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8.1 Introduction

The large-scale terrestrial climate is well-known to be sensitive to small changes
in the average albedo of the earth-atmosphere system. Sensitivity estimates vary,
but typically a 10% decrease in global albedo, with all other quantities held fixed,
increases the global mean equilibrium surface temperature by 5◦C, similar to the
warming since the last ice age, or that expected from a doubling of CO2 (e.g., Caha-
lan and Wiscombe, 1993). Yet not only is the global albedo of 0.31 only known to
≈ 10% accuracy1 but current global climate models often do not predict the albedo
in each gridbox from realistic cloud liquid water distributions; they normally tune
the liquid until plane-parallel radiative computations produce what are believed to
be typical observed albedos. The inability of global climate models to compute the
1 Estimates of global albedo range from 0.30 to 0.33, or 3 out of 31 ≈ 10%, (e.g., Kiehl and

Trenberth, 1997).
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albedo is due to their inability to predict the microphysical and macrophysical prop-
erties of cloud liquid water within each gridbox, and their reliance on plane-parallel
radiative codes. As Stephens (1985) has emphasized, the mean albedo of each grid-
box depends not only on the mean properties of clouds within each box, but also
upon the variability of the clouds, which involves not only the fractional area cov-
ered by clouds, but also the cloud structure itself. During recent years many climate
models began to carry liquid water as a prognostic variable, e.g., Sundqvist et al.
(1989) and Tiedtke (1996). It is important to treat cloud radiation and cloud hydrol-
ogy consistently, which requires that cloud parameterizations become dependent on
the fractal structure of clouds. Radiative properties of singular multifractal clouds
have been previously studied (e.g., Cahalan, 1989; Cahalan and Snider, 1989; Love-
joy et al., 1990; Gabriel et al., 1990; Davis et al., 1990). Here we shall show how
radiative properties of marine stratocumulus boundary-layer clouds, and specifically
area-average albedo of these clouds, depend on their structure. The central role of
this cloud type in maintaining the current climate was clarified and quantified in
Ramanathan et al. (1989).

The dependence of average albedo on cloud structure has been found to be es-
pecially important in the case of marine stratocumulus, a major contributor to net
cloud radiative forcing. Computations based on observations of California stratocu-
mulus during the First International Satellite Cloud Climatology Project (ISCCP)
Regional Experiment (FIRE) have shown that stratocumulus have significant fractal
structure, and that this “within-cloud” structure can have a greater impact on aver-
age albedo than cloud fraction (Cahalan and Snider, 1989; Cahalan et al., 1994b,a).
These studies employed a “bounded cascade” model to distribute the cloud liquid,
defined in terms of two cascade parameters: f , the difference in cloud liquid frac-
tions between two segments of the full cloudy domain being considered, and c, the
difference of liquid fractions at the next smaller scale (within each segment) divided
by f .2 Parameters c and f are empirically adjusted to fit the scaling exponent of the
power spectrum of liquid water path (W ), β(c) ≈ 5/3, and the standard deviation
of log W , � (f), respectively. In order to isolate the effects of horizontal liquid water
variations on cloud albedo, it is convenient to assume that the usual microphysical
parameters are homogeneous, as is the geometrical cloud thickness. In order to sim-
plify comparison with plane-parallel clouds, the area-averaged vertical optical depth
is kept fixed at each step of the cascade. The albedo bias is then found as an analytic
function of the fractal parameter, f , as well as the mean vertical optical thickness,
τv, and sun angle,

�
0. For the diurnal mean of the values observed in FIRE (f ≈ 0.5,

τv ≈ 15, and
�
0 ≈ 60◦) the absolute bias is approximately 0.09, nearly 15% of the

plane-parallel albedo of 0.69. Diurnal and seasonal variations of cloud albedo bias
have been determined from observations during the Atlantic Stratocumulus Transi-
tion Experiment (ASTEX) and compared to the FIRE results (Cahalan et al., 1995).
2 Bounded cascades were first introduced in Cahalan et al. (1990), and their scaling properties

studied in Marshak et al. (1994). For a description of bounded cascades in terms of f and
c, see the discussion following (8.2) below.
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The goal of this chapter is to show how these results for the mean albedo of
bounded cascade clouds, derived in the references cited above, may be applied to
parameterizing the albedo of such clouds in terms of the plane-parallel albedo of a
cloud having an “effective optical thickness” which is reduced from the mean thick-
ness by a factor χ(f) which depends only on the fractal parameter f , or equivalently

� (f), and not on the mean cloud properties. This “effective thickness approxima-
tion” (ETA) is a special case of the more general “independent pixel approximation”
(IPA), sometimes referred to as the “independent column approximation” (ICA) es-
pecially for gridded climate models. The key assumption of any IPA (or ICA) type
approximation is the neglect of horizontal photon transport (see Chap. 12). In ad-
dition, it depends only on 1-point cloud probability distributions, not on the spatial
arrangement or correlations of individual cloud elements. On the other hand, knowl-
edge of the accuracy of any IPA approximation depends on three-dimensional (3D)
radiative transfer (i.e., with net horizontal fluxes) as well as on the spatial (typically
fractal) cloud structure. In this chapter, though we compare the IPA/ICA with 3D
radiative transfer as is done in other chapters, the primary purpose is to compare the
IPA with the much simpler ETA. In particular, we use a simple fractal “bounded cas-
cade” model to (1) motivate the ETA; and (2) determine the accuracy of the ETA by
comparing it to the full IPA, using cloud parameters typical of marine stratocumulus.
Moreover, some analytic results for bounded cascades are generalized and simpli-
fied in two appendices. In the “Further Readings” section at the end, we point the
reader to simple alternatives to the ETA, each of which have particular advantages
and points of view. We feel that each approximation is helpful insofar as it lends
some insight into real clouds, which are far more complex than any of our mathe-
matical idealizations, as anyone can discover who takes the opportunity to study the
amazing variety of real cloud systems.

In the following, we first define some terms in Sect. 8.2. Then Sect. 8.3 shows
that the IPA provides estimates of the plane-parallel albedo bias accurate to about
1% for bounded cascade clouds, and Sect. 8.4 applies the IPA to show that the to-
tal absolute bias reaches a maximum of about 0.10 during the morning hours, when
the cloud fraction is nearly 100%. These two sections are primarily summaries of
results from Cahalan et al. (1994b) and Cahalan et al. (1994a), although there a 1D
cascade was employed, while a here a 2D cascade is applied. Section 8.5 gives the
main result, that under certain commonly-observed conditions the albedo is approxi-
mately the plane-parallel albedo at a reduced “effective optical thickness” τeff ≡ χτv,
where the reduction factor χ decreases with f , or equivalently � (f), approximately
as 10−1.15 � 2 (see Fig. 8.5 and (8.B.12)), independently of the mean vertical optical
depth, τv. The accuracy of this approximation is given as a function of both f and the
mean thickness. The results are summarized and their limitations briefly discussed
in Sect. 8.6. Appendix 8.A shows that all moments of a bounded cascade may be
obtained by considering only the second moment as a function of the fractal parame-
ter. This generalizes expressions for the second and third moments given in Cahalan
et al. (1994a), and allows the lognormal behavior in the singular limit to be explic-
itly exhibited (see also Cahalan, 1994). Appendix 8.B gives expressions for χ(f)
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and � (f) as power series in f with coefficients depending on c, and evaluates the
coefficients for the case of a β(c) ≈ 5/3 wavenumber spectrum.

8.2 Definitions

Many general circulation models (GCMs) are now predicting mean cloud liquid wa-
ter in each gridbox, not merely diagnosing it from other quantities. The cloud albedo
could potentially also be accurately predicted, if cloud liquid could be accurately dis-
tributed within each gridbox. Efforts are underway to improve the treatment of cloud
distributions in global models, so that simulated clouds can respond more realisti-
cally to climate change. The hope is that average cloud liquid in each gridbox will be
accurately predicted, and that the resulting cloud albedo will be correctly computed
from this, and other average cloud parameters. It is important to recognize, however,
that mean cloud parameters are insufficient to compute the mean albedo. The mean
albedo also depends, at a minimum, on the deviations of the liquid water from the
mean, for instance, on the mean and standard deviation of the logarithm of the liquid
water. We demonstrate this here and in the next using the bounded cascade model.

The schematic in Fig. 8.2 shows three approaches to distributing a prescribed
amount of liquid water in a given vertical level of a GCM gridbox. In (a) it is uniform
over the whole area, and thus the albedo may be computed from plane-parallel theory,
and depends only on the average optical thickness, effective particle radius, and so
on. In (b) the cloud is assumed to cover only a fraction of the area, is somewhat
thicker in order to contain the same total liquid, but is still assumed to be uniform
on that so-called “cloud fraction.” In this case the mean albedo of the gridbox is
assumed to equal the area-weighted average of a “cloud albedo” and a “clear-sky”
albedo. Finally, in (c) the cloud covers the same cloud fraction as in (b), with the same
mean parameters, but is assumed to have a non-uniform structure which depends on
one or more “fractal parameters.” The cloud fraction and the fractal parameters are
assumed to depend on geographic region, season, and time of day.

As a measure of the impact of cloud fraction and fractal parameters on the aver-
age albedo, we define the “absolute plane-parallel albedo bias”

�
Rpp, as the mean

albedo computed in case (a) minus that in case (c). This may be expressed symboli-
cally as:

�
Rpp = Rpp − [AcRf + (1 − Ac)Rs], (8.1)

where Rpp is the plane-parallel reflectivity, Rf is the mean reflectivity of the fractal
cloud, Rs is the mean clear-sky reflectivity, and the same total liquid water is used in
all cases. The relative plane-parallel albedo bias is the absolute bias divided by Rpp.
To avoid confusion, the absolute bias is always given as a fraction, while the relative
bias is given in percent. Since the simple uniform cloud fraction model shown in
Fig. 8.2b is currently widely employed, it is convenient to split the total plane-parallel
bias into the difference between (a) and (b), plus the difference between (b) and (c).
Symbolically:
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(a)

(b)

(c)

Plane-Parallel

Plane-Parallel

on fraction Ac

Fractal on 

fraction Ac

Fig. 8.1. Schematic showing three approaches to distributing the cloud liquid water in a GCM
gridbox. In the top figure, the cloud has plane-parallel geometry, with cloud parameters such
as vertical optical thickness, τv, uniform over the whole gridbox. In the middle figure, the
parameters are uniform over a fraction Ac of the gridbox, with the same values as above,
except that cloud vertical optical thickness increases to τv/Ac, thus preserving the total liquid,
while the cloud thickness is zero on the remaining fraction 1 − Ac. In the bottom figure one
has a fractal distribution of cloud parameters over the fraction Ac, with the same mean values
as in the middle, and an identical clear fraction 1 − Ac.

�
Rpp = {Rpp − [AcRpp + (1 − Ac]Rs)}

+ {[AcRpp + (1 − Ac)Rs]

− [AcRf + (1 − Ac)Rs]}.
(8.2)

The first difference represents the bias due only to the reduction in cloud fraction
from unity to Ac, and the corresponding increase in thickness, with no change in the
plane-parallel assumption; the second difference is the additional bias due only to
the within-cloud fractal structure, where again the same total liquid is employed in
all cases. This section and the following considers the case of overcast clouds, having
Ac = 1, so that the total bias depends only on the fractal parameter. Then Sect. 8.4
considers the case in which both the cloud fraction and the fractal parameter follow
the diurnal variations observed in California marine stratocumulus. As we shall see,
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the Ac = 1 case produces the largest total bias, because of the sensitivity of the bias
to the fractal structure, and the observed fact that in California stratocumulus the
overcast cases have the greatest within-cloud variability.

In order to generate a bounded cascade cloud, we begin with a uniform cloud hav-
ing a liquid water path of, e.g., W = 100 g/m2, and corresponding vertical optical
thickness of, e.g., τv = 15 (assuming an effective drop radius of re = 10 µm). We as-
sume large but finite horizontal optical thicknesses in both horizontal directions, say
τh = 1500. This uniform distribution is then made non-uniform by a bounded multi-
plicative cascade process, in which the cloud is successively subdivided into smaller
parts, and successively smaller fractions of liquid water are transferred among these
parts, without changing the total.3

It is simplest to describe a one-dimensional (1D) bounded cascade, and we shall
consider the simplest subdivision process: Divide the cloud in half along a north-
south line. Flip a coin to select one half, and transfer a fraction, say f0 = f = 0.5
from that half to the other one. The process is then iterated as follows: Each of
the two halves is divided in half the same way, two coins are flipped to select one
quarter from each of the two pairs, and a smaller fraction f1 = f × c, with say
c = 0.8, so that f1 = 0.4, is transferred from each chosen quarter to the other one.
The resulting four quarters are in turn divided in half, four coins are flipped, and a
fraction f2 = f1 × c = 0.32 is transferred within the four pairs of eighths, and so
on. The resulting distribution of liquid water path has a power spectrum behaving
as k−β, where β ≈ 5/3 when c = 2−1/3 ≈ 0.8, as observed (Cahalan and Snider,
1989), and an approximately lognormal probability distribution, with the standard
deviation of log W, � (f) ≈ 0.39 when f = 0.5, as is also observed (Cahalan et al.
(1994a); see also Gage and Nastrom (1986) and Lilly (1989)).

A two-dimensional (2D) bounded cascade begins with the same initial cloud,
which is then divided into quarters along both north-south and east-west lines, and
liquid water fractions are then transferred among the quarters. One transfer method is
as follows: The four quarters are divided into three pairs, aligned either north-south,
east-west or diagonally, with equal probability for each of the three possible ways.
One of the pairs is selected randomly, and a fraction f0 = f = 0.5 is transferred
within that pair, with either direction equally likely, while a fraction f ′

0 is transferred
within the other pair. For simplicity we also take f ′

0 = f . The process is then repeated
by quartering each quarter, transferring a fraction f1 = 0.8 × f , and so on. The set
of optical depth values thus generated at steps 1, 2, 3, ..., N in the 2D cascade are
identical to those generated at the same steps in the 1D cascade, except that each
value appears twice in the first step, and 2N times in the N th step. The one-point
probability distribution functions (the PDFs) of W and τv are identical in both 1D
and 2D.

Table 8.1 summarizes the symbols and typical values of parameters in the bound-
ed cascade cloud model. In addition to the bounded cascade, two additional assump-
3 If the fractions were kept the same at each step, the resulting distribution would be singular,

and the power spectrum would have more small-scale variability than is observed in marine
stratocumulus clouds.
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Table 8.1. Structural and optical parameters for bounded cascade cloud models.

Parameter Symbol Typical Value
single-scattering albedo $0 1
asymmetry g 0.85
liquid water path W 100 g/m2

liquid water path re 10 µm2

vertical optical thickness τv 15
solar zenith angle

�
0 60◦

scaling parameter c 0.794
spectral exponent β(c) 5/3
variance parameter f 0.5
reduction factor χ(f, c) 0.7
effective optical thickness τeff 10

tions are being made here. One is that the effective droplet radius is uniformly equal
to 10 µm, so that the vertical optical thickness of each part of the cloud is linear in
the liquid water:

τv = 0.15 W (8.3)

where W is expressed in g/m2.4
Second, we employ the “independent pixel approximation” or IPA, which means

that the reflectivity of each cloud pixel is assumed to depend only on its optical
depth, R = R(τ), and not the optical depth of neighboring pixels. This is a strong
assumption, and will be justified for the bounded model in the following section.

8.3 Independent Pixel Approximation

The grayscale map in Fig. 8.3a shows the reflectivity of 64×64 cloud cells as com-
puted with a Monte Carlo method for a cloud generated by 6 cascade steps of a 2D
bounded cascade with mean vertical optical thickness τv = 16,

�
0 = 60◦, and fractal

parameter f = 0.5. If there were no horizontal photon transport, the reflectivity of
each of the 212 = 4096 cloud pixels would simply be determined by independent
plane-parallel computations. The local differences between this “independent pixel
approximation” (IPA) and the Monte Carlo reflectivities are shown by the grayscale
map in Fig. 8.3b. The brighter areas of negative bias occur where the IPA underesti-
mates the reflectivity of an optically thick region which lies on the sunward side of
immediately adjacent thin regions and has an enhanced brightness due to photons es-
caping from those thin regions. Conversely, the darker positive regions occur where
the IPA overestimates the brightness of a thin region which lies downstream of an
4 The proportionality constant τv/W = 3/2 � wre in the limit of large size parameters in Mie

scattering theory, and it equals 0.15 m2/g if re = 10µm.
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adjacent thick region.5 These local errors in the IPA can be quite large, with mag-
nitudes exceeding the plane-parallel bias of about 0.1 and in one area even exceed-
ing 0.25. However, the horizontal average of the IPA bias is an order of magnitude
smaller than the plane-parallel bias, because the positive and negative regions tend
to approximately cancel in the area average.

The IPA has a long history of use in remote sensing, and was employed in a
theoretical study by Ronnholm et al. (1980). But without any explicit model of the
spatial structure, early studies could not examine the errors in the IPA. Here we find
significant local errors in the IPA fluxes for the 2D bounded cascade, even though
the model does not include geometrical cloud effects. The IPA is justified for the
bounded cascade only for mesoscale-averaged fluxes, and even this simplification
breaks down in the case of a singular cascade (Cahalan, 1989; Cahalan et al., 1994b).

When the sun is closer to the zenith than � 0 ≈ 60◦, the IPA errors tend to be
of the same sign, but much smaller in magnitude. On the other hand, when the sun
approaches the horizon, the reflectivity everywhere approaches unity, so all the biases
are again smaller than at � 0 ≈ 60◦. As a result, the total IPA bias is maximum when
the sun is near 60◦ (Cahalan et al., 1994a).

Since the horizontal average of the IPA errors is quite small, we may employ the
IPA to estimate the average albedo, and compare it with the albedo of a uniform cloud
having the same horizontal average optical depth. Thus we substitute this difference
for the “plane-parallel albedo bias” defined in (8.1). It can be shown that the resulting
plane-parallel bias is strictly positive as long as the reflection function is convex,
unlike the IPA errors. (See Jensen (1906), also Sect. 12.3.) The plane-parallel albedo
for the parameters used here is 0.69, while the average of Monte Carlo albedo (i.e.,
averaging over all pixels in a number of realizations such is the one in Fig. 8.3a) is
0.60. Thus the bias associated with using the area-average optical thickness is 0.09,
which is 13% of the plane-parallel albedo.

As a result of the IPA , the mean albedo may be computed by simply transforming
the optical depth of each pixel to reflectivity, and then averaging over all pixels. The
results in the case of conservative scattering are shown in Fig. 8.3. The upper curve
is the plane-parallel (f = 0) albedo as a function of mean liquid water path, and
the lower curve is the fractal (f = 0.5) albedo. For a typical mean liquid water
path of W ≈ 100 g/m2 (τv ≈ 15), Fig. 8.3 shows that the plane-parallel albedo of
about 0.69 is reduced to about 0.60 by the fractal structure, implying a relative bias
of approximately 15%. In order to obtain the correct albedo from a plane-parallel
cloud, it is necessary to reduce the liquid water path, or optical thickness, by 30%.
An explicit expression for this reduction is derived in Sect. 8.5.

Since in the IPA the reflectivity of a given pixel is a function of the local liquid
water path, it may be expanded in a Taylor series as follows:

R(W ) =R(W ) + (W − W )R′(W ) +
1

2
(W − W )2R′′(W )

+O((W − W )3R′′′),
(8.4)

5 Recall that the cloud has constant geometric thickness everywhere, so that the horizontal
photon leakage is not simple geometrical shadowing. It occurs within the cloud.
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Fig. 8.2. (a) Contours of equal reflectance in a bounded cascade cloud with Ac = 1 and
f = 0.5. Starting with a uniform cloud having mean vertical optical thickness τ = τv = 16,
6 cascades were generated in each horizontal direction, giving 212 = 4096 uniform elements
or “pixels”. Reflectivities were computed by Monte Carlo with 107 photons. Microphysical
properties are uniform, with single-scatter albedo $0 = 1 and asymmetry factor g = 0.85.
The Henyey-Greenstein phase function was used, but essentially identical results are obtained
from the fair weather cumulus phase function. The sun is 60◦ to the left of vertical. The
black contour at 0.6 shows approximately where the reflectance equals the mean reflectance,
with more reflective regions lighter, and less reflective regions darker. (b) Contours of equal
“independent pixel bias” defined as the independent pixel reflectances (computed from the
vertical optical thickness of each pixel) minus the Monte Carlo reflectances shown in (a). The
average of these local algebraic biases is nearly an order of magnitude smaller than the “plane-
parallel bias” namely the of the mean optical thickness minus the mean of the independent
pixel reflectances, which is about 0.08.
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Fig. 8.3. (a) Albedo versus mean liquid water path [0–100 on lower axes], and vertical optical
thickness [0–15 on upper axes], for the two approaches shown in Figs. 8.2a and 8.2c, where
the fractal case is computed from the bounded model for Ac = 1 and f = 0.25, 0.5, 0.75,
using the independent pixel approximation. (b) Same as (a) except plotted on log scales for
liquid water [1–10,000 on lower axes], and optical thickness [0.15–1500 on upper axes]. (c)
The “plane-parallel bias” obtained by subtracting the mean reflectance (the lower curves in
(a)) from the reflectance of the mean (the upper curve). (d) Same as (c) except plotted on the
same log scales used in (b). Note from (a) that for the typical f = 0.5, when τv = 15 the
bias is 0.69 − 0.60 = 0.09, or 0.09/0.69 ≈ 15% of the plane-parallel albedo. Drawing a
horizontal line in (a) at the mean reflectance 0.60 at f = 0.5 shows that this reflectance is
that of a plane-parallel cloud having 30% less liquid water, or an optical thickness τeff = 10.
The 30% reduction in cloud liquid corresponds to a value of the “reduction factor” of χ = 0.7
(cf. (8.8) and (8.9)). Lack of significant curvature in (b) near τv = 15, compared to the curves
in (a), is the reason that an expansion in logs as in (8.6) is preferred over the ordinary Taylor
expansion in (8.5).



8 Effective Cloud Properties 421

where W is the average liquid water path, and R′(W ), R′′(W ) and R′′′(W ) are the
successive derivatives of R with respect to W , evaluated at W . (We have suppressed
for simplicity the dependence of R on the solar zenith angle.) Averaging both sides
of (8.4) eliminates the linear term on the right side, and we obtain

R(W ) = R(W ) +
1

2
µ2(f)R′′(W ) + O(µ3R

′′′), (8.5)

where µ2 and µ3 are the second and the third centered moments, respectively, of
the one-point distribution of W generated by the bounded cascade. Subtracting (8.5)
from R(W ) gives the plane-parallel albedo bias. The lowest-order term is positive,
since the curvature R′′ is negative (i.e., Fig. 8.3a shows convex graphs). This term
overestimates the bias, while inclusion of the µ3 term underestimates, and so on (see
Cahalan et al., 1994a). Appendix 8.A shows that all the moments of the bounded
model may be obtained from µ2 (as a function of f ), thus formally determining
all the coefficients in the above expansion. In Sect. 8.5 we consider an alternative
expansion about log(W ) (see Fig. 8.3b), which leads to a simple expression for the
effective liquid water path and effective thickness. First, however, we briefly review
the dependence of the bias on cloud fraction, Ac, to show that the overcast case,
Ac = 1, assumed in the above discussion, is associated with the largest plane-parallel
albedo bias during the diurnal cycle of California marine stratocumulus.

8.4 Diurnal Cycle

The total plane-parallel albedo bias has two contributions, as described in (8.2): (1)
that due only to cloud fraction, which is given by the albedo for Fig. 8.2a minus
that of Fig. 8.2b, and (2) that due to the fractal structure, given by the difference
between Fig. 8.2b and Fig. 8.2c. The fractal structure contribution is largest when the
liquid water variance is largest, which in the case of California marine stratocumulus
occurs during the morning hours, when the cloud fraction is nearly 100%, as shown
in Cahalan et al. (1994a). Although the cloud fraction contribution to the bias is larger
in the afternoon, when the cloud fraction drops to 60%, this is more than offset by
the decrease in the liquid water variance, which reduces both the fractal contribution
and the total bias. The fact that the cloud variance is largest when the cloud cover
is largest leads to the surprising result that plane-parallel estimates are most in error
when the usual “cloud fraction” corrections vanish!

In Cahalan et al. (1994a) the diurnal cycle of the albedo bias was estimated in-
directly, by first computing the diurnal cycle of f , determined from hourly values
of the variance of log W . Here we compute the bias directly from the time series of
W , by performing a plane-parallel computation of reflectance for each observation,
and then compositing the results hourly. The direct results agree qualitatively with
the earlier indirect approach, and are shown in Fig. 8.4. Here the lower curve is the
usual correction due only to cloud fraction, and vanishes when the fraction reaches
100% around 10 am. The middle curve is the additional correction due to the fractal
distribution of the cloud liquid water. The upper curve is the total albedo bias. Note
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Fig. 8.4. Absolute plane-parallel albedo bias as a function of time-of-day for California marine
stratocumulus, determined directly from microwave measurements of liquid water path during
18 days in June 1987, by computing an independent reflectivity from each measurement. The
same computation using the bounded cascade model with diurnally varying f and Ac is given
in Cahalan et al. (1994a), and is qualitatively similar. The upper solid curve is the total bias
defined as in (8.1), while the dotted and dashed curves are the contributions due to cloud
fraction and fractal structure, respectively, as defined in (8.2). Cloud fraction is defined as the
fraction of values exceeding 10 g/m2, and clear-sky albedo is taken to be zero.

that the cloud fraction correction is much smaller than the total, and is 180◦ out of
phase with the total during most of the day (except when the sun is setting) when the
total is dominated by the cloud fraction correction due to the neglect of the clear-sky
albedo. The 0.09 albedo reduction needed when the clouds are overcast represents a
major change in the average cloud albedo of 0.6.

8.5 Effective Optical Thickness

Since the largest albedo bias occurs for overcast cloudiness conditions, when Ac =
1, let us further consider that case, represented by the 15% increase in Fig. 8.3 of
the albedo of a plane-parallel cloud over that of a fractal with the same total cloud
water. As shown in Cahalan et al. (1994a), this bias may be estimated from a simple
“effective thickness approximation” which is a lowest-order approximation to the
bias determined from the IPA. To derive it, consider an expansion similar to (8.5),
except now the local reflectance is considered as a function of the logarithm of the
local liquid water path, log W , and is expanded in a Taylor series about the mean,
log W . Taking the mean of the result gives the mean cloud reflectivity as:
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R(log W ) = R(log W ) +
1

2
M2(f)R′′(log W ) + O(M4R

′′′′), (8.6)

where M2 is the variance of log W , given in Appendix 8.B, and R′′ is the second
derivative of R with respect to log W evaluated at the mean of log W . As a function
of log W , the conservative reflection function has an inflection point, where the slope
stops increasing with log W and begins to decrease, and the curvature goes through
zero, as seen in Fig. 8.3b. This typically occurs near log W . Thus the second term in
the preceding equation is small, so that the mean reflectivity is approximately given
by the reflectivity evaluated at log W . In the bounded cascade model, the mean of
log W is given by

log W = log Weff , (8.7)

where
Weff = Wχ(f, c), (8.8)

and χ(f, c) < 1 is the “reduction factor” given in (8.B), and is approximately 0.7
when f = 0.5 and c = 0.8, the appropriate values for typical cloud liquid water
distributions (see below).

Combining (8.8) with (8.3), allows us to define the “effective optical thickness”:

τeff = τvχ(f, c), (8.9)

where τv is the mean vertical optical thickness. Taking only the first term in the
expansion in (8.6), and using (8.3), it is clear that for a range of intermediate mean
cloud thicknesses near the inflection point of the reflectivity, the mean albedo may
be approximated by the plane-parallel albedo evaluated at the effective thickness, as
follows:

R(τ) ≈ R(τeff), (8.10)

An estimate of the plane-parallel albedo bias may be obtained by subtracting (8.10)
from the plane-parallel albedo, R(τv). The relative error in the bias estimate derived
from (8.10) is shown in Fig. 8.5 as a function of f and τv, for c = 0.8 and a solar
zenith angle of � 0 = 60◦, which is typical for stratocumulus. For the contours labeled
±30, for example, the bias obtained from the simple effective thickness approxima-
tion should be multiplied by 1 ∓ 0.3. Since the bias itself is on the order of 0.1, this
corresponds to corrections of ≈ ∓0.03. The correction is dominated by the M2 term
in (8.6), and thus changes sign near the inflection point of R(log W ).

According to (8.9), the effective optical thickness depends on the fractal structure
through χ, which is a known analytic function of fractal parameters f and c. The
fractal parameter f is in turn adjusted to give the observed value of � , also a known
analytic function of f and c, while c is fixed by the exponent of the wavenumber
spectrum. Thus τeff is parametrically determined as a function of � by varying f .
Details are given in Appendix 8.B, and results are shown in Fig. 8.5 for both c =
2−1/3 ≈ 0.8 needed to give a β = 5/3 wavenumber spectrum, and for the singular
limit c → 1, for which χ is a simple exponential given in (8.B.12). The point labeled
f = 0.5 in Fig. 8.5 corresponds to the diurnal average value of � = 0.39, determined
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Fig. 8.5. Relative error in percent in the plane-parallel bias when the actual albedo is approx-
imated by the plane-parallel albedo at a reduced “effective thickness” as a function of mean
optical thickness τv and fractal parameter f . If the effective thickness gives an absolute bias of
0.10 near the –20 contour, for example, then the actual bias should be increased 20%, to 0.12,
and similarly an estimate of 0.10 near the +20 contour should be decreased to 0.09. These
same corrections can also be applied to the relative bias.

from the stratocumulus observations discussed in Sect. 8.4. In this case χ ≈ 0.7, so
for example when τ = 15 we have τeff ≈ 10, and R ≈ 0.6.

Harshvardhan and Randall (1985) found that the global average cloud liquid must
be reduced by a factor of approximately 0.3 in order to obtain the correct global
albedo. To obtain this value of the reduction factor, χ = 0.3, for the bounded cascade
model requires an increase in the fractal parameter to f = 0.8, and an increase in the
standard deviation to � = 0.7, as seen in Fig. 8.5. This in turn increases the plane-
parallel albedo bias by a factor of 5. The fact that a much larger bias is found on a
global basis is presumably due to the much wider variation in cloudiness over the
globe, as compared to the relatively benign variation in marine stratocumulus. Davis
et al. (1990) considered a related quantity, the “packing factor” the inverse of the
reduction factor, and studied the thick cloud limit in a singular model, for which χ →
0, and the packing factor diverges. A similar singular model was studied in Cahalan
(1989). The bounded model considered here is a relatively conservative extension of
the plane-parallel idealization. More radical, and perhaps singular, models may be
needed to better represent radiative processes in deep convective cloud systems.
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Fig. 8.6. Plot of χ, the reduction factor, versus � , the standard deviation of log W ). Both
the horizontal and vertical scales are independent of the number of cascade steps, and apply
to either W or τ because of the simple linear relation expressed in (8.3). The solid curve is
for the bounded model with c ≈ 0.8, while the dashed curve is the singular limit given by
the simple expression in (8.B.12). Labeled points apply only to the upper curve. The value
of � derived from observations of California marine stratocumulus is 0.39, corresponding to
χ ≈ 0.7, which occurs at f = 0.5. (This is the diurnal mean in the summer, when f varies
from about 0.6 in the morning to 0.3 in the afternoon.) The global reduction factor χ ≈ 1/3
discussed by Harshvardhan and Randall (1985) occurs at f = 0.8, and requires a global value
of � ≈ 0.7.

8.6 Conclusions

A number of results on the mesoscale-average albedo of marine stratocumulus
clouds, known to be a major contributor to cloud radiative forcing, have been re-
viewed in this chapter. A fractal cloud model which reproduces the observed power
spectrum and low-order moments of the liquid water distribution in these clouds was
studied by both 3D Monte Carlo and analytic methods. Local horizontal fluxes were
determined from a 2D bounded cascade in Sect. 8.3, showing that errors in estimates
of such fluxes by the “independent pixel approximation” or IPA can be large in some
regions, though still producing an area-averaged reflectivity accurate to about 1%.
Section 8.4 discusses the diurnal cycle of the variability of marine stratocumulus,
showing the plane-parallel biases are largest when cloud fraction is near 100%.

The results suggest a way of parameterizing the impact of such cloud variability
on the large-scale albedo in terms of an “effective” liquid water path, Weff (or, equiv-
alently, an “effective” optical thickness, τeff ), smaller than the mean by a factor which
depends on the fractal cloud structure. Section 8.5 determined the accuracy of this
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“effective thickness approximation” or ETA, as a function of the fractal parameter f
and the mean liquid water path W (or equivalently the mean optical thickness τv).
The ratio of χ = Weff/W (or τ = τeff/τv) was determined as an analytic function
of the fractal parameters, and as a parametric function of � , the standard deviation of
log W (or log τ), which may be estimated from observations.

For marine stratocumulus, we find � ≈ 0.4 and χ ≈ 0.7 giving a mean albedo
approximately equal to that of a plane-parallel cloud having 30% less liquid water, or
15% less than the plane-parallel albedo of a cloud with the same liquid water amount.
A surprising result is that the plane-parallel albedo requires the largest adjustment
when the cloud fraction is nearly 100%, since that is when the largest variability is
observed. Thus the largest correction occurs when the usual cloud fraction correction
is small.

The bounded cascade model studied here represents a relatively conservative ex-
tension to plane-parallel clouds, since the cloud height and base are fixed. We also
keep the microphysics uniform. Yet even this conservative model shows that the
variability of liquid water in marine stratocumulus can have a larger impact on the
mesoscale average albedo than the usual cloud fraction corrections. For cloud types
not confined to a single vertical layer, such as those found in deep convective re-
gions, geometrical fractal properties neglected here may also impact large-scale ra-
diative properties, and may well require more radical departures from conventional
plane-parallel ideas. Fractal models for various surface types, including topography,
vegetation and sea ice, need to be combined with cloud models in order to fully
understand effects of inhomogeneity on atmospheric radiative transfer (see, e.g.,
Rozwadowska and Cahalan, 2002). Further study of the structure and radiation of
real clouds and surfaces in their full complexity will be needed in order to under-
stand how Earth’s climate is being regulated, and in order to consistently quantify
the role played by Earth’s cloud systems on the energy and hydrological cycles.

Appendices

8.A Rescaling f Generates W Moments

Here we derive expressions for the moments of a bounded cascade, as a function of
the cascade parameters f and c. We show that the moments may all be obtained from
the second moment considered as a function of f , by rescaling the values of f . We
then consider the singular limit c → 1, and show that all moments approach those of
a lognormal.

It is convenient to first define two sets of nth-order polynomials:

Pn(x) ≡ (1 +
√

x)
2n

+ (1 −√
x)

2n

2
=

n∑

m=0

(
2n
2m

)
xm, (8.A.1)

and
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Qn(x) ≡ (1 +
√

x)
2n+1

+ (1 −√
x)

2n+1

2
=

n∑

m=0

(
2n + 1

2m

)
xm. (8.A.2)

For example, the first four are given by:

n Pn(x) Qn(x)
1 1 + x 1 + 3x
2 1 + 6x + x2 1 + 10x + 5x2

3 1 + 15x + 15x2 + x3 1 + 21x + 35x2 + 7x3

4 1 + 28x + 70x2 + 28x3 + x4 1 + 36x + 126x2 + 84x3 + 9x4

(8.A.3)

Values of bounded cascade have the form

W =

∞∏

k=0

(
1 ± f ck

)
, (8.A.4)

where f, c ∈ (0, 1]. After averaging over ±, the moments of W depend only on
a = f2 and s = c2, and can be written in terms of the above polynomials in the
form:

µ2n(a, s) =

∞∏

k=0

Pn

(
ask

)
, (8.A.5)

and

µ2n+1(a, s) =

∞∏

k=0

Qn

(
ask

)
. (8.A.6)

For example, when n = 1,

µ2(a, s) =

∞∏

k=0

(
1 + ask

)
= 1 +

∞∑

m=1

(
sm(m+1)/2

∏m
k=1 (1 − sk)

)
am, (8.A.7)

and

µ3(a, s) =

∞∏

k=0

(
1 + 3ask

)
= µ2(3a, s). (8.A.8)

The last expression for µ2 in (8.A.7) was originally derived by Euler, as discussed by
Hardy and Wright (1979), page 280. Taking the limit s → 1, we can use the fact that

lim
s→1

1 − sk

1 − s
= k

to show that

lim
s→1

(
µ2

exp( a
1−s )

)
= 1, (8.A.9)

which implies an essential singularity in µ2. The third moment is also singular, since
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lim
s→1

(
µ3

(µ2)
3

)
= 1. (8.A.10)

We now generalize (8.A.8) and (8.A.10) to the remaining moments. By applica-
tion of Sturm’s theorem on polynomial roots localization, it can be shown that the
roots of Pn, Qn all lie on the negative real axis, so that we may write:

Pn(x) =

n∏

i=1

(
1 + Ri

(n)x
)

, (8.A.11)

and

Qn(x) =

n∏

i=1

(
1 + R̃

(n)
i x

)
(8.A.12)

where the R(n), R̃(n) are sets of positive real numbers with n elements. The first four
sets are:

n R(n) R̃(n)

1 1 3

2 3 −
√

8, 3 +
√

8 5 −
√

20, 5 +
√

20

3 7 −
√

48, 1, 7 +
√

48 0.232, 1.572, 19.196
4 0.040, 0.446, 2.240, 25.274 0.132, 0.704, 3, 32.163

(8.A.13)

Moments of order 2n and 2n + 1 thus factor into n products:

µ2n(a, s) =

n∏

i=1

µ2

(
Ri

(n)a, s
)

, (8.A.14)

and

µ2n+1(a, s) =

n∏

i=1

µ2

(
R̃

(n)
i a, s

)
, (8.A.15)

so that all moments are determined by products of the second moment evaluated at
various rescaled values of the fractal parameter a = f2.

Combining (8.A.9) and (8.A.14), we find that in the singular limit,

lim
s→1

(
µ2n

(µ2)
P

n
i=1 Ri

(n)

)
= 1, (8.A.16)

with a similar expression for the odd moments with Ri → R̃i. The sum of the roots
can be shown to equal the coefficient of the linear term in (8.A.1), so that:

n∑

i=1

Ri
(n) = 2n(2n − 1)/2, (8.A.17)

and similarly for R̃i. The limits for the even and odd moments can then be combined
to yield:
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lim
s→1

(
µn

(µ2)
n(n−1)/2

)
= 1 , (8.A.18)

consistent with the behavior of moments of a lognormal.
Summary. By considering the roots of Pn, Qn in (8.A.11)–(8.A.12), we have seen
in this Appendix that

1. all the moments are explicitly determined by the second moment evaluated at
rescaled values of f , cf. (8.A.14) and (8.A.15); and

2. that the moments progress in the same ratios as for a lognormal distribution.

Note that this second fact does not imply that the pdf is lognormal, since a lognormal
is not uniquely determined by its moments, though it is determined by the moments
of the logarithm, which are discussed in Appendix 8.B. However, having the same
ratios as a lognormal does show that the higher moments diverge in the same way
as a lognormal when s = c2 → 1, each with an essential singularity, just like the
variance in (8.A.9), diverging like exp[a/(1 − s)].

8.B Reduction Factor and Variance of log W

Here we derive simple polynomial approximations for the reduction factor and the
standard deviation of log W , or equivalently log τ, as a function of the fractal param-
eter f with coefficients depending on c. For c = 2−1/3 (i.e., for –5/3 wavenumber
spectral exponent) these are well approximated by rational functions of f accurate
for f < 0.9. Also, we show that the reduction factor is approximately given by
χ ≈ exp− � 2/2, and insensitive to c as seen in Fig. 8.5.

The “effective” optical thickness defined in Sect. 8.5 is based on the following
result for the liquid water path W :

log W = log (W χ(f, c)), (8.B.2)

where the overbar signifies an area and ensemble average, and where the “reduction
factor” is given by

χ(f, c) =

(
∞∏

n=0

(
1 − f2c2n

)
)1/2

. (8.B.3)

Here f varies diurnally, as discussed in Sec. 8.4, but c is assumed constant, given by
c = 2−1/3, or

c2 = 0.630, (8.B.4)

as required for a k−5/3 wavenumber spectrum. Equations (8.B.2) and (8.B.3) were
derived in Cahalan et al. (1994a) assuming the statistical distribution generated by
the bounded cascade model. The reduction factor may also be expressed as

χ(f, c) = 10−
�

(f,c), (8.B.5)

where
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�

(f, c) ≡ log W − log W, (8.B.6)

A polynomial expression for
�

is obtained by taking log of (8.B.3), changing to base
e by multiplying by log e, and expanding in a power series in f , leading to

�
(f, c) =

log e

2

f2

1 − c2

(
1 +

f2

1 + c2
+ O

(
f4

)
)

(8.B.7)

For the value of c2 given in (8.B.4), a better fit than (8.B.7) is given by the rational
approximant:

�
(f) = 0.594 f2

(
1 − 0.485f2

1 − 0.739 f2

)
, (8.B.8)

which is accurate to 1% as long as f < 0.9.
The second moment of log W was derived in Cahalan et al. (1994a), and is given

by

M2(f) =

∞∑

k=1

(
1

2
log

(
1 + fck

1 − fck

))2

(8.B.9)

If we take the square root of (8.B.9), and expand the result in powers of f , we obtain
the standard deviation of log W in the form:

� (f, c) =
f log e√
1 − c2

(
1 +

1

3

f2

1 + c2
+ O

(
f4

))
. (8.B.10)

The first term here agrees with the standard deviation obtained by taking the square
root of the exponent of µ2 in the singular limit in (8.A.9). For the value of c2 in
(8.B.4) a better fit is given by the approximant:

� (f) = 0.718 f

(
1 − 0.556 f2

1 − 0.729 f2

)
. (8.B.11)

which is accurate to 1% as long as f < 0.9.
Solving for f in (8.B.10), and substituting the result in (8.B.7) allows us to write

(8.B.5) to lowest order as:

χ( � ) = 10− � 2/2 log e ≈ 10−1.15 � 2

. (8.B.12)

The leading term in the exponent in (8.B.12) is independent of c, and the correction
terms are of order � 4, and quite small as long as � < 0.8. The insensitivity to c is
verified in Fig. 8.5.
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Suggested Reading

1. For an early clear description of the cascading effect of dynamical processes on
cloud structure, see:

Welander, P. (1955). General development of motion in a 2D ideal fluid. Tellus, 7,
141–156.

A modern and popularized discussion of the evolution of cascades is in

Barabasi, A.-L. (2003). Linked: The New Science of Networks. 256 pp., Perseus
Publishing, Boulder (Co).

For a useful general approach to treating clouds in large-scale models, see:

Tiedtke, M. (1993). Representation of clouds in large-scale models. Mon. Wea. Rev.
121, 3040–3061.

2. There are many interesting alternatives to the “effective thickness approximation”
(ETA). Listed here are a few that are particularly instructive. A “generalized ETA” is
described in:

Szczap, F., H. Isaka, M. Saute, B. Guillemet and A. Iolthukhovski (2000). Effective
radiative properties of bounded cascade non-absorbing clouds: Definition of the
equivalent homogeneous cloud approximation. J. Geophys. Res., 105, 20617–
20633.

A generalization of the IPA to account for sun angle effects is the “tilted IPA” or
“TIPA” of:
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Várnai, T. and Davies, R. (1999). Effects of cloud heterogeneities on shortwave radi-
ation: comparison of cloud-top variability and internal heterogeneity. J. Atmos.
Sci., 56, 4206–4224.

Especially useful in the context of the “two-stream approximation” often used in
large-scale models is the “Gamma-weighted two-stream approximation” described
for example in:

Barker, H.W. (1996). A parameterization for computing grid-averaged solar fluxes
for inhomogeneous marine boundary layer clouds - Part 1, Methodology and
homogeneous biases. J. Atmos. Sci., 53, 2289–2303.

Oreopoulos, L. and H.W. Barker (1999). Accounting for subgrid-scale cloud vari-
ability in a multi-layer 1D solar radiative transfer algorithm. Q. J. R. Meteorol.
Soc., 126, 301–330.

An interesting approach to taking advantage of cloud scaling properties in parame-
terizing effective cloud properties is the “renormalization” method described in (see
also Chap. 6):

Cairns, B., A.A. Lacis and B.E. Carlson (2000). Absorption within inhomogeneous
clouds and its parameterization in general circulation models. J. Atmos. Sci. 57,
700–714.

A model that treats a cloud distribution analogously to the drop distribution within a
cloud is the “independent scattering cloudlets” model described in:

Petty, G.W. (2002). Area-average solar radiative transfer in three-dimensionally in-
homogeneous clouds: the independently scattering cloudlets model. J. Atmos.
Sci., 59, 2910–2929.

3. There are many generalizations of the simple bounded cascade. For example, see:

Gollmer, S., Harshvardhan, R.F. Cahalan and J.B. Snider (1995). Windowed and
wavelet analysis of marine stratocumulus cloud inhomogeneity. J. Atmos. Sci.
52, 3013–3030.

There are also a multiplicity of cloud structure models that can be compared to the
bounded cascade. We list here a few that are appropriate for various cloud types and
applications. A model helpful in understanding large-scale cloud statistics, especially
in the storm tracks, is the “cloud dot” model given in the appendix of:

Cahalan, R.F., D.A. Short and G.R. North (1982). Cloud fluctuation statistics. Mon.
Wea. Rev. 110, 26–43.

Interesting cascades have been developed for other geophysical fields, such as rain-
fall and vegetation. See for example:
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Waymire, E. and V.J. Gupta (1981). The mathematical structure of rainfall repre-
sentations 1. A review of the stochastic rainfall models. Water Resour. Res., 17,
1261–1294.

As c approaches unity in the bounded cascade, we reach an “essential ” singularity
that prevents the analytic continuation of the cloud properties to the singular c = 1
case. The singular case can be treated directly, as it is the so-called “p-model” of

Meneveau, C. and K.R. Sreenivasan (1987). Simple multifractal cascade model for
fully developed turbulence. Phys. Rev. Lett., 59, 1424–1427.

Singularities in unbounded cascades can be tamed by integration, for example (see
also the volume’s Appendix) in the “fractionally integrated” model of:

Schertzer, D. and S. Lovejoy (1987). Physical modeling and analysis of rain and
clouds by anisotropic scaling multiplicative processes. J. Geophys. Res., 92,
9693–9714.

The above is not meant to be an exhaustive bibliography, which would take too many
pages, but only to point the reader in some interesting directions that may be help-
ful in their own areas of interest. Simple models of complex structure share many
common features, so that often qualitative behavior discovered in the context of one
simple model such as the bounded cascade, or any other listed above, may have sur-
prisingly broad applicability. A model has served its purpose well if it prompts the
researcher to ask productive questions that lead to a better understanding.


