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Abstract

Beer’s law of exponential decay in direct transmission is well-known but its break-down in spatially variable
optical media has been discussed only sporadically in the literature. We document here this break-down in
three-dimensional (3D) media with complete generality and explore its rami;cations for photon propagation.
We show that e<ective transmission laws and their associated free-path distributions (FPDs) are in fact never
exactly exponential in variable media of any kind. Moreover, if spatial correlations in the extinction ;eld
extend at least to the scale of the mean-free-path (MFP), FPDs are necessarily wider-than-exponential in the
sense that all higher-order moments of the relevant mean-;eld FPDs exceed those of the exponential FPD,
even if it is tuned to yield the proper MFP. The MFP itself is always larger than the inverse of average
extinction in a variable medium. In a vast and important class of spatially-correlated random media, the MFP
is indeed the average of the inverse of extinction. We translate these theoretical ;ndings into a practical
method for deciding a priori when 3D e<ects become important. Finally, we discuss an obvious but limited
analogy between our analysis of spatial variability and the well-known e<ects of strong spectral variability in
gaseous media when observed or modeled at moderate resolution.
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1. Introduction

1.1. De<nitions

In the absence of all sources, including multiple scattering, the three-dimensional (3D) radiative
transfer (RT) equation reduces to

� · ∇I + �(x)I(x;�) = 0; (1)

where I(x;�) is the radiance ;eld dependent on position x and direction of propagation �. The
extinction ;eld �(x) describes the local depletion rate of the photon population in a beam passing
through x; for simplicity, we will not explicitly denote a possible dependence on �. We are interested
in radiative processes unfolding along a given beam (x0;�0), so we can set x = x0 + �0s, hence
�0 · ∇ = d=ds for the directional derivative. Then Eq. (1) reads simply as

dI
ds

= −�(s)I(s): (2)

We now introduce the standard change of variables in 1D (plane-parallel) RT theory,

d�(s) = �(s) ds (3)

that de;nes optical distance as a function of s¿ 0. This leads to dI=d� = −I with I(0) = I0, thus

I(s) = I0 exp[ − �(s)]: (4)

Restoring the dependence on (x0;�0) as ;xed parameters (o<set throughout this paper by a semi-
colon), the optical distance appearing in (4) is

�(x0;�0; s) =
∫ s

0
�(x0 + �0s′) ds′: (5)

The fundamental law of exponential cumulative extinction in (4) has a simple probabilistic inter-
pretation in kinetic theory. Using “|” to o<set given quantities held ;xed while drawing random
variables, we have the following probability of direct transmission:

T(x0 → x0|�0s) = Prob{physical step¿ s|x0;�0} = Prob{optical step¿ �(x0;�0; s)}: (6)

Using (4), we obtain

T(x0;�0; s) = I(s)=I0 = exp[ − �(x0;�0; s)]: (7)

In homogeneous media, where �(x0;�0; s) ≡ �s, Eqs. (4) and (7) are known in the literature as
Beer’s law, or Bouger–Beer law, and sometimes Lambert’s name is also associated.

In addition, we can relate the direct transmission T(x0 → x0 + �0s) to the free-path distribution
law—probability of a step along the beam (x0;�0) to be between s and s + ds (ds¿ 0)—as

dP(s|x0;�0) = −
(

dT
ds

)
ds =

∣∣∣∣dT
ds

∣∣∣∣ ds: (8)

From this step distribution, we can compute the mean-free-path (MFP), or other moments, which
will of course depend on (x0;�0).
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Fig. 1. Illustration of non-exponential transmission/FPD in a binary medium. In this simple model, extinction is �1 with
probability f1 and �2¿ �1 with probability f2 = 1 − f1. (a) The actual FPD is compared with its two exponential
components for �1 = 0:2 and �2 = 1:8 with f1 = f2 = 1=2 which is a scaled version of the “square-wave” cloud or “Case
1” used in the Intercomparison of 3D Radiation Codes 〈http://climate.gsfc.nasa.gov/I3RC/〉 under normal illumination; the
short steps are dominated by the dense fraction and the long ones be the tenuous fraction. Two exponential approximations
based on 1=〈�〉= 1=(�1f1 +�2f2) = 1 and on the actual MFP = 〈1=�〉=f1=�1 +f2=�2 = 25=9 = 2:77 : : : are also plotted. (b)
The actual MFP is compared to the prediction 1=〈�〉 based on mean extinction as �2=�1 increases from 1 to 10 and as the
mixing ratio f2=f1 varies; the special case used in panels (a) and (c) is highlighted. (c) Statistical moments E(sq) of the
actual FPD are compared with the exponential prediction �(q + 1)〈1=�〉q based on the actual MFP; analytic continuation
of the formula in (34) for real, not just integer, q is used here. The under-estimation of moments at both higher-order
(q¿ 1) and negative order (q¡ 0) is a result of the wider-than-exponential nature of the actual FPD. Note that, although
their plotted ratio is ;nite, both moments are in fact divergent for q6− 1.

1.2. Main results and outline

The paper is organized as follows. We review in Section 2 the related concepts of direct transmis-
sion and free-path distribution (FPD); in particular, we revisit Beer’s law of exponential transmission
for uniform and variable media.

In Section 3, we introduce spatial- and ensemble-averages in order to de;ne the “mean-;eld”
FPD which is relevant to bulk transport, at least under some conditions spelled out in Section 4.
By recasting the photon propagation problem in terms borrowed from probability theory, we derive
rigorously three fundamental properties of mean or “e<ective” FPDs under quite general conditions
on the 3D disorder. They are:

I. Mean-;eld FPDs are never exponential in variable media and, conversely, exponential FPDs are
obtained only in uniform media.

II. The actual MFP is always larger than that predicted by the average extinction.
III The e<ective FPD is always wider than an exponential law, even if it is based on the actual

MFP.

The above properties I–III are illustrated in Figs. 1a–c respectively for a simple binary medium. On
a more quantitative note, we show that the average of the inverse extinction is generally a better
estimate of the actual MFP than the inverse of the average extinction. However, the one-parameter
exponential FPD associated with Beer’s law fails in a fundamental way to represent photon propa-

http://climate.gsfc.nasa.gov/I3RC/
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gation in variable media no matter what MFP it is based on; consequently, the MFP is insuOcient
to characterize photon propagation in general.

In Section 4, criteria based on 2-point statistical considerations are proposed for deciding when 3D
e<ects leading to non-exponential FPDs are likely to be important, and spatial correlations prove to
be the critical ingredient. Speci;cally, strong-enough variability is required on scales commensurate
with the actual MFP, which may be quite large due to property “II.” This is a form of resonance in
the response of radiation Pow to the spatial variability, but not in a narrow range of scales. In much
slower variability, photons will sample only a rather narrow range of the possible extinction values
and the non-exponential mean transmission law is less relevant than the local exponential one. This
is the basis of a class of approximations in 3D radiative transfer. In much faster variability, photons
will sample almost all possible extinction values between each emission/scattering/absorption event.
The mean extinction (and the associated exponential transmission) will therefore dominate the bulk
transport.

In Section 5, we draw an important but limited analogy between our results and classic work in
long-path spectroscopy of gases at coarse resolution and we o<er an in-depth discussion of closely
related (and mostly quite recent) work . Finally, we summarize in Section 6 and outline a follow-on
paper. The appendix establishes in suOcient statistical technicality the natural prevalence of the
requirement of “1-point scale-independence,” de;ned in Section 3 and invoked several times later
on, in relation to spatial correlations.

2. Beer’s law and photon free-path distributions (FPDs)

2.1. Optical free paths: exponential probability density function with unit mean

In the Introduction, we presented direct transmission as a cumulative probability distribution. From
the cumulative probability in Eqs. (6)–(7) for the tail of the distribution, we obtain the probability
density function (pdf) for steps of any optical distance �¿ 0:

p(�) =
d
d�

[1 − Prob{optical step¿ �}] =
∣∣∣∣dT

d�

∣∣∣∣ = e−�: (9)

From there, we obtain the mathematical expectation for photon steps in units of optical distance,

E(�) =
∫ ∞

0
� dP(�) =

∫ ∞

0
�p(�) d� =

∫ ∞

0
� exp(−�) d� = �(2) = 1; (10)

i.e., the mean free optical path is always unity. We can also estimate optical step variance,

D(�) = E([�− E(�)]2) = E(�2) − E(�)2 = �(3) − �(2)2 = 1; (11)

it is also unity. In the above, we have used Euler’s Gamma function,

�(a) =
∫ ∞

0
ta−1 exp(−t) dt (12)

which reduces to �(n) = (n− 1)! for positive integer arguments; so we have E(�q) = �(q + 1).
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2.2. Physical free paths, 1: the uniform case

Assume �(x)≡ constant, hence �(x0;�0; s)≡ �s in Eq. (5), independent of x0 and of �0. Fol-
lowing the same rule as in (9), we get

Prob{step¿ s} = T(s) = e−�s (13)

from (6)–(7), and then

p(s) =
∣∣∣∣dT

ds

∣∣∣∣ =
∣∣∣∣dT

d�

∣∣∣∣ d�
ds

= �e−�s (14)

for the free-path pdf, or FPD. From there, we derive the MFP

‘ = E(s) = 1=� (15)

and step variance

D(s) = E(s)2; (16)

a relation we will refer back to as necessary to have an exponential law.
The theory presented so far is entirely captured in the procedure used routinely in Monte Carlo

simulations [1] to approximate exponential deviates starting with the output of a pseudo-random
number generator that approximates a uniform distribution on (0,1):

(i) � = −ln � with �∈ (0; 1) where p(�) ≡ 1;

(ii) s = �=� if the medium is uniform: (17)

2.3. Physical free paths, 2: the general case

Now consider the more interesting case where �(x) 	= constant; in the spirit of statistical physics,
we will refer to this situation as “disorder.” In 3D Monte Carlo coding, the 2nd step in (17) is
replaced by a (generally iterative) solution of Eq. (5) for the unknown s, unless the “maximum
cross-section” algorithm [1] is implemented.

We can still de;ne a FPD,

dP(s|x0;�0) = P(s + ds|x0;�0) − P(s|x0;�0) = Prob{s6 step¡s + ds|x0;�0}; (18)

and relate it to optical distance:

dP(s|x0;�0) =
∣∣∣∣dT

ds

∣∣∣∣ ds = T(x0;�0; s)�(x0 + �0s) ds

= exp[ − �(x0;�0; s)]�(x0 + �0s) ds: (19)

From there, we can again de;ne a MFP,

‘(x0;�0) = E(s|x0;�0) =
∫ ∞

0
s dP(s|x0;�0): (20)
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and step variance,

D(s|x0;�0) =
∫ ∞

0
s2 dP(s|x0;�0) − E(s|x0;�0)2: (21)

However, these quantities are now inherently local and, furthermore, they depend on position x0 as
well as on direction �0 (even if the extinction � does not).

The local MFP in (20) is generally di<erent from 1=�(x) which at least has the dimension of a
length. We will call this point-wise estimate of the MFP the local pseudo-MFP ;eld, an estimated
MFP that can become extremely large in regions of small extinction. The pseudo-MFP ;eld 1=�(x)
plays an essential role in our statistical considerations further on.

3. Average properties of FPDs in variable optical media

3.1. Statistical considerations

3.1.1. Spatial, spatial–angular, and/or ensemble averaging
Consider a ;eld f(x) in a domain M of three-dimensional space. Its spatial average is de;ned

simply by

〈f〉 =
∫
x∈M

f(x) dx
/∫

x∈M
dx (22)

where the denominator is simply the volume of M . In atmospheric work, M can be either a single
cloud or cloud layer, broken or not, or it can be the whole column, including possible gaps between
clouds and cloud layers.

Alternatively, one can ;rst de;ne its pdf and then compute the average; speci;cally,

〈f〉 =
∫

f dP(f); (23a)

where

dP(f) = Prob{f6f(x)¡f + df; where f (as a map from M to R) is given;

and x spans M}: (23b)

The di<erence between the averaging methods described in Eq. (22) and (23a) and (23b) is the
same as between Riemann’s and Lebesgue’s theories of integration in mathematical analysis.

This is all that can be done for a situation with “deterministic” variability, meaning in a single
given optical medium. The formulation in (23a) and (23b) has the advantage of generalizing imme-
diately to “ensemble” averaging. This means that dP(f) can be given a priori, without having to
be tallied in x-space using (23b). A de;ning aspect of ensemble averaging is that there are many
realizations of the ;elds f(x) to choose from and to average over in some (usually quite vast)
functional space B:

dP(f) = Prob{f6f(x)¡f + df; where x∈M is ;xed and

the map x→ f(x;�) spans B}: (23c)
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So, using (23a) and (23c), one can now evaluate 〈f(x)〉 at any given x over these realizations
and ask questions about their dependence on x. For instance, if 〈f(x)〉 does not depend on x, then
f is a candidate for statistical homogeneity, the spatial counterpart of “stationarity” in time-series
analysis. It is only a candidate because in fact moments of all orders for all n-point statistics must
be independent of x to ensure stationarity strictly speaking (i.e., the 2- and more-point statistics can
only depend on di<erences x2 − x1, etc.). Section 4 covers statistical homogeneity in more detail.

If the ensemble-average 〈f(x)〉 is independent of x and if its spatial counterpart 〈f〉 in (22)
gives the same answer for every realization (and large enough M), then the statistical ensemble has
an “ergodic” quality. Technically speaking, ergodicity means that increasingly large spatial averages
converge in some sense to the ensemble value. Even without making explicit ergodic hypotheses,
we will not need to distinguish between spatial- and ensemble-averages in most of the following. In
fact, they can be combined at will.

Averaging may, if required, also be carried over directions � in � (the unitary 3D sphere).
Consider now another generic function f(x;�) in RT theory dependent on position and, this time,
on direction too. It can be averaged directly over M ⊗�, extending the recipe in Eq. (22), or using
(23a) by ;rst computing its pdf over M ⊗�, extending the algorithm in Eq. (23c). Viewing f(x;�)
as just one realization of a random function going from M ⊗ � to R, and thus generalizing (23c),
〈f(x;�)〉 can be estimated as a function of the pair (x;�). If the result does not depend on �,
then f is a candidate for statistical isotropy.

3.1.2. Segment-averaging along beams at a given scale de<ned by step size s
Consider now the segment-averaged extinction that appears implicitly in Eq. (5). Dropping the

“0” subscripts for simplicity in the following, we will use the notation

T�(x;�; s) = �(x;�; s)=s =
1
s

∫ s

0
�(x+ �s′) ds′: (24)

As long as the extinction ;eld is ;nite, we have

lim
s→0

T�(x;�; s) =
@
@s

�(x;�; s)|s=0 = �(x) (25)

for all (x;�).
The (undistinguished) spatial- and ensemble-averages over the 3D disorder in (22) and (23) will

be combined further on with the line-average in (24) as well as with the free-path averaging over
an FPD from Section 2. Hence the need for three distinctive notations.

3.1.3. One-point scale-independence
We will also require further on that segment-averaged extinction in Eq. (24) be statistically

similar to point-valued extinction over a signi;cant range of scales, from 0 to some value smax.
More precisely, we require (i) that the spatial/ensemble-average of the line-averaged ;eld be the
same, i.e.,

〈 T�(x;�; s)〉 ≡ 〈�(x)〉 − 〈�〉 (26a)

for 06 s. smax, and (ii) that their centered moments di<er at most by a small amount on the order
of s=smax when this ratio is small, i.e.,

〈[ T�(x;�; s) − 〈�〉]q〉=〈[� − 〈�〉]q〉 − 1 = O(s=smax); (26b)
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over a signi;cant range of orders, say, up to a value qmax not too small with respect to unity.
This amounts to saying that the 1-point probability distributions of the random ;elds T�(x;�; s)
are similar for all but the most extreme deviations from the mean that naturally dominate the
higher-order moments. We will refer to this property of the multi-dimensional extinction ;eld as
“1-point scale-independence.” Homogeneous media are of course trivially 1-point scale-independent.

For instance, consider the pdf of T�(x;�; s) in Eq. (24). If 1-point scale-independence in Eqs.
(26a) and (26b) prevails, then dP( T�|s) is independent of the averaging scale s (over a given range),
so it can be written dP( T�|s) ≡ dP( T�|0) = dP(�). We will use this identi;cation further on.

In Section 4 and in the technical appendix, 1-point scale-independence is related to the statis-
tical isotropy and homogeneity of the random ;eld. We show, in particular, that a certain de-
gree of point-to-point correlation is needed to maintain the desired property. Incidentally, 1-point
scale-independence is assumed in almost all instrument design since, for obvious signal-to-noise
purposes, geophysical ;elds are not sampled at a point but over a ;nite duration, area, or volume.
Fortunately, there are often long-range correlations in optical media, the cloudy atmosphere being
just one example.

The property de;ned above as “1-point scale-independence” is not to be confused with “scale-
invariance” which translates essentially to the systematic occurrence of power-laws in the spatial
statistics, at least over a signi;cant range of scales. An example of scale-invariance, in this case
along with 1-point scale-independence, is if the right-hand side of Eq. (26b) goes as (s=smax)� with
�¿ 0. See appendix for more details.

3.1.4. Variance and Jensen’s inequality
Consider a concave function f(�), i.e., for which f′′(�)6 0 on the support of an arbitrary pdf

dP(�)=d�. Now average f(�) over the randomness of �; we ;nd∫
f(�) dP(�)6f

(∫
� dP(�)

)
: (27a)

This well-known inequality is generally traced to Jensen [2]. For a convex function f(�) with
f′′(�)¿ 0, we naturally obtain∫

f(�) dP(�)¿f
(∫

� dP(�)
)
: (27b)

In either case, “=” is reached in just two situations. Either f(�) is linear (i.e., f′′(�) ≡ 0) or � is
degenerate (i.e., p(�) = dP(�)=d� =  (�− �∗), equivalently, the variance of � is 0).

In the same way as we have de;ned step variance in (11), (16) or (21), we can de;ne here
the 1-point spatial/ensemble variance of the extinction ;eld with a di<erent notation to avoid any
confusion:

var(�) = 〈[�(x) − 〈�(x)〉]2〉 = 〈�2〉 − 〈�〉2¿ 0: (28)

Here “=” is obtained only if the medium is uniform: �(x) ≡ constant hence p(�) =  (�-constant).
Although it is generally derived from Schwartz’s inequality, the one in (28) is in fact a direct
consequence of setting f(�) = �2 in (27b).
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3.2. Mean-<eld FPD, 1: importance in statistical (domain-average) transport theory

We presented the FPD in (19) as a function of s that is parametrically dependent on (x;�). We
can also look at it the other way around. Holding the step-size s constant, we average over the
independent space/angle variables of RT theory:

〈P(s|x;�)〉 =
∫
x∈M

∫
�∈�

P(s|x;�) dx d�
/[

4"
∫
x∈M

dx
]
: (29)

So this is the averaging of a pdf rather than averaging with this pdf. Somewhat paradoxically, we
are now looking at point/direction-wise FPDs as random functions of the special form expressed in
(19). Using this expression, the above “mean-;eld” FPD becomes

〈dP(s|x;�)〉 =
∣∣∣∣ d
ds

〈T(x;�; s)〉
∣∣∣∣ ds (30)

that we will often denote just as 〈dP(s)〉 since either the space/angle variables were used in the
averaging, or we will be dealing with probability spaces of statistically homogeneous/isotropic ;elds.

We can now de;ne mixed averages and these can be done in either order: ;rst over the random
FPDs then over the disorder, or vice versa. For instance, the MFP for the mean-;eld FPD (or “mean
MFP”), written both ways, is

〈E(s)〉 =
〈∫ ∞

0
s dP(s)

〉
=
∫ ∞

0
s〈dP(s)〉: (31)

and the associated step-variance is

〈D(s)〉 =
∫ ∞

0
s2〈dP(s)〉 − 〈E(s)〉2: (32)

In the next subsection we invoke some lesser-known probability theory to show that:

I. In variable media, the mean FPD in Eq. (30) is never exponential. Since we already know that
constant � leads to an exponential FPD (cf. Section 2.2), we can restate this simply as

The mean FPD is exponential if and only if the medium is homogeneous:

II. The mean-;eld MFP in (30) is always larger than the MFP in the homogeneous medium of
mean extinction 〈�〉 or, equivalently, in a uniform medium that has the same total mass, since
� = cross section× particle density, when the former quantity is constant. In short, we have

〈‘〉 = 〈E(s)〉¿ 1=〈�〉; (33)

where “=” implies homogeneity. This means that, if mean particle density is used to predict
the MFP, it will be under-estimated.

III. If the line-averaged extinction ;eld in (24) is 1-point scale-independent, then

〈E(sn)〉 = n!〈1=�n〉: (34)

The mean-;eld FPD for any such variable medium is therefore “wider” than the exponential
FPD associated with the mean extinction 〈�〉 in the following sense: exponential FPDs predict
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E(sn) = n!=〈�〉n and 〈�−n〉 in (34) exceeds 〈�〉−n for all n¿ 0 by Jensen’s inequality (27b). In
particular, we have

〈D(s)〉¿ 〈E(s)〉2 (35)

in contrast with (16). If “=” applies here, then the FPD is then an exponential and, again, the
extinction ;eld is uniform (because of property “I”). This shows that, even if an “e<ective”
(lower-than-mean) particle density is used in an exponential FPD with the correct MFP, all the
higher-order moments of s will be under-estimated.

Property III is illustrated in Fig. 1c where E(sn) in (34) is compared to n!〈1=�〉n, the exponential
prediction using the actual MFP 〈1=�〉 rather than the estimate 1=〈�〉 based on the mean value. Notice
from Eq. (34) that, as far as photon propagation in 1-point scale-independent media is concerned,
the statistics of pseudo-MFP 1=� are more important than those of extinction � itself. Finally, we
note that 1-point scale-independence is not a strict requirement for obtaining wider-than-exponential
transmission laws and FPDs, only a non-degenerate distribution of optical distance � for a given
physical step s in Eq. (5), using (23b) to tally dP(�|s).

3.3. Mean-<eld FPD, 2: interpretation in probability theory

For the moment, we will hold the photon step s constant, like a parameter, but �(s) is still a
non-negative random variable due to the disorder of the medium. Following the method proposed
in (23a,b), we ;rst de;ne P(�|s) = Prob{optical path¿ �(s)} hence

dP(�|s) = Prob
{
�(s)6

∫ s

0
�(x+ �s′) ds′¡�(s) + d�(s); x∈M;�∈�

}
(36)

to describe the distribution of �(s) for a given s. This leads to the pdf

p(�|s) = dP(�|s)=d�; (37)

which is not to be confused with p(�) in (9) for the exponential distribution of � in an direct
transmission experiment relating to the FPD in optical distance. The pdf in (37) depends only on
the disorder and the de;nition of �(x;�; s) in (5). Also recall that the averaging operations using
(9) lead to E(·)’s and D(·)’s while those using (37) lead to 〈·〉’s and var[ · ]’s. For instance,
we have

d
ds

〈�(s)〉 =
〈

@
@s

�(x;�; s)
〉

= 〈�(x+ �s)〉 = 〈�(x)〉 = 〈�〉 (38)

if the extinction ;eld is statistically homogeneous, and therefore

〈�(s)〉 = 〈�〉s: (39)

Now consider the Laplace transform of the pdf in Eq. (37), also known as the “characteristic
function” of �(s):

%(q|s) = 〈exp[ − q�(s)]〉 =
∫ ∞

0
exp[ − q�(s)] dP(�|s): (40)
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Some general properties and practical applications of Laplace characteristic functions %(q) of arbi-
trary non-negative random variables are [3]:

i. %(q) is positive, %(0) = 1, decreases monotonically, and limq→∞%(q) = 0;
ii. to add independent random variables, one has to perform convolution products of their probability

density functions, so we just need to multiply their respective %(q)’s;
iii. compute successive moments (i.e., integrals) by Taylor expansion (i.e., derivatives)

〈�(s)n〉 =
[(

− @
@q

)n

%(q|s)
]
q=0

; (41)

where we have restored the step size parameter s that is germane to FPD characterization. There

is a natural generalization of Eq. (40) to real (hence possibly negative) random variables using the
Fourier transform.

The “second” characteristic function or “cumulant-generating function,” ln %(q), is an equally
powerful tool in probability theory. Its important properties and utilities are [3]:

a. ln %(q) is large-sense convex, i.e., [ln %(q)]′′¿ 0 (this is equivalent to variance¿ 0);
b. ln %(q) is linear in q if and only if the pdf is degenerate (i.e., variance = 0 in property “a”);
c. to add independent random variables, just add their respective ln %(q) (this corresponds to %(q)’s

property “ii”);
d. compute “cumulants” by successive derivatives

[(
− @
@q

)n

ln %(q|s)
]
q=0

= nth-order cumulant of �(s) =




n = 0:
∫

dP = 1;

n = 1: mean 〈�(s)〉;
n = 2: var[�(s)];

(42)

and higher-order cumulants are related to skewness (n= 3) and kurtosis (n= 4). Note that, as in
(41), we have restored here the dependence on the parameter s (step size) for future reference.

Because of properties “c” and “d,” the cumulants of a sum of independent random variables are sums
of the individual cumulants, hence the name. Cumulant-generating functions for random variables
on the whole real axis (such as normal deviates) are Fourier- rather than Laplace-transform based;
they have the same properties “b”–“d” and for property “a” they are concave rather than convex.
They are used extensively in random walk theory [3].

3.4. Mean-<eld FPD, 3: implications for bulk transport

From (7) and (40), we see that

〈T(s)q〉 = %(q|s): (43)

Fig. 2 summarizes graphically the general properties of 〈T(s)q〉, as a Laplace characteristic function
of the random variable �(s) de;ned in Eq. (5). If, moreover, �(x) is 1-point scale-independent,
then we get 〈T(s)q〉≈ 〈exp(− T�sq)〉 from (23)–(26), hence %(q|s) ≡ %(qs) in (43), at least for the
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Fig. 2. Cumulant generating function for optical paths associated with a given step size. This schematic shows the (negative
of the) cumulant generating function −ln %(q|s) from (40), equivalently −ln〈T(s)q〉 from (43). The independent variable
q is the Laplace conjugate of �(s), equivalently, the (not necessarily integer) order of the statistical moment of T(s).
The case of an exponential FPD (homogeneous extinction) is in dashes and the more realistic variable extinction case is
the continuous line (non-linear in q). The inequality highlighted at q = 1 is proven and interpreted in the main text. Still
using q = 1, in the range of scales where 1-point scale-independence prevails, the abscissa can be re-assigned to the step
value s since %(q|s) ≡ %(qs). In this case, the illustrated decrease with respect to s is not truly physical because it can
be traced to negative deviations of the extinction ;eld.

designated range of q and s. So the horizontal axis Fig. 2 can be taken as the physical distance s
where the mean transmission is measured.

In Fig. 2, we also highlight a remarkable inequality at q= 1, namely, −ln〈T(s)〉6 〈�(s)〉, equiv-
alently,

〈T(s)〉¿ exp[ − 〈�(s)〉] = exp[ − 〈�〉s] (44)

using (39). This is a direct consequence of Jensen’s inequality (27b) for a convex function. In the
case of direct transmission, f has the convexity of a decreasing exponential on the positive real
axis and the random variable is �(s). Conversely, the distance s at which a given mean transmission
〈T(s)〉 is reached is minimum for the sure case where 〈�(s)〉 = 〈�〉s.

From (30) and (43), the corresponding FPD is obtained at q = 1:

p(s) =
d
ds

〈P(s)〉 =
∣∣∣∣ @@s %(1|s)

∣∣∣∣ : (45)

So mean-;eld FPDs inherit many properties from this connection with characteristic functions and we
are now in a position to prove statements I–III in Section 3.2 and derive the associated inequalities
in (33)–(35):

I. The premise of property “b” of ln %(q|s)—that it is linear in q—can be restated as “〈T(s)〉 is
exponential in −〈�(s)〉,” hence the associated FPD as well. We already know this to be true if
� is constant (cf. Section 2.2). We now have the reciprocal statement: an exponential 〈T(s)〉
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and/or FPD implies var[�(s)] = 0, for any s. Now, if �(x;�; s) is a sure function of s for any
x and �, then so is @�=@s|s=0 = �(x), in other words, var[�(x)] = 0 (homogeneity).

II. From Eq. (42), we can write the Taylor expansion of the cumulant generating function as

ln %(q|s) = −〈�(s)〉q +
1
2

var[�(s)]q2 + higher-order terms: (46)

Because of property “a,” we know that the second-order term and all the higher-order terms
cannot make ln %(q|s) less than its ;rst-order term, similarly for %(q|s). Setting q = 1 in (46)
and using (31), and (45), we see that the mean MFP

〈‘〉 = 〈E(s)〉 =
∫ ∞

0
s
∣∣∣∣@%@s

∣∣∣∣
q=1

ds =
∫ ∞

0
s
∣∣∣∣ d
ds

eln %(1|s)
∣∣∣∣ ds (47)

is always greater or equal to∫ ∞

0
s
∣∣∣∣ d
ds

〈�(s)〉
∣∣∣∣ e−〈�(s)〉 ds =

1
〈�〉 : (48)

If it is equal, then the second-order term and all higher-order terms in (46) must vanish, so
we retrieve the case of constant extinction. Another proof uses (30)–(31) on both sides of the
inequality in (44).

III. We now consider free-path moments of all orders for the mean-;eld FPD:

〈E(sn)〉 =
∫ ∞

0
sn〈dP(s)〉: (49)

From (45), or by averaging (19) with (24), we have

〈dP(s)〉=ds = 〈exp[ − �(s)] d�(s)=ds〉 = 〈exp[ − T�(x;�; s)s]�(x+ �s)〉: (50)

So the mean-;eld FPD is a cross-correlation of T� at two di<erent scales (s¿ 0 and =0) and
two di<erent positions (x and x′ =x+�s). We therefore invoke statistical homogeneity (a.k.a.
stationarity) and 1-point scale-independence to write 〈dP(s)〉=ds=〈exp[−�s]�〉. The mean-;eld
FDP then becomes

〈dP(s)=ds〉 = 〈� exp[ − �s]〉 =
∫
� exp[ − �s] dP(�): (51)

We have deliberately left out the bounds on the averaging integral because the support of
dP(�) need not be speci;ed—it can be part or all of the positive real axis. The easiest way of
evaluating the moments in (49) is to ;rst compute the characteristic function of s:

%(u) = 〈E(e−us)〉 =
∫ ∞

0
e−us〈dP(s)〉 =

∫ ∞

0
e−us ds

∫
� exp[ − �s] dP(�): (52)

Reversing the order of the integrals, we ;nd

%(u) =
∫
� dP(�)

∫ ∞

0
exp[ − �s− us] ds

=
∫

[1 + u=�]−1 dP(�) =
∞∑
n=0

(−u)n
∫

1
�n dP(�): (53)

The result in (34) then follows directly from property “iii” of %(u), i.e., Eq. (41) but with
di<erent random and sure variables (speci;cally, � and q are mapped to s and u respectively).
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Speci;cally, we identify term-by-term the expression in (53) with the Taylor expansion of
%(u) = *%(n)(0)un=n! = *〈sn〉(−u)n=n! from (41).

We can now show that the mean-;eld FDP in (51) is wider-than-exponential because, for
all integer n¿ 0, we have

〈E(sn)〉 = n!〈1=�n〉¿ n!〈1=�〉n =
∫ ∞

0
sn exp[ − s=〈1=�〉] ds=〈1=�〉 (54)

where we start by restating the result in (34). The last expression is just E(sn) for the exponential
FPD associated with the MFP 〈1=�〉 rather than mean extinction 〈�〉; to see this, use the
de;nition in (12) for integer arguments. The inequality in (54) follows directly from Jensen’s
in (27b) as it applies to the convex function f(�) = �n; n¿ 1 (or n¡ 0), and if “=” is
obtained for any n 	= 0; 1 this implies � ≡ constant. Finally, the conjectured inequality in (35)
is equivalent to

〈E(s2)〉¿ 2〈E(s)〉2 (55)

which in turn follows from setting n = 1; 2 in (54): 〈E(s2)〉 = 2!〈1=�2〉¿ 2!〈1=�2〉 = 2〈E(s)〉2,
and again “=” occurs if and only if � is constant.

Preliminary versions of these derivations are given in one of our doctoral theses [4].
We have opted to introduce wider-than-exponential transmission laws and associated FPDs using

1-point scale-independent media because they are a natural choice in astrophysical and geophysical
applications where highly turbulent Pows shape the optical variability, and thus we emphasize the key
role of spatial correlations. However, this assumption is not necessary from the purely mathematical
perspective. As ;rst noticed by Borovoi [5], all that is needed is a non-trivial distribution of � for
given s; p(�|s), to perform the ensemble average of exp[ − �]. For instance, Lovejoy et al. [6]
show that multiplicative cascades, an interesting class of spatially-correlated scale-invariant media
that are patently not 1-point scale-independent, lead to transmission laws in the mean that are
wider-than-exponential; see also Knyazikhin et al. [7] in an application stemming from the optics of
vegetation canopies.

4. What kind of variability is conducive to very non-exponential FPDs?

4.1. The critical issue of spatial correlations

In 3D RT, numerical techniques included, we are primarily concerned with the variability of
T�(x;�; s), the line-average extinction estimated along the segment from x to x + �s. It Puctuates
around its spatial mean 〈 T�〉(s) carried over the independent space-angle variables (x;�) of the
radiative transfer equation. Equivalently, we are looking at the variability of the optical distance
�(x;�; s) = T�(x;�; s)s between any two points at distance s around 〈�〉(s) which may or may not
be linear in s. It is not hard to anticipate that when things get interesting from the standpoint of
3D RT the 1-point variability of �(x), as captured in its pdf, is not the only statistical ingredient.
How �(x) changes as a function of x is also important. Simply put in statistical parlance, spatial
correlations matter.
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Fig. 3. Gaussian white noise: an extinction ;eld that fails the 1-point scale-independence test. (a) Trace of 1200 samples
of independent normally distributed random variables with unit mean and variance 1=16 (mean and ±1 standard deviation
are marked). (b) Probability density functions (normalized histograms) of the extinction ;eld in panel (a) averaged over
1, 11 and 101 grid-points; notice the signi;cant narrowing of the histograms as averaging length increases in contradiction
with (26b).

A key assumption in some of the arguments of Section 3 is the 1-point scale-independence of
the extinction ;eld implying, in particular, that 〈 T�〉(s) is independent of s and therefore that 〈�〉 is
proportional to s. This is a reasonable assumption but needs closer examination from the standpoint
of spatial correlations and of statistical homogeneity.

4.2. White noise as a counter-example

It is easy to conjure up a situation where �(x) can be almost arbitrarily variable—we will only
assume it has ;nite variance—but the associated variability of �(x;�; s) is quite trivial: a ;eld of
“ -correlated” random variables or spatially “white” noise (cf. Fig. 3 for an example using Gaussian
deviates for speci;city). In this case, we know from elementary probability theory (essentially 1D
random walk theory) that the variance of �(x;�; s), i.e., the running integral of T�(x;�; s) in Eq. (5),
will increase as s=‘, as does its mean 〈�〉. Here ‘ denotes the smallest (“pixel”) scale of interest,
that is, where the variability starts. Thus var[ T�](s), measuring deviations from the mean 〈 T�〉 in
samples of length s, decreases as ‘=s (see technical appendix for a justi;cation of this trend from
;rst principles). So the 1-point scale-independence requirement in (26a) for the mean holds, but not
(26b) for variance and other centered moments.

What happens when, at large-enough s, the Puctuations of T�(x;�; s) around its mean 〈 T�〉 become
small with respect to this mean? Now, if this “large-enough” s is in fact still quite small compared
to the MFP, we are converging towards an e<ectively homogeneous situation. So an exponential
Beer’s law applies at all but the smallest scales. Indeed, for Gaussian white noise with mean 〈�〉
and variance var[�] at the pixel scale ‘, a little algebra leads to:

• 〈T(s)〉 ≈ exp[ − 〈�〉s + var[�]s2=2] for s�‘ (assuming var[�]=〈�〉2�1);
• 〈T(s)〉 ≈ exp[ − (〈�〉 − var[�]‘=2)s] for s�‘ (assuming only that var[�]=〈�〉2�s=‘).
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The corresponding estimate of the actual MFP is 1=(〈�〉 − var[�]‘=2), from the second and more
spatially dominant exponential trend. As predicted, it is larger than 1=〈�〉, the estimate based on
the mean extinction; however, the applicable correction, var[�]‘=2〈�〉 = var[�]=〈�〉2 × (〈�〉‘)=2, is
necessarily quite small since the pixels are assumed optically thin from the start (i.e., 〈�〉‘�1).
Consequently, 1D RT theory becomes accurate if mean extinction is used in the asymptotic limit
(‘ → 0 for any given 〈�〉 and var[�]) and a small correction to the mean extinction is suOcient for
;nite (but optically thin) pixels. In short, the variability of �(x) is too “fast” to generate interesting
(i.e., large) 3D e<ects at most scales.

Rapid decorrelation is related to the notions of statistical stationarity (in the time domain) and
statistical homogeneity (in the spatial domain), which is not to be confused with the meanings of
constancy or uniformity often assigned to the term homogeneity—this paper included. Statistical sta-
tionarity/homogeneity means that statistical quantities (moments, probability distributions, etc.) do not
depend on when/where they are collected. Implicitly, this assumes we are talking about a probabilistic
ensemble of di<erent realizations of the random process/;eld. White noise is stationary/homogeneous
by de;nition. Beyond that, this classi;cation is purely academic because, in operational statistics, all
the spatial information is consumed in obtaining the best possible estimate of the average, cf. Eq.
(22). However, one can compare averages obtained over r-sized portions of the data and attempt a
statement about stationarity/homogeneity at scale r, varying from the sampling scale ‘ to a much
larger value. If there is evidence for the existence of a minimum scale R at which data appear to
be stationary/homogeneous, it is like saying the data are decorrelated for r & R and that R is the
“correlation” scale which, depending on the point of view, is sometimes called the “decorrelation”
scale. This characteristic scale R will likely depend on the choice of statistic used in the procedure.
A standard de;nition, the “integral” (de)correlation scale, is based on the auto-correlation function,
namely,

,(r) = 〈[f(x+ r) − 〈f〉][f(x) − 〈f〉]〉 = 〈f(x+ r)f(x)〉 − 〈f〉2; (56)

where r is an arbitrary displacement vector of length r = ‖r‖. The random ;eld f(x) in (56) is
assumed statistically homogeneous, hence the lack of dependence on x in ,(r), and isotropic, hence
the lack of dependence on displacement direction r=r in ,(r). The de;nition of R then reads as [8]

R =
1

,(0)

∫ ∞

0
,(r) dr (57)

assuming ,(r) decreases fast enough for this integral to converge. One can thus distinguish be-
tween non-stationary r.R and stationary r&R regimes. In technical jargon, this is the crite-
rion for “broad-sense” stationarity/homogeneity. For white noise, ,wn(r) ˙  (r), so Rwn = 0: it is
(broad-sense) stationary at all scales.

In “stochastic” RT theory for binary mixtures [9], the media of interest have a Bernoulli pdf in
extinction (hence two variability parameters beyond the mean, as used in Fig. 1) and one coupling
constant akin to the integral scale in (57) that describes the spatial frequency of extinction jumps.
Coupled RT equations for the domain/ensemble-average radiances are then established and solved
numerically by any of a number of techniques (Monte Carlo, discrete ordinates, etc.) When the
spatial frequency increases without bound (R� → 0)—this is known as the “atomic” mixture—the
model collapses onto the homogeneous situation. This is exactly what we have found above for
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Fig. 4. Brownian motion (a.k.a. Wiener–Levy process): an extinction ;eld that is 1-point scale-independent. (a) Trace
of 1200 samples of Brownian motion which is Gaussian by de;nition with unit mean and variance 1=16 (mean and ±1
standard deviation are marked). The plot was generated by aOne transformation of the running sum of the white noise in
Fig. 3 (reduced to a zero mean); note the fractal scale-invariance of the graph (each portion looks like the whole). (b)
Probability density functions of the ;eld in panel (a) averaged over 1, 11 and 101 grid-points; note the constant width of
the histograms at all averaging lengths in agreement with Eq. (26b).

white noise with thin pixels, reckoning only on the properties of 〈T(s)〉 hence of the mean-;eld
FPD (which are quasi-exponential).

4.3. Wiener–Levy process and multiplicative cascades as examples

Now consider a ;eld �(x) of non-negative 3D “Brownian landscape” with an outer scale L where
the graph of any 1D transect looks like a random walk with some (positive) mean value 〈�〉 (cf.
Fig. 4). This is a spatial counterpart of the well-known Wiener–Levy process [3,8]. There is of
course a constraint requiring �(x) to remain non-negative which puts an upper bound on the overall
variance in relation to 〈�〉. By construction, Wiener–Levy processes—cumulative sums of Gaussian
white noise—are non-stationary (in the above sense) when they start from a sure value (usually
taken to be 0). However, they do have stationary increments—<nite sums of the white noise.

Here, running averages over a length s will Puctuate wildly, just like the ;eld itself, until s
becomes close to L; consequently, their mean and other moments will not depend on s under the
same condition, especially if many realizations are used. In the de;nition using (56), this model is
nonstationary at all scales up to RWL ≈L. In absence of complications at boundaries, the impact of
this relatively “slow” variability on photon propagation will depend (i) on the overall variance with
respect to the mean and (ii) on the mean optical distance across the entire ;eld, namely 〈�〉L.

A direct application of 1-point scale independence in Eqs. (26a) and (26b) is the substitution
of point-wise values by local averages. This is now done routinely when going from so-called
“structure functions” to “wavelet spectra” [10]. In structure function analysis, only the ;elds of
r-scale increments f(x + r) − f(x) are required to be statistically stationary/homogeneous and the
absolute non-negative moments of this 2-point di<erence in ;eld values at distance r are often
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estimated, namely, the family of qth-order structure functions

Sf(q; r) = 〈|f(x+ r) − f(x)|q〉 (58a)

that surely yields Sf(q; 0) = 0 and increases with r = ‖r‖¿ 0 as soon as f(x) has at least a small
degree of continuity (a.k.a. HWolder regularity). If the ;eld f(x) is scale-invariant (or, at least, has
a “scaling” regime), the spatial statistics are power-law in r:

Sf(q; r) ˙ r/(q): (58b)

Then the exponents /(q)¿ 0 for q¿ 0 are the same for structure functions and for wavelets, even if
higher-order moments are considered, as long as the signal is nonstationary with stationary increments
[10]. Being Gaussian, the Wiener–Levy process in Fig. 4 leads to /(q) = q=2 since the qth-order
moment goes as that power of the standard deviation with a proportionality constant that involves
a ratio of Euler Gamma functions. However, the increments in (58a) need not be independent,
nor Gaussian. By comparison of (40) with (58a) and (58b) and assuming that the proportionality
constants (“prefactors”) in the latter do not depend much on q, we see that /(q) ln r is related
to the cumulant-generating function ln %(q) of the random variables ln(|f(x + r) − f(x)|). Thus
/(q) is necessarily large-sense concave in q. For case studies of /(q) inside terrestrial clouds that
demonstrate this universal property, we refer to Marshak et al. [11].

In the special case of the second-order structure function, there is another way of writing increment
variance:

Sf(2; r) = 2[,f(0) − ,f(r)] ˙ r/(2) as r → 0; (59a)

but only if f is itself broad-sense stationary/homogeneous, by using (56). In the appendix, we
show that any ;eld with /(2) = 2H ¿ 0 in (59a) is non-trivially 1-point scale independent, with the
right-hand side of (26b) being ˙ (s=smax)� with �= 2H , and therefore spawn wider-than-exponential
transmission laws. In terrestrial clouds, the value of H=/(2)=2 for liquid water content, a good proxy
for extinction, is found to hover around 1=3 in both remotely measured time-series of the vertical
integral [12] and in aircraft probings [13]. So the internal cloud variability is, as can be expected,
1-point scale independent and their optical properties are conditioned by the general ;ndings in the
present study.

However, we must emphasize at this point that, even though it is arguably the most prevailing prop-
erty in natural media, 1-point scale independence is not a strict requirement to obtain non-exponential
transmission laws. The evidence points towards the need for a strictly positive auto-correlation func-
tion at scales r ¿ 0. Indeed, among all possible random scale-invariant ;eld models many will have
/(q) ≡ 0 because they are stationary at all scales, but they also have

,(r) ˙ 1=r1 (0¡1¡ 1): (59b)

These can also lead to sub-exponential transmission laws as was demonstrated independently by
Lovejoy et al. [6] and Knyazikhin et al. [7] for speci;c multiplicative cascades models.

4.4. Given enough amplitude of variation, how much correlation is required?

The above examples point to the relation of R T� (integral scale for random line-averages T� of
extinction) to the MFP (the relevant scale for the photon transport in absence of boundaries) as the
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key question:

• “Too fast for interesting 3D e<ects” is the outcome of our analysis for Gaussian-type white noise
;elds and this translates statistically to “decorrelation over a small scale.” Here “small” is clearly
with respect to the MFP which we can take as 1=〈 T�〉 for simplicity (in spite of the bias in this
estimate). So we have 〈 T�〉R T��1 in this situation: the optical distance across a decorrelation scale
is typically quite small. In this case, we argued that transport is determined by 〈 T�〉 and the level
of variability is not very important (at least if its variance is ;nite).

• “More interesting 3D e<ects” were predicted in our analysis of Wiener–Levy ;elds because of
its “long-range correlations,” hence relatively slow variability. In this case, we at least need to
have 〈 T�〉R T�& 1 and possibly even R T�=〈1= T�〉& 1: a typical decorrelation distance is optically thick.
Furthermore, we want the overall variance of T� to be comparable to its mean 〈 T�〉; this will make
the positive di<erence between 〈1= T�〉 and 1=〈 T�〉 more signi;cant.

From the above theoretical examples of randomly variable optical media, we clearly need (1) sig-
ni;cant deviations with respect to mean properties (“strong enough” variability) and (2) correlations
on the scale of the MFP (“slow enough” variability) to obtain signi;cant deviations from Beer’s
law. From there, classic 1D transport theory for slab media will fail.

4.5. Break-down of Beer’s law and the on-set of strong 3D eEects

4.5.1. Sure and smooth case
If the medium of interest is given (deterministically) in every detail and is smooth (has ;nite

gradients everywhere), then is not hard to de;ne a ratio of scales that captures both criteria we
isolated above. It tells us how “fast” or “slow” the optical variability is in comparison with the
relevant scale in RT, namely, the local pseudo-MFP �(x)−1. Indeed, the variability itself gives us
a local length-scale, namely, �(x)=|� · ��| = |� · � ln �|−1, which is the nominal distance needed
for �(x) to change by once its own value in a displacement starting at x along the direction �. The
relevant ratio is therefore

2det(x) =
�(x)−1

�(x)=|� · ��| =
∣∣∣∣� · �

(
1
�

)∣∣∣∣ ; (60)

where the subscript “det” refers to the deterministic nature of the variability.
So we are looking at the (dimensionless) norm of the gradient of local pseudo-MFP 1=�(x) along

the beam of interest. Equivalently, this is a rough estimate of the optical distance to the point where
�(x) has changed signi;cantly. Considering a spatial average or representative sample of some kind,
we distinguish three regimes for 2det(x) where we can anticipate quite di<erent radiative behaviors.

• 2det�1, “fast” variability: At almost every free path, photons sample almost all the variability,
so T� ≈ 〈�〉. Consequently, Beer’s exponential law applies everywhere to a good approximation,
using the mean extinction 〈�〉. Therefore, and somewhat paradoxically, plane–parallel theory for
uniform media will apply for the multiple scattering to a reasonable approximation.

• 2det ≈ 1, “resonant” variability: In this case, �(x) changes signi;cantly over typical photon free
paths. So strong deviations from exponential direct transmission will occur and 1D plane–parallel
theory fails at the fundamental level.
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• 2det�1, “slow” variability: Most photons sample essentially only one value of the extinction, so
a certain Beer’s law applies but just locally. Here, one can consider applying standard 1D theory
locally and averaging over the outcome.

In atmospheric RT, this last procedure is called the independent pixel/column approximation, “IPA”
[14] or “ICA” [15]. A medium produced by stacking a sequence of plane–parallel slabs one over
another is the optical analog of a montage of electrical resistors wired in series. Here, a response
(such as direct or total transmission) to a ;xed potential, or the (e.g., solar) source of irradiance,
must cross all the elements; so impedances, or optical depths, have to be summed. Similarly, the
ICA/IPA assembly is analogous to a circuit mounted in parallel. Here, all the elements are subjected
to the same potential, or (solar) irradiance; so the responses (e.g., transmission as a function of
variable optical depth) are added. In short, slow variability can lead to a highly non-exponential
FPD by spatial averaging over the 1-point pdf but it may not be as relevant to the 3D problem as
a spatial averaging of the radiative responses (such as total transmission, rePection or absorption)
computed individually with exponential transport kernels.

In “stochastic” RT for binary media, briePy described above and in Ref. [9] for the details, there
is an essentially deterministic limit associated with the spatial frequency of the extinction jumps
going to zero (i.e., R� → ∞). In this case, the two RT equations decouple and the mean radiance
;eld is the weighted sum of the individual solutions. This is simply the ICA/IPA for a Bernoulli
pdf in optical depth, exactly in the manner of Fig. 1 but for di<use as well as direct transmission.

In their survey of 3D RT e<ects based on photon di<usion theory in conservatively scattering
media, Davis and Marshak [16] propose a criterion for strong 3D e<ects that is very similar to
the above interpretation of the ratio of scales in (60). Their ratio is in fact identical to 2det(x) in
(60) apart from being based on the “transport” extinction (1 − g)�(x), where g is the asymmetry
factor of the scattering phase function, and on a directional gradient which is more relevant to their
PDE-based formulation of 3D RT. In essence, Davis and Marshak were concerned in Ref. [16] with
transport by a mean radiation Pow (via multiple scattering) channeled through the 3D medium while
here we are concerned with ballistic photon transport (between scatterings) inside the 3D medium.

4.5.2. Stochastic and/or non-diEerentiable cases
Returning to random optical media, derivatives often do not exist. We can nonetheless generalize

the scale ratio in (60) to this situation by replacing �(x)−1 by its spatial/ensemble average, and the
directional gradient magnitude |� · � ln �| by Sln �(1; r)=r using the de;nition in (58a). We arrive
at the scale-dependent ratio of scales

2ran(r) =
〈1=�〉

[Sln �(1; r)=r]−1 =
〈1=�〉
r

Sln �(1; r); (61)

where Sln �(1; r) contains the key information about variability magnitude and speed. If the medium
is scaling with long-range correlations then, using (58b) with q = 1, we get

2ran(r) ≈
√

var(ln �) × 〈1=�〉
L

×
(
L
r

)1−H

; l6 r6L; 0¡H ¡ 1; (62)

where H = /(1) is the so-called (global) Holder or Hurst exponent for ln �(x). We have replaced r
with r=L in (58b) to restore dimensional consistency, and Sln �(1; L) in (61) by the standard deviation
for ln �, i.e.,

√
var(ln �). Any other simple and ;nite 1-point measure of relative variability for
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�(x)¿ 0 such as var(�)=〈�〉2 would do just as well since increments at the largest scale of interest
here, L, will capture the full width of its 1-point pdf. The condition of ;niteness is obviously
important. The same remark applies to the MFP estimate used in (62) 〈1=�〉: if it is in;nite, then
1=〈�〉 is a better choice. For instance, 〈(ln �)q〉 and 〈1=�〉 are ill-de;ned in media with ;nite volumes
of optical vacuum (� = 0). Bearing this caveat in mind, we proceed with

√
var(ln �) and 〈1=�〉.

Now we consider the extreme values of H . Smooth (i.e., random but almost everywhere di<er-
entiable) media have H = 1 and the scale dependence in the last term disappears, as expected from
2det in (60); hence,

2ran ≈
√

var(ln �) × 〈1=�〉=L; r6L: (63)

Extremely rough (white-noise-like or sparse fractal) media have H = 0 so the decorrelation scale L
appears to cancel from 2(r) in (62), however, this is not the case because, in actuality, we now
have decorrelation at the smallest scale: Rln � ≈ l for the integral scale. The nonstationary scaling
range is thus reduced to the pixel scale, so we can simply set L = l in (63); hence,

2ran ≈
√

var(ln �) × 〈1=�〉=l; r¿ l: (64)

This supports our radiative conclusions about white noise in Section 4.2 where we made explicit
“thin pixel” (〈1=�〉�1) and ;nite variance (var(ln �) = O(1)) assumptions, leading to 2ran�1.

In summary, we have in the expressions (62)–(64) for 2ran:

• a ;rst term representing the (outer-scale) magnitude of the variation, i.e., an overall non-
dimensional measure of relative (1-point) variability strength;

• a second term giving the ratio of the actual MFP to the 2-point decorrelation scale for ln �(x),
i.e., an optically relevant overall non-dimensional measure of variability speed; and

• a third term that captures any scale-dependence that is often, but not always, present.

The categories de;ned in Section 4.5.1 based on the numerical value of 2det carry over to 2ran

unchanged.
What if the medium is deterministic but non-di<erentiable, or otherwise not amenable to the com-

putations prescribed in Eq. (60)? Consider, for instance, media where extinction varies periodically
in space. A simple sine-wave medium can be analyzed [16] with 2det(x) in (60); its square-wave
counterpart however cannot, since gradients are either zero or in;nity. This di<erence in wave-form
is of course certainly not fundamental so, in order to draw the same conclusions, we simply use (63)
with spatial averages and interpret L as the period of the medium. Note that a judicious sampling
rather than straightforward averaging of 2det(x) may, at times, be in order due to divergences (this
is indeed the case for a sine-wave extinction when the amplitude equals the mean). Alternatively,
another moment than 〈1=�〉 can be used, e.g., simply revert to 1=〈�〉. Finally, if the boundaries of
the optical medium are at ;nite range (compared to L), then possibly another reference scale that
de;nes medium size should be used in (62)–(64).

In short, some Pexibility is required in choosing the various terms that make up the 2’s in (60)–
(64). The essential rule here is to combine non-dimensional measures of variability strength (a
1-point statistical concept) and of variability speed (a 2-point statistical concept), and to capture any
systematic scale-dependence anticipated in “strength” or “speed” or both.
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5. Discussion

5.1. A limited analogy with long-path molecular spectroscopy at coarse resolution

In the absence of scattering, the RT problem is reduced to

I(x;�) =
∫ s@M

0
S(x−�s;�)T(x−�s → x) ds (65)

where S(x;�) is the source term and s@M is the distance along the inverse beam {x;−�} from x
to the boundary @M of the medium, and with direct transmission T(·) given by Eqs. (5)–(7). This
is not the end of the story in many applications, atmospheric in particular, only a recipe for dealing
with the spatial aspect of the problem. Indeed, both the source term in (65) and the extinction
coeOcient in (5), hence T(x −�s → x) in (65), can be strongly dependent on wavenumber 3. In
order to interpret observations, always made at some ;nite spectral resolution, we need to compute
radiances which are deterministic mixtures of extinction values. Often, a spectral “band” will contain
variability over a very wide range of extinction values. So, in practice, there is no essential di<erence
with how we have treated the spatially variable extinction and its line-integral in (5). The spectrally
variable part of (5) is the absorption cross-section per molecule rather than the molecular density.
So, as a function of cumulative absorber mass, transmission is non-exponential as soon as there are
mixtures of extinctions in the spectral band.

For technical details, we refer to Goody’s [17] seminal paper on a statistical treatment of spec-
tral variability which is complicated but fundamentally deterministic (since it results from molecular
dynamics and quantum-mechanics). Non-exponential transmission is a direct outcome of Goody’s
model. It is noteworthy that spectral correlations are part of the solution in this occurrence of
non-exponential FPDs in spectroscopy (i.e., eOciency and accuracy gains using “correlated-k” tech-
niques) while spatial correlations are at the heart of the problem in the occurrence of non-exponential
FPDs in 3D RT as shown in Section 4.

There are now standard software packages such as MODTRAN based on parameterizations, in-
cluding non-exponential transmission, of the spectral variability of the atmosphere under a wide
variety of physico-chemical conditions. These parameterizations are constantly being upgraded on
the basis of improved “line-by-line” calculations which go back to the fundamentals of monochro-
matic radiative transfer in absence of scattering, i.e., Eqs. (5)–(7). The interesting open question
is of course about how the spatial and spectral nonlinear e<ects are compounded. In the follow-on
paper, we will survey the theoretical and empirical evidence that 3D RT in the cloudy terrestrial
atmosphere has a systematic e<ect on total photon pathlength statistics (over all orders of scattering)
and that this directly impacts absorption by all molecular species.

5.2. A debate surrounding the present study

To the best of our knowledge, only a few studies—most quite recent—address the systematic
statistical e<ects of spatial variability on direct transmission per se. There are many more publications
that address these e<ects in the context of multiple scattering, of thermal emission, or of neutron
transport; we will survey this literature in our follow-on paper on the multiple scattering rami;cations
of the present study.



A.B. Davis, A. Marshak / Journal of Quantitative Spectroscopy & Radiative Transfer 84 (2004) 3–34 25

Romanova [18] states that direct transmission through a variable medium is not as predicted by
the mean extinction but larger. Borovoi [5] concurs and relates this fact to Jensen’s [2] inequality
in probability theory; he also underscores the role of inhomogeneity scale (i.e., spatial correlation)
but argues nonetheless for a mean-;eld radiative transfer equation where an e<ective exponential
transmission law appears because he recognizes only our “too slow” and “too fast” variabilities.
Without as much consideration of scale, Stephens et al. [19] make simple and speci;c assumptions
(e.g., uniform probability density) about the variability of extinction in the 1-point statistical sense
and compute moments of all orders in order to highlight di<erences with the exponential law. Lovejoy
et al. [6] computed transmission statistics for “multifractal” extinction ;elds based on a large class
of multiplicative cascade models which are, by construction, highly correlated in space; they found
laws that are signi;cantly wider than exponential. Knyazikhin et al. [7] independently investigated
the special case of extinction ;elds modeled with “monofractal” measures (i.e., supported only on
sparse Cantor-like sets) and found the same trend.

Kostinski [20] investigates ballistic photon propagation through a population of spatially-
correlated scatterers/absorbers. This author’s approach is a rather radical departure from previous
studies because he makes none of the elementary assumptions in radiative transfer such as radi-
ance/Pux balance and/or the existence of an extinction ;eld. Instead, he draws on a formula used
by Landau and Lifshitz [21] in the theory of critical phenomena to assess the e<ects of correlations
on collision rates for photons in a medium of discrete obstacles. Non-exponential transmission is
a natural outcome of the correlations; he even ;nds a slow power law decay for a speci;c but
illustrative case of positive (“clustering”) correlations. This contrasts with the exponential law that
results directly from a purely random spatial distribution governed by Poisson’s point statistics.

Borovoi [22] comments on Kostinski’s paper coming from his (and our) more standard perspective
based on the RT equation; however, he continues to dismiss the importance of the variability scales
that cause the large departures from exponential behavior in direct transmission (whereas we o<er a
more systematic analysis by showing that his Laplace transform representation applies in fact to all,
not just the largest, variability scales). In his reply [23] to Borovoi’s commentary, Kostinski insists
that discrete-point statistics a<ord us a deeper look at reality and he provides counter-examples to
Borovoi’s, ours and his own earlier investigation in Ref. [20] of wider-than-exponential transmission
laws. There is no contradiction here since sub-exponential transmission laws necessarily call for
negative correlations (“anti-clustering”) in the optical medium. Shaw et al. [24] investigate the
e<ects of negative correlations in full detail. In the continuum (density-based) formulation used here,
negatively correlated point distributions correspond to di<erent ways of implementing the assumption
of constant density: in the discrete world, some uniform media are actually more uniform than others.
This situation is not directly amenable to the formalism used here, but there is a noteworthy analogy
with the way some random quadrature rules used in (so-called “quasi-”) Monte Carlo integration
achieve faster than “N−1=2” convergence by better sampling of space [25].

We hope the present study, started over a decade ago [4], will help resolve this controversy based
largely on over- and under-statements, or at least contribute to the debate. Of course, everyone knows
that a theory based on discrete particles is, by construction, more general than a theory based on
continuum ;eld concepts such as density, extinction, Pux, radiance, and so on. Although a continuum
theory such as hydrodynamics has little to say about scales smaller that the inter-particle distance,
RT is in fact a kinetic theory based on particle interactions and it applies perfectly well in an optical
vacuum. The true limitation of RT theory is that it is grounded in geometric optics: wavelengths
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need to be small enough compared to inter-particle distances that (1) a photon “beam” can be
de;ned and (2) coherence e<ects can be neglected inside “elementary volumes” (i.e., they occur
at the scattering event but for a mixture of particles it is the energies and not the amplitudes and
phases that add). We note that this limitation applies equally to the discrete-particle/discrete-photon
approach advocated by Kostinski and co-workers and to the particle-density/photon-Pux approach
used by Borovoi, ourselves, and many others. Furthermore, both approaches rely on the fundamental
notion of a distribution of paths between emission, scattering or absorption events, the FPD, which
may or may not be exponential. We assume in most of this study that its mean, the MFP, exists
although it can in principle be larger that any other dimension of the system.

The introduction of negatively correlated discrete media therefore does not contradict but comple-
ments the general conclusions of RT theory. However, the requirement that correlations—positive or
negative—need to exist at least on the scale of the actual MFP seems to have been overlooked at
times. In the realm of astrophysical, planetary and geophysical optics, negative correlations in the
scattering medium (e.g., clouds, aerosol and molecules in the atmosphere) are not likely to occur on
scales commensurate with the MFP simply because of the turbulent Puid- and/or thermo-dynamical
processes that shape the 3D variability tend to promote clustering tendencies over a very broad range
of scales. This tendency is currently the object of intense study in the case of terrestrial clouds [26–
30]. Anti-correlations may occur at much smaller-than-MFP scales (e.g., due to sedimentation in stag-
nant water or air and electrostatic charge in convective clouds), and conceivably also at much larger
scales (clear/sinking air de;ning the space between clouds caused by updrafts). But, as we demon-
strated, these are not the variability scales that dominate the production of non-exponential decay in
the FPD. If the optically active particles (i.e., with size≈wavelength) are densely packed, enough
to produce negatively correlated positions by excluding each other from a volume of their own size,
then coherence e<ects will also be at work, thus disabling both of the incoherent/geometrical-optics
approaches mentioned here. (We note in passing that the prediction of sub-exponential transmission
nonetheless is nonetheless in the right direction, with Anderson’s localization of light—inhibited
propagation—being the ultimate reduction of transmission; this occurs in disordered media with
Puctuations—and transport MFP—on the scale of the wavelength [31].) In the realm of macroscopic
RT, individual leaves in vegetation canopies will exclude each other physically but we are, there
again, outside of the realm of kinetic transport theories that describe obstacles as “particles” hav-
ing an interaction cross-section but no volume per se. Interestingly, in the properly reformulated
(non-Markovian) RT theory for vegetation canopies and for realistic (fractal) canopy architecture,
wider-than-exponential transmission laws are again a natural outcome [7].

In summary, the possibility of negative 2-point correlations is interesting but they are hard to ;nd
in nature without defeating the most basic assumptions of either formulation in competition here.

6. Summary and outlook

Beer’s law predicts an exponential decay in direct transmission with distance from the light source.
We have used methods inspired by some lesser-known probability theory to establish that e<ective
transmission laws in 3D radiative transfer are never exponential. We have furthermore established
that the actual mean-free-path (MFP) based on the e<ective free-path distribution (FPD) is always
larger than that expected from the mean extinction coeOcient when a natural mass-conservation
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assumption is imposed on the spatial variability. Speci;cally, in the more interesting situations where
the variability is characterized by relatively long-range correlations, it is better to estimate the MFP
using the mean value of inverse extinction rather than the inverse of the mean extinction. We also
show that, under the same general conditions, the e<ective FPD is always wider-than-exponential in
the sense that the higher-order moments are systematically under-estimated by the exponential model,
even if the MFP is properly evaluated. A simple binary mixture of extinctions is used to illustrate the
basic results and we draw an important but limited analogy between spatial and spectral variabilities.

We show how to design criteria for forecasting strong 3D radiative transfer e<ects (very non-
exponential FPDs). These diagnostics highlight the need for a certain “overall strength” and a “typical
speed” of the variability that does not overwhelmingly reduce the variance in optical path at a ;xed
step-size. At any given amplitude of variability, it can indeed be so fast that almost every photon
samples almost all of it at almost every step, in which case only the mean extinction matters and the
FPD is quasi-exponential. It can also be so slow that photons sample essentially just one value of
extinction between emission and detection or escape, in which case a local uniformity assumption can
be made. Finally, extinction Puctuations over the MFP scale—give or take an order of magnitude—
can be “resonant,” meaning that extinction usually changes signi;cantly in the course of a free path,
but not so much as to sample all possible values. In this case, the e<ective FPD will be highly
non-exponential.

The focus of this paper has been the spatial (propagation) part of the overall radiative transfer pro-
cess as opposed to the scattering, emission or absorption components. Indeed, if the scattering kernel
in the multiple-scattering source function is isotropic, then the mean-;eld FPD studied here is all that
is needed, beyond boundary conditions, for an integral formulation of a natural mean-;eld theory
for multiple scattering. In a follow-on paper, we will illustrate the general properties of mean-;eld
3D transport kernels, with an emphasis on radiation processes in the Earth’s cloudy atmosphere.
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Appendix A. With Albert Benassi (Laboratoire de M/et/eorologie Physique and Departement de
Math/ematiques, Universit/e Blaise Pascal, Clermont-Ferrand, France): The prevalence of 1-point
scale-independence illustrated with scale-invariant variability models

Used quite extensively in Section 4, the property of “1-point scale-independence” is introduced in
Section 3 by putting two statistical requirements on a random ;eld f(x). First, its smoothed versions
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are de;ned as

fr(x) =
1
r

∫ x+r

x
f(x′) dx′; (A.1)

in analogy with Eq. (24) of the main text (only with di<erent notations). Only one spatial variable
is assumed here without any real loss of generality, only for more ease in the ensuing calculations.
Echoing Eq. (26a), the ;rst requirement is that

〈fr(x)〉 ≡ 〈f(x)〉 = 〈f〉 (A.2a)

for 06 r . rmax; this is a necessary but far from suOcient condition for statistical stationarity.
Echoing Eq. (26b), the second requirement is that the centered moments of fr(x) di<er at most by
a small amount, on the order of r=rmax when that ratio is small, i.e.,

〈[fr(x) − 〈f〉]q〉=〈[f − 〈f〉]q〉 − 1 = O(r=rmax): (A.2b)

In this appendix, we make straightforward connections between generally expected behavior in the
auto-correlation function of (positively) correlated ;elds and 1-point scale-independence. We then
illustrate that property with scale-invariant variability models that are not necessarily stationary nor
Gaussian but do represent the most frequently occurring kind of variability found in nature (i.e., geo-
or astro-physical systems). Counter-examples are also provided, selected for their relevance to the
topic of the main text, positively correlated extinction ;elds and sub-exponential mean transmission
laws.

A.1. A general remark on 1-point scale-independence in stationary random functions

We will consider broad-sense stationary random functions, f(x). Without loss of generality but
gaining simplicity in the following calculations, we can therefore assume that the ensemble averages
〈fr(x)〉 ≡ 0 for all x (by stationarity) and for all r (by de;nition). We now ask how the variance
of fr(x) varies with r, expecting a monotonic decrease since we are dealing with smoother versions
of f(x).

From (A.1), we have

var[fr] =
1
r2

〈∫ x+r

x
f(x′) dx′

∫ x+r

x
f(x′′) dx′′

〉
(A.3)

using the fact that the ensemble mean is zero. Reversing the order of the smoothing and the averaging,
we have

var[fr] =
1
r2

∫ x+r

x

∫ x+r

x
〈(f(x′)f(x′′)〉 dx′ dx′′ (A.4a)

where

〈(f(x′)f(x′′)〉 = ,(x′′ − x′) (A.4b)

the auto-correlation function de;ned in Eq. (56) of the main text, exploiting the vanishing mean
assumption. So we are reduced to evaluating

var[fr] =
1
r2

∫ r

0

∫ r

0
,(x′′ − x′) dx′ dx′′: (A.5)
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We can illustrate ;rst with white-noise which has ,(x′′ − x′) ˙  (x′′ − x′): we ;nd var[fr] ˙ 1=r.
This result was used in Section 4.2 of the main text when dealing with the transmission statistics of
such decorrelated ;elds when the spatial noise is Gaussian with a mean 〈f〉¿ 0. Then we already
know from ;rst principles that variances add, so the standard-deviation of estimates of the mean of
length r decrease as 1=

√
r. White noise is clearly not 1-point scale-independent (cf. Fig. 3 in the

main text).
If the variance of the original ;eld f(x) is ;nite, then we can write

,( x) = 〈f(x)f(x +  x)〉 ≈ var[f] × [1 − a x2H ] (A.6)

for  x → 0+, with a¿ 0 and H ¿ 0. We will take this approximation to be valid for  x .  x∗,
some value on the order of the integral scale in Eq. (57) of the main text, if it exists (i.e., ,(r) is
indeed integrable). We can easily evaluate (A.4) with the functional form of ,(·) taken from (A.6),
leading to

var[fr] ≈ var[f] × [1 − br�] (A.7)

with � = 2H and b = a=(H + 1)=(2H + 1) and the approximation in (A.7) will of course prevail for
r . rmax ≈  x∗. We notice that (A.7) can be rewritten as (A.2b) in the main text for q = 2 simply
by dropping the zero-mean assumption and writing the right-hand side as ˙ r�.

Generalization of (A.7) to higher-order moments is immediate for Gaussian processes since any
moment can be derived from variance and ratios of Euler’s Gamma function in Eq. (12). This
completes the proof that the large class of Gaussian stationary random functions that verify (A.6)
are endowed with 1-point scale-independence. We illustrate 1-point scale-independence in Gaussian
and non-Gaussian ;elds respectively in Sections A.3 and A.4, but start by showing that there is a
characteristic non-stationarity present in the small scale regime of interest here.

A.2. Scale-invariance and the non-stationary regime of otherwise stationary functions

Based on a remark in Section 4.3 of the main text connecting ,(·) and the second-order structure
function, we know from (A.6) that 2H=/(2) in the multi-scaling representation of structure functions
in Eqs. (58a) and (58b). So the vast class of ;nite-variance stationary functions we are interested
in here are in fact operationally stationary (e<ectively decorrelated) only at large scales. There is
a large range of scales where their increments yield non-trivial power-law structure functions in
Eq. (58b). In this scaling range the functions are, for all practical purposes, in the even vaster class
of non-stationary functions with stationary increments.

We must note however that the parameter H used here can be identi;ed exactly with the Hurst ex-
ponent /(1) used in the latter part of Section 4 only in the so-called “mono-scaling” or “monofractal”
limit where /(q)=q ≡ constant. This abuse in notation is unfortunately quite frequent in the fractal
literature. Robust determination of H is a major concern in fractal data analysis and, interestingly,
plotting the left-hand side of (A.2b) versus r in log–log axes has been proposed as a possible method
using combinations of q = 1 and 2 and an (implicit) monoscaling assumption.
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A.3. One-point scale-independence of additive scale-invariant models

As a ;rst empirical example of 1-point scale-independence, we used in Section 4.3 (Fig. 4) the
Wiener–Levy process which has H = 1=2, and

/(q) = Hq (A.8)

generally speaking. This process, the well-known temporal trace of Brownian motion (Bm), is the
prototypical nonstationary random function with stationary increments. By enforcing scale-invariance
in this example, we have made the model nonstationary throughout practically the whole range of
available scales.

Mandelbrot [32] popularized his generalizations of Brownian motion known as “fractional” Brown-
ian motion (fBm) which are in the same broad category as Bm: they obey Eq. (A.7) with 0¡H ¡ 1
as unique scaling parameter. So they too are nonstationary with stationary increments and therefore
1-point scale-independent. Fig. 5 shows an example for H =1=3 which, considered as a second-order
statistic, is the prevailing value for terrestrial clouds [13]. Panel (a) shows a sample trace f(x) of
length 8192 pixels with a unit mean and a variance of 1=9 (standard deviation 1=3); in (b) histograms
using 10 realizations of fr(x) are plotted for a large range of averaging lengths r = 1; : : : ; 256 pixels
(by powers of 2). The 1-point scale independence via pdf overlap is obvious even though we do
observe the expected retreat as r increases of the extreme values under deliberately limited sam-
pling.

There is a striking di<erence in construction method between Brownian and fractional Brownian
processes.

• The former can be generated simply by summing white noise and more can be generated as
needed because the increments are not only stationary but independent. Brownian motion has a
Markovian quality (only the present is needed to predict the future).

• The latter have stationary but correlated increments. Indeed, it is easy to show, starting with (58a)
and (58b) for q= 2 and 2r as well as r, that the correlation of successive increments in the same
direction in x is given by

〈[f(x + 2r) − f(x + r)][f(x + r) − f(x)]〉˙ [22H−1 − 1]r2H : (A.9)

So successive increments anti-correlate if H ¡ 1=2 (cf. Fig. 5) and correlate if H ¿ 1=2. As far
as we know, this correlation structure can only be achieved by a scale-by-scale hierarchical or
“cascade” construction.

All of these above models for scale-invariant/fractal variability are additive in nature: sums (across
scales) of independent random variables that are generally assumed to be Gaussian. Benassi et al.
[33] recently proposed a general framework for building such models based on wavelet-like enti-
ties and a general (not necessarily dyadic) tree structure across scales and positions. They even
introduce a degree of intermittency by randomly “clipping” branches in the tree, thus spoiling
the Gaussian distribution of the ;eld and of its increments yet leaving (A.6)—hence the 1-point
scale-independence—intact.
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Fig. 5. One-point scale-independence in a scale-invariant Gaussian variability model. (a) Sample trace with 8192 pixels,
unit mean and standard deviation 1=3. (b) Normalized histograms for 10 random realizations (truncated infrequently at 0
to enforce the positivity of the extinction ;eld) and a signi;cant range of averaging lengths r=2m pixels (m=0; : : : ; 8); we
note that the extreme values are naturally contracting as r increases. The clear overlap out to several times the standard
deviation is equivalent to the 1-point scale-independence de;ned in Section 3.

A.4. One-point scale-independence in multiplicative scale-invariant models

Another way of obtaining intermittency in the same sense of broad non-Gaussian increments is to
use multiplicative processes. These models are best constructed simply as exponentials of additive
processes, without or with incremental correlations of either sign. Marshak et al. [34] use a sequence
of Bernoulli random variables to construct the “bounded cascades” of Cahalan et al. [12] and derive
their multi-scaling properties:

/(q) = min{qH; 1} (A.10)
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Fig. 6. One-point scale-independence in a scale-invariant log-normal variability model. (a) Sample trace with 8192 pixels,
unit mean and standard deviation 1=3 (as in Fig. 5); these assumptions lead to �=StDev of lnf=

√
ln(10=9) ≈ −0:3246,

and 1=Mean of lnf=−�2(lnf)=2 ≈ −0:0527. (b) Overlapping histograms for 10 di<erent realizations and a large range
of averaging lengths r= 2m pixels (m= 0; : : : ; 8); in contrast with the Gaussian case, the mean (exp[1+�2=2]), the median
(exp[1]) and the mode (exp[1−�2]) are all di<erent. Apart from the expected contraction of the extremes, we see that the
sampling noise is stronger in the bins for high f(x) values than for the Gaussian model in Fig. 5. Nonetheless, roughly
the same histogram overlap is observed as in Fig. 5.

in Eq. (58b) with parameter H ¿ 0 (Heaviside steps are obtained in the limit H → ∞). As noted
in the main text, the multi-scaling function is de;nitely concave. The model is “multifractal.”

Similarly, one can construct log-normal models by using exponentials of fBm. Fig. 6 shows a typi-
cal example with the same mean, variance and number of realizations as in Fig. 5; as expected, more
severe sampling problems in the high values are apparent. Such multiplicative models are generically
multifractal but still obey the stated conditions for (A.6) and are therefore 1-point scale-independent.
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Before closing this technical appendix, we recall that there is another class—and indeed a con-
siderably older one—of multiplicative scaling models in the turbulence and geophysical literatures.
These models are not functions per se but measures (Dirac’s generalized  -functions are in fact an
extreme example). They generically have /(q) ≡ 0 so, at q = 2, they do not obey the conditions
of (A.6) and are therefore not 1-point scale-independent. As an instance, this class includes the
“unbounded” limit (H → 0) of Cahalan’s bounded cascades in (A.10) that were ;rst introduced by
Meneveau and Sreenivasan [35] to account for the intense variability of the kinetic energy dissipation
rate in strong turbulence.

Beyond their degenerate structure functions, these singular cascade models have interesting mul-
tifractal properties in their own right [6,10,11,28,35]. Although these properties are based on the
smoothed versions of the measures de;ned exactly as in Eq. (A.1), they are out of the scope of
this survey. It suOces to say that the auto-correlation functions of these scale-invariant models are
weakly singular power-laws as parameterized in Eq. (59b): ,( x) ˙  x−1 (0¡1¡ 1). This case
can be treated as in Section A.1 by formally taking a¡ 0 (to enforce a positive prefactor), setting
2H = −1, and ignoring the constant term in (A.6). The outcome in (A.7) is that var[fr] has the
same power-law dependence on r with the prefactor positive becoming −b = −a=(1 − 1=2)(1 − 1).
This con;rms the violation of 1-point scale-independence, as found in Section A.1 for  -correlated
“white” noise.

Returning to the topic of the main text, direct transmission laws in fractal media with such strong
(but not white-noise) variability in the small-scale limit turn out to be sub-exponential in spite of
the lack of 1-point scale-independence, at least in a number of special cases [6,7].
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