes forz~x! where we anticipate differ-
ent radiative behaviors:

1. z~x! ,, 1: “slow” variability. The IPA, possibly
even WPP, theories will become more and more accurate.

2. z~x! ; 1: “just right” variability. If persistent
enough to sees~x! change significantly, strong channel-
ing is likely to occur.

3. z~x! .. 1: “fast” variability. If persistent over large
areas, HPP theory~for mean extinction Ts! applies be-
cause almost every free path samples almost all the
variability.

The first and last diagnostics are consistent with the as-
ymptotic predictions of stochastic radiative transfer in bi-
nary mixtures,60–63respectively, in the limits of large and

small correlation scale~the parameter of the model that
controls how quickly one goes from a cloudy to a clear
element or vice versa!. A caveat about the second item is
warranted by our discussion of Fig. 5: Because of slant
illumination, channeling can have little effect on the do-
main average but huge effects on pixel values. For nor-
mal illumination, however, pixel-scale effects are less
spectacular, but there is a definite signature of channel-
ing in the domain average@see Eq.~75!#.

To illustrate of the relevance of the nondimensional
quantity in Eq. ~80!, we can invoke once more the
sine-wave cloud model in Eq.~27! and Fig. 1. First,
we note that the variability scaleL has no influence
on the IPA response plotted in Fig. 3b. It is however
paramount to the channeling. Indeed, we havez~x! 5
~2p0L!dsmax6sin~2px0L!60@ Ts 2dsmaxcos~2p0L!#2 from
Eq. ~80!. Averaging over the interval@0,L# , we find Nz 5
~40thor!v0~12 v2! wherev5 dsmax0~ Ts! is the variabil-
ity parameter andthor 5 TsL is the horizontal optical
thickness of the basic cloud cell. This average is diver-
gent in the interesting~strong variability! limit v r 12

because of the large and slowly changing values of
10s~x! at x ' 0. As a characteristic value, we can, how-
ever, take

z~L04! 5 * d

dx
S 1

s
D*

x5L04
5 2p

dsmax

Ts
0 TsL

5 2p
v

thor
. ~81!

In the numerator, the variability parameterv cannot ex-
ceed unity in this model, so the full range ofz~L04! is
controlled bythor in the denominator. Equivalently, we
can use the cloud’s aspect ratioL0H to set the value of
z~L04! 5 2p~H0L!v0~ St!. The thinner is the cell hori-
zontally, the more values ofs~x! each photon samples
~allowed by the numerator! and the stronger are the chan-
neling ~non-IPA! effects, but only up to a point. Extinc-
tion s~x! can vary so fast that most photons traveling
horizontally go through several cells; this happens when
thor 5 St~L0H ! ,, 1, and we might as well be in a ho-
mogeneous medium with the mean extinctionTs. Table I
displays Monte Carlo results for cloud transmissionT
with St 5 15, v 5 1, m0 5 1, and a wide range ofL0H
ratios. As predicted,T is maximum whenz~L04! in
Eq. ~81! is O~1!; also as predicted,T 2 TIPA # 0.02 is
not large compared toe TIPA 2 THPP ' 0.09. Previous
numerical computations for sine-wave media using

eThis jump is dominated by the strong direct transmission
~Tdir! effect atm0 5 1 in the IPA traceable to the exact align-
ment of the fluctuations int~x! and the normal illumination.
Indeed,Tdir goes straight from exp~215! ' 3.1027 in the HPP
model atv 5 0 ~formally alsoL r 0! to exp~215!I0~15! 5
0.1039 . . . for any 3Dmodel ~L . 0! with v 5 1; In~{! is the
modified Bessel function of ordern ~see Sec. V.C!.
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diffusion theory6 or the RTE~Refs. 65 and 66! confirm
the aforementioned analysis.

VII. CHARACTERISTIC TIME AND LENGTH
SCALES FOR DIFFUSIVE TRANSPORT

IN SLAB GEOMETRY

In this section, we restore the possibility of time
dependence in the RTE and in 3D diffusion to consider
nonconstant and0or nonuniform sources, mostly in ho-
mogeneous media. This enables us to obtain analytical
estimates of characteristic time and length scales for nor-
mal and transverse transport phenomena in finite slabs.
We then confront these results with numerics for homo-
geneous as well as variable cloud models.

VII.A. Mean Dwelling Time

Consider a general time-dependent radiative trans-
fer problem governed by the RTE in Eq.~1!, hence the
radiant energy conservation law in Eq.~11!. We only re-
quire that the source have a finite duration in time, start-
ing no sooner thant 5 0. We can thus define

^tinject& 5 E
0

`

tE
M

S~t, x! dxdtYE
0

`E
M

S~t, x! dxdt .

~82!

The instantaneous rate of radiant energy release by
all parts of the medium’s boundary]M ~luminosity in
the astrophysical literature! is defined as

L~t ! 5 E
]M

n~x!{F ~t, x! dx 5E
M

¹{F ~t, x! dx . ~83!

We can now define the mean escape time as

^tescape& 5 E
0

`

tL~t ! dtYE
0

`

L~t ! dt , ~84!

assuming there is no absorption in the medium, i.e.,
Ã0 5 1 andsa~x! 5 0 in Eq. ~11!. Using the remaining
terms in Eq.~11! to express the integrands in Eq.~84!,
we have

E
0

`

L~t ! dt 5 E
0

`E
M

S~t, x! dxdt

2
1

c FEM
J~t, x! dxG

t50

t5`

, ~85!

and similarly,

E
0

`

tL~t ! dt 5 E
0

`tE
M

S~t, x! dxdt

1
1

c
E

0

`E
M

J~t, x! dxdt

2
1

c FtEM
J~t, x! dxG

t50

t5`

, ~86!

where an integration by parts in time was applied to the
term int]J0]t. Since the source term is of finite duration,
we haveJ~0,x! 5 J~`, x! [ 0, so the last terms in
Eqs.~85! and~86! vanish identically. By substitution into
Eqs. ~83! and ~84!, we find that the mean photon path
length from injection to escape is

^l& 5 c@^tescape& 2 ^tinject&#

5E
0

`E
M

J~t, x! dxdtYE
0

`E
M

S~t, x! dxdt . ~87!

For media with absorption~Ã0 , 1, sa~x! . 0!, the
interpretation of this result is that the photon statistics
we use for the averaging in Eq.~87! are conditional to
escape from M~i.e., before absorption occurs on the way
inside of M!. The unconditional mean photon lifetime
would look like^tescape& in Eq.~84! but based on the sum
of L~t ! and the instantaneous rate of absorption any-
where in M:

A~t ! 5 E
M

sa~x!J~t, x! dx ; ~88!

TABLE I

Onset of Strong Radiative Channeling at Moderate Values
of j in Sine-Wave Cloud Models

L0H
~numeric value!a z ' 0.43 H0Lb

T
~error3 103!c

0015: ` ~HPP limit! 0.4604~1.8!
0.1015: ~0.0067! 60 0.5440~1.8!

1015: ~0.0667! 6.0 0.5544~1.6!
3015: ~0.2000! 2.0 0.5623~1.4!

10015: ~0.6667! 0.6 0.5736~1.7!
30015: ~2.0000! 0.2 0.5710~1.5!

100015: ~6.6667! 0.06 0.5576~1.9!
1000015: ~66.667! 0.006 0.5539~1.8!
`015: 0 ~IPA limit ! 0.5524~1.3!

aThe aspect ratioL0H of the ~L-periodic! cloud model;
the ratio is first stated in optical units, whereSt is held constant
at 15 andthor varies from 0 tò , then its numerical value is
quoted.

bCorrespondingz from Eq.~81!.
cTransmissionT computed with a straightforward Monte

Carlo method using the maximum cross-section technique64;
the error onT is quoted for the 105-history runs. For the large
jump inT betweenL 5 0 ~formally! andL . 0, see Eq.~58! for
the direct component.
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similarly, the mean photon lifetime conditional to ending
in absorption would be based onA~t ! alone.

VII.B. Mean Path Lengths in Steady State and Orders
of Scattering in Homogeneous Media

The general time-dependent transport result in
Eq. ~87! has direct bearing on steady-state problems.
Indeed, a photon’s pathlengthl is a well-defined geo-
metric concept even in the absence of a time-dependent
source, so its mean is simply

^l& 5 E
M

J~x! dxYE
M

S~x! dx , ~89!

conditional to escape from M, absorption by the bound-
ary ]M, rather than absorption in M’s volume.

If we are more interested in order-of-scattering sta-
tistics, then we must consider total optical path length,
which, in general, is expressed as an integral over the
whole trajectory:

E
in

out

dt~s! 5 E
in

out

s~x~s!! ds . ~90!

Now, for each unit of optical path length, one scattering
on average has occurred. So, on the condition that we
make as-homogeneity assumption to obtain Eq.~90!
from geometrical path lengthl, sl is approximately
equal to the number of scatterings from start to end, if
it is sufficiently large ~i.e., we are in a diffusion re-
gime!. In summary, the characteristic~actually mean!

number of scatterings suffered by photons in an opti-
cally thick homogeneous medium, from injection to es-
cape, can be estimated as follows:

^n& ' s^l& 5 sE
M

J~x! dxYE
M

S~x! dx , ~91!

where the error is systematic but certainly less than 1.
Recall that̂ n& should always be significantly larger than
unity when diffusion prevails.

VII.C. Relation to Green’s Functions for Slabs
in the Diffusion Limit

We now apply this result to a homogeneous plane-
parallel slab medium, whereS~x! [ S~z!. Using Eq.~16!
with ]0]t [ 0, the scalar flux functionJ~z! satisfies
the following boundary-value problem on the interval
0 , z , H:

HD ' @2~d0dz!2 1 10Ld
2#J 5 S~z!

@12 x,td0dz#J6z50 5 @11 x,td0dz#J6z5H 5 0

~92!

in the diffusion limit, i.e., using Fick’s law:F ~z! 5
2D 'dJ0dz, with D '5 D0c5 ,t 03. The characteristic dif-
fusion lengthLd 5 !D '0sa in Eq. ~17! naturally reap-
pears here.

If we setS~z! 5 d~z2 z* !, 0 , z* , H, thenJ~z! 5
G~z, z* ! is the Green’s function of the boundary-value
problem in Eq.~92!; the explicit expression for 0, z ,
H is

G~z, z* ! 5 S3

j
D FexpSmin$z, z* %

Ld
D1 ~xj 2 1!GFexpS2max$z, z* %

Ld
D1 expS2H

Ld
D~xj 2 1!G

2 1 ~xj 2 1! FexpS2z*

Ld
D1 expS z* 2 H

Ld
DG , ~93!

wherej 5 ,t0Ld is expressed as a function ofÃ0 and g in Eq. ~19!. In the case of vanishing absorption where
sa r 0 ~alsoÃ0 r 1, Ld r `, andj r 0!, we find the simpler expression

G~z, z* ! 5 S3x

2 D S11
min$z, z* %

x,t
DS11

H 2 max$z, z* %

x,t
D

11 H02x,t
. ~94!

As z* r H, the d source reaches the upper boundary, precisely where it was placed in the diffusion treatment of
albedo problem in Sec. IV.B. So one would expectG~z, H ! to become identical to theJ~z! previously obtained in
Eq. ~47!, but we obtain a numerical factor 3x02 here, which deviates from unity ifx Þ 203. The 3x numerator has
the same value and origin as the6Fz60THPPratio found in Sec. IV.A: We do not require Fick’s law to apply strictly at
the boundaries~which would otherwise enforcex 5103!. The 2 in the denominator results from the loss of half of the
strength of source inside the medium: Only the half of the isotropic energy release going downward~into the me-
dium! is accounted for.

We can now estimate the average number of scatterings from Eq.~91!, where, in this case of ad-function source,

^n& ' sE
0

H

G~z, z* ! dz , ~95!
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because the denominator is unity~and 102 if z*5 0, H !.
Ultimately,^n& depends on all the nondimensional param-
eters of the problem:Ã0, g, t 5 sH, and 0# z*0H # 1.

VII.D. Extension to Horizontal Photon Transport

The characteristic order of scattering~equivalently,
time scale! in Eq. ~95! can be mapped to a characteristic
spatial scale that describes the area of the slab-cloud that
is explored by photons during their diffusive random
walks, from injection to escape. To this effect, we use
Einstein’s relation for Brownian motion:

^r 2~t !& 5 Dt , ~96!

wherer ~t ! is the random vector position of the particle
at timet after leaving the origin att 5 0, and the constant
D 5 c,t03 is diffusivity. Time is now mapped to the num-
ber of scatterings at escape by

ct ' ^l& ' ,^n& 5 ^n&0s . ~97!

The trick used here is that a deterministic parameter
t $ 0 is replaced with the average of a nonnegative ran-
dom variable^l&0c. ~The determined quantity in these
truncated random walks is actuallyz~t ! 5 0 or H, where
escape from the slab occurs.! The implicit assumption is
that the pdf over which the average is performed is nar-
row enough to be represented by the mean alone. An im-
portant caveat about this assumption relating to reflected
light was recently uncovered by Davis67: The pdf ofn is
too broad and skewed to make predictions of the higher
moments from the mean alone~details to be discussed
shortly!.

Finally, we are interested here in the variance^r2&
of the~x, y! projection of the~statistically isotropic! dis-
placementr in 3D space. An estimate of̂r2& using
Eq. ~96! is ^x2& 1 ^ y2& 5 ~203!^r 2& 5 ~203!Dt, which,
using Eq.~14! for D, leads tô r2&0^n& ' ~209!,t0s. This,
however, is certainly an underestimate because Ein-
stein’s law is strictly valid only in a boundless domain,
so many events withz. H or z, 0 are used that should
not have entered the average ofr2, and many of those
haver values much smaller than for a typical escape from
the optically thickz-bounded medium. A somewhat bet-
ter estimate is obtained by using Einstein’s law in 2D,
^r2~t !& 5 D2 t, where 2D diffusivity isD2 5 c,t 02. In
summary, we have

^r2&

^n&
'

,t

2s
5

1

2~12 Ã0g!s2 , ~98!

where one can uses 5 t0H to introduce the macro-
scopic cloud properties as needed. However, a unified
time-space theory of photon diffusion in vertically finite
media with the appropriate BCs and initial condition for
a pulsed point source on a boundary~hence no need to

invoke Einstein’s law! has been developedf by Davis
et al.15 Their computations are restricted to the case of
reflection withÃ0 5 1, but that does not affect their in-
dependent estimate of^r2&R0^n&R 5 ~403!,t 0s, which
is more than twice as large as in Eq.~98!. This discrep-
ancy is probably caused by the broadness and skewness
of the pdf inn for reflection.

The square root of̂r2& is the characteristic root-
mean-square~rms! horizontal transport scale; it will de-
pend on all the nondimensional quantities in^n& from
Eq. ~95!, plus a length-scale~e.g.,,t or H !. Physically,
^r2&102 measures the~gyration! radius of the combined
time-integrated spots of light at the two boundaries, as-
suming ad function for the spatial pattern of the source
in ~x, y! as well as inz.

VII.E. ^n&F ~F 5 R,T! and Horizontal Transport Scales
for Slab Geometry: Conservative Case

By substitution of Eq.~94! into Eq. ~95!, we obtain

^n& '
3x

2
sHF11S z*

H S12
z*

H DD H

x,t
G .

~99!

Recalling thatsH 5 t ~optical thickness of the slab! and
that,t 5 @~12 g!s# 21, we have

^n&~1,g,t; z*0H !

'
3x

2
tF11 S z*

H
S12

z*

H
DD ~12 g!t

x
G . ~100!

For a source deep inside the medium~and, by asso-
ciation, transmitted photons!, we obtain

^n&T~1,g,t! '
3

8
~12 g!t2 1

3x

2
t ~101!

by settingz* 5 H02 in Eq. ~100! for specificity. As ex-
pected, we find that̂n&T becomes@~1 2 g!t2 asymp-
totically, i.e., when~12g!t .. 4x, and this is independent
of x ~i.e., BC details!. We use here the subscript T to
designate transmission even though the source is at the
center plane of the slab.

The quadratic term in Eq.~101! vanishes identically
if the source is moved to a boundary~z* 5 0 or H !; we
are then left with

^n&R~1,g,t! ' 3xt , ~102!

f These authors are motivated by the idea of using a pulsed
laser to measurêl& ~based on time! and^r2& ~based on im-
aging! to infer the fundamental geometric and optical cloud
properties, namely,H andt ~or s!, by active remote sensing
~this implies that only reflected radiances can be used!. Rea-
sons why this is possible will soon become clear. Time-
dependent diffusion theory plays a central role here, but the
signals of interest are not affected by its shortcomings at early
times and small distances from the laser beam.
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remembering to first multiply the result in Eq.~95! by 2
to account for the loss of source strength in the limit
z* r 0,H. That ^n&R is @t is also a well-known fact in
radiative transfer theory; we note here that this propor-
tionality law does not depend ong ~i.e., scattering de-
tails!. Although escapes from both boundaries are
considered here together, clearly, the lown values com-
ing from the same boundary as where the source is placed
dominate in Eq.~102!. This is a characteristic of re-
flected fluxes, hence the subscript R. The more detailed
calculation in reflectance mentioned previously15 is based
on a closed-form solution in Laplace space. It yields
^l&R0H ' ^n&R0t r 2x ast r ` with a pre-asymptotic
correction term@1 1 ~e02!~1 1 3e02!0~1 1 e!# $ 1 in
the small parametere 5 2x0~1 2 g!t 5 T0R; this cor-
rection is not small at typical cloud optical depths: When
e 5 203 ~t ' 30 if g ' 0.85,x ' 203!, it is still 705 5
1.4, and this is in the direction that makes Eq.~102!
look more accurate than 2xt at these intermediatet
values.

Time-domain results similar to Eqs.~101! and~102!
follow from asymptotic radiative transfer theory, but their
derivation27 in that framework is not as simple to follow
as here. We have already mentioned that they are well-
known in the sense of the exponents oft, but the pref-
actors~and what they depend on! are not usually stated.
It is sometimes overlooked that it is not the number of
scatterings that is linear or quadratic int but its mean, at
best a typical value. In fact, Davis67 showed recently with
simple scaling arguments that Eq.~102! will be a poor
predictor for the rms order of scattering^n2&R

102 because
the pdf of pathlengthl ~hencen! in reflection is actually
quite broad. Specifically, one finds15

^n2&R

^n&R
2 ~1,g,t! '

^l2&R

^l&R
2 ~1,g,t! '

~12 g!t

5x
~103!

for asymptotically larget. However, this does not deter
us from usinĝ n&R as a characteristic number of scatter-
ings in the following, largely because the ratio in Eq.~103!
remainsO~1! until t significantly exceeds 5x0~12 g! '
24 under normal conditions in clouds~g ' 0.85, x '
0.71!.

Using Eqs.~98! and~101!, we obtain the variance of
the horizontal displacement for transmittance:

^r2&T~1,g,t, H ! '
3

16
H 2 1

3x

4
,t H , ~104!

where the second term becomes negligible when,t ,, H,
or ~12 g!t .. 1. So^r2&T @ H 2, independently oft, x,
andg. This is almost what we expect intuitively since we
can visualize a spherical diffusive wave of photons em-
anating from a point at the center~x5 y5 0, z5 H02! of
the optically thick slab; when intercepted at the bound-
aries~z5 0,H !, its radius isH02, which is very close to

!^r2&T in Eq. ~104!.

For reflectance, Eqs.~98! and~102! yield

^r2&R~1,g,t, H ! '
3x

2
,t H 5

3x

2

H 2

~12 g!t
. ~105!

The more detailed calculation for reflectance by Davis
et al.15, this time in Fourier space, again yields a different
asymptotic prefactor:~1 2 g!t 3 ^r2&R0H 2 r 8x03
as t r ` and the same pre-asymptotic correction
term as for^l&R0H ' ^n&R0t. At any rate,!^r2&R de-
creases quite slowly ast increases, in 10t102 for a given
H. This is enough, however, to make it smaller than
!^r2&T , which is asymptotically independent oft. In
turn, this is why the endpoints of the flux lines in Fig. 1d
are anticipated to be more evenly spread out than their
departure points.

The spatial counterparts of Eqs.~101! and~102!, in
Eqs. ~104! and ~105!, respectively, for horizontal—
generally speaking, transverse—particle displacement
have not received much attention in the literature. Nota-
ble exceptions are the independent studies by Reynolds,
Johnson, and Ishimaru68 and Weinman and Masutani,13

respectively, on medical and atmospheric issues. How-
ever, it is noteworthy that simultaneous measurements
of ^l&R and^r2&R can be used to inferH and~1 2 g!t,
ands 5 t0H from there. Moreover, this can in principle
be done remotely for clouds using a lidar system with
imaging capability and a wide enough field of view. This
application, and others discussed in Sec. VIII, are bring-
ing Eqs.~104! and ~105! into the limelight, at least in
atmospheric radiation.

VII.F ^n&R and the Related Horizontal Transport Scale
in Slab Geometry: Absorbing Cases

We will consider only reflection, so we setz* 5 0 or
H in Eq. ~93! and then substitute the result into Eq.~95!,
with the appropriate multiplication by 2. We find

^n&R~Ã0, g,t!

' S3x

k
D @12 exp~2kt!# 1 kt~jx 2 1!exp~2kt!

11 ~jx 2 1!@11 exp~2kt!#02
,

~106!

wherek 5 k~Ã0, g! 5 10sLd andj 5 j~Ã0, g!, as de-
fined in Eqs.~18! and ~19!, respectively. This general-
izes Eq.~102! for Ã0 , 1, noting, however, that retrieving
Eq. ~102! from Eq.~106! in the limit Ã0 r 1 ~k r 0! at
fixed t, calls for a second-order expansion of the expo-
nentials inkt then application of l’Hôpital’s rule.

Instead of increasing linearly witht indefinitely,
^n&R~Ã0, g,t! now crosses over to a flat asymptote at

^n&R~Ã0, g,`! '
6x

k@11 xj#
, ~107!
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whent . 10k. In the limit Ã0 r 1 ~j r 0! and for very
larget, we therefore have

^n&R~Ã0, g,`! '
6x

k

' 2xS 3

12 g
D102

~12 Ã0!2102 . ~108!

At such large optical thicknesses, everything happens
physically as if there were no absorption but the geomet-
ric thicknessH of the medium was equated withLd; equiv-
alently, 10k was its optical thicknesst in Eq. ~102!.

As in Sec. VII.E, we can derive from Eq.~98! the
variance in horizontal displacement for reflected photons:

^r2&R~Ã0, g,t, H ! ' S ^n&R

2~12 Ã0g!t2DH 2 .

~109!

Because the numerator ceases to increase witht for
t . 10k, the behavior of!^r2&R changes fromH0t102

to a steeper decrease inH0t, for given g and Ã0.
Even more importantly,!^r2&R is a strong function of
1 2 Ã0, which varies far more thang in clouds ~with
wavelength across the solar spectrum!. Indeed, we see
that in the limitÃ0 r 1, Eqs.~108! and ~109! yield

!^r2&R~Ã0, g,t, H !

' 3104x102~12 g!104~12 Ã0!2104
H

t
~110!

as long ast . 10k, which is itself increasing asÃ0 r 1.
In contrast with the relatively simple mathematics of

diffusion theory leading to an approximate but closed-
form result for^n&R in Eq. ~106!, Platnick69 uses a so-
phisticated adding-and-doubling technique to obtain
accurate numerical estimates of^n&R, ^n&T, and even the
internal profiles of mean order of scattering in both di-
rections. His follow-on study70 of horizontal displace-
ment focuses ons2^r2&R, which according to Eq.~98!,
is proportional tô n&R0~12 Ã0g!; being a distance reck-
oned in optical units, it is a function only of the nondi-
mensional parameters~Ã0, g,t! andH is never considered
explicitly.

VII.G. Comparison of Diffusion Predictions with
Numerical RTE Solutions, and 3D Effects

Figure 6 showŝn&R~Ã0, g,t! as a function oft for
g 5 0.85 and selected values ofÃ0: 0.999, 0.99, 0.95,
and 0.9. The formula in Eq.~106! with x ' 0.5 follows
quite closely the numerical results obtained by Monte
Carlo solution of the RTE, at least at optical thickness
large enough~t * 10! for the diffusion model to apply.
This is true at all the levels of absorption considered. The
particular value selected for theO~1! extrapolation length
constantx in the BCs in Eq.~31! was determined by trial

and error and is clearly determined in large part by the
3x factor in Eqs.~102! and~106!. We recall that the dif-
ferent implementation of the diffusion model by Davis
et al.15 for Ã0 5 1 in plane-parallel media leads instead
to a factor of 2x in Eq.~102!; in that version of the model
~not yet extended toÃ0 , 1 cases!, we would likely find
x ' 0.75 more suitable than unity, and closer to the ca-
nonical values of 203 and 0.7104 . . . in Eq.~32!

Figure 7a shows our diffusion-based prediction for
the dependence ont of the rms horizontal displacement
in Eq. ~109! using Eq.~102! or Eq. ~106!, respectively,
for Ã0 5 1 andÃ0 5 0.99, 0.95, or 0.90. The analytical
results again compare well with the corresponding RTE
results for homogenous cloud models usingx ' 1.1 this
time; again, a more accurate estimate of the prefactor in
Eq. ~98!, hence in Eq.~106!, would bring the effectivex
down by at least half of this value, hence quite close to
the standard choices. Figure 7b is for random fractal cloud
models, which are described in more detail in the next
section~see Fig. 8!. In this case, the abscissa is the mean
optical depth, and the RTE solutions are averaged over
all possible source positions and a few realizations of the
disorder. We see that the agreement would still be ac-
ceptable forÃ0 5 1 ~no absorption! as long as the pref-
actor is further increased. However, we can also see that
the performance of the theory deteriorates rapidly asÃ0

Fig. 6. Mean number of scatterings in light reflected from
homogeneous scattering and absorbing slabs. We compare the
predictions of diffusion0P1 theory~lines and curves! with re-
sults of a numerical solution of the RTE~symbols!. The latter
were obtained from Monte Carlo simulations for diffusely
illuminated homogeneous plane-parallel media with seven op-
tical depths from 2 to 128, by powers of 2, and a Henyey-
Greenstein phase function withg 5 0.85. The absorption
parameter 12 Ã0 ranges from small~but nonnegligible at large
t! to the point where diffusion theory is expected to fail ac-
cording to Eq.~24! wheng5 0.85. We usedx'0.5 in Eq.~106!
to fit the numerical data in the diffusion regime~t * 10!.
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decreases~absorption increases!. We note that the sign
of the deviation of fractal numerical results with respect
to their homogeneous analytical counterparts is con-
sistent with Jensen’s inequality if!^r2&R~Ã0, g,t, H !
is treated similarly toT~ m0,Ã0, g, t! in Sec. V.C.
Furthermore, the deviation is small forÃ0 5 1 be-
cause thet dependence is nonlinear but relatively
weak ~;10t102!, and it is large forÃ0 , 1, especially
at large t values where the nonlinearity of!^r2&R

is stronger~;10t!.

VIII. RADIATIVE SMOOTHING: THEORY,
VALIDATION, AND APPLICATION TO BREAKDOWN

OF INDEPENDENT PIXEL APPROXIMATION

Section VII was concerned mostly with time-domain
computations in homogeneous uniformly illuminated
plane-parallel media and the spatial ramifications for a
d-function illumination pattern. We now return to genu-
ine 3D radiative transfer properly equipped to discuss the
practical limitations of the widely used IPA, which, we
recall, has a tremendous computational advantage over
any implementation of 3D radiative transfer, even in the
diffusion limit.

Several studies~e.g., Refs. 53, 71, and 72! have com-
pared IPA and exact RTE solutions for domain averages.
Considering the variable area-averaged quantities in
Eqs.~37!, ~38!, and~39!, the lower bound on the aver-
aging scaler at which the IPA can be used must satisfy
OD~r,{! ' 0 using the notation from Eq.~39!. An a priori

Fig. 8. Fractal cloud model and associated radiation fields.
The lower plot and left axis are for the horizontal profile of
optical depth through cloudt~x! that was generated using a
bounded cascade.74 Geometrically, the cloud is plane-parallel
with thicknessH 5 0.3 km; by construction~ten cascade steps!,
it is made of 210 5 1024 cells, each 12.5 m wide~aspect ratio
12.5030051024!. For the radiative transfer, scattering is con-
servative~Ã051!, a Henyey-Greenstein phase function is used
~g 5 0.85!, the sun is at zenith~m0 5 1!, and cyclical BCs are
applied. The upper plots are of the local albedo fieldR~x! com-
puted with the IPA~rough dotted line! and by Monte Carlo
~smooth full line!. The effect of radiative smoothing~de-
creased variance at the small scales! is obvious in the latter.

Fig. 7. The RMS horizontal~transverse! displacement of light reflected from scattering and absorbing slabs. The point source
at the upper boundary is isotropic. Four single-scattering albedoesÃ0 are used: 1.00, 0.99, 0.95, and 0.90. The optical depth
sequence and phase function are the same as in Fig. 6; the reference lines are@t2102, corresponding toÃ0 5 1 in Eq.~105! and
@t21 for Ã0 , 1 andtk .. 1 in Eq.~110!. ~a! Homogeneous plane-parallel media withH 5 0.3 km. As in Fig. 6, fitting of the
Monte Carlo data using the numerical extrapolation-length constant leads here tox ' 1.1 ~further discussion in main text!.
~b! Same outer geometry and optical properties as in Fig. 7a but extinction is horizontally variable, as described in Sec. VIII
and Fig. 8; in this case, the point sources are uniformly distributed over the upper boundary. The analytical diffusion theory is
unmodified from Fig. 7a, and the resulting discrepancies are discussed in the text.
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determination of this scale in stratiform cloud types was
obtained by Davis et al.38 at conservative wavelengths
by invoking the theory of radiative smoothing developed
by Marshak et al.57 In turn, the theory of radiative smooth-
ing hinges on the rms horizontal displacements com-
puted in Sec. VII in the diffusion limit.

The notion of radiative smoothing was in fact first
described by Stephens in Ref. 55~p. 1833!: “For the case
p @^t&-doubling step# 5 1 @very small^t&# , . . . there is a
one to one correspondence between the structure of the
reflectance and the specified structure of the optical prop-
erties. Asp increases@^t& gets large# , the spectra ofR
falls off more and more rapidly with increasing u@wave-
number# . . . .These results thus suggest that multiple scat-
tering tends to filter out the fine structure in the radiation
field.” However, it took almost a decade before this qual-
itative description was given a quantitative meaning
through the work of the present authors and co-workers
at the National Aeronautics and Space Administration
~NASA!, Goddard Space Flight Center. During this time
period, the radiative properties of stratiform clouds in the
marine boundary layer were systematically investigated
because of their strong impact on the planetary albedo
~they are highly persistent and extend over thousands of
kilometres!. Geometrically, these stratocumulus are al-
most plane-parallel, and it is tempting to model them with
HPP theory. However, internally they are extremely vari-
able,73 and the NASA group advocated and used fractal
cloud models74 called bounded cascades to simulate the
horizontal variability in optical depth. For our present pur-
poses, it suffices to know two things about the key ob-
servations of the stratus clouds and the adopted fractal
models:~a! that the one-point pdf oft~x, y! is approxi-
mately lognormal with a mean in excess of 10 and~b!
that the two-point autocorrelation properties oft~x, y!
are described by a power-law wavenumber spectrum:

Et~k! @ k2b ~111!

with b'503 ~as predicted in statistical turbulence theory!
for scalesr 510k ranging from at least tens of kilometres
down to only a few metres~i.e., over three decades of
scaling!. Forb , 3, graphs oft~x, y! transects are non-
differentiable, geometrically rough sets; an example is
shown in Fig. 8~lower plot!. By any account, the dimen-
sion of a smooth~differentiable! graph is 1, but the in-
herent dimensionDg of this graph is fractal, somewhere
between 1 and 2. Mandelbrot75 shows thatDg is given by
~5 2 b!02 for 1 , b , 3; this yieldsDg ' 503 for b 5
503. Utilization of such naturally rough optical media
proved essential in measuring the smoothing power of
radiative transfer.

The IPAradiance fields associated with the fractal op-
tical depth fields, computed pixel-by-pixel with a 1D
model, have spectra following the same power-law~only
the prefactor changes! as the optical depth. In contrast, the
spectraof thenumerically calculated3Dradiance fields fol-

low a similar power law, but only down to a few hundred
metres~seeÃ0 51 case in Fig. 9!. At the smallest scales,
below this scale break, there is a significant deficit of vari-
ance, hence the term radiative smoothing.The special scale
at which this scale break occurs@envision the intersection
of two lines on a log-log plot ofEI ~k! versusk# is denoted
hR. Extensive numerical experimentation showed thathR
has the same dependence onH, g, andt ~equated with
the domain-average valueSt! as!^r2&R in Eq. ~105!.
So the diffusion-based theory of horizontal photon trans-
port in homogeneous slab clouds captures the basic phe-
nomenology of radiative smoothing in highly variable
fractal clouds. In return, the ubiquitous observation of ra-
diative smoothing in real stratocumulus confirms the as-
sertions by King, Radke, and Hobbs37 about the validity
of diffusion as a reasonable model for radiation transport
in these dense boundary-layer clouds.

The most important application of radiative smooth-
ing theory is to significantly enhance our understanding
of why and when the IPA breaks down: At scales below
hR ;!^r2&R, solar photons typically visit~via multiple

Fig. 9. Wavenumber spectraEt~k! andEI ~k! for both IPA
and 3D nadir radiance fields. As in Fig. 8, the fractal distribu-
tions of cloud optical depth~upper curve! are obtained using
bounded cascades set forSt 513, the standard deviation of lnt
is 0.5, andb 5 503; the variability unfolds in thex direction
only. Pixel size is 25 m; cloud top and base are flat and thick-
nessH 5 300 m. A Henyey-Greenstein phase function with
g 5 0.85 is used and solar zenith angleu0 is 0 deg. Results are
averaged over ten independent realizations. Three single-
scattering albedoesÃ0 are used~0.999, 0.98, and 0.95! and Xs
indicates the scale-break positionshR~Ã0!.
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scattering! areas containings values too different to ne-
glect 3D effects. Characterizing IPA breakdown is a crit-
ically important task because the IPA is the operational
procedure in all current cloud remote sensing with satel-
lites. The improved resolution of current and future space-
borne instruments guarantees that 3D effects are present
in the radiometry and will not go away. In this remote-
sensing context, a nonlocal IPA has been developed to
improve the small-scale performance of the IPA without
jeopardizing its computational efficiency.76 The IPA is
also used routinely in dynamical simulations on super-
computers of atmospheric processes such as cloud for-
mation and evolution. Here again, the timeline of
computer memory and speed enhancements guarantees
that 3D radiative transfer effects cannot be neglected for-
ever without introducing biases. A computationally effi-
cient approach such as 3D photon diffusion will become
necessary and desirable.

An important intermediate step in going from the an-
alytical results for lateral diffusion in highly idealized
homogeneous clouds to real clouds is to compare them
with numerical simulations in the more realistic fractal
cloud models, as was done in Fig. 7b. The deviations be-
tween fractal and uniform clouds observed there are large
enough to motivate an in-depth study of these variability
effects. This is indeed a prerequisite to make a priori
prediction about the positionhR of the scale-break~i.e.,
where the IPA breaks down! based on the rms horizontal
transport distance!^r2&R in the presence of absorption.
In the meantime, the energy spectra of radiance fields for
Ã0 5 0.98 and 0.95 in Fig. 9 show the expected trend
with respect to the conservative case:hR decreases rap-
idly with Ã0, as does!^r2&R in Eq.~110!. Furthermore,
the variance relative to the IPA prediction is less reduced
asÃ0 decreases because more absorption means less scat-
tering, hence less smoothing.

Wavenumber spectra of high-resolution cloud imag-
ery from satellites show radiative smoothing and there-
fore validate empirically this piece of radiative diffusion
theory.38 More recently, Savigny et al.77 conducted a scale-
by-scale statistical study of time series of zenith radi-
ance at ground level under heavy cloudiness; they were
thus able to extend this validation from reflectance to
transmittance using the dominant term in Eq.~104!. Since
radiative smoothing is now readily observable as a sta-
tistical signature of many internal channeling events~de-
fined in Sec. VI in reference to the structure of photon
flow beyond the IPA!, we see that this bestows onto 3D
atmospheric radiative transfer the status of experimental
science.78 This important milestone was reached in no
small way thanks toP10diffusion theory. Although there
are still many open questions about diffusion, channel-
ing, radiative smoothing and net horizontal photon trans-
port in clouds, insights have been gained on the
fundamental aspects of macroscopic interaction of radi-
ation and matter.

IX. SUMMARY, DISCUSSION, AND OUTLOOK

We have described how the relevant radiative trans-
fer in clouds calls for multiple scattering and how this
is precisely what complicates the problem as soon as
one wants to model variability in more than the vertical
direction. Although there are even simpler approaches
to the 3D problem that provide partial answers, the dif-
fusion equation offers more insight into the mecha-
nisms of macroscopic radiation-matter interaction in a
3D setting than the more physically correct RTE. To wit,
we derive a general 3D result that appears in Eq.~75!
linking the change in domain-average flux to the covari-
ance of fluctuations in local density and flux, assuming
both mass and number of photons are conserved. Fur-
thermore, this result illustrates the general mechanism
by which radiation flows through a variable medium,
namely, a radiative channeling, where the photons flow
around concentrations of scattering material and into the
more tenuous areas. We also used diffusion theory to
estimate some characteristic temporal and spatial scales
pertaining to transport through finite scattering media,
with and without absorption. These scales are used to
cast new light onto channeling processes in clouds as
well as to find the robust statistical features of remotely
sensed radiance fields where channeling manifests itself.

For almost four decades, the main motivation be-
hind studies of 3D radiative transfer in the atmosphere
was the obvious fact that real clouds are not infinite ho-
mogeneous plane-parallel slabs, and since such homo-
geneous plane-parallel models are the operational
standard in meteorology, we need to evaluate the bias
they introduce. Three-dimensional theory is thus com-
pared to itself for validation and to 1D theory as a bench-
mark. Recently, this paradigm has shifted toward the
confrontation of specific predictions of 3D theory against
observations, e.g., the scale break in LANDSAT imag-
ery.38 This means that atmospheric 3D radiative transfer
has matured into a stand-alone science: It has both theo-
retical and experimental facets and, of course, applica-
tions. For instance, we have pointed out that the space-
time phenomenology of normal and transverse photon
transport in slab geometry described in Sec. VII is cur-
rently receiving experimental validation. It has also in-
spired new cloud remote-sensing methods, both passive76

and active.15

We have used diffusion theory here exclusively as a
formalism that facilitates analytical investigations of
steady-state 3D photon transport, as well as time-
dependent 1D transport, and the problem of steady but
localized sources in 1D and in 3D. However, there is
more to the photon diffusion picture. The diffusion equa-
tion, being a standard in mathematical physics, can be
solved numerically with extreme efficiency~by compar-
ison with RTE solvers!. This opens the door to several
new applications: interactive 3D radiation transport in
3D dynamical cloud modeling and the exciting possibility
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of 3D optical cloud tomography. The latter example is
similar to new developments in noninvasive medical im-
aging through soft tissue.79

We have emphasized that diffusion is a self-consistent
transport theory, a conceptual model where photons travel
on convoluted random walks obeying Gaussian statisti-
cal laws such as Eq.~96!: distance@ !time. We have
not forgotten, however, that diffusion is also just an ap-
proximation to radiative transfer; we underscored its lim-
itations and listed ways of improving on them to some
extent. As stated early in this paper, diffusion theory ap-
plies only inside the densest clouds the atmosphere of-
fers, often residing in the lower few kilometres~the
planetary boundary layer!. Diffusion theory does not work
at all in the quasi-optical vacuum between clouds, and
not much better in the more tenuous clouds aloft~altoc-
umulus and cirrus!. That is why we have proposed80 a
modified photon diffusion theory based on Lévy-stable
~rather than Gaussian! steps between scatterings to cap-
ture, in a 1D setting, some of the complexity of 3D ra-
diative transfer through a cloudy atmospheric column.
This generalization of diffusion theory, unfortunately, does
not yet have a rigorous mathematical formulation, so we
are left with numerical simulations~in 1D! and anoma-
lous scaling counterparts to Eq.~96!: distance@ time10a

~1 , a , 2!. Using a state-of-the-art optical spectrom-
etry to obtain high-resolution scans of the oxygen A-band,
Pfeilsticker81 recently showed that the Lévy-flight model
naturally explains solar path-length observations under a
wide variety of cloud covers.

We have now gone full-circle: from the determinis-
tic treatment of the highly idealized sine-wave cloud
model ~used by us as well as by others to illustrate the
basics of 3D radiative transfer!, to the arguably more
realistic fractal cloud models~treated deterministically
one realization at a time before ensemble-averaging the
numerical results in Fourier space!, to the Lévy-flight
model for whole-atmosphere photon kinetics, which is
inherently stochastic~it only predicts domain-and-
ensemble-average fluxes!. Here is where we meet Jerry
Pomraning again. Following the pioneering work of
Avaste and Vainikko,60 Jerry wrote the definitive book82

on transport in random binary mixtures and found a nat-
ural application in broken cloudiness.62,63He also pushed
the envelope of stochastic radiative transfer far beyond
the standard assumption of two extinction values in Mar-
kovian patterns, possibly with atmospheric applications
in mind.

POSTSCRIPT

‘. . . life is an integral’
Jerry Pomraning

We are compelled under the present circumstances
to briefly reminisce about Prof. G. C. “Jerry” Pomraning

and the interest that he developed for atmospheric radi-
ation problems, particularly with clouds, in recent years—
only a few years that sadly turned out to be his last. The
authors met Jerry at the Third Science Team Meeting of
the U.S. Department of Energy’s~DOE’s! Atmospheric
Radiation Measurement~ARM ! Program, March 1–4,
1993, in Norman, Oklahoma, through mutual colleagues
and friends. At that precise moment, this radiative trans-
fer guru was vigorously playing ragtime strides on an old
upright. Jerry had many friends—a better description than
colleagues here because of his contagious conviviality—
and these friends were involved in many fields of re-
search. He encouraged his friends to explore new areas
and followed his own advice to the letter and reveled in
doing it. We can vividly remember this die-hard urbanite
happily romping around the muddy fields of Oklahoma
that had just recently been converted into an atmo-
spheric radiation instrument park at ARM’s Cloud and
Radiation Testbed site. After befriending Jerry in ’94, we
met several times again at other atmospheric radiation
meetings, at seminars he gave at our institutions, at his
University of California at Los Angeles office, and at his
home. Only a year ago, we were looking forward, as al-
ways, to seeing him again. Indeed, Jerry had enthusias-
tically agreed to give an invited talk at a special 3D
atmospheric radiative transfer meeting78 we organized in
June 1999 to commemorate the career of Georgii Titov, a
prominent cloud radiation expert and a very special friend
of Jerry’s, who had died of cancer the year before. Alas,
by February Jerry had left us. . . .

Dr. Pomraning was able to convey ideas on the most
arcane aspects of stochastic radiative transfer very clearly
to lay audiences from the atmospheric community as he
explained how the theory applies to their issues. Here,
we hoped to reciprocate somehow for Jerry’s native com-
munity of neutron transport theory with the 3D radiative
transfer results we have presented addressing atmo-
spheric radiation problems but using a formalism shared
by neutron and photon transport theories. In fact, Jerry
Pomraning read an early version83 of Secs. II through VI
and offered several constructive comments. It seemed fit
to use that improved material here and blend it with more
recent work.
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