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ABSTRACT 

The potential predictability of surface-air temperature and precipitation over the United 

States was assessed for a GCM forced by observed sea surface temperatures and an estimate of 

observed soil moisture content.  The latter was obtained by substituting the GCM simulated 

precipitation, which is used to drive the GCM’s land-surface component, with observed pentad-

mean precipitation at each time step of the model’s integration.  With this substitution, the 

simulated soil moisture correlates well with an independent estimate of observed soil moisture in 

all seasons over the entire US continent.  Significant enhancements for the predictability of 

surface-air temperature and precipitation were found in boreal late spring and summer over the 

US continent.  Anomalous pattern correlations of precipitation and surface-air temperature over 

the US continent in the June-July-August season averaged for the 1979-2000 period increased 

from 0.01 and 0.06 for the GCM simulations without precipitation substitution to 0.23 and 0.31, 

respectively, for the simulations with precipitation substitution.  The results provide an estimate 

for the limits of potential predictability if soil moisture variability is to be perfectly predicted.  

However, this estimate may be model dependent, and needs to be substantiated by other 

modeling groups. 
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1. Introduction 

It is well known that tropical sea-surface temperature (SST) anomalies have substantial 

influence on the climate variability over the North Pacific and North America in boreal winter 

through teleconnections (e.g., Wallace and Gutzler 1981).  Many authors (e.g., Kumar and 

Hoerling 1998; Trenberth et al. 1998; Shukla et al. 2000) have explored the potential 

predictability of the North American winter climate simulated by atmospheric general circulation 

models (GCM) forced with observed SSTs.  During boreal summer, however, the influence of 

tropical SSTs on mid- latitude climate variability is weak, and is primarily limited to the zonal 

mean component of the extratropical height field (Schubert et al. 2002).  Although a few studies 

have found that SST anomalies outside of the tropics may be of certain predictive value (e.g., 

Ting and Wang 1997; Lau et al. 2003), a robust link between SST anomalies and the US 

summertime climate is yet to be established.  The impact of SSTs is often blurred due to local 

processes and feedbacks, such as those associated with changes in low-level jet streams and soil 

moisture content.  The influence of soil moisture on precipitation and surface temperature has 

long been noticed, and is drawing even wider attention in recent years (e.g., Delworth and 

Manabe 1989; Atlas et al. 1993; Wang and Kumar 1998; Fennessy and Shukla 1999; Hong and 

Kalnay 2000; Koster et al. 2000; Schlosser and Milly 2002; Koster and Suarez 2001, 2003; 

Kanamitsu et al. 2003; Mo 2003). 

Soil moisture content is primarily determined by ground water holding capacity, 

precipitation, runoff and evaporation (Delworth and Manabe 1989; Koster and Suarez 2001).  In 

turn, soil moisture affects surface-air temperature and humidity by modifying the release of 

latent and sensible heat fluxes, and consequently affecting atmospheric circulation and 

precipitation.  The process involves many feedbacks, and is so complicated that often it is 

impossible to identify the cause and effect from the analysis of observational records alone.  To 
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circumvent this problem, atmospheric GCMs have been used by many authors to understand the 

problem.   

So far, there have been two major kinds of GCM studies.  The first kind treats soil 

moisture as a boundary condition problem.  Either model generated or idealized soil moisture 

anomalies were specified and maintained during model integrations to study the impact of soil 

moisture anomalies on the simulations of observed flood and drought conditions (e.g., Atlas et al. 

1993; Hong and Kalnay 2000), or on the interannual variability of model-generated precipitation 

and/or surface temperature (e.g., Koster and Suraez 1995; Koster et al. 2000; Dirmeyer 2000).  

No feedback processes associated with soil moisture were included since the prescribed soil 

moisture does not respond to changes in atmospheric conditions.  The second kind treats soil 

moisture as an initial value problem.  These studies examined how initial soil moisture anomalies, 

once initialized, affect the predictability of precipitation and/or surface temperature.  The 

feedbacks between soil moisture and the atmospheric conditions were included.  Often, the 

predictability of soil moisture itself (or soil-moisture memory) was also investigated.  Most of 

the studies relied on idealized model-generated soil moisture anomalies (e.g., Wang and Kumar 

1998; Schar et al. 1999; Schlosser and Milly 2002).  Attempts have also been made to initialize 

the models with more realistic soil moisture anomalies, either by using soil-moisture analyses 

(Fennessy and Shukla 1999; Kanamitsu et al. 2003) or by performing spin-up simulations for 

which observed atmospheric conditions were used to force the model’s land-surface component 

before formal predictions start (Koster and Suraez 2003).  These studies emphasized the 

importance of initial soil moisture anomalies.  The degree to which the initialization can enhance 

the predictability of summertime precipitation and temperature is mixed, varying among models 

and with locations.    
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The potential predictability in association with observed SST anomalies has been 

explored in-depth using GCM results from AMIP-type experiments (e.g., Kumar and Hoerling 

1998; Straus et al. 2003).  A similar investigation on the predictability in association with 

“observed” soil moisture anomalies has not been attempted, primarily because of the lack of 

global-scale long-term observations of soil moisture.  Various ongoing land data assimilation 

systems (LDAS) are filling this gap by running retrospective and near real-time LDAS (e.g., 

Mitchell et al. 1999; Cosgrove et al. 2003).  Satellite observations have also started to produce 

soil moisture estimates.  However, there are inherent problems when independent soil moisture 

observations or analyses are used as initial or boundary conditions for GCM experiments.  A 

variety of land-surface models are now being used by different GCMs, and often they are also 

different from those used in land data assimilation systems.  These differences cause 

incompatibility in soil types, layers, and field capacity, and consequently lead to different 

definitions of “dry” and “wet” conditions in the models.  For example, Fennessy et al. (2000) 

used the soil moisture analysis of Huang et al. (1996) as initial conditions to perform near real-

time seasonal prediction by the Center for Ocean-Land-Atmosphere Studies GCM.  They found 

several adjustments have to be made with the soil moisture data for compatibility. 

In this study, we propose first a simple method to generate GCM soil moisture that is 

fairly realistic.  We substitute the model simulated precipitation with observed precipitation 

during model integrations to force the model’s land-surface component.  By doing so the 

incompatibility issue is avoided, and the feedbacks between soil moisture and the atmospheric 

conditions are also retained.  Results show that the simulated soil moisture matches well with the 

Huang et al. (1996) analysis in all seasons.  Then, the potential predictability of precipitation and 

surface-air temperature over the continental United States in boreal summer is explored using a 
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set of ensemble GCM simulations, which are forced by observed SSTs and the almost “perfect” 

soil moisture content.  

A brief outline of this paper is as follows.  Section 2 describes the National Centers for 

Environmental Prediction (NCEP) GCM and the observed SSTs and precipitation used to force 

the GCM.  Given the fact that observational precipitation analyses are often presented as daily, 

pentad or monthly means, a choice has to be made of the kind of precipitation data to use.  

Following a perfect model approach, different options are evaluated in section 3.  It is found that 

using pentad mean precipitation can reproduce well the land-surface features that the NCEP 

GCM simulates when no alteration of precipitation is made.  Section 4 compares the GCM 

simulated soil moisture with an observational analysis.  The potential predictability of US 

summertime climate is examined in section 5.  The conclusions and discussions are presented in 

section 6. 

 

2. Model and Data  

 The atmospheric GCM used in this study is the NCEP seasonal forecast model.  It has 

been described in detail by Kanamitsu et al. (2002).  In brief, the GCM has a spectral triangular 

truncation at wave number 42, and has 28 levels in the vertical direction.  The horizontal grid 

spacing is approximately 3o in latitude and longitude.  In the model, surface temperature is 

predicted and governed by a surface energy budget equation.  Surface momentum, sensible and 

latent fluxes are parameterized using the Monin-Obukov similarity profile (Miyakoda and Sirutis 

1986).  A two-layer soil model (Mahrt and Pan 1984) is used to predict soil moisture fraction, 

soil temperature and canopy water content.  The top layer extends from the surface to 10 cm, and 

the deep layer extends from 10 to 200 cm.  Vegetation type and cover and soil type are taken 

from the Simple Biosphere model climatology (Dorman and Sellers 1989).  When rain falls, a 
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portion proportional to the vegetation fraction is intercepted by the leaves and converted into 

canopy water content.  The canopy water then evaporates.  If the final canopy water content 

exceeds the canopy water capacity, the excessive part drops to the ground.  Water on the ground 

is either absorbed by soil or becomes runoff depending upon the ground wetness and soil types. 

 For all GCM experiments we present here, the model was forced by the observed 

monthly mean SSTs for the period from 1979 through 2000 (Smith et al. 1996).  For the 

experiments described in section 4 in which the observed precipitation was inserted to replace 

model predicted precipitation, we used the Experimental Global Precipitation Climatology 

Project (GPCP) Pentad Precipitation Analysis, created and maintained at NCEP (Pingping Xie, 

personal communication).  This dataset was defined by merging gauge and satellite observations, 

and has a resolution of 2.5° latitude by 2.5° longitude.  At the time these experiments were 

carried out, this dataset was the only one available that has a fine temporal resolution, covers the 

globe and extends back to 1979.  More recently, Huffman et al. (2001) produced a one-degree 

daily-mean precipitation dataset.  In section 3, in the context of a perfect model approach, we 

demonstrated that results drawn from this study are not biased because of the use of the pentad-

mean precipitation instead of other types of precipitation with higher temporal resolutions.   

 

3. Choice of Mean Precipitation for Substitution – A Perfect Model Assessment 

 Ideally, the best choice for GCM precipitation substitution is to have an observational 

precipitation dataset whose temporal resolution matches the time step of the model’s land-

surface physics.  However, observational precipitation analyses are often presented as daily, 

pentad or monthly means.  Are the modeled soil moisture content and surface climate affected by 

the use of time-averaged precipitation instead of the precipitation produced by the model at each 

time step?  We assess this impact from a set of different GCM experiments.   
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 We first performed a 22-year simulation for the 1979-2000 period forced by observed 

SSTs, a standard AMIP-type simulation.  We refer to this simulation hereinafter as Cntl.  Daily 

mean precipitation was saved during the Cntl run.  Pentad and monthly means were subsequently 

derived.  Then, three more GCM experiments were performed for the 1979-2000 period starting 

from the same single initial condition and forced by the same SSTs, except that for the land-

surface component of the GCM, the saved daily, pentad and monthly mean precipitation were 

inserted into the GCM to replace the model predicted precipitation (referred to as Daily, Pentad 

and Monthly experimental runs, respectively).  To elaborate, for instance, the Pentad run was 

carried out in such a way that the pentad precipitation derived from the Cntl run was divided 

equally and inserted into the soil moisture budget equation at each model physical step to update 

canopy water content, runoff and soil moisture fraction.  The precipitation predicted by the 

model itself was ignored.  The insertion is made only if the model predicted precipitation is in 

liquid phase, that is to say, snow is still predicted by the model itself.  For illustration, the daily, 

pentad and monthly precipitation averaged over the US continent for 1979 are plotted in Figure 1.   

 The focus of this study is on summertime surface climate in monthly to seasonal time 

scales.  To understand to what extent the substitution of modeled precipitation with time-

averaged precipitation replicates the soil moisture evolution, we compared a few land and near-

surface properties from the experimental runs (Daily, Pentad, and Monthly) with those from the 

control run (Cntl).   

Shown in Figure 2 are the percent differences of the top- layer (0-10cm) soil volumetric 

wetness (cm) and surface-air temperature (°C) in July averaged for the 1979-2000 period 

between the experimental runs and the control run.  Figure 3 is local correlations for the 22-year 

period in July.  For all three experimental runs, the biases in soil moisture content and surface-air 

temperature are less than 10% everywhere over the US continent.  Local correlations are 
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generally larger than 0.9 for soil moisture and larger than 0.8 for surface-air temperature.  The 

results from the Pentad run are rather close to the Daily run.  Larger biases are found for the 

Monthly run.  For other months in the warm season, we found similar results (not shown).  For 

the cold season, even though the simulated soil moisture content  from the experimental runs still 

matches rather well with that from the control run, surface-air temperature shows almost no 

correlation, indicating much stronger dynamical control of the atmosphere on surface-air 

temperature in winter than in summer.   

 These tests indicate that monthly mean statistics of the modeled land and near-surface 

properties in summer have not been seriously altered because of the use of time-averaged 

precipitation as forcing for the GCM land-surface component.  In section 4, observed pentad 

mean precipitation will be used to force the GCM for our investigation of the predictability of 

US summer climate.  Based on the comparisons presented in this section we feel confident that 

our results are not biased because of the choice of the pentad mean precipitation. 

 

4. “Perfect” Soil Moisture from Precipitation Substitution 

Starting from different atmospheric and land-surface initial conditions, a set of three 

GCM simulations were performed for the 1979-2000 period.  They were forced by the observed 

monthly SSTs over the ocean and the observed GPCP pentad-mean precipitation over land.  We 

refer this set of simulations as obs_rain.  For comparison, another set of three GCM simulations 

were performed that are the same as the obs_rain except that the land-surface component was 

forced by the model predicted pentad-mean precipitation.  We refer this set of simulations as 

gcm_rain.  The simulated soil moisture contents from the two sets of simulations were then 

evaluated against observations to measure the improvement in soil moisture simulation by 
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precipitation substitution.  All calculations thereinafter are based on ensemble means of the 

GCM simulations. 

Currently, there are still no global and long-term observations, either on the ground or 

from satellites, of soil moisture content suitable for climate study.  For validation we rely on a 

model-based soil moisture analysis over the US continent conducted routinely at NCEP, which is 

based on the work of Huang et al. (1996).  This analysis is performed with a one-layer (0-160 cm) 

soil moisture model that computes the water budget in the soil and is forced by observed monthly 

temperature and precipitation.  Huang et al. (1996) showed that their model analysis compared 

well with the soil moisture observations in Illinois in terms of climatology and interannual 

variation.  The analysis has been used widely for climate diagnosis and prediction (e.g., van den 

Dool et al. 2003; Mo 2003). 

The GCM consists of a two-layer soil model, with the top layer extending down to 10 cm 

and the lower layer from 10 cm to 200 cm.  We derived the GCM soil moisture content for the 

top 160 cm by linear scaling.  Figure 4 compares the 1979-2000 climate means of soil moisture 

content in the top 160 cm over the US continent in boreal summer months (June, July and 

August, respectively) between the GCM results and the Huang et al. analysis.  Forced by the 

GCM’s own pentad-mean precipitation (gcm_rain runs), the model is too wet over the 

northwestern states and too dry over the central and southern states from Iowa down to Louisiana 

and eastern Texas.  These biases are greatly reduced in the obs_rain runs in which the observed 

GPCP precipitation was assimilated.  Over the central to southeastern states, the model suffered 

from moderate wet biases in the gcm_rain runs and moderate dry biases in obs_rain runs.   

Figure 5 presents the local correlations of soil moisture content between model 

simulations and the Huang et al. analysis for the 1979-2000 period.  For the gcm_rain runs, the 

model shows no skill in soil moisture simulations, with a few exceptions over the southeastern 
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states, the northern part of the Great Plains and the southwestern states.  For the runs forced by 

the observed GPCP precipitation (obs_rain runs), the correlations between the model predicted 

soil moisture and the analysis are generally larger than 0.6 over the entire continent.    

The result indicates that even though soil moisture content is controlled by many 

parameters and physical processes such as air and ground temperatures, runoff, soil and 

vegetation types, precipitation and evaporation, and the feedback among the processes (Delworth 

and Manabe 1988; Koster and Suarez 2001), it is quite effective simply substituting the modeled 

precipitation with observations if the goal is to obtain a better soil condition to force the 

atmosphere.  We next investigate the potential predictability of US surface climate simulated by 

the NCEP GCM, given the so-derived “perfect” soil moisture content.  This is analogous to the 

traditional GCM investigation of predictability associated with prescribed SST anomalies (e.g., 

Kumar and Hoerling 1998; Straus et al. 2003). 

  

5. Potential Predictability of US Surface Climate with “Perfect” Soil Moisture  

Here the measure of predictability is defined as the contemporary correlations of monthly 

mean surface-air temperature and precipitation between model simulations and observations.  

For observations, we use monthly mean precipitation derived from the GPCP daily precipitation 

(Huffman et al. 2001), and monthly mean surface-air temperature from the global network of 

surface observations, the Climate Anomaly Monitoring System (CAMS), maintained at NCEP 

(Ropelewski et al. 1986).  Figure 6 presents the correlation maps of monthly mean surface-air 

temperature over the US continent between the CAMS observation and the two sets of GCM 

experiments, gcm_rain and obs_rain, respectively, in the three boreal summer months for the 

1979-2000 period.  Correlation maps for precipitation are presented in Figure 7.  If we regard 

correlations larger than 0.4 as skillful (at about the 94% significance level for a student-t test), 
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the GCM has skill in predicting the surface-air temperature over only a few states when forced 

by the model’s own precipitation (Figures 6a-c), such as those over Idaho in June and July and 

over Georgia and Alabama in July.  When forced by the observed GPCP precipitation, the 

model’s prediction skill is enhanced in general over many states (Figures 6d-f).  The areas with 

the biggest improvement are found over Montana, the Great Plains, the Mississippi Valley, 

Texas and New Mexico.   

For precipitation (Figure 7), when the GCM’s land-surface component is forced by the 

model predicted precipitation, the GCM has some prediction skill in the northwest in June and 

July and in the southeast in July.  Over many regions, the correlations are negative (Figures 7a-c).  

When forced by the observed GPCP precipitation, the skills are improved over the entire US 

continent, although in June and July the model became less skillful over a few states in the 

northwest.   

The prediction skill described here is the potential predictability of the NCEP GCM, in 

the sense that perfect boundary conditions of SSTs and soil moisture content were used to force 

the model.  Given the chaotic feature of the atmospheric circulation, which is constrained by the 

specification of soil moisture only to a certain extent, the prediction skill is fundamentally 

limited.  With the foreknowledge of soil moisture in addition to SSTs, the enhancement in the 

predictions of precipitation and temperature is not uniform in space and time.  Koster et al. (2000) 

demonstrated that for precipitation the enhancement can be detected only in the transition zones 

between dry and humid climates, where evaporation responds strongly to soil moisture changes 

and the variation in evaporation itself is also large enough to affect the overlying atmosphere.  

They performed two sets of GCM ensemble experiments, one with interactive land surface 

processes and the other with prescribed interannually varying evaporation efficiency (the ratio of 

evaporation to potential evaporation).  The evaporation efficiency prescribed in the latter was 
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generated by a single randomly chosen member of the former.  In this perfect model approach 

they found (see their Figure 13) the enhancement in the potential predictability of JJA 

precipitation over the United States was measurable  only over the northwestern to central 

southern states and over the southeastern states.  Our results based on monthly mean analysis 

show no such definitive geographical preference in the enhancement of potential predictability of 

precipitation from month to month (Figure 7).  In June, the enhancement is found in the eastern 

and southern states. In July, the greatest enhancement is found in the northwestern states.  In 

August, the enhancement occurred in the southeastern and western states.  The disagreement 

between the present study and Koster et al. (2000) may arise from the differences in 

experimental design and GCM formulation.  A small ensemble size of three in the present 

analysis may also contribute to the large variations in space and time.  

To see the seasonal dependence of the model’s prediction skill, we computed the mean 

correlations shown in Figures 5-7 over the entire US continent [27°N-50°N; 68°W-130°W] and 

for all 12 months.  Presented in Figure 8 are the spatial mean correlations for soil moisture, 

surface-air temperature and precipitation, respectively.  The model’s simulation skill in soil 

moisture is greatly enhanced in all months when forced by the observed precipitation.  The 

correlations for soil moisture are raised from below 0.2 for the gcm_rain runs to about 0.6 for the 

obs_rain in all months.  For precipitation and surface-air temperature, better simulation skills are 

found only in late spring and summer months.  The correlations are raised by about 0.1 for 

precipitation and by up to 0.3 for surface-air temperature.  In winter and early spring, snow cover 

and atmospheric dynamics play more important a role than soil moisture in controlling the land 

surface processes.  In the present study, snowfall was simulated by the GCM without substitution 

from observations. 
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We computed further the pattern correlations over the US continent for June-July-August 

averaged anomalies of soil moisture, precipitation and surface-air temperature between model 

simulations and the corresponding observations for the years from 1979 through 2000.  For the 

traditional AMIP-type simulations (gcm_rains, solid bars in Figure 9), the NCEP GCM has some 

skill in simulating soil moisture in most of the years.  The skill for surface-air temperature is 

appreciable for some years, but is very low when averaged over all the years.  For precipitation, 

there is basically no skill.  For the AMIP simulations with precipitation substitution (obs_rains, 

grey bars in Figure 9), the anomalous pattern correlations for the three variables are much higher 

and are positive for all years.  Consistent with the mean temporal correlations shown in Figure 8, 

the most significant improvement is found for soil moisture.  The simulations for precipitation 

and surface-air temperature are also improved considerably.  However, the greatest improvement 

in soil moisture (for instance, 1988) did not always transform into the best prediction skill of 

precipitation and surface-air temperature.  On the contrary, in certain years such as 1996 and 

1997 a small improvement in the simulation of soil moisture transformed into a large increment 

of the prediction skill for precipitation.  This indicates that in addition to soil moisture the 

conditions of large-scale circulation and SSTs are also important factors that determine the 

overall prediction skill of precipitation and surface-air temperature.   

 

6. Conclusion and Discussion 

It is still a big challenge for current atmospheric GCMs to simulate accurately 

atmospheric precipitation and hence the soil moisture content.  Previous studies (e.g., Fennessy 

and Shukla 1999; Kanamitsu e al. 2003; Koster and Suarez 2003) have demonstrated that GCMs 

initialized with realistic soil moisture content can improve the prediction skill of US summer 

climate over certain regions.  The potential predictability associated with observed soil moisture 
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as a boundary forcing instead of an initial value problem has not been explored because of the 

scarcity of soil moisture observations. 

In this study, the potential predictability of precipitation and surface-air temperature over 

the US continent in boreal summer is estimated using the NCEP operational seasonal forecast 

model with precipitation substitution over the land and with the observed SSTs as boundary 

forcing over the oceans.  The observed GPCP pentad-mean precipitation was used during model 

integrations to replace the model predicted precipitation as input to the land-surface component 

of the GCM.  Soil moisture content simulated by the GCM with this simple precipitation 

substitution match well with the Huang et al. (1996) soil moisture analysis over the US continent 

in all seasons in terms of climate mean, and almost “perfectly” well in terms of temporal and 

anomalous pattern correlations.  The potential prediction skill of precipitation and surface-air 

temperature are also greatly improved in late spring and summer months over many states of the 

continent.  Averaged for all years, the anomalous pattern correlations (Figure 9) for precipitation 

and surface-air temperature in JJA are 0.01 and 0.06, for the runs without precipitation 

substitution, and are raised to 0.23 and 0.31, respectively, for the runs with precipitation 

substitution.  This indicates that even though the potential predictability of US summer climate 

associated with SST anomalies is low, better prediction skill can still be achieved with improved 

modeling of soil moisture content.   

Now the question is how to improve the simulation of soil moisture in GCMs.  One way 

is to initialize the GCM with realistic soil moisture content (e.g., Fennessy and Shukla 1999; 

Schlosser and Milly 2002; Kanamitsu et al. 2003; Koster and Suarez 2003).  But the persistence 

or memory of soil moisture anomalies is usually small in spring and summer over the US 

continent (Wang and Kumar 1998; Schlosser and Milly 2002).  Schlosser and Milly found for the 

Geophysical Fluid Dynamics Laboratory climate model the predictability timescale of soil 
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moisture measured as e- folding time is about 2 weeks or less in mid- latitudes during summer.  

Seasonal prediction skill of US summer climate with soil moisture anomalies treated as an initial 

value problem is limited because of the short memory of soil moisture in summer and the 

inability of current GCMs to simulate precipitation accurately.  Results from previous studies 

showed that the degree to which the initialization can enhance the predictability of summertime 

precipitation and temperature is limited and mixed, varying among models and with locations.   

In this study we treat soil moisture as a boundary value problem, and demonstrated the 

appreciable prediction skill of US summer climate.  Similar studies can be carried out using soil 

moisture from land data assimilation systems (e.g., Mitchell et al. 1999; Cosgrove et al. 2003) to 

better understand the potential predictability of US summer climate for other GCMs.  However, 

this approach is not practical for operational forecasts because we do not know soil moisture or 

precipitation beforehand.  On the other hand, given the strong dependence of soil moisture on 

precipitation as found in this study, it might be helpful to apply bias corrections, in terms of not 

only mean but also spatial patterns, on GCM predicted precipitation during real-time seasonal 

forecasts based on antecedent statistical relations between model predicted precipitation and 

observations.  The reduction in precipitation bias might lead to improved simulation of soil 

moisture, and possibly better prediction skill of surface-air temperature and, in turn, precipitation 

itself.  This kind of model-output-statistics (MOS) adjustment has been applied to, for instance, 

surface winds, for the dynamical forecast of tropical SSTs, and proved to be effective in 

improving the forecast skill of SSTs (Ji et al. 1994). A proper soil moisture initialization 

combined with precipitation MOS correction might further enhance the seasonal forecast skill of 

US summer climate. 

 Finally, we note that our analysis only provides an estimate for the potential predictability 

related to the interannual variability of soil moisture anomalies.  Such estimates can easily be 
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biased by the GCM characteristics, and remain to be substantiated by other modeling systems.  

Another factor that might have influenced our estimates for the potential predictability is the 

small ensemble size of three used in this study.  As was shown by Kumar and Hoerling (2000), 

the expected level of skill depends on the ensemble size.  Given the fact that the expected level 

of skill progressively increases with increasing ensemble size, potential predictability estimates 

based on larger ensembles may be slightly higher and more stable in space and time than the 

ones obtained in the present analysis.   
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Figure Captions  

 
Figure 1.  Daily, pentad and monthly mean precipitation averaged over the US continent, 

derived from the Cntl run for 1979.  Large variations of daily and pentad precipitation are 

superimposed on the monthly means. 

 

Figure 2.  Percent differences of the GCM simulated top- layer soil moisture content in terms of 

volumetric wetness (cm) (left panels) and surface-air temperature (°C) (right panels) between the 

experimental runs (Daily, Pentad, and Monthly) and the control run (Cntl) in July, averaged for 

the1979-2000 period. 

 

Figure 3.  Local correlations of the GCM simulated top- layer soil moisture content (left panels) 

and surface-air temperature (right panels) between the experimental runs (Daily, Pentad, and 

Monthly) and the control run (Cntl) in July for the1979-2000 period.   

 

Figure 4.  Differences in soil volumetric wetness (cm) in the top 160 cm of soil between the 

GCM simulations and the Huang et al. (1996) analysis in June, July and August, averaged for the 

1979-2000 period.  Left panels are for the gcm_rain runs in which the GCM was forced by its 

own pentad-mean precipitation.  Right panels are for the obs_rain runs in which the GCM was 

forced by the observed GPCP pentad mean precipitation. 

 

Figure 5.  Anomalous correlations of soil moisture content in the top 160 cm between the GCM 

simulations and the Huang et al. (1996) analysis in June, July and August for the 1979-2000 

period.  Left panels are for the gcm_rain runs, and right panels for the obs_rain runs.   
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Figure 6.  Local correlations of surface-air temperature between the GCM simulations and the 

CAMS observations in June, July and August averaged for the 1979-2000 period.  Left panels 

are for the gcm_rain runs, and right panels for the obs_rain runs.   

 

Figure 7.  Local correlations of precipitation between the GCM simulations and the GPCP 

observations in June, July and August averaged for the 1979-2000 period.  Left panels are for the 

gcm_rain runs, and right panels for the obs_rain runs.   

 

Figure 8.  Mean correlations between prediction and observations averaged over the entire US 

continent, for (a) soil moisture, (b) precipitation, and (c) surface-air temperature, as shown in 

Figures 5-7 except for all months.  Dotted lines are for the correlations between the gcm_rain 

runs and observations, and bold lines are for those between the obs_rain runs and observations. 

 

Figure 9.  Pattern correlations of June-July-August mean anomalies for (a) soil moisture, (b) 

precipitation, and (c) surface-air temperature over the US continent from 1979 through 2000 

between the NCEP GCM simulations and the observations as described in the text.  Black bars 

are for the gcm_rain runs for which precipitation assimilation was not applied.  Grey bars are for 

the obs_rain runs for which the observed GPCP pentad-mean precipitation was used to force the 

land-surface component of the GCM. 
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Figure 1.  Daily, pentad and monthly mean precipitation averaged over the US continent, 
derived from the Cntl run for 1979.  Large variations of daily and pentad precipitation are 
superimposed on the monthly means. 
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Figure 2.  Percent differences of the GCM simulated top- layer soil moisture content in terms of 
volumetric wetness (cm) (left panels) and surface-air temperature (°C) (right panels) between the 
experimental runs (Daily, Pentad, and Monthly) and the control run (Cntl) in July, averaged for 
the1979-2000 period. 
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Figure 3.  Local correlations of the GCM simulated top- layer soil moisture content (left panels) 
and surface-air temperature (right panels) between the experimental runs (Daily, Pentad, and 
Monthly) and the control run (Cntl) in July for the1979-2000 period.   
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Figure 4.  Differences in soil volumetric wetness (cm) in the top 160 cm of soil between the 
GCM simulations and the Huang et al. (1996) analysis in June, July and August, averaged for the 
1979-2000 period.  Left panels are for the gcm_rain runs in which the GCM was forced by its 
own pentad-mean precipitation.  Right panels are for the obs_rain runs in which the GCM was 
forced by the observed GPCP pentad mean precipitation. 
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Figure 5.  Anomalous correlations of soil moisture content in the top 160 cm between the GCM 
simulations and the Huang et al. (1996) analysis in June, July and August for the 1979-2000 
period.  Left panels are for the gcm_rain runs, and right panels for the obs_rain runs.   
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Figure 6.  Local correlations of surface-air temperature between the GCM simulations and the 
CAMS observations in June, July and August averaged for the 1979-2000 period.  Left panels 
are for the gcm_rain runs, and right panels for the obs_rain runs. 



 30 

 
 
 

Figure 7.  Local correlations of precipitation between the GCM simulations and the GPCP 
observations in June, July and August averaged for the 1979-2000 period.  Left panels are for the 
gcm_rain runs, and right panels for the obs_rain runs.   
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Figure 8.  Mean correlations between prediction and observations averaged over the entire US 
continent, for (a) soil moisture, (b) precipitation, and (c) surface-air temperature, as shown in 
Figures 5-7 except for all months.  Dotted lines are for the correlations between the gcm_rain 
runs and observations, and bold lines are for those between the obs_rain runs and observations. 
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Figure 9.  Pattern correlations of June-July-August mean anomalies for (a) soil moisture, (b) 
precipitation, and (c) surface-air temperature over the US continent from 1979 through 2000 
between the NCEP GCM simulations and the observations as described in the text.  Black bars 
are for the gcm_rain runs for which precipitation assimilation was not applied.  Grey bars are for 
the obs_rain runs for which the observed GPCP pentad-mean precipitation was used to force the 
land-surface component of the GCM. 


