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Abstract

An algorithm is described for generating stochastic three-dimensional (3D) cloud fields from

time–height fields derived from vertically pointing radar. This model is designed to generate cloud

fields that match the statistics of the input fields as closely as possible. The major assumptions of the

algorithm are that the statistics of the fields are translationally invariant in the horizontal and

independent of horizontal direction; however, the statistics do depend on height. The algorithm

outputs 2D or 3D stochastic fields of liquid water content (LWC) and (optionally) effective radius.

The algorithm is a generalization of the Fourier filtering methods often used for stochastic cloud

models. The Fourier filtering procedure generates Gaussian stochastic fields from a ‘‘Gaussian’’

cross-correlation matrix, which is a function of a pair of heights and the horizontal distance (or

‘‘lag’’). The Gaussian fields are nonlinearly transformed to give the correct LWC histogram for each

height. The ‘‘Gaussian’’ cross-correlation matrix is specially chosen so that, after the nonlinear

transformation, the cross-correlation matrix of the cloud mask fields approximately matches that

derived from the input LWC fields. The cloud mask correlation function is chosen because the clear/

cloud boundaries are thought to be important for 3D radiative transfer effects in cumulus.

The stochastic cloud generation algorithm is tested with 3 months of boundary layer cumulus

cloud data from an 8.6-mm wavelength radar on the island of Nauru. Winds from a 915-MHz wind

profiler are used to convert the radar fields from time to horizontal distance. Tests are performed

comparing the statistics of 744 radar-derived input fields to the statistics of 100 2D and 3D stochastic

output fields. The single-point statistics as a function of height agree nearly perfectly. The input and

stochastic cloud mask cross-correlation matrices agree fairly well. The cloud fractions agree to

within 0.005 (the total cloud fraction is 18%). The cumulative distributions of optical depth, cloud

thickness, cloud width, and intercloud gap length agree reasonably well. In the future, this stochastic
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cloud field generation algorithm will be used to study domain-averaged 3D radiative transfer effects

in cumulus clouds.
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1. Introduction

The radiative effects of cloud horizontal inhomogeneity may be divided into two parts

(e.g. Cahalan et al., 1994; Varnai and Davies, 1999): (1) the one-dimensional heterogeneity

effect due to optical depth variability, and (2) the horizontal transport effect of light moving

between columns (Cahalan et al., 1994). For climate applications in which domain-

averaged fluxes are important, the first effect can be addressed adequately by the

independent column approximation, in which one-dimensional radiative transfer results

are integrated over the distribution of optical depths. There appears to be a consensus that

for overcast clouds (e.g. stratocumulus with 100% cloud fraction) the horizontal transport

effect is insignificant for domain average solar fluxes (Cahalan et al., 1994; Chambers et

al., 1997; Zuidema and Evans, 1998; Di Giuseppe and Tompkins, 2003). For broken cloud

scenes, the effect of horizontal transport on domain average solar fluxes is much more

uncertain. Studies with arrays of idealized cloud shapes (e.g. Aida, 1977; Welch and

Wielicki, 1984) indicate that there is a potential for large (more than 20%) biases from

neglecting horizontal transport. Significant horizontal transport effects have been noted in

more realistic but still idealized fields of broken clouds (Barker and Davies, 1992; Di

Giuseppe and Tompkins, 2003). Some studies of broken clouds reconstructed from remote

sensing reflectances have shown moderate but significant horizontal transport effects

(Chambers et al., 1997; O’Hirok and Gautier, 1998) while others have not, in absolute

terms (Benner and Evans, 2001). Studies with fields simulated by dynamical cloud models

have shown the horizontal transport effect to be small in the domain average even for

convective clouds (Barker et al., 1998, 1999; Fu et al., 2000; Scheirer and Macke, 2001).

Determining the significance of horizontal radiative transport in broken clouds for

climate applications requires the ability to measure and simulate the full range of actual

cloud structure. The three-dimensional (3D) cloudy radiative transfer problem is not a

radiative transfer issue, per se. Monte Carlo radiative transfer models can accurately and

efficiently model the domain average solar fluxes for arbitrary cloud fields. The difficult

issue is generating cloud property fields that are statistically representative of the cloud

fields in nature. Fields produced by dynamical cloud models are attractive because they

contain everything that is needed for radiative transfer models. However, dynamical cloud

models have not been able to simulate the realistic cloud structure needed because (1)

they are models with an unknown correspondence to reality, (2) too few cloud simulations

are used in radiative transfer studies to provide statistically meaningful results for

quantifying the significance of 3D effects in natural clouds, and (3) they have an

inadequate range of spatial scales (a 3D cloud model simulation over a GCM grid box

domain typically has 2-km grid cells, which does not resolve the radiatively relevant

cloud structure down to about 10 m).
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Currently, there are no techniques to measure 3D fields of cloud properties. Passive

solar and infrared remote sensing can measure the cloud top temperature and estimate the

optical depth (though with large uncertainties from 3D radiative transfer effects), but

cannot provide the complete cloud structure needed. Perhaps the most promising method

for measuring cloud structure in optically thicker clouds is millimeter-wavelength radar.

One major difficulty in using radars for retrieving cloud properties is that they measure the

sixth moment of the droplet distribution and hence are very sensitive to contamination by

precipitation. While this a serious problem, we believe that radars can provide useful cloud

structure even though microphysical retrievals are uncertain. However, cloud radars lack

the sensitivity to measure very weak cloud echos (down to � 50 dBZ or less) while

scanning rapidly enough to build up 3D structure before the cloud field changes. Two-

dimensional scanning may be feasible, but with lower sensitivity. Most cloud radars are

operated in a vertically pointing mode which allows longer time integrations for improved

sensitivity. There are several long-term monitoring projects with vertically pointing radars

including (1) the Atmospheric Radiation Measurement (ARM) program with radars in

Oklahoma, on Nauru and Manus islands in the tropical west Pacific, at Darwin in

Australia, and at Barrow in Alaska (Clothiaux et al., 1999), (2) the Chilbolton site in

England (Kilburn et al., 2000), and (3) the Cabauw Experimental Site for Atmospheric

Research (CESAR). Cloud radars have also been deployed in numerous field campaigns

(e.g. Frisch et al., 1995; Miller and Albrecht, 1995). These radars have adequate

sensitivity, vertical resolution, and time sampling to measure cloud structure. The

horizontal cloud structure information from a vertically pointing radar is somewhat

indirect, of course, since it relies on the wind advecting the clouds by the radar. It is

straightforward to convert the time dimension to distance with an advection speed to

obtain 2D (X–Z) cloud structure for radiative transfer experiments (Zuidema and Evans,

1998). However, it is likely that the horizontal transport effects of broken clouds are not

well approximated by 2D cloud structure, since 2D clouds have less side area for photon

leakage than 3D clouds. Therefore, there is a need for a numerical technique to derive

realistic 3D cloud structure from vertically pointing radar data.

The horizontal structural information from a vertically pointing radar is only statisti-

cally related to 3D cloud structure. Therefore, a method is needed to generate stochastic

cloud fields with statistics derived from radar. Since the horizontal radiative transport

effect depends on the cloud aspect ratio (e.g. Welch and Wielicki, 1984), it is important to

include vertical and horizontal structure, and their relationship, in the statistics. All

previous stochastic cloud models have attempted to generate the key aspects of realistic

cloud fields with just a few parameters. This approach is appropriate for learning how the

cloud parameters affect 3D radiative transfer, but cannot closely fit detailed measurements

of cloud structure. These simple stochastic cloud models include bounded cascade models

with internal variability (Cahalan et al., 1994; Marshak et al., 1998) and Poisson

distributions of homogeneous cloud elements (Zuev and Titov, 1995). The algorithm

developed here comes from the Fourier filtering family of stochastic cloud models (Voss,

1985, Schertzer and Lovejoy, 1988; Barker and Davies, 1992; Evans, 1993; Varnai, 2000;

Di Giuseppe and Tompkins, 2003). Usually, these models filter noise in the Fourier

domain with a power law (f k� b) to make scaling or ‘‘fractal’’ fields. The filtered

stochastic Fourier field is transformed to ‘‘real space’’, and a nonlinear function is applied
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to each pixel to produce the cloud field (often optical depth or extinction). The attenuation

of higher Fourier frequencies by the power law introduces spatial correlations to produce

realistic looking cloud fields.

Most of the previous stochastic cloud models had no vertical variability and fixed cloud

thickness. Those with cloud top height variability tended to have uniform extinction (e.g.

Marshak et al., 1998; Varnai, 2000). Those with true 3D variability tended to have the

same statistics vertically and horizontally (e.g. Evans, 1993), though this shortcoming is

theoretically overcome in Schertzer and Lovejoy (1988). The model of Di Giuseppe and

Tompkins (2003) is different from other stochastic models in that it is based on

thermodynamical principles, but while it has a realistic vertical profile for stratocumulus,

that profile is fixed.

In contrast to previous stochastic cloud models, the approach taken here is to match the

statistics of detailed cloud structure measurements as closely as possible. This type of a

stochastic cloud algorithm could be called a data generalization model because it allows

the radar data to be generalized to three dimensions and to many realizations. The

stochastic field generation algorithm assumes that the cloud field is statistically homoge-

neous and isotropic in the horizontal (i.e. the statistics are independent of horizontal

position and the two horizontal directions are equivalent). The algorithm generates an

ensemble of liquid water content (LWC) and effective radius (re) fields (either 2D or 3D)

from input time–height images of LWC and re. The single-point probability distribution

(e.g. histogram of LWC) for each height in the output fields matches that of the radar-

derived input fields. The output fields approximately match the binary cloud mask

correlation function, B(z1, z2, x1� x2), which depends on the levels z1 and z2 and

horizontal separation x1� x2. We choose to match the two-point probability density

function of the cloud mask field because we believe that cloud boundaries are the most

relevant aspect of the field for 3D radiative transfer in broken clouds.

The next section provides an overview of the stochastic cloud field algorithm, while the

details are described in the appendix. The third section gives examples of stochastic cloud

fields generated from the ARM radar on Nauru and shows the results of tests of the

faithfulness of the stochastic cloud algorithm. The final section summarizes the paper,

discusses possible extensions to the stochastic algorithm, and its future application.
2. Stochastic cloud field generation algorithm

This section gives an overview of the stochastic field generation method and describes

the reasoning behind the choices made in developing the algorithm. The appendix gives

the full details of the algorithm. There are two fundamental assumptions that underlie the

technique: (1) the two horizontal directions are equivalent (horizontal isotropy), so that 3D

fields may be generated from statistics obtained from 2D radar-derived fields, and (2) the

statistics do not depend on horizontal location (translational invariance), but do depend on

height. It is straightforward to produce fields having the correct single-point statistics

(probability density function or pdf) for each vertical level. It is much more difficult to

generate fields having the desired two-point and higher-order statistics, which determine

the spatial structure. The general two-point probability density function assuming
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horizontal homogeneity and isotropy is p( q1, q2; z1, z2, x1� x2), where q1 and q2 are the

values at the points (x1, z1) and(x2, z2). Not only does this five-dimensional two-point pdf

require a huge amount of data to define it, but there do not appear to be any existing

algorithms for producing stochastic fields with that degree of generality. There are

methods, however, for generating fields with Gaussian statistics having a specified

correlation function, R(z1, z2, x1� x2). For Gaussian fields, the two-point pdf is completely

specified by the correlation function. Another reason for focussing on Gaussian fields is

that linear combinations (e.g. via Fourier transforms) of finite variance random deviates

will tend to produce Gaussian fields due to the central limit theorem.

One efficient method for generating Gaussian fields with a specified correlation function

is described here. This is a generalization of the Fourier filtering method used in previous

stochastic cloud studies. Let the cross-correlation matrix R(iz1, iz2, l) be the discrete version

of the correlation function with vertical level indices iz1 and iz2 (1V iz1, iz2VNz) and

l = ix1� ix2 the difference between horizontal indices. The first step is to Fourier transform

each iz1,iz2 element of the cross-correlation matrix from lag l to Fourier wave number k to

obtain the cross-spectral density matrix, S(iz1, iz2, k). The cross-correlation matrix must be

symmetric in l because of the horizontal isotropy assumption, so S(iz1, iz2, k) is real and

symmetric in k, and is obtained from R using a fast cosine transform. Both R and S are

symmetric in iz1, iz2. For each Fourier component k, the Nz eigenvalues, knk, and

eigenvectors, E(iz, n, k), of the cross-spectral density matrix are computed. It is in this

eigenvector/Fourier space that independent Gaussian noise is ‘‘filtered’’. In the filtering

process, zero mean, unit variance, complex Gaussian random deviates Z(n, k) are multiplied

by ‘‘filtering amplitudes’’, A(n, k). These amplitudes are the square root of the eigenvalues,

Aðn; kÞ ¼
ffiffiffiffiffiffiffiffiffiffi
kn; k

p
. The independent random components are then transformed back to ‘‘real

space’’, which produces the desired spatial correlations. The vertical transform is performed

for each k by multiplying the stochastic component vector by the eigenvector matrix,

Y ðk; izÞ ¼
XNz

n¼1

Eðiz; n; kÞAðn; kÞZðn; kÞ: ð1Þ

Then Y(k, iz) is fast Fourier transformed in k to obtain there al space 2D Gaussian field,

G(ix, iz). A large ensemble of Gaussian fields generated in this manner will have the

desired cross-correlation matrix, R(iz1, iz2, l). Fig. 1 illustrates the procedure for

generating a stochastic 2D Gaussian field (and the final nonlinear transformation to a

LWC field). The appendix describes how to obtain the filtering amplitudes A(n, k) for

generating horizontally isotropic 3D Gaussian fields from the cross-correlation matrix

for 2D (X–Z) fields. This is not trivial because the azimuthally symmetric power

spectrum of planar fields ( f(x, y)) is not the same as the power spectra of lines sampled

from the planes (e.g. f(x, 0)).

The procedure described above for generating correlated stochastic Gaussian fields is

mathematically equivalent to using principal component analysis or empirical orthogonal

functions (EOFs) with random Gaussian amplitudes. Principal components are the

eigenvectors of the correlation matrix, while the eigenvalues of the correlation matrix

are the variances of each component. By construction, the principal components are

uncorrelated or orthogonal to each other. Thus stochastic principal component amplitudes



Fig. 1. An illustration of the four major steps in generating a stochastic liquid water content (LWC) field from the

previously derived statistics.
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may be generated by multiplying independent Gaussian random deviates (with unit

variance) by the square root of the eigenvalues. The transformation from principal

component space back to the original space introduces the desired correlations. For

translational invariant fields the correlation matrix is Toeplitz, meaning it is a function of

the difference between the two indices, R(ix1, ix2) =R(ix1� ix2). It can be shown that the
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eigenvectors of such a correlation matrix are sines and cosines, and thus the principle

component transform is a Fourier transform. Therefore, the eigenvector/Fourier transform

procedure described above is simply a fast way to perform a principle component

transform when the statistics are translationally invariant in the horizontal.

The method described so far can generate Gaussian fields with a chosen correlation

function, but the liquid water content field of clouds is highly non-Gaussian. Not only is

the LWC distribution often similar to log-normal, but over 90% of a cumulus field has a

LWC of zero (clear sky). It is not difficult, however, to transform a Gaussian field to one

having the observed LWC pdf using a lookup table. The problem is that doing this

nonlinear transformation changes the correlation function so it no longer matches the

observed one. Therefore, we need to find the cross-correlation matrix of the Gaussian

field (‘‘Gaussian correlations’’) such that when the Gaussian field is nonlinearly

transformed, the resulting cross-correlation matrix matches the observed correlations.

The simplest method to do this would be to transform the input fields to have a

Gaussian distribution and then compute the correlation matrix. This is impossible,

however, because the huge lump of probability at zero prevents the LWC distribution

from being transformed to a smooth Gaussian distribution. Using the total water (vapor

plus cloud) content instead of LWC is a conceptually appealing way to avoid the zero

LWC problem (Di Giuseppe and Tompkins, 2003), but is not practical when deriving the

cloud statistics from measurements because the total water field is not currently

observable.

There are iterative methods that adjust the Gaussian cross-correlation matrix so that the

correct correlation function is obtained after the nonlinear transformation (e.g. Popescu et

al., 1997), but convergence is not guaranteed. Another approach is to transform the cross-

correlation matrix in LWC space to the equivalent Gaussian cross-correlation matrix. For a

given pair of levels (iz1, iz2) and horizontal distance (l), the cross-correlation matrix has

only one number to describe the two-point statistics. Thus, we have to decide what single

aspect of the full two-point pdf, p( q1, q2), is most relevant to capture. One could match the

LWC correlation, though that might be dominated by the highest LWC values. Another

choice is to match the correlation of the log of non-zero LWC values. Our interest here is

in the 3D radiative effects of cumulus fields, so we choose instead to match the cross-

correlation matrix of the binary cloud mask field, since the location of the cloud

boundaries appears to be important for finite cloud 3D radiative transfer effects. We also

note that the two-point statistics of a binary field are completely described by its

correlation function. This can be shown by considering that the two-point pdf for a binary

field reduces to four probabilities: p( q1 = 1, q2 = 1) = p12 is the probability that both points

are cloudy, p( q1 = 0, q2 = 0) is the probability that both points are clear, and p( q1 = 1,

q2 = 0) and p( q1 = 0, q2 = 1) are the probabilities one point is clear and the other is cloudy.

The four probabilities must sum to unity, and the single-point statistics provide two more

equations (related to the cloud fractions, p1 and p2, at the two points), thus there is only

one available degree of freedom in the two-point pdf. The relationship between the

correlation of the binary field (the ‘‘binary correlation’’) and the two-point probabilities

( p12, p1, p2) is given in the appendix.

The binary cross-correlation matrix is computed from the many input images. Each

input time–height LWC field is first linearly interpolated to a horizontal grid with the
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same spacing as the vertical grid using an input aspect ratio derived from the advection

speed for that image. A user-defined threshold is then used to make the cloud mask from

the X-ZLWC field, and the cross-covariance matrix is calculated using fast Fourier

transforms. The cross-covariance matrices are accumulated and then normalized to

produce the binary field cross-correlation matrix, B(iz1, iz2, l).

The binary cross-correlation matrix is converted to the Gaussian cross-correlation

matrix element-by-element using a lookup table. The lookup table is made by numerically

integrating bivariate Gaussian distributions to relate the Gaussian space correlation to the

binary mask correlation, which also depends on the cloud fractions and hence pair of

levels, iz1, iz2. Unfortunately, the Gaussian correlation matrix produced by element-by-

element transformation is usually not positive definite, and hence some eigenvalues are

negative (i.e. negative variance). Fundamentally, this is because the elements of a

correlation matrix are not independent: if A is highly correlated with B, and B with C,

then A and C must be correlated. An optimization procedure is used to find a positive

definite correlation matrix that is close to the desired Gaussian correlation matrix. The

elements of the Cholesky decomposition of the cross-spectral density matrix S(iz1, iz2, k)

are adjusted to minimize the weighted squared error in the Gaussian correlations (with

correlations near 1 having more weight). The Cholesky decomposition H is the ‘‘square

root’’ of S (S=HHT), thus the cross-spectral density matrix is guaranteed to be positive

definite and so is the Gaussian cross-correlation matrix R(iz1, iz2, l).

The single-point statistics and the Gaussian cross-correlation matrix may be stored for

later use in generating any number of stochastic fields. The stochastic Gaussian fields

are computed as described above and then transformed to have the correct LWC

distribution with a lookup table for each vertical level. The fields in a whole ensemble,

not each output field, are forced to have the observed single-point statistics. Since the

correlation statistics used in the cloud generation algorithm are based on the cloud

boundaries, the same Gaussian correlation matrix is used to generate the effective radius

(re) fields. The Gaussian noise used to generate the re fields is correlated with the LWC

Gaussian noise so that the resulting LWC and re fields have the observed correlation.

The lookup table that converts the second set of Gaussian fields to the re fields is

derived from the input fields and depends on the LWC value. This assures that

appropriate values of re are produced for each LWC value, so that, for example,

re = 0 does not occur inside of clouds. The resulting stochastic fields should have the

correct pdf of LWC and re for each vertical level and have the observed cross-correlation

function for the binary cloud mask field. The major elements of the algorithm are

summarized in a flowchart (Fig. 2).
3. Examples and tests for cumulus fields from Nauru

The stochastic cloud field generation algorithm is tested with three months of boundary

layer cumulus cloud radar data from the ARM Millimeter-Wavelength Cloud Radar

(MMCR) on the island of Nauru (latitude 0.521jS, longitude 166.916jE). The MMCR is a

vertically pointing Doppler radar that operates at 34.86 GHz (8.6 mm) (Moran et al.,

1998). About every 40 s the MMCR cycles through four different operational modes, each



Fig. 2. The main conceptual elements of the stochastic generation algorithm for cloud liquid water content

(LWC). To simplify the flowchart, the procedure for generating the effective radius field has been omitted. The

top part illustrates the procedure for computing the single- and two-point statistics from the input 2D images. The

bottom part illustrates using the statistics to generate stochastic 3D LWC fields.
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with different sensitivity, spatial resolution, and height range (details of the operational

modes are in Clothiaux et al. (1999). Mode 1 is specifically designed for boundary layer

clouds with 45 m range resolution and high sensitivity (estimated in Clothiaux et al., 1999

to be � 55 dBZ at 1 km) due to 8-bit pulse coding. Mode 3 is the ‘‘general mode’’ with 90

m resolution and sensitivity of � 49 dBZ at 1 km. Mode 2 is for cirrus and with 32-bit

pulse coded has a minimum range of about 3 km, so that it is not useful for boundary layer

clouds. Mode 4 is less sensitive than mode 3. We choose to use modes 1and 3 to have

equal time separation of about 20 s between each sample. Using only mode 1 data would

double the sampling time and hence the horizontal resolution. The mode 1 data are

averaged to 90 m resolution to match the mode 3 data, and the radar reflectivities from

modes 1 and 3 are merged in time. The radar reflectivity data are edited to remove noise

pixels with the thresholds set to � 44 and � 37 dBZ at 1 km (and increasing with the

ranged squared) for modes 1 and 3, respectively. Since mode 3 is less sensitive, times for

which the mode 3 reflectivities are below the threshold are filled in by interpolation if the

surrounding mode 1 data (at the same range) are valid. Single-pixel clouds (one range gate

and one time sample) are assumed to be remnant noise pixels and are removed.

The cloud liquid water content (LWC) and effective radius (re) are retrieved from radar

reflectivity (Ze) with a lookup table made from the Bayesian retrievals described in

McFarlane et al. (2002). The Bayesian algorithm combines MMCR reflectivities and

microwave radiometer brightness temperatures with a priori microphysical information
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from in situ cloud probes operated during shallow cumulus experiments in Hawaii and

Florida. The prior pdf of the second, third, and sixth moments of the droplet size distribution

is fitted to data from two cloud probes that measured size distributions of cloud droplets and

drizzle drops. The Bayesian retrievals from July 1999 are shown in Fig. 3. There is little

scatter in the Bayesian retrieval LWC–Ze relationship below about � 30 dBZ because there

the retrieval is based almost entirely on the radar data due to the lack of sensitivity of the

microwave radiometer. Above about � 25 dBZ, the mean LWC–Ze relation increases more
Fig. 3. The Bayesian retrieval of LWC and re as a function of radar reflectivity for July 1999. The lookup table

values are shown as large black dots. The vertical dashed lines show the range over which the lookup table is used

(� 50 to � 10 dBZ).
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slowly due to the increasing prevalence of large cloud droplets that give high Ze but little

LWC. The re–Ze relation has little scatter and increases more steadily. The lookup table

(also shown in Fig. 3) is made by averaging the Bayesian retrieval values for LWC and re in

each 1 dBZ wide reflectivity range. The lookup table thus represents the mean results of the

Bayesian retrieval, but using it avoids the Monte Carlo noise present in the Bayesian

retrievals. The lookup table is used to retrieve LWC and re from the Nauru radar images for

June through August 1999 (92 days) over the range from � 50 to � 10 dBZ. Pixels with

reflectivity less than � 50 dBZ are set to clear sky, and columns having a maximum

reflectivity greater than � 10 dBZ are considered too contaminated with drizzle to use. The

retrieved LWC and re images are for 3-h periods (about 540 time samples). If there are

retrieval gaps caused by precipitation, then the 3-h images are sliced into continuous

segments of at least 128 time samples without slicing through any cloud. Twenty-five 90-m

range gates with heights from about 500 to 2750 m are output, which contain nearly all the

boundary layer cloud. A total of 744 image segments are created from the 3 months of

MMCR data.

The time dimension is converted to horizontal distance using a cloud advection speed in

what is sometimes called the frozen turbulence assumption. Advection speeds for the

cloud fields are obtained from the NOAA 915-MHz wind profiler based at the Nauru

airport about 3 km south of the ARM site. The 100-m vertical resolution wind profiles are

averaged to the 3-h periods of the cloud retrievals. Time is converted to horizontal distance

with the mean LWC weighted wind speed for each segment. The horizontal-to-vertical

aspect ratio of the retrieved pixels ranges from 0.56 to 3.3 and averages 1.9 (8.6 m/s� 20

s/90 m). Fig. 4 shows examples of the radar-derived liquid water content X–Z fields.

The stochastic cloud field algorithm is run to gather statistics from 744 input LWC and

re X–Z fields and generate 100 2D fields(512� 25 pixels) and 100 3D fields
Fig. 4. Six radar-derived LWC X–Z fields (fields sampled uniformly for objectivity).



Fig. 6. The optical depth image for one stochastic 3D field.

Fig. 5. The first six stochastic LWC X–Z fields.
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(256� 256� 25pixels). The LWC threshold for making the binary cloud mask field for

the correlation matrix is 0.01 g/m3. The eigenvalue threshold kmin (see Appendix A) is

set to 10� 6 so that the eigenvalues are essentially used as is. Fig. 5 shows the first six

stochastic 2D LWC fields. The cloud fraction and peak LWC varies markedly from field

to field. The stochastic LWC fields visually show a good correspondence with the radar-

derived fields. One systematic difference that can be seen is the lack of wind sheared

clouds in the stochastic fields, since shear is an asymmetry that violates the strict

isotropy assumption made (but see Section 4 for how this problem could be remedied).

Fig. 6 shows the optical depth derived from the LWC and re of one of the 3D stochastic

fields.

We now quantitatively compare the statistics of the stochastic fields and the radar-

derived input fields. The first tests of the stochastic cloud generation algorithm checks

whether the output fields match the single-point pdf and the binary cross-correlation

matrix as claimed. Fig. 7 confirms that the ensembles of 2D and 3Doutput LWC fields

match the cloud fraction and mean cloud LWC of the input fields almost perfectly. The

pdfs of LWC and re for each height match very well, as indicated by maximum cumulative

distribution differences near zero (not shown). The binary correlation matrices of the input

and stochastic fields are compared by computing the cross-correlation matrix of the binary

cloud mask made from X–Z slices of the stochastic fields. Since the binary cross-

correlation matrix, B(iz1, iz2, l ), is a function of three dimensions and difficult to visualize,
Fig. 7. Comparison of input and stochastic single-point statistics as a function of height for the liquid water

content field.
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we instead compute a weighted average difference over the height levels with the weights

being the product of the cloud fractions for each level. Fig. 8 shows the weighted average

binary cross-correlation matrix differences for the 2D and 3D stochastic fields. The

weighted average differences in correlation are about 0.02.The agreement in binary

correlation is much worse for height levels with low cloud fraction than for levels with

higher cloud fraction. One cause of the difference in binary correlation between the input

and stochastic fields is the adjustments necessary to make the Gaussian cross-correlation

matrix positive definite. Another reason for the difference is the relatively small size of the

ensembles (only 100 members), which leads to significant stochastic fluctuations. Unlike

the single-point statistics which are forced to match the input over the ensemble, the

correlation matrix of the Gaussian stochastic fields will be exact only in the limit of a large

number of fields.

It is also important to compare other aspects of the radar-derived input and stochastic

output fields. The binary cloud mask cross-correlation matrix is only a small part of the

two-point and higher-order probability distributions, so it is not obvious that by itself the

binary correlation matrix will provide enough spatial information for generating the

stochastic fields. Here we choose four simple cloud parameters that are relevant for

radiative transfer: cloud optical depth, cloud thickness, cloud width, and gap length

between clouds. The optical depth is made from the LWC and re fields assuming

geometric optics. The cloud width and gap length are defined from a cloud mask field
Fig. 8. The difference in the binary cross-correlation matrix as a function of horizontal lag between the input and

stochastic fields. The cross-correlation matrix differences are averaged over the pairs of height levels with

weighting by the product of the cloud fractions. The binary correlation matrix for the input fields, also averaged

with weighting by the cloud fractions, is shown for comparison.



Fig. 9. Comparison of the cumulative distribution of optical depth.
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obtained by thresholding optical depth at 0.5. For 3D fields, the 2D cloud mask is sampled

in x to produce 1D fields from which the cloud width and gap length are calculated. Fig. 9

compares the cumulative distribution of optical depth between the input and stochastic

fields. The input and 2D stochastic cdf agree very well, but the 3D stochastic fields have

too few clouds of moderate (5–15) optical depth. This difference could be due to

stochastic fluctuations. The figure also lists the cloud fractions, which show good

agreement. Fig. 10 compares the cumulative distributions of cloud thickness, and shows
Fig. 10. Comparison of the cumulative distribution of cloud thickness.
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the agreement to be excellent. This is not particularly surprising, since the binary cross-

correlation matrix depends on the level heights. Fig. 11 compares the cumulative

distribution of cloud width and the gap length between clouds.

There is a significant difference between the input and stochastic distributions, which is

mainly due to 15–18% of the stochastic clouds being 90 m wide compared to only 1% of

the radar-derived clouds. Single-pixel clouds have been removed in the radar processing

and the input field aspect ratio is usually greater than unity, which accentuates this

problem, but one would still want the stochastic algorithm to be able to capture the lack of

very small clouds in the input. The presence of one-pixel wide clouds in the stochastic
Fig. 11. Comparison of the cumulative distributions of cloud width and cloud gap length.



Table 1

The mean and standard deviation of cloud parameters for the 744 input 2D fields, the 100 2D stochastic fields,

and the 100 3D stochastic fields

Parameter Input 2D stochastic 3D stochastic

Mean S.D. Mean S.D. Mean S.D.

Cloud optical depth 5.74 6.41 5.90 6.79 6.29 7.00

Thickness (km) 0.29 0.22 0.29 0.22 0.29 0.23

Base height (km) 0.76 0.29 0.75 0.27 0.75 0.28

Gap length (km) 4.20 8.01 3.57 6.40 3.90 16.5

Cloud width (km) 0.93 1.15 0.79 1.01 0.82 1.10
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fields may be due to the algorithm having no information on three-point statistics. (The

two-point pdf has information on the clear-to-cloud and cloud-to-clear transitions, but not

on clear-to-cloud-to-clear events.) The cloud gap length distributions behave similarly,

with 10% of the stochastic fields having 90 m gaps compared to only 0.4% of the input

fields. The cloud width and gap length distributions match well for larger clouds and gaps.

The comparison of cloud parameters between the stochastic and input fields is summarized

in Table 1.
4. Summary and discussion

An algorithm has been developed to generate stochastic two- or three-dimensional

cloud fields based on time–height fields derived from vertically pointing radar. Unlike

previous stochastic cloud models that use only a small number of input parameters, this

‘‘data generalization model’’ is designed to generate cloud fields that match the statistics of

the input fields as closely as possible. The algorithm outputs 2D or 3D stochastic fields of

liquid water content (LWC) and (optionally) effective radius (re). The major assumptions

of the algorithm are that the statistics of the fields are translationally invariant in the

horizontal and independent of horizontal direction (isotropic). The statistics of the

stochastic fields do depend on each vertical level, however. Another assumption is that

the horizontal statistics are adequately represented from the time series by simply

converting time to distance using an advection speed obtained from a measured wind

profile.

The stochastic field generation algorithm can be thought of as filtering noise with a

principal component (PC) transform. Independent Gaussian noise is generated for each PC

with a variance equal to the desired PC variance (i.e. the eigenvalues of the correlation

matrix). The field is then transformed from PC space to real space, producing the desired

spatial correlations. The vertical transform is the usual multiplication by the eigenvector

matrix. The horizontal transform, however, is a fast Fourier transform because that is the

PC transform for a translationally in variant correlation matrix. Three-dimensional

stochastic fields are generated assuming an isotropic filtering amplitude function in

Fourier space, which is derived from the 2D amplitude function. The resulting stochastic

fields in real space have the expected cross-correlation matrix, but they have a Gaussian

distribution. Therefore, a nonlinear transformation is performed on the ensemble of



K. Franklin Evans, W.J. Wiscombe / Atmospheric Research 72 (2004) 263–289280
Gaussian fields so that the LWC and re single-point probability distributions match those

of the input fields at each height.

The difficult aspect of the stochastic algorithm is that the nonlinear transformation from

a Gaussian field to the LWC field changes the cross-correlation matrix. The cross-

correlation matrix is a complete description of the two-point statistics of a Gaussian field,

but not of a general field. Therefore, due to our interest in 3D radiative effects of cumulus

clouds, we choose to attempt to match the cross-correlation matrix of the cloud mask field

(as a function of two height levels and horizontal distance). With much effort, the binary

field cross-correlation matrix is translated approximately to the equivalent Gaussian field

cross-correlation matrix, so that the principal component transform method can be applied.

The algorithm is summarized in Figs. 1 and 2.

The stochastic cloud generation algorithm was tested with three months of boundary

layer cloud data (mainly trade cumulus) from the ARM radar on Nauru. A simple lookup

table is made of LWC and re from radar reflectivity using the Bayesian retrievals in

McFarlane et al. (2002). Three-hour averaged winds from the NOAA 915-MHz wind

profiler on Nauru are used to convert the radar fields from time to horizontal distance.

Tests are performed comparing the statistics of 744 radar-derived input fields to the

statistics of 100 2D and 3D stochastic output fields. The single-point statistics (e.g. cloud

fraction and mean cloud LWC) as a function of height agree nearly perfectly. The average

difference between the input and stochastic binary cloud mask cross-correlation matrices,

weighted by the product of cloud fractions, is about 0.02. The cloud fractions agree to

within 0.005 (total cloud fraction is 18%). The cumulative distribution of optical depth

agrees fairly well, while the distribution of cloud thickness agrees very well. The

stochastic algorithm produces single-pixel wide clouds even though they do not occur

in the input fields, but otherwise the distribution of cloud width and intercloud gap length

agree fairly well.

The assumptions behind the stochastic field generation algorithm could be relaxed. For

overcast clouds, it is probably not appropriate to match the cloud mask correlation

function. Instead, the algorithm could be modified to match the correlation of the log of

nonzero LWC. This can be accomplished using a lookup table made by Monte Carlo

sampling of bivariate Gaussian distributions to relate the Gaussian and log(LWC)

correlations. If one were very ambitious, the general two-point pdf might be approximated

more closely by generating a sequence of Gaussian fields with different correlation

matrices. The sequence of Gaussian fields, Gi(x, y, z), would then be combined non-

linearly, e.g. W= g(G1 + a2G2
2 + a3G3

3 + . . .). The difficult part, of course, is to figure out

what cross-correlation matrices to use to generate the Gaussian fields.

Even though vertically pointing radar data are the input to the algorithm, the isotropy

assumption could be relaxed. First, the anisotropic information the radar does provide, that

of upwind versus downwind, could be accommodated. This would make the correlation

function no longer symmetric in the horizontal lag. For making 3Dstochastic fields, the

correlation function could be divided into symmetric and antisymmetric parts, and the

antisymmetric part of the stochastic field could be applied with the cosine of the azimuth

angle. Second, it is possible to introduce artificial (and adjustable) anisotropy (Hinkelman,

2003). Instead of an isotropic Fourier space amplitude function, A[k], the function can be

‘‘stretched’’ in one direction (and narrowed in the other) with parameter a by substituting
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in A
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðakxÞ2 þ ðky=aÞ2
q �

(kx and ky are the two horizontal Fourier space wavenumbers). This

introduces an anisotropy that stretches the cloud elements in one direction. The clouds can

be tilted in the X–Z plane by multiplying the Fourier components by exp(ibkxz), where z is
the height and b controls the slope of the tilt.

There are a number of applications of the stochastic cloud field algorithm described

here. Our immediate application is to study domain average solar radiative transfer in

trade cumulus fields above Nauru. The objective is to compare the horizontal transport

effect in 2D and 3D cloud fields and assess the magnitude of the 3D radiative transfer

effects. (This work will be described in a separate paper.) The stochastic algorithm,

perhaps with minor modifications, could be used to simulate other types of clouds

observed with radar, such as stratocumulus and cirrus. The stochastic cloud fields could

be used for 3D radiative transfer simulations or simulating the response of future cloud

remote sensing instruments. The advantage of a stochastic cloud field algorithm, besides

having the ability to generalize the third dimension from 2D radar data, is that many

realizations can be produced having the same underlying statistics. This could be

important, for example, for assessing whether the disagreement between modeled and

measured radiative fluxes is due to cloud sampling errors or incorrect cloud statistics.

Finally, this rather complex data generalization model could be the starting point for

developing simple stochastic cloud algorithms that include realistically varying vertical

structure.
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Appendix A. Stochastic generation algorithm details

A.1. Obtaining statistics from input X–Z fields

The time–height cross sections of LWC and re are input as X–Z images along with

pixel aspect ratios, which are derived from the advection wind speed associated with each

image. The images are input as two byte integers and thus the LWC and re values have

already been discretized. The first step in gathering the information needed to generate

stochastic fields is to accumulate the single-point statistics. A histogram, h(w,iz), where w is
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the LWC, is generated from the LWC images for each of the Nz levels (1V izVNz) and used

to construct a discrete cumulative distribution (CDF) according to

CLWCðW ; izÞ ¼

XW
w¼0

hðw; izÞ

XWmax

w¼0

hðw; izÞ
: ðA:1Þ

The re field is conditioned on the LWC field so that the two are properly coordinated.

This is achieved by having the re CDF depend on the LWC CDF:

Creðre; nLWCÞ ¼

Xre
r¼0

hðr; nLWCÞ

Xrmax

r¼0

hðr; nLWCÞ
; ðA:2Þ

where h(r,nLWC) is the histogram of discrete re values and nLWC is the LWC CDF bin

number. (These bins are equally spaced in probability after the probability lump at zero

LWC and there are 100 bins.) Lookup tables from standard Gaussian distribution values to

LWC and re values are created. For example, the LWC table is represented by

W ¼ C�1
LWC½CG½G		; ðA:3Þ

where G is a Gaussian random deviate, W is the output LWC value, CLWC
� 1 is the inverse of

the LWC CDF, and CG is the CDF of a Gaussian distribution. (These tables have 20,000

entries and input Gaussian deviate range from � 5 to 5.)

The final single-point statistic needed is the correlation between the LWC and re
Gaussian fields, which is denoted by qre

(g)
–LWC. This is obtained by inversion from the

correlation between the logs of the nonzero pixels of the LWC and the re fields (qre
(ln)
–LWC). A

function translates the Gaussian space correlation, qre
(g)
–LWC, to the log real space correlation,

qre
(ln)
–LWC, by Monte Carlo sampling of a bivariate Gaussian distribution and conversion to

LWC and re with the lookup tables described in the last paragraph. This function is inverted

to obtain the desired qre

(g)
–LWC using the bisection root finding method.

As described in the main text, the spatial information about the cloud field is obtained

from the correlation function of the binary cloud mask field. First, each input X–Z image

is linearly interpolated horizontally to make an image with a 1-to-1 pixel aspect ratio.

Usually this makes a longer, smoothed image. The LWC images are then compared with a

user defined threshold to make the binary mask images,M(ix, iz). The lag-symmetric cross-

covariance matrix for a binary mask image is

Cðiz1; iz2; lÞ ¼
1

2ðNx � lÞ
X
ix

ð½Mðix; iz1Þ � M̄ðiz1Þ	½Mðix þ l; iz2Þ � M̄ðiz2Þ	
þ ½Mðix; iz1Þ � M̄ðiz1Þ	½Mðix � l; iz2Þ � M̄ðiz2Þ	Þ; ðA:4Þ
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where l is the horizontal lag, Nx is the number of pixels in the horizontal, and M̄(iz) is the

mean of the mask field at height level iz. Note that the positive and negative lags of the

covariance matrix are averaged to produce a symmetric function. This cross-covariance

calculation is actually carried out by fast Fourier transforming M(ix, iz)� M̄(iz) in the

horizontal for each level, multiplying the Fourier coefficients for each pair of levels to

calculate the (real, symmetric) cross-spectral density matrix, and Fourier transforming

back to obtain the cross-covariance matrix. The cross-covariance matrices for all the input

images are combined in a weighted average. The weighting is by input image length (i.e.

time)rather than interpolated image length (i.e. distance). The weighting also gives less

weight to the short lags not actually represented in the data due to the wind stretching. The

binary cross-correlation matrix B(iz1, iz2, l ) is calculated from the accumulated cross-

covariance matrix in the usual way by normalizing by the lag zero variances on the

diagonal.

The binary mask cross-correlation matrix, B(iz1, iz2, l ), is converted to the initial

Gaussian field cross-correlation matrix, Rg(iz1, iz2, l ), element-by-element. It is easiest to

calculate the binary mask correlations from a bivariate Gaussian distribution with

correlation q and then invert the relationship. The binary mask correlation is related to

the probability p12 of points 1 and 2 being both cloudy by

B ¼ p12 � p1p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ð1� p1Þp2ð1� p2Þ

p ; ðA:5Þ

where p1 and p2 are the probabilities of points 1 and 2 being cloudy, which are simply the

cloud fractions at the levels containing points 1 and 2. The probability of both points being

cloudy is

p12ðt1; t2; qÞ ¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p Z l

t1

Z l

t2

exp � q21 � 2qq1q2 þ q22
2ð1� q2Þ

� 	
dq1dq2; ðA:6Þ

where q is the Gaussian correlation and t1 and t2 are thresholds that give the correct cloud

fractions for each level. The Gaussian distribution threshold ti is found by inverting

1� pi ¼
1ffiffiffiffiffiffi
2p

p
Z ti

�l
e�q2=2dq; ðA:7Þ

where pi is the cloud fractions for the ith level. The first integral in Eq. (A.6) is the

cumulative distribution function for a normal distribution and is obtained from a computer

implementation of the complementary error function. The second integral is performed

numerically with Romberg integration. For each pair of height levels, a table is made of

Gaussian correlations qi between � 0.2 and 1.0 and the corresponding binary correlation

Bi. This table is fit with a cubic spline, which is then used to translate each element of the

binary correlation matrix B(iz1, iz2, l ) to the Gaussian correlation matrix Rg(iz1, iz2, l ).

As described in the main text, the Gaussian correlation matrix obtained from element-

by-element conversion of the binary mask correlation matrix is not positive definite as

required. Therefore an optimization procedure is used to adjust the Cholesky decompo-
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sition of the cross-spectral density matrix to minimize the weighted difference from the

desired Gaussian correlation matrix. The Cholesky decomposition is a lower triangular

matrix H, such that S =HHT, where S is the cross-spectral density matrix for each Fourier

wavenumber (HT is the transpose of H ). Thus the Cholesky decomposition is the ‘‘square

root’’ of S, and the cross-spectral density matrix is guaranteed to be positive definite. The

cross-spectral density matrix is calculated from the Cholesky matrix for each Fourier

component k by

Sðiz1; iz2; kÞ ¼
XNz

n¼1

Hðiz1; n; kÞHðn; iz2; kÞ: ðA:8Þ

There are Nk =Nxo/2 + 1 Fourier components (i.e. 0V kVNk� 1)and also Nk lags in the

correlation function, where Nxo is the number of pixels horizontally in the output fields.

The cross-correlation matrix is obtained from a cosine transform of the cross-spectral

density matrix:

Rðiz1; iz2; lÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðNk � 1Þ
p XNk�1

k¼0

UlkSðiz1; iz2; kÞ; ðA:9Þ

Ulk ¼

1 k ¼ 0

2cos½plk=ðNk � 1Þ	 1Vk < Nk � 1:

ð�1Þl k ¼ Nk � 1

8>>>><
>>>>:

ðA:10Þ

The cost function for the minimization is the weighted sum of squares difference

between the trial Gaussian correlation matrix R and the desired Gaussian correlation

matrix Rg, namely

J ¼ 1

N2
z Nk

XNk�1

l¼0

XNz

iz1¼1

XNz

iz2¼1

½Rðiz1; iz2; lÞ � Rgðiz1; iz2; lÞ	2

rðiz1; iz2; lÞ2
: ðA:11Þ

The uncertainties for the cost function are chosen fairly arbitrarily to be

rðiz1; iz2; lÞ ¼ max½0:001; ð1� Rgðiz1; iz2; lÞÞ=4	; ðA:12Þ

so that high weight is given to correlations near unity. The cost function is minimized with

a standard conjugate gradient routine. This requires the gradient of cost function with

respect to the Cholesky matrix elements H(i, j, k):

BJ

BHði; j; kÞ ¼
XNz

n¼1

Hðn; j; kÞðrði; n; kÞ þ rðn; i; kÞÞ ðA:13Þ
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where r(i, j,k) is the transpose cosine transform of the correlation matrix residuals:

rði; j; kÞ ¼ 2

N 2
z Nk

XNk�1

l¼0

Ulk

½Rði; j; lÞ � Rgði; j; lÞ	
rði; j; lÞ2

: ðA:14Þ

The H(iz1, iz2, k) are initialized by (1) performing cosine transforms on the lower

triangular part of the cross-correlation matrix, Rg(iz1, iz2, l), to get the cross-spectral

density matrix, Sg(iz1, iz2, k), (2) for each k performing an eigenvector/eigenvalue

decomposition of the cross-spectral density matrix, (3) for each k thresholding the

eigenvalues to positive values and combining with the eigenvector matrix to generate a

positive definite version of the cross-spectral density matrix, (4) doing a Cholesky

decomposition to obtain H(iz1, iz2, k). After the conjugate gradient routine finishes

(fractional gradient less than a specified value), H(iz1, iz2, k) is transformed to the cross-

correlation matrix R(iz1, iz2, l ).

The stochastic noise filtering amplitudes in Fourier space are computed from the

positive definite Gaussian cross-correlation matrix. First, the cross-spectral density matrix

is obtained from the cross-correlation matrix with a cosine transform

Sðiz1; iz2; kÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðNk � 1Þ
p XNk�1

l¼0

UklRðiz1; iz2; lÞ: ðA:15Þ

For each Fourier component k the eigenvectors and eigenvalues of the (real, symmetric)

cross-spectral density matrix are computed. The eigenmatrix equation is

XNz

iz2¼1

Sðiz1; iz2; kÞEðiz2; n; kÞ ¼ kn;kEðiz1; n; kÞ: ðA:16Þ

The stochastic filtering amplitudes are the square root of the eigenvalues, and the lower

value amplitudes may be decreased for noise reduction using

Að2Þðn; kÞ ¼
ffiffiffiffiffiffiffi
kn;k

p kn;k
kn;k þ kmin

; ðA:17Þ

where kmin is a user-specified parameter. This effectively smooths the real space field and

is analogous to Weiner filtering.

For generating 2D (X–Z) stochastic fields, the filtering amplitudes are used essentially

as is. For generating 3D (X–Y–Z) stochastic fields, the filtering amplitudes have to be

modified, as seen in the following derivation. Consider the discrete Fourier transform of a

single level, 2D (X–Y) stochastic field

f ðix; iyÞ ¼
XN�1

kx¼0

XN�1

ky¼0

Fðkx; kyÞexp
2pi
N

� �
ðkxix þ kyiyÞ

� 	
; ðA:18Þ
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whereF(kx, ky) is the Fourier space field, f(ix, iy) is the real space field, and the fields areN�N

N�N complex numbers. The Fourier transform of a line in the X direction, f(ix, 0) (at iy= 0

for convenience), is related to the Fourier space field by

1

N

XN�1

ix¼0

f ðix; 0Þexp � 2pi
N

kxix

� 	
¼

XN�1

ky¼0

Fðkx; kyÞ: ðA:19Þ

The power spectrum for an ensemble of stochastic lines is thus

SðkxÞ ¼
�����
XN�1

ky¼0

Fðkx; kyÞ
�����
2* +

: ðA:20Þ

For isotropic stochastic fields the Fourier field is

Fðkx; kyÞ ¼ AðkÞfðkx; kyÞ; ðA:21Þ

where A(k) is the amplitude function, k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
, and f is a field of independent

standard Gaussian random variables. Substituting in the isotropic stochastic fields gives

SðkxÞ ¼
�����
XN�1

ky¼0

A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q� �
fðkx; kyÞ

�����
2* +

; ðA:22Þ

and, since the random variables are independent with unit variance, the power spectrum is

SðkxÞ ¼
XN�1

ky¼0

A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q� �h i2
: ðA:23Þ

In this case, the power spectrum S(kx) is known from the input image statistics, but the

amplitude function A(k) is needed for the 3D stochastic field generation, and thus this

equation must be inverted. The inversion problem is turned into an optimization problem

by minimizing a cost function using a conjugate gradient routine. The cost function is

J ¼
XNz

n¼1

XNk�1

kx¼0

½Sðn; kxÞ � S0ðn; kxÞ	2; ðA:24Þ

where S 0(n,kx)=[A
(2)(n, k)]2 is the desired power spectrum,

Sn;kx ¼
XNk�1

ky¼0

cðkx; kyÞ½Að3Þðn; kÞ	2; ðA:25Þ

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
, and c(kx,ky) = 4/[(1 + dkx,0)(1 + dky,0)]. The amplitudes for the 3D stochastic

fields, A(3)(n,k), are then found by minimizing the cost function.



A.2. Generating stochastic fields from 2D statistics

The procedure for generating the 2D or 3D stochastic fields from the statistics is

much simpler than the one for deriving the statistics. The first part is to generate an

ensemble of Gaussian stochastic fields. The first step in making a single Gaussian

stochastic field is to generate complex Gaussian random deviates for the vertical

principal components in the Fourier domain. Two Gaussian white noise fields are made,

Z1(n, kx, ky) for the LWC field, and Z2(n, kx, ky) for the re field:

Z1ðn; kx; kyÞ ¼ f1 þ if2; ðA:26Þ

Z2ðn; kxkyÞ ¼ qðgÞ
re�LWCZ1ðn; kx; kyÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðqðgÞ

re�LWCÞ
2

q
ðf3 þ if4Þ; ðA:27Þ

where fi are standard Gaussian deviates (independent for each n, kx, ky) and qre
(g)
–LWC is

the Gaussian space correlation between the two fields (discussed above). The second

step is to multiply the Gaussian random components by the filtering amplitudes, A(n,k),

and perform a vertical principal component transform by multiplying by the eigenvector

matrix, E(iz, n, k), for each Fourier component:

Yjðkx; ky; izÞ ¼
XNz

n¼1

Eðiz; n; kÞAðn; kÞZjðn; kx; kyÞ; ðA:28Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
, A(n, k) = 0 for k >Nk� 1, 0V kxVNk� 1, �Nk+ 2V kyVNk�1,

and j = 1,2. Note that only nonnegative kx need to be generated because the Fourier

space field is complex conjugate symmetric (since the real space fields are real). The

stochastic Fourier fields are divided by a constant normalization factor calculated using

Parsevals Theorem so that the Gaussian fields in real space have approximately unit

variance. The last step in generating the Gaussian stochastic fields is to perform a

Fourier transform for each level (iz):

Gjðix; iy; izÞ ¼
XNk�1

kx¼�Nkþ2

XNk�1

ky¼�Nkþ2

Yjðkx; kyizÞexp
2pi
Nxo

� �
ðixkx þ iykyÞ

� 	
: ðA:29Þ

Actually, a complex conjugate to real FFT is used to save about a factor of 2 in

computation time, so the negative kx are not used.

The second part of the stochastic field generation process is to convert the Gaussian

fields to an ensemble of non-Gaussian LWC and re output fields. Cumulative distribution

functions of the Gaussian fields are accumulated for forcing the ensemble of output fields

to have virtually the same single-point statistics as the input images. The CDF of the

Gaussian fields for LWC (CG1[G1]) and the CDF of the Gaussian field for re conditioned

on the LWC CDF (CG2[G2,CG1[G1]]) are computed. The Gaussian fields are then

converted using lookup tables that may be represented by

W ðixiy; izÞ ¼ C�1
LWC ½CG1½G1ðix; iy; izÞ		; ðA:30Þ

K. Franklin Evans, W.J. Wiscombe / Atmospheric Research 72 (2004) 263–289 287



K. Franklin Evans, W.J. Wiscombe / Atmospheric Research 72 (2004) 263–289288
and

rðix; iy; izÞ ¼ C�1
re
½CG2½G2ðix; iy; izÞ	;CG1½G1ðix; iy; izÞ		; ðA:31Þ

where W(ix, iy, iz) is one LWC field and r(ix, iy, iz) is one re field.
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