Geometrical-optics solution to light scattering

by droxtal ice crystals
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We investigate the phase matrices of droxtals at wavelengths of 0.66 and 11 pm by using an improved
geometrical-optics method. An efficient method is developed to specify the incident rays and the cor-
responding impinging points on the particle surface necessary to initialize the ray-tracing computations.
At the 0.66-pm wavelength, the optical properties of droxtals are different from those of hexagonal ice
crystals. At the 11-pum wavelength, the phase functions for droxtals are essentially featureless because
of strong absorption within the particles, except for ripple structures that are caused by the phase

interference of the diffracted wave.
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1. Introduction

Cirrus clouds play an important role in the energy
budget balance of the Earth—atmosphere system
(e.g., Liou,! Lynch et al.,2 and references cited there-
in). Radiative transfer modeling efforts have been
hampered by the nonspherical nature of observed ice
crystals in the atmosphere. Over the past several
decades, substantial research efforts3-11 have focused
on deriving the single-scattering properties (e.g.,
single-scatter albedo and phase function) of non-
spherical ice crystals, which are fundamentally im-
portant to the interpretation of the remote sensing
measurements of cirrus clouds and the parameter-
ization of the bulk radiative properties of these clouds
in climate models (e.g., Mishchenko et al.12 and Liou
et al.13). In situ measurements of cirrus indicate
that both the habit and the size distribution of ice
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crystals tend to vary with height within the clouds
(e.g., Heymsfield and Iaquinta'4 and Lawson et al.'5).
Small ice crystals with aspect ratios of approxi-
mately unity (i.e., the ratio of particle length to its
width), often referred to as quasi-spherical particles,
are predominant in the uppermost portions of mid-
latitude and tropical cirrus clouds.’¢ If the small
particles are assumed to be spherical, one can apply
the Lorenz—Mie theory to calculate the single-
scattering properties of these small particles. How-
ever, in situ observations have confirmed that these
ice crystals are faceted and thus nonspherical.17-18
Previous research indicates that the bidirectional
reflectance is highly sensitive to the geometry of the
small ice crystals in the uppermost region of cirrus
clouds.’® Most recently, McFarquhar et al.2° showed
the importance of small ice crystals in parameteriz-
ing the bulk radiative properties of cirrus clouds.
The small ice crystals were treated as Chebyshev
particles, and the T-matrix method?! was used to
derive their scattering properties. Reichardt et al.22
showed that lidar-based retrievals of polar strato-
spheric clouds are quite sensitive to the shape of
small ice crystals. Liu and Mishchenko?? treated
small ice crystals as spheroids in their study of polar
stratospheric clouds on the basis of lidar returns.
Yang et al.24 speculated that small ice particles ob-
served in Alaskan ice fogs25-26 may be similar to the
shapes of the nonspherical small ice crystals in cirrus
clouds. As we discuss in Section 2, droxtallike crys-
tals have also been observed in wave clouds and may
be associated with the freezing of supercooled water
droplets and subsequent growth by water-vapor dep-



osition. In this situation, the rapid transition from
supercooled water droplets to ice crystals through the
homogeneous ice nucleation process, coupled with
small amounts of available water vapor, may inhibit
the development of more pristine particles such as
hexagonal columns and plates.26

The single-scattering properties of ice droxtals have
been investigated for the case of small size parameters
by the finite-difference time-domain (FDTD) method.24
Substantial differences were noted between the single-
scattering properties for ice spheres and those for drox-
tals, especially at visible wavelengths. Because of
computational limitations, the largest size parameter
for a practical application of the FDTD method is ap-
proximately 20, although it has been applied to size
parameters up to 40 when no attempt is made to av-
erage the scattering properties over particle orienta-
tion.2” For a droxtal with a size parameter of 20
defined with respect to the corresponding circumscrib-
ing sphere, the effective diameter is only 4.2 pm for a
wavelength of 0.66 pm. Observations show that
these small particles with aspect ratios of the order of
unity are present at sizes greater than 30 pm.

To obtain scattering properties for crystal sizes
larger than those allowed by the FDTD method re-
quires the development and application of various
approximate approaches such as the geometrical-
optics (GO) method. Many exact and approximate
scattering methods have been recently reviewed by
Mishchenko et al.28 and Kahnert.2 The GO method
is applicable when the size of an equivalent volume
sphere for the particle is much larger than the wave-
length of the incident beam. The applicability of the
GO method has been investigated by its comparison
with the T-matrix method3°3! and the FDTD meth-
0d.3233 The theoretical framework of the GO
method to compute the scattering properties of ice
crystals is well established and is not repeated here.

In this study we employ the improved geometrical-
optics (IGO) method developed by Yang and Liou34 to
compute the single-scattering properties of droxtals.
For simplicity in software development and compu-
tational efficiency, we use a simplified version of the
IGO method (see Section 3 in Ref. 34). In the sim-
plified IGO method, the phase interference of the
electric field associated with the scattered rays is
accounted for approximately when we consider the
ray spreading. The technical details for the simpli-
fication can be found in Yang and Liou.3* Because of
the approximate nature of the IGO method, the
present scattering computations are limited to size
parameters in the GO regime.

2. Droxtal Geometry and Coordinate Frame

Figure 1 shows images of droxtals collected in an
orographic wave cloud that was penetrated by a bal-
loonborne ice crystal replicator in Colorado. The
wave cloud temperature ranged from —40°C to
—56 °C, and throughout the layer particles were
present in high concentrations (~1 cm ™ ®) and were
fairly uniform in size. The lines shown in the right
panel of Fig. 1 indicate the size scale; the distance
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Fig. 1. Replicator images of small ice particles (dark objects in left
image) observed for a wave cloud. The distance between the two
adjacent lines shown in the right panel is 10 pm. The particle
sizes are approximately 30 pm.

between the two adjacent lines is 10 pm. The drox-
tals shown here are of the order of 30 um in diameter.
Close scrutiny of these and other particle images in-
dicates that these particles are not spherical.
Ohtake26 provided more detailed images and noted
the three-dimensional structure of these small parti-
cles. Situations that are particularly amenable to
droxtal production occur when the homogeneous ice
nucleation process is active, at temperatures below
—35 °C, and include orographic wave clouds,3> vigor-
ous convection,3¢ and ice fog.26

To specify the geometry of a general convex particle,
we define a coordinate frame that is fixed to the par-
ticle (hereafter referred to as the particle frame), as is
shown in Fig. 2(a). The origin of this frame coincides
with the center of the mass of the ice crystal. The z
axis of the frame passes through the center of the top
face, whereas the corresponding x axis points through
the midpoint of the line F' U. Compared with a pris-
tine hexagonal ice crystal, the geometry of a droxtal is
much more complicated because of the presence of 12
isosceles trapezoid faces [e.g., ABB' A’ in Fig. 2(a)], six
rectangular faces in the center of the crystal, and a top
and bottom hexagonal face, for a total of 20 faces. The
geometric properties of droxtals having maximum
sphericity have been discussed by Yanget al.2¢ When
a particle has maximum sphericity, all the crystal ver-
tices touch a circumscribing sphere. With maximum
sphericity, the geometric properties of a droxtal can be
fully specified in terms of three parameters, i.e., the
radius of the circumscribing sphere R and two angles
0, and 6, denoted in Fig. 2(b). From the geometric
configuration shown in Fig. 2(b) we can obtain the
following relationships:

a; = R Sin 61, ag = R Sin 62, (1)
L,=R cos 0;, L,=R cos 0, (2)
h =a,(L; — Ly)/(as — ay). 3)
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Fig. 2. (a) Geometric representation of a droxtal, (b) cross section
of a droxtal (side view).

The quantities in Eqgs. (1)—(3) are indicated in Fig.
2(b). The other geometric properties of the droxtal,
such as the position vectors of the vertices and the
unit vectors normal to the individual faces, can also
be specified in terms of R, 6,, and 6,. For example,
the unit normal vectors #; = (n,,, n,,, n;,) associated
with the six upper trapezoidal faces of the droxtal can
be given as follows:

n;,=sin a cos[w/2 + (i — 1)w/3], (4)
n;,=sin a sin[w/2 + (i — 1)w/3], 5)
n;, = cos o, (6)

where i = 1 — 6 in which i = 1 denotes the case for
face ABB' A’. The parameter « in Eq. (4) is the
angle between a unit vector 7, normal to an upper
trapezoidal face (e.g., ABB’ A’) and the z axis. «can
be obtained from a straightforward calculation based
on a = cos YA, 2) = cos Y2(h + L, — Ly)/[3a,> +
4h + L, — L;z]l/ 2. Given the normal vector of
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each face, the angle between any two different faces
of a droxtal can be specified as follows:

d)i,j =T — COSil(ﬁ,i * ﬁ,j), (7)

where 7; and 7; are the normal vectors of surfaces i
and j, respectively. In this study, all the normal
vectors are defined to be outward pointing from the
particle surfaces.

The hexagonal geometry is a special case of the
droxtal geometry. For example, as angle 6; ap-
proaches 6,, the trapezoidal faces of the droxtal van-
ish and the particle becomes hexagonal. With
appropriate specifications of the three parameters,
one can specify hexagonal columns and plates with
various aspect ratios and sizes. Similarly, the bot-
tom and top faces can be minimized when 6, and 6,
are properly specified, leading to a double-pyramid
shape. Note that some rarely observed halos with
angular radii different from 22° and 46° may be at-
tributed to the refraction of rays associated with
double-pyramid ice crystals, as articulated by Green-
ler37 and references cited therein.

3. Initializing the Ray-Tracing Calculation for Droxtals

The propagating direction of an incident ray with
respect to the particle frame (e.g., the coordinate sys-
tem oxyz) can be specified in terms of a unit vector
#; = (sin 0, cos B, sin 6, sin B, cos 6,), in which 0, is
the zenith angle measured from the positive z axis to
7;, and B is the azimuth angle measured from the
positive x axis to the projection of #; on the x—y plane.
To initialize the ray-tracing calculation for a given
localized ray, one must specify the point where the
incident ray first hits the particle. The initialization
of the ray-tracing calculation in terms of the specifi-
cation of incident rays and the points where they
intersect the crystal surface is straightforward in
concept, but is quite complex in its numerical imple-
mentation, especially when the particle geometry is
complicated. Here we present an efficient method
for specifying the incident rays and the initial im-
pinging points on the surface of a general convex
particle.

To initialize the ray-tracing calculation associated
with a general convex particle, we envision a circular
disk that is located at a certain distance from the
particle. Let the disk be centered at —L#; where L is
a constant and #; is the unit vector pointing along the
incident direction. Furthermore, we assume that
the radius of this disk is equal to that of the circum-
scribing sphere of the particle. Any incident ray be-
ginning from a point outside the disk and
propagating in the #; direction will pass by the par-
ticle without intersecting it. Thus we need to con-
sider only the rays that pass through the region
encompassed by the disk. In practice, we randomly
select a point within this disk as the starting point for
a ray. To cover the disk uniformly with incoming
rays, the coordinate values (x'y’z’) for the points can



be expressed in the incident coordinate system as
follows:

x' =R \a cos(2mL,), (8a)
y' = R\ts sin(2mLy), (8b)
z'=-L, (8c)

where R is the radius of the circumscribing sphere of
the particle and {; and {, are two random numbers
uniformly distributed between 0 and 1. To initiate
the ray-tracing calculation, the coordinate values
have to be transformed to the particle system oxyz.
The transformation relation is as follows:

X X
yo|=T|y"|, 9
2o z'

where (x¢, ¥¢, 20) is the coordinate values in the par-
ticle system and T is the transformation matrix be-
tween the two systems that can be specified by

cos 0,cos 3 —sin 3 sin 6, cos B
cos B,sinf3 cosB sin 6, sin B
—sin 6, 0 cos 0,

T (10)

If an incident ray starting at (x,, v, 2o) and propa-
gating in the direction of #; can impinge on the drox-
tal, the ray-tracing calculation is carried out;
otherwise, a new incident ray is chosen.

To illustrate the present method for determining
whether an arbitrary incident ray can intersect with a
convex scattering particle, we consider a simplified
two-dimensional scattering problem for which the
scattering particle is assumed to be a rectangle. As
illustrated in the left panel of Fig. 3(a), an incident ray
starting at point O; intersects the rectangle. For a
given incident direction, the condition for the illumi-
nation of a side of the rectangle is that its outward-
pointing normal vector must face toward the incoming
ray. Thus sides 3 and 4 of the rectangle are prospec-
tive sides to be illuminated (hereafter these two sides
are referred to as possible sides). Note that sides 1
and 2 can never be illuminated (hereafter these two
sides are referred to as impossible sides). Let the
distances from point O, to the possible sides 3 and 4 be
ds and d, (hereafter possible distances), of which d is
larger. Furthermore, let the distances between point
O, to the impossible sides 1 and 2 be D, and D, (here-
after impossible distances), of which D, is smaller.
From the left panel of Fig. 3(a) it is evident that ds <
D, i.e., the maximum value for the possible distances
is smaller than the minimum value of the impossible
distances. However, the opposite situation occurs if
the incident ray passes the particle without an inter-
section, as shown in the right panel of Fig. 3(a). In
this case, the maximum value of possible distances is
larger than the minimum value of the impossible dis-
tances, i.e., d; > D,. This geometric property illus-
trated in the left and right panels of Fig. 3(a) provides
a criterion to determine whether an incident ray can

Fig. 3. (a) Conceptual diagram to illustrate the method used to
determine whether an incident ray can intersect with a convex scat-
tering particle in the ray-tracing calculation (left panel: the ray
intersects with the particle; right panel: the ray passes the parti-
cle). (b) The results in which the sampled incident rays impinge on
the surface of a droxtal and those that pass the particle without
intersecting it.

intersect with the particle. Mathematically, the cri-
terion can be expressed as follows:

(1) If max(d;) < min(D,), an incident ray intersects
with the particle, as is the case shown in the left
panel of Fig. 3(a).

(2) If max(d;) > min(D)), an incident ray passes by
the particle without intersecting it, as is the case
shown in the right panel of Fig. 3(a).

In the preceding criteria, max(d;) indicates the max-
imum value of d; in which i = 3 and 4, whereas
min(D;) indicates the minimum value of D; in which
Jj=1and 2. Note that the values of d; and D; can be
negative. The present method is suitable for all two-
and three-dimensional convex particles no matter
how complex the particle surfaces may be. As an
example, Fig. 3(b) shows the specification of the in-
cident rays and their corresponding impinging points
on a droxtal particle by this method. The circular
area bounded by the dotted line indicates the region
where starting points of the incident rays are sam-
pled on a plane perpendicular to the direction of in-
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Fig. 4. All possible projections of a droxtal with various orienta-
tions relative to the incident direction.

cidence. The solid lines indicate the projection of the
droxtal along the incident direction. The dots indi-
cate the projections of the incident rays that intersect
with the particle, and the small crosses that are out-
side the particle projection indicate those incident
rays that pass by the particle without intersecting it.

4. Diffraction

The contribution of diffraction to the scattering ma-
trix can be expressed as follows!®:

k*D [ cos 6 + cos® 0 0
Sd_4fn-[ 0 1+cos6|’ S
D= ff exp(ik#, - r)d’r, (12)
P

where the domain of the integration in Eq. (12), P, is
the projected area of the droxtal on a plane perpen-
dicular to the incident direction, % is the wave num-
ber, 6 is the diffraction angle, 7, is a unit vector in the
scattering direction, and r is the position vector of a
point in the integration domain. Under different
orientation conditions, the projection of a droxtal can
vary from a hexagon to a dodecagon, as illustrated in
Fig. 4. To perform the integration in Eq. (10) for a
specific particle orientation, we divide the projection
of the particle onto a plane normal to the incident
direction into small triangles that share a vertex at
the origin. As an example, let us consider the dode-
cagonal projection. This projected area can be di-
vided into 12 small triangles. If we denote the 12
apexes of the dodecagon in terms of their position
vectorsi = 1 — 13 [note that r{5 = ry, as shown in Fig.
4(d)], the position vector for an arbitrary point within
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the ith triangle can be decomposed into two vectors as
follows:

r=e(l—mr,+mer,,i=1-12,  (13)

where r; and r;,; constitute the neighboring two
sides of the triangle ;. Two free parameters € € [0,
10and m € [0, 1] are introduced so that any position
vector r in the triangle can be specified by a combi-
nation between € and m. Upon the substitution of
Eq. (13) into Eq. (12), the integration of phase vari-
ation over these small triangles can be transformed
to the integration over the € and v space. With some
mathematical manipulation, it can be shown that

D; = ff exp(ikf, - r)d’r = |r; X 1.4

triangle;

1 1
X f j exp{ik?, - [e(1 — m)r; + mer;,,]}ednde

0 Yo
|ri X ri+1| ey n
= | explikf, 1 1/2)
ikfg s (X — 1y)
sin(k#, - 1;1/2)
k’as . I'i+1/2
sin(kf, - 1;/2)
kf‘s M I‘l/2

— exp(ik?,-1r;/2)

(14)

The quantity D in Eq. (12) can be obtained in a
straightforward manner when we sum over D;. One
can use the symmetric property of the particle pro-
jection to simplify the summation process. We note
that r; and r;, s . = 1 — 6) are oppositely directed
about the origin, that is,

r,= —T.g l =1- 6. (15)

This symmetric property of the particle projection
will result in the imaginary parts of D; and D, 4
canceling each other in the summation. Thus one
can obtain an analytical expression for D as follows:

6 5
D= E (D; + D) = E 2|r; X 14
i-1

=1

% (cos q; —1)/q; — (cos q;s1 — 1)/qi1q
qi+1— q;
| (cos qg— 1)/qe + (cos g1 — 1)/q1
96 T q1

—2|rg X 1y

b

(16)

where q; = k7, - r;, in whichi = 1 — 6. The expres-
sion in Eq. (16) is similar to that reported by Yang
and Liou!! for the case of hexagonal ice crystals.

5. Numerical Results and Discussion

The present numerical computation is carried out for
two wavelengths at 0.66 and 11 pm, for which the
refractive indices of ice3s are 1.3078 + 1.66 X 108
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Fig. 5. Phase matrix computed by two models for randomly ori-
entated hexagonal ice columns and plates.

and 1.0925 + 2.48 X 10 'i, respectively. Because
small particles in the atmosphere tend not to have
preferred orientations, we assume droxtals to be ran-
domly oriented in space. In the numerical compu-
tations we average the single-scattering properties of
the particles over 200,000 random orientations.

As discussed in Section 2, hexagonal columns and
plates can be viewed as special cases of droxtals with
appropriate configurations of 6; and 6,. To validate
the IGO method developed in this study, we first
compare the results computed from our IGO method
with the results by Yang and Liou for hexagons.34
Figure 5 shows the all-phase matrix elements Py,
P, Pyy, Pss, Pys, and P,y computed from the two
models for randomly orientated hexagonal ice col-
umns (L/a = 100 pm/20 wm) and plates (L/a = 50
pm/100 pwm) at a wavelength of 0.66 pm, where L
denotes the length of the column (or the thickness of
the plate) and a is the semiwidth of the particle cross
section. The droxtal geometry that reduces to the
hexagonal column is specified by R = 53.85 pm and
8, = 0, = 21.8°. For the plate, the corresponding
droxtal configuration is R = 103.12 pm and 6; = 0, =
76.0°. It is evident from Fig. 5 that the phase ma-
trices computed by the two different computational
codes are essentially the same.

Figure 6 shows the six nonzero elements of the
phase matrix calculated at the wavelength of 0.66 pm
for a randomly oriented droxtal ice crystal with R = 50
pm and 6; = 32.35° and 6, = 71.81°. Note that the
size parameter of the droxtal (2wR/\) is approximately

108 1w
10% @ 0.5 e PPy n e
10t R=50 um 0
o %=0.66 pro i - FrdPs
% 109 m=1.3078+i1,66x10’8 0.5 —prrrr RAUEAN RALEN
= 0 60 120 180
& 8,=32.35% 8,=71.81° 1
Py 4
§ 102 ] = PulPy
& p
0.5
10° ]
0..:._\" “'.'.Jv
100 1 \ ¥
7] \/’\hl
107 pdes IR PsalPs
it PPy
10‘2|||1:|I11~|rr'|s||n -1 T T T T
0 60 120 180 0 860 120 180

Scatiering Angle ° )]

Fig. 6. Nonzero elements of the phase matrix for a droxtal at a
wavelength of 0.66 pm with the geometric configuration of R = 50
pm, 6; = 32.35°, and 6, = 71.81°.

476 in this case. For a given value of R, a droxtal with
these values of 6; and 6, possesses the maximum pos-
sible volume. For the phase function P,;, the strong
forward scattering is caused by diffraction and also by
the refraction through various pairs of parallel crystal
faces. A pronounced scattering peak can be seen at a
scattering angle of 11°.  This peak is also observed for
the phase function of an individual bullet-shaped crys-
tal and also bullet rosettes.?3° The minimum devia-
tion angle 6,, associated with ray refraction through
two faces inclined at an angle A can be calculated by
the following equation:4°

. 1( : A)
0, =2 sin [ m sin 9]~ A, (a7
where m is the real part of the refractive index.
Based on Eq. (17), the peak at 11° can be explained by
two sequential refractions through a trapezoidal face
such as ABB’ A’ and a rectangular face such as D' E’
TS [see Fig. 2(a)]. These two faces are inclined at an
angle of 34°, and the corresponding minimum-
deviation angle for a real refractive index m = 1.3078
is 11°. Three small peaks are seen over a broad
scattering maximum that ranges from 16° to 26° in-
cluding the 22° halo. The other two scattering max-
ima at 16° and 26° can be explained by the minimum-
deviation angles associated with two sequential
refractions of rays through a prism angle of 48° and
68°, respectively. The angles between any two faces
of a droxtal with 6; = 32.35° and 6, = 71.81° are listed
in Table 1, which also lists the minimum-deviation
angles calculated by Eq. (17) with the refractive index
of ice at 0.66 pm. The broad scattering maxima re-
gion in the phase function between 16° and 26° is the
result of contributions by five possible face combina-
tions. There are three possible combinations that
contribute to the scattering maxima around 46°.
Because of the presence of 12 trapezoidal faces and
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Table 1. Minimum-Deviation Angles Associated with Various
Combinations of the Particle Faces

Minimum-Deviation

Angle A Face Combination Angle 6,,
0° Top-bottom 0°
ABB' A'-STT' S’
A’ B'QP-D' E' TS
34° ABB'A'-D' E' TS 11°
48° ABB' A'-RSS’ R’ 16°
56° ABB' A'-bottom 19.8°
PQQ’ P'-top
60° A’ B' QP-C' D' SR 21.7°
65.5° ABB' A'-C' D' SR 24.6°
68° ABB' A'-DEE’' D’ 26°
88° ABB' A'-CDD’ C’ 42.6°
90° A' B' QP-top 46°
A’ B' @P-bottom
91.8° ABB' A'-QRR' Q' 48°
112° ABB' A'-PQQ’' P’
114.5° ABB' A'-B’ C' RQ
120° A’ B' QP-B' C' RQ
124° ABB' A'—top
PQRQK' P'—bottom
131° ABB' A'-BCC’' B’

the decrease of the portion of rectangular crystal sur-
faces for droxtals in comparison with hexagons, the
scattering maximum at 150° caused by multiple total
internal reflections becomes much smaller than that
in the case for hexagons. The degree of linear po-
larization can be represented by —P;,/P;; when the
incident ray is unpolarized. Figure 6 shows that a
negative polarization is associated with the 22° and
46° halos and in the vicinity of pure backscatter
(180°). The element P,,/P;; is related to the depo-
larization of scattering light when the incident rays
are linearly polarized. This element is also a good
indicator of the nonsphericity of the droxtal. Posi-
tive values are noted for P,,/P;, for the entire scat-
tering angular domain. Values for element —P,5/
P,, are essentially negative, except for a small
positive peak located in the vicinity of 177°. The
values of P;3/P,; and P,,/P,; are approximately
equal for the scattering angles ranging from 0° to 90°.
At scattering angles larger than 90°, P55/P,, becomes
negative, whereas P,,/P;; remains positive. Be-
cause of the hexagonal structure, the phase-matrix
elements of droxtals are similar to those of hexagons,
as is evident from a comparison of the present results
and those shown by Takano and Jayaweera.>
Figure 7 shows the scattering phase matrix of a
droxtal with R = 50 pum, 6; = 1.5°, and 6, = 85° at the
0.66-pm wavelength. Because 6, is very small, the
top and bottom faces essentially shrink to a point, and
the surface area of each of the pyramidal faces is sub-
stantially increased. Thus there are 18 faces for this
configuration compared with the 20 faces discussed
above. Compared with the phase function of the
droxtal shown in Fig. 6, the forward-scattering maxi-
mum for this crystal is slightly larger because of an
increase in the diffracted energy. A pronounced scat-
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Fig. 7. Nonzero elements of the phase matrix for a droxtal at a

wavelength of 0.66 pm with the geometric configuration of R = 50
pm, 6; = 1.5° and 6, = 85°.

tering peak located at 15° can be seen for P;;, whose
formation mechanism is similar to that for the 11° halo
in Fig. 6. Because of the absence of the top and bot-
tom faces, the scattering maximum near 46° caused by
the refraction through the top or bottom faces and a
central face is negligible. The increase in the area of
the trapezoidal faces reduces the scattering peak cor-
responding to the 22° halo. By comparing the phase
functions shown in Figs. 6 and 7, one can see signifi-
cant differences for scattering angles ranging from
140° to 160°. For other phase-matrix elements, the
overall features shown in Figs. 6 and 7 are similar.
However, significant differences can be seen in the
backscattering direction for these two cases, particu-
larly for P,,/P;; and P,,/P;;. This behavior may
have implications for measurements by depolarized
lidars.

The asymmetry factors for the droxtals shown in
Figs. 6 and 7 are 0.8038 and 0.7459, respectively, and
are smaller than that of the spherical ice crystals
(0.8911) having the same size. In the GO region, the
asymmetry factor is more sensitive to the geometric
shape than the size of the particle. These differ-
ences in the asymmetry factor may have an influence
on the determination of the radiative forcing of cirrus
clouds. If the smallest ice crystals in a given size
distribution are assumed to be spherical, one may
introduce substantial errors in the climate model or
in the interpretation of the remote sensing measure-
ments involving cirrus clouds.

Figures 8 and 9 show the nonzero elements of the
phase matrix for two different droxtal geometries at
the infrared (IR) wavelength of 11 pm. Compared
with those calculated at a visible wavelength, phase
functions in the IR are essentially featureless in the
side-scattering and backscattering directions. This
behavior can be ascribed to substantial absorption
within the ice particles at this wavelength, which acts
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Fig. 8. Nonzero elements of the phase matrix for a droxtal at a
wavelength 11 pm with the geometric configuration of R = 50 pm,
0, = 32.35° and 0, = 71.81°.

to attenuate the energy of the rays refracted into the
particle to a negligible amount. Because diffracted
energy is concentrated in the forward direction, the
phase matrices in the side-scattering and backscatter-
ing directions are essentially attributed to the external
reflection of rays.4#! The oscillation in the phase func-
tion P4, is associated with the diffraction component of
the scattered energy. The present results confirm
that, in the IR, detailed geometric information of the
particle such as edges and corners becomes less impor-
tant and the diffraction component of scattering dom-
inates the pattern of the phase function, as has been
noted in previous studies (e.g., Lee et al.42). As evi-
dent from Figs. 8 and 9, the phase-matrix elements
associated with the polarization configuration of scat-
tered light are insensitive to the detailed particle ge-
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ometry. The feature associated with external
reflection is insensitive to the particle geometry under
the assumption of random particle orientation.

Figure 10 shows the linear depolarization ratios 8H
and 8V for four types of ice crystal (hexagonal columns,
plates, 20-faced droxtal, and 18-faced droxtal), where
OH and 3V are defined, respectively, as follows?®:

BH: Pll_P22 (183)
P+ 2P, + Py’
P,—-P
8V _ 11 22 (18b)

P11_2P12+P22.

For hexagonal columns and plates, there is a notable
difference between 3V and 8H at a nearly backward-
scattering angle (i.e., 6 ~ 178°), whereas for the drox-
tals the difference is not as pronounced. Because of
the hexagonal structures, the values of 8V and 8H for
all crystals display peaks in the angular region 2° <
6 < 20°. This phenomenon has been discussed by
Takano and Jayaweera.> At the backscattering angle
6 = 180°, linear depolarization ratios for droxtals with
0, = 32.35° and 6, = 71.81° (i.e., the 20-faced droxtal)
have the smallest value among these four kinds of ice
crystal, and the 18-faced droxtal with 6; = 1.5° and
0, = 85° has the largest values. These differences in
the backscattering direction may have implications for
the interpretation of polarized lidar returns when ice
clouds are present. Interestingly, 20- and 18-faced
droxtals exhibit different patterns of linear depolariza-
tion ratios in the near-backscattering direction. Al-
though 8H and 8V of the former show virtually no
angular dependence for scattering angles larger than
160°, linear depolarization ratios of the latter increase
drastically for scattering angles approaching 180°.
As was shown previously,*3 such gradients in the azi-
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Fig. 11. Phase function of droxtals derived from the averaging of

various combinations of 6; and 6,,.

muthally integrated linear depolarization ratio affect
cirrus polarization measurements with lidar because
photons contribute to the signals that are scattered
more than once in the cloudy atmosphere. However,
for optically thin (translucent) cirrus clouds, this
multiple-scattering error is small.

In reality, the geometry of droxtal ice crystals can-
not be confined to a specific combination of 6, and 6.,
Figure 11 shows the average of the 0.66-um phase
function P, over various combinations of 6; and 6,
As shown in Fig. 11, the values of 6, and 6, are
assumed to follow two Gaussian distributions cen-
tered at 32.35° and 71.81°, respectively. These dis-
tributions for 6, and 6, imply that droxtals with the
maximum-volume configuration (i.e., 6; = 32.35° and
8, = 71.81°) are the most prevalent among all possi-
ble droxtal configurations in cirrus clouds. Let
W,(6,) and Wy(65) be the probability weightings spec-
ified by the Gaussian distributions. The average
phase function can be obtained as follows:

Pll(es) =

J. f P11(0,; 01, 02)W1(0)W5(05)0,(01, 65)d6,d0,
01 Vg

b

f f W1(6)Wy(02)a4(6,, 05)d6,d0,
01 Vg

(19)

where o, is the single-scattering cross section. The
22° and 46° halos become pronounced in the averaged
phase function P;;. We also note that the average
over different geometric configurations smoothes out
the scattering peaks occurring at small angles such
as 11°, as well as those small oscillations in side-
scattering and backscattering directions. Com-
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pared with the case for hexagonal ice crystals, the
scattering phase function averaged over various
droxtal configurations is quite unique, particularly in
the 22°, 150°, and backscattering angular regions.

6. Conclusions

Small particles with aspect ratios of the order of unity
are prevalent in the uppermost regions of mid-latitude
and tropical cirrus clouds. The scattering behavior of
these small ice crystals is important to the understand-
ing of the bulk optical properties of cirrus clouds and
the remote sensing of these cloud microphysical and
optical properties from satellite or surface measure-
ments. Multifaced ice crystals known as droxtals are
suggested to represent these small ice crystals. The
single-scattering properties of droxtals were investi-
gated previously through an application of the FDTD
method, but the results were limited to small size pa-
rameters less than 20. In this study we employ an
IGO model34 to investigate the single-scattering prop-
erties of droxtals with size parameters in the GO re-
gion. Two different shapes are considered in which
the particles have either 18 or 20 faces. An efficient
approach is presented for the initialization of the ray-
tracing calculations for a particle having a general
convex shape.

The phase function of the droxtals at the visible
wavelength (0.66 pm) displays maxima at scattering
angles smaller than 22°. The maxima can be ex-
plained by consideration of two sequential refractions
associated with the pyramidal and columnar faces.
Because of the hexagonal structure of the crystal fac-
ets, all elements of the scattering phase matrix show
similarities to the properties that have been observed
in those of hexagonal ice crystals. At 11 pm, where
absorption of the incident radiation within the parti-
cle becomes dominant, the phase functions of the 18-
and 20-faced droxtals are essentially featureless. A
comparison of the linear depolarization at a visible
wavelength between hexagonal and droxtal ice crys-
tals suggests that there is a notable difference at the
backscattering angles. This difference is also ob-
served between droxtals with different geometric con-
figurations (i.e., the 18- and 20-faced crystals).
Finally, we note that the average of the phase func-
tion over various geometric configurations effectively
smoothes out the small oscillations, especially in the
backscattering angles.
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